第六节 合情推理与演绎推理
合情推理和演绎推理之间的联系和差异-高中数学知识点讲解
合情推理和演绎推理之间的联系和差异1.合情推理和演绎推理之间的联系和差异【知识点的认识】合情推理:“合乎情理”的推理,包括归纳推理和类比推理.①归纳推理:特殊→一般,部分→整体②类比推理:特殊→特殊演绎推理:又称为“逻辑推理”,从一般性原理出发,推出某个特殊情况下的结论的推理.形式为:一般→特殊区别:(1)合情推理前提为真,结论可能为真,是或然性推理;演绎推理前提为真,结论亦为真,是必然性推理.(2)合情推理中的归纳、类比是“开拓型”和“发散型”的思维方法,虽然结论未必正确,但有创造性,对科学发现有帮助;演绎推理是“收敛型”或“封闭型”的思维方法,虽然结论一定正确,但不能取得突破性进展,形式化程度比合情推理高.联系:合情推理和演绎推理二者相辅相成,就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路的发现主要靠合情推理.【命题方向】常以选择、填空题形式出现,属于基础题,注意弄清合情推理和演绎推理之间的区别和联系.例:给出下面几个推理:①由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于 6 的偶数都等于两个奇质数之和;②由“三角形内角和为 180°”得到结论:直角三角形内角和为 180°;③由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;④由“a2+b2≥2ab(a,b∈R)”推得 sin2x≤1.其中是演绎推理的序号是.分析:演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,结果①是一个归纳推理,③是一个类比推理,②④是演绎推理.解答:演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,由“6=3+3,8=3+5,10=3+7,12=5+7…”得到结论:任何一个不小于 6 的偶数都等于两个奇质数之和;这是一个归纳推理,故①不选;由“三角形内角和为 180°”得到结论:直角三角形内角和为 180°;是一个演绎推理,故选②由“正方形面积为边长的平方”得到结论:正方体的体积为边长的立方;这是一个类比推理,故不选③由“a2+b2≥2ab(a,b∈R)”推得 sin2x≤1.这是一个演绎推理,故选④总上可知②④符合要求,故答案为:②④点评:本题考查演绎推理的特点,考查归纳推理和类比推理的特点,本题是一个基础题,这种题目不用计算,只要根据几个推理的特点得到正确结论即可.。
合情推理与演绎推理
合情推理与演绎推理一、基础知识1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.类比推理的注意点在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.合情推理的关注点(1)合情推理是合乎情理的推理.(2)合情推理既可以发现结论也可以发现思路与方向.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.↓演绎推理:常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.二、常用结论(1)合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.(2)合情推理是发现结论的推理;演绎推理是证明结论的推理. 考点一 归纳推理考法(一) 与数字有关的推理[典例] 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,3 38= 338,4 415= 4415,5 524= 5524,…,则按照以上规律,若99n= 99n具有“穿墙术”,则n =( ) A .25 B .48 C .63 D .80[解析] 由223=223,338=338,4415=4415,5524= 5524,…, 可得若99n = 99n具有“穿墙术”,则n =92-1=80. [答案] D考法(二) 与式子有关的推理[典例] 已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xex ,…,照此规律,则f n (x )=________.[解析] 因为导数分母都是e x,分子为(-1)n(x -n ),所以f n (x )=(-1)n (x -n )e x.[答案] (-1)n (x -n )e x考法(三) 与图形有关的推理[典例] 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图(1)所示的分形规律可得如图(2)所示的一个树形图.若记图(2)中第n 行黑圈的个数为a n ,则a 2 019=________.[解析] 根据题图(1)所示的分形规律,可知1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,把题图(2)中的树形图的第1行记为(1,0),第2行记为(2,1),第3行记为(5,4),第4行的白圈数为2×5+4=14,黑圈数为5+2×4=13,所以第4行的“坐标”为(14,13),同理可得第5行的“坐标”为(41,40),第6行的“坐标”为(122,121),….各行黑圈数乘2,分别是0,2,8,26,80,…,即1-1,3-1,9-1,27-1,81-1,…,所以可以归纳出第n 行的黑圈数a n =3n -1-12(n ∈N *),所以a 2 019=32 018-12.[答案] 32 018-12[题组训练]1.(2019·兰州实战性测试)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n ∈N *,则1+2+…+n +…+2+1=________.解析:由1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,…,归纳猜想可得1+2+…+n +…+2+1=n 2.答案:n 22.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图.则n 级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段, 由题图知,一级分形图有3=3×2-3条线段, 二级分形图有9=3×22-3条线段, 三级分形图中有21=3×23-3条线段, 按此规律n 级分形图中的线段条数a n =3×2n -3. 答案:3×2n -3考点二 类比推理[典例] 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3[解析] 如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而S 2=⎝⎛⎭⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+ 14BC 2·OD 2=⎝⎛⎭⎫12OB ·OA 2+⎝⎛⎭⎫12OC ·OA 2+⎝⎛⎭⎫12BC ·OD 2=S 21+S 22+S 23. [答案] A[题组训练]1.给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.2.设等差数列{a n }的前n 项和为S n ,则S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列.类比以上结论:设等比数列{b n }的前n 项积为T n ,则T 3,________,________,T 12T 9成等比数列.解析:等比数列{b n }的前n 项积为T n , 则T 3=b 1b 2b 3,T 6=b 1b 2…b 6,T 9=b 1b 2…b 9,T 12=b 1b 2…b 12,所以T 6T 3=b 4b 5b 6,T 9T 6=b 7b 8b 9,T 12T 9=b 10b 11b 12,所以T 3,T 6T 3,T 9T 6,T 12T 9的公比为q 9,因此T 3,T 6T 3,T 9T 6,T 12T 9成等比数列.答案:T 6T 3 T 9T 6考点三 演绎推理[典例] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)∴⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论) [解题技法] 演绎推理问题求解策略(1)演绎推理是由一般到特殊的推理,常用的一般模式为三段论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.[题组训练]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,(x2-x1)[f(x2)-f(x1)]>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.考点四逻辑推理问题[典例](2019·安徽示范高中联考)某参观团根据下列要求从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇[解析]假设去A镇,则也必须去B镇,但去B镇则不能去C镇,不去C镇则也不能去D镇,不去D镇则也不能去E镇,D,E镇都不去则不符合条件.故若去A镇则无法按要求完成参观.同理,假设不去A镇去B镇,同样无法完成参观.要按照要求完成参观,一定不能去B 镇,而不去B镇的前提是不去A镇.故A,B两镇都不能去,则一定不能去E镇,所以能去的地方只有C,D两镇.故选C.[答案] C[解题技法] 逻辑推理问题求解的2种途径求解此类推理性试题,要根据所涉及的人与物进行判断,通常有两种途径:(1)根据条件直接进行推理判断;(2)假设一种情况成立或不成立,然后以此为出发点,联系条件,判断是否与题设条件相符合.[题组训练]1.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题.甲:“我不会证明.”乙:“丙会证明.”丙:“丁会证明.”丁:“我不会证明.”根据以上条件,可以判断会证明此题的人是()A.甲B.乙C.丙D.丁解析:选A四人中只有一人说了真话,只有一人会证明此题,由丙、丁的说法知丙与丁中有一个人说的是真话,若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,故选A.2.(2019·大连模拟)甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是()A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻解析:选D由题意可得到甲、乙位置的示意图如图(1),因此,丙和丁的座位只可能是1和2,3和4,4和3,2和1,由己和乙不相邻可知,己只能在1或2,故丙和丁只能在3和4,4和3,示意图如图(2)和图(3),由此可排除B、C两项.对于A项,若甲与戊相邻,则己与丁可能正面相对,也可能不正面相对,排除A.对于D项,若丙与戊不相邻,则戊只能在丙的对面,则己与丙相邻,正确.故选D.图(1)图(2)图(3)[课时跟踪检测]1.下列三句话按三段论的模式排列顺序正确的是()①2 020能被2整除;②一切偶数都能被2整除;③2 020是偶数.A.①②③B.②①③C.②③①D.③②①解析:选C根据题意并按照演绎推理的三段论可知,大前提:一切偶数都能被2整除.小前提:2 020是偶数.结论:2 020能被2整除.所以正确的排列顺序是②③①.故选C.2.下列推理中属于归纳推理且结论正确的是()A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.3.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A .22项B .23项C .24项D .25项解析:选C 由题意可知,两数的和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为该列算式的第24项.故选C.4.(2018·南宁摸底联考)甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人解析:选C 由“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人.所以选C.5.若等差数列{a n }的前n 项之和为S n ,则一定有S 2n -1=(2n -1)a n 成立.若等比数列{b n }的前n 项之积为T n ,类比等差数列的性质,则有( )A .T 2n -1=(2n -1)+b nB .T 2n -1=(2n -1)b nC .T 2n -1=(2n -1)b nD .T 2n -1=b 2n -1n解析:选D 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n, …,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n.6.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形,则f (n )的表达式为( )A .f (n )=2n -1B .f (n )=2n 2C .f (n )=2n 2-2nD .f (n )=2n 2-2n +1解析:选D 因为f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…,结合图形不难得到f (n )-f (n -1)=4(n -1),累加得f (n )-f (1)=2n (n -1)=2n 2-2n ,故f (n )=2n 2-2n +1.7.在正整数数列中,由1开始依次按如下规则,将某些数染成红色:先染1;再染两个偶数2,4;再染4后面最近的3个连续奇数5,7,9;再染9后面的最近的4个连续偶数10,12,14,16;再染16后面最近的5个连续奇数17,19,21,23,25,…,按此规则一直染下去,得到一个红色子数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个红色子数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974解析:选D 按照染色步骤对数字进行分组.由题意可知,第1组有1个数,第2组有2个数,…,根据等差数列的前n 项和公式,可知前n 组共有n (n +1)2个数.由于2 016=63×(63+1)2<2 019<64×(64+1)2=2 080,因此,第2 019个数是第64组的第3个数,由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,…,所以第n 组最后一个数是n 2,因此第63组最后一个数为632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972,第3个数为3 974,故选D.8.观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:观察所给等式可知,每行最左侧的数分别为1,2,3,…,则第n 行最左侧的数为n ;每个等式左侧的数的个数分别为1,3,5,…,则第n 个等式左侧的数的个数为2n -1,而第n 个等式右侧为(2n -1)2,所以第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29.(2018·上饶二模)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V =12πr 3,则其四维测度W =________.解析:∵二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ,三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S ,∴四维空间中“特级球”的三维测度V =12πr 3,猜想其四维测度W 满足W ′=V =12πr 3,∴W =3πr 4.答案:3πr 410.在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n ∈N *),其中λ>0,{a n }的通项公式是________________.解析:a 1=2,a 2=2λ+λ2+(2-λ)·2=λ2+22, a 3=λ(λ2+22)+λ3+(2-λ)·22=2λ3+23, a 4=λ(2λ3+23)+λ4+(2-λ)·23=3λ4+24.由此猜想出数列{a n }的通项公式为a n =(n -1)λn +2n . 答案:a n =(n -1)λn +2n11.(2019·吉林实验中学测试)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB ⊥AB 时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可推出“黄金双曲线”的离心率e 等于________.解析:类比“黄金椭圆”,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB ―→=(c ,b ),AB ―→=(-a ,b ). 易知FB ―→⊥AB ―→,所以FB ―→·AB ―→=b 2-ac =0, 所以c 2-a 2-ac =0,即e 2-e -1=0, 又e >1,所以e =5+12. 答案:5+1212.已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长,分别交对边于A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1,这是一道平面几何题,其证明常采用“面积法”: OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1. 请运用类比思想,对于空间中的四面体A BCD ,存在什么类似的结论,并用“体积法”证明.解:在四面体A BCD 中,任取一点O ,连接AO ,DO ,BO ,CO 并延长,分别交四个面于E ,F ,G ,H 点.则OE AE +OF DF +OG BG +OH CH =1.证明:在四面体O BCD 与A BCD 中,OE AE =h 1h =13S △BCD ·h 113S △BCD ·h=V O BCDV A BCD .同理有OF DF =V O -ABC V D -ABC ,OG BG =V O-ACD V B -ACD ,OH CH =V O-ABDV C -ABD .∴OE AE +OF DF +OG BG +OH CH=V O -BCD +V O -ABC +V O -ACD +V O -ABDV A -BCD =V A -BCD V A -BCD=1.。
高中数学第六章推理与证明6.1合情推理和演绎推理6.1.3演绎推理6.1.4合情推理与演绎推理的关系课件湘教版选
解 (1)所有的金属都能导电——大前提(一般原理) 铀是金属——小前提(特殊情况) 所以铀能够导电——结论(对特殊情况的判断). (2)一切奇数都不能被2整除——大前提. (2100+1)是奇数——小前提. 所以(2100+1)不能被2整除——结论. (3)大前提:三角函数都是周期函数, 小前提:y=tan α是三角函数, 结论:y=tan α是周期函数.
2.若a,b是正实数,且a≠b,试比较aabb与abba的大小. 解 根据同底数幂的运算法则,可考虑用比值比较法, aaabbbba=aa-b·bb-a=aba-b. 当a>b>0时,ab>1,a-b>0,则aba-b>1, 于是aabb>abba; 当b>a>0时,0<ab<1,a-b<0,则aba-b>1, 于是aabb>abba. 综上所述,对于不相等的正数a,b都有aabb>abba.
点评 用三段论写推理过程中,关键是明确大前提、小前 提,有些推理有时省略了大前提,寻找大前提时,可找一个 使结论成立的充分条件作为大前提.
1.把“函数y=x2+x+1的图象是一条抛物线”写成三段论的 形式. 解 二次函数的图象是一条抛物线,(大前提) 函数y=x2+x+1是二次函数,(小前提) 所以,y=x2+x+1的图象是一条抛物线.(结论)
[正解] 推理形式是正确的,但小前提是错误的.因为若三 点共线可确定无数平面,只有不共线的三点可满足.推理的 结论不正确. 纠错心得 判断一个三段论推理是否正确,要从大前提、小 前提、推理形式三个方面去考虑,只要有一个方面错误,结 论就可能是错误的.
6.1.3 演绎推理
6.1.4 合情推理与演绎推理的关系
【课标要求】 1.了解演绎推理的重要性,掌握演绎推理的基本模式. 2.并能运用演绎推理进行一些简单推理. 3.掌握合情推理和演绎推理的联系和差异. 4.了解合情推理和演绎推理在数学发现中的作用.
合情推理与演绎推理
合情推理与演绎推理知识点一:推理的概念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。
其中归纳推理和类比推理是最常见的合情推理。
1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。
(2)一般模式:部分整体,个体一般(3)一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同的性质中猜想出一个明确表述的一般性命题;③检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠.由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)一般模式:特殊特殊(3)类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:①找出两类对象之间的相似性或一致性;②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想);③检验猜想.(5)类比推理的结论可真可假类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得出的命题就越可靠.类比结论具有或然性,所以类比推理所得的结论不一定是正确的。
合情推理与演绎推理
合情推理与演绎推理一、 知识讲解推理:由一个或几个事实(或假设)得出一个判断的思维方式前提为真,结论可能为真的推理称为合情推理.⎧⎧⎪⎨⎨⎩⎪⎩归纳推理合情推理推理类比推理演绎推理(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全 部对象都具有这些特征,或者由个别事实概括出一般性的结论,这样的推理 称为归纳推理(简称归纳).特征:从特殊现象到一般现象归纳推理的一般步骤:已知条件 观察归纳 大胆猜想 检验猜想(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已 知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). 归纳推理和类比推理的过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 提出猜想 检验猜想(3)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论, 这种推理称为演绎推理.说明:1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论可表示为:大前提:M 是P小前提:S 是M结 论:S 是P二、典型例题例 根据图中5个图形及相应点的个数的变化规律,试猜测第n 个图形中 有 个点.例 根据给出的数塔猜测123456×9+7等于1×9+2=1112×9+3=111123×9+4=11111234×9+5=11111……例 证明函数f (x )=-x 2+2x 在(-∞,1]上是增函数.三:小结思考 设(),(),22x x x xa a a a f x g x --+-== 其中 0,1a a >≠且 (1)5=2+3,请你推测(5)f 能否用(2),2(3),(3)f g f g (),来表示 ;(2)如果(1)中获得一个结论,请你推测能否将其推广.。
合情推理与演绎推理
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
合情推理与演绎推理
结束
[小题纠偏] 2+m 2 2 3 2 4 2 5 1.由 < , < , < ,„,猜想若 m>0,则 与 之间的 3 4 3 5 3 6 3+m 3
2+m 2 大小关系为________. 答案:3+m>3
2.推理:“①矩形是平行四边形;②三角形不是平行四边形; ③所以三角形不是矩形”中的小前提是________(填序号).
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
合情推理与演绎推理
结束
考点二
归纳推理
[锁定考向]
归纳推理是每年高考的常考内容,题型多为填空题,难 度稍大,属中高档题. 常见的命题角度有: (1)与数字有关的推理; (2)与式子有关的推理; (3)与图形有关的推理.
课 前 ·双 基 落 实
x0x y0y x0x y0y 弦方程为 2 - 2 =1.答案: 2 - 2 =1 a b a b
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
合情推理与演绎推理
结束
[谨记通法]
类比推理的分类及处理方法
类别
解读
适合题型
在求解由某种熟悉的定义产生的类 类比 已知熟悉定义类 比推理型试题时,可以借助原定义 定义 比新定义 来求解 从一个特殊式子的性质、一个特殊 图形的性质入手,提出类比推理型 平面几何与立体 类比 问题,求解时要认真分析两者之间 几何、等差数列 性质 的联系与区别,深入思考两者的转 与等比数列 化过程是求解的关键 有一些处理问题的方法具有类比性, 已知熟悉的处理 类比 可以把这种方法类比应用到其他问 方法类比未知问 方法 题的求解中,注意知识的迁移 题的处理方法
合情推理与演绎推理
平度市第九中学 高二数学组 纪云尚
一、推理的定义
推理 是从一个或几个已知的判断, 得出另一个新判断的思维过程。
推理的结构:任何推理都包含前提和 结论两部分。前提是推理的依据部分, 可以是一个也可以是几个;结论是根据 前提所推出的判断。
二、推理的分类 归纳推理
合情推理 推理
演绎推理
④
⑤ a // b a1 b1 , a2 b2 ( R) ⑤ a // b a b , a b , a b ( R) 1 1 2 2 3 3
a b a1b1 a2b2
④ a b a1b1 a2b2 a3b3
有大气层
一年中有季节更替 温度适合生物生存 有生命存在
有大气层
一年中有季节更替 大部分时间适合地球 上某些一直生物生存 可能有生命存在
火星与地球类比的思维过程:
地球
存在类似特征
火星
地球上有生命存在
猜测火星上也可能有生命存在
注:(1)类比推理是由一类对象特征到另 一类对象特征的推理。 (2)类比推理的一般模式为:
需证明
三、类比推理
类比推理,是根据两个或两类对象 有部分属性相同,从而推出它们其它属 性也相同的推理方法—— 从 特殊到特 殊的推理方法。 类比推理与归纳推理一样具有不可 靠性。 由类比得到的结论,只是猜想,经 过证明的才是正确的。
太阳系其他行星上有生命吗? 地球 绕太阳公转,自转 火星 绕太阳公转,自转
① a b (a1 b1 , a2 b2 )
空间向量
若a (a1 , a2 , a3 ) , b (b1 , b2 , b3 )
则
合情推理与演绎推理
合情推理与演绎推理一、推理:1、推理的定义:从一个或几个已知命题得出另一个新命题的思维过程称为推理2、推理的结构:推理的前提:所依据的命题,它告诉我们已知的知识是什么;推理的结论:根据前提推得的命题,它告诉我们推出的知识是什么。
3、推理的一般形式:推理可看作是用连接词将前提和结论连结起来的一个逻辑连接。
常用的连接有:“因为…所以…”、“如果…那么…”、“根据…可知…”等等形式。
下面是三个推理案例:① 前提:当0=n 时,11112=+-n n ② 前提:矩形的对角线的平方等于长和宽的平方和当1=n 时,11112=+-n n 结论:长方体对角线的平方等于长、宽、高的平方和当2=n 时,13112=+-n n ③ 前提:所有的树都是植物,梧桐是树当3=n 时,17112=+-n n 结论:梧桐是植物当4=n 时,23112=+-n n当5=n 时,31112=+-n n31,23,17,13,11,11都是质数结论:对于所有的自然数11,2+-n n n 的值都是质数4、推理的分类:推理一般可分为“合情推理”和“演绎推理”两种类型。
二、合情推理:合情推理只有两种形式,那就是归纳推理和类比推理。
观察、比较、估算、联想是归纳和类比的方法;自觉、顿悟、灵感是产生合情推理的心理活动形式;归纳推理是由特殊到一般的推理,类比推理是特殊到特殊的推理。
合情推理过程概括为:可见,归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理、我们把它们统称为合情推理1、归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论性的结论的推理,称为归纳推理(简称归纳)。
(2)特点:① 归纳推理是“由部分到整体,由个体到一般”的推理;② 归纳推理的前提是几个已知的特殊现象,结论是尚属未知的一般现象;③ 归纳推理具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验。
合情推理与演绎推理
合情推理与演绎推理1.合情推理2.演绎推理(1)定义:根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.概念方法微思考1.合情推理所得结论一定是正确的吗?提示合情推理所得结论是猜想,不一定正确,用演绎推理能够证明的猜想是正确的,否则不正确.2.合情推理对我们学习数学有什么帮助?提示合情推理常常能帮助我们猜测和发现结论,证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.3.“三段论”是演绎推理的一般模式,包括大前提,小前提,结论,在用其进行推理时,大前提是否可以省略?提示大前提是已知的一般原理,当已知问题背景很清楚的时候,大前提可以省略.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N+).(×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)题组二教材改编2.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1B.a n=4n-3C.a n=n2D.a n=3n-1答案 C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a n=n2.3.在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,n∈N+)成立,类比上述性质,在等比数列{b n}中,若b9=1,则存在的等式为________________.答案b1b2…b n=b1b2…b17-n(n<17,n∈N+)解析利用类比推理,借助等比数列的性质,b29=b1+n·b17-n,可知存在的等式为b1b2…b n=b1b2…b17-n(n<17,n∈N+).题组三易错自纠4.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 C解析f(x)=sin(x2+1)不是正弦函数,所以小前提错误.5.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________.(填序号) 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 6.观察下列关系式:1+x =1+x ;()1+x 2≥1+2x ,()1+x 3≥1+3x ,……,由此规律,得到的第n 个关系式为________. 答案 (1+x )n ≥1+nx解析 左边为等比数列,右边为等差数列,所以第n 个关系式为(1+x )n ≥1+nx (n ∈N +).题型一 归纳推理命题点1 与数式有关的的推理例1 (1)(2018·郑州模拟)《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是( )A.18B.17C.16D.15 答案 B解析 由题意类推,可知六十四卦中的“屯”卦符号 “”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17,故选B.(2)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0182<________. 答案4 0352 018解析 由题意得,不等式右边分数的分母是左边最后一个分数的分母的底数,所以猜想的分母是2 018,分子组成了一个以3为首项,2为公差的等差数列,所以a 2 017=3+(2 017-1)×2=4 035.命题点2 与图形变化有关的推理例2 (2018·马鞍山模拟)分形理论是当今世界十分风靡和活跃的新理论、新学科.其中,把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图像或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n =6时,该黑色三角形内去掉小三角形个数为( )A.81B.121C.364D.1 093 答案 C解析 由图可知,每一个图形中小三角形的个数等于前一个图形小三角形个数的3倍加1, 所以,n =1时,a 1=1; n =2时,a 2=3+1=4; n =3时,a 3=3×4+1=13; n =4时,a 4=3×13+1=40; n =5时,a 5=3×40+1=121; n =6时,a 6=3×121+1=364,故选C.思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与式子有关的推理.观察每个式子的特点,注意是纵向看,找到规律后可解.(3)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.跟踪训练1 某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A.21B.34C.52D.55答案 D解析由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.题型二类比推理例3(1)已知{a n}为等差数列,a1 010=5,a1+a2+a3+…+a2 019=5×2 019.若{b n}为等比数列,b1 010=5,则{b n}类似的结论是()A.b1+b2+b3+…+b2 019=5×2 019B.b1b2b3…b2 019=5×2 019C.b1+b2+b3+…+b2 019=52 019D.b1b2b3…b2 019=52 019答案 D解析在等差数列{a n}中,令S=a1+a2+a3+…+a2 019,则S=a2 019+a2 018+a2 017+…+a1,∴2S=(a1+a2 019)+(a2+a2 018)+(a3+a2 017)+…+(a2 019+a1)=2 019(a1+a2 019)=2 019×2a1 010=10×2 019,∴S=a1+a2+a3+…+a2 019=5×2 019.在等比数列{b n}中,令T=b1b2b3…b2 019,则T=b2 019b2 018b2 017 (1)∴T2=(b1b2 019)(b2b2 018)(b3b2 017)…(b2 019b1)=(b21 010)2 019,∴T=b1b2b3…b2 019=(b1 010)2 019=52 019.(2)祖暅是我国古代的伟大科学家,他在5世纪末提出祖暅:“幂势即同,则积不容异”,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.祖暅原理常用来由已知几何体的体积推导未知几何体的体积,例如由圆锥和圆柱的体积推导半球体的体积,其示意图如图所示,其中图(1)是一个半径为R的半球体,图(2)是从圆柱中挖去一个圆锥所得到的几何体.(圆柱和圆锥的底面半径和高均为R)利用类似的方法,可以计算抛物体的体积:在xOy 坐标系中,设抛物线C 的方程为y =1-x 2(-1≤x ≤1),将曲线C 围绕y 轴旋转,得到的旋转体称为抛物体.利用祖暅原理可计算得该抛物体的体积为( ) A.π3 B.π2 C.2π3 D.3π4 答案 B解析 构造如图所示的直三棱柱,高设为x ,底面两个直边长为2,1,若底面积相等得到:2x =π×12,x =π2.下面说明截面面积相等,设截面距底面为t ,矩形截面长为a ,圆形截面半径为r , 由左图得到,a 2=1-t1,∴a =2(1-t ),∴截面面积为2(1-t )×π2=(1-t )π,由右图得到,t =1-r 2(坐标系中易得), ∴r 2=1-t ,∴截面面积为(1-t )π, ∴二者截面面积相等, ∴体积相等.∴抛物体的体积为V 三棱柱=Sh =12×2×1×π2=π2.故选B.思维升华 类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比(加与乘,乘与乘方,减与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练2 在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间中,则三棱锥中的类似结论为____________________.答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.题型三 演绎推理例4 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N +).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S nn ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)思维升华 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题,应当首先明确什么是大前提和小前提,若前提是显然的,则可以省略.跟踪训练3 某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,保证每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是( ) A.今天是周六B.今天是周四C.A 车周三限行D.C 车周五限行答案 B解析 因为每天至少有四辆车可以上路行驶,E 车明天可以上路,E 车周四限行,所以今天不是周三;因为B 车昨天限行,所以今天不是周一,不是周五,也不是周日;因为A ,C 两车连续四天都能上路行驶,所以今天不是周二和周六,所以今天是周四.故选B.1.“对数函数是非奇非偶函数,f (x )=log 2|x |是对数函数,因此f (x )=log 2|x |是非奇非偶函数”,以上推理( ) A.结论正确 B.大前提错误 C.小前提错误 D.推理形式错误答案 C解析 本命题的小前提是f (x )=log 2|x |是对数函数,但是这个小前提是错误的,因为f (x )=log 2|x |不是对数函数,它是一个复合函数,只有形如y =log a x (a >0且a ≠1)的才是对数函数.故选C. 2.(2018·重庆模拟)中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期战国初年.算筹记数的方法是:个位、百位、万位…的数按纵式的数码摆出;十位、千位、十万位…的数按横式的数码摆出,如7738可用算筹表示为.1~9这9个数字的纵式与横式的表示数码如上图所示,则2log 643的运算结果可用算筹表示为( )答案 D解析 根据题意,2log 643=36=729, 用算筹记数表示为,故选D.3.下列推理是归纳推理的是( )A.M ,N 为定点,动点P 满足||PM |-|PN ||=2a <|MN |(a >0),则动点P 的轨迹是以M ,N 为焦点的双曲线B.由a 1=2,a n =3n -1求出S 1,S 2,S 3,猜想出数列{a n }的前n 项和S n 的表达式C.由圆x2+y2=r2的面积S=πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜水艇答案 B解析A选项用的双曲线的定义进行推理,不符合要求.B选项根据前3个S1,S2,S3的值,猜想出S n的表达式,属于归纳推理,符合要求.C选项由圆x2+y2=r2的面积S=πr2,猜想出椭圆x2a2+y2b2=1的面积S=πab,用的是类比推理,不符合要求.D选项用的是演绎推理,不符合要求.故选B.4.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102.根据上述规律,13+23+33+43+53+63等于()A.192B.202C.212D.222答案 C解析因为13+23=32,13+23+33=62,13+23+33+43=102,等式的右端依次为(1+2)2,(1+2+3)2,(1+2+3+4)2,所以13+23+33+43+53+63=(1+2+3+4+5+6)2=212,故选C.5.天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立80年时为()A.丙酉年B.戊申年C.己申年D.己酉年答案 D解析天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1949年到2029年经过80年,且1949年为“己丑”年,以1949年的天干和地支分别为首项,则80÷10=8,则2029的天干为己,80÷12=6余8,则2029的地支为酉,故选D.6.甲、乙、丙、丁四名同学一起去向老师询问数学学业水平考试成绩等级.老师说:“你们四人中有2人A等,1人B等,1人C等,我现在给甲看乙、丙的成绩等级,给乙看丙的成绩等级,给丙看丁的成绩等级”.看后甲对大家说:“我知道我的成绩等级了”.根据以上信息,则()A.甲、乙的成绩等级相同B.丁可以知道四人的成绩等级C.乙、丙的成绩等级相同D.乙可以知道四人的成绩等级 答案 D解析 由题意,四个人所知的只有自己看到的,以及甲最后所说的话,甲知道自己的等级,则甲已经知道四个人等级,其甲、乙的成绩等级不一定是相同的, 所以A 是不对的,乙、丙的成绩等级不一定是相同的,所以C 是不正确的, 丁没有看任何人的成绩等级,所以丁不可能知道四人的成绩等级,所以B 是不对的, 只有乙可能知道四人的成绩等级,所以D 是正确的.7.(2019·上饶模拟)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V =12πr 3,则其四维测度W =________. 答案 3πr 4解析 二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;观察发现S ′=l ,三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S ,∴四维空间中“特级球”的三维测度V =12πr 3,猜想其四维测度W ,则W ′=V =12πr 3,∴W =3πr 4.8.已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 22≥a 1a 2; a 1+a 2+a 33≥3a 1a 2a 3; a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4;…照此规律,当n ∈N +,n ≥2时,a 1+a 2+…+a nn ≥______.答案na 1a 2…a n解析 根据题意得a 1+a 2+…+a n n≥na 1a 2…a n (n ∈N +,n ≥2).9.已知f (x )=x1+x ,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2 019(x )的表达式为________.答案 f 2 019(x )=x1+2 019x解析 f 1(x )=x 1+x ,f 2(x )=x 1+x 1+x 1+x =x 1+2x ,f 3(x )=x1+2x 1+x 1+2x=x 1+3x ,…,f n +1(x )=f (f n (x ))=x 1+(n +1)x, 归纳可得f 2 019(x )=x 1+2 019x. 10.如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c 2=a 2+b 2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S 1,S 2,S 3,截面面积为S ,类比平面的结论有________.答案 S 2=S 21+S 22+S 23解析 三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S 2=S 21+S 22+S 23.11.(2019·郑州调研)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”: 223=223,338=338,4415=4415, 5524=5524,……, 则按照以上规律,若88n = 88n 具有 “穿墙术”,则n =________. 答案 63解析 ∵223=2222-1=223, 338=3332-1=338, 4415=4442-1=4415, 5524=5552-1=5524, ∴按照以上规律88n =88n ,可得n =82-1=63. 12.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲,1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2 018这2 017个整数中能被2除余1且被3除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为________.答案 336解析 因为这些整数能被2除余1且被3除余1,所以这些数组成的数列的通项a n =6n +1,设6n +1≤2 018,所以6n ≤2 017,所以n ≤33616. 所以此数列的项数为336.13.(2018·黄山模拟)为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为a 1a 2a 3,传输信息为h 1a 1a 2a 3h 2,其中h 1=a 1⊕a 2,h 2=h 1⊕a 3,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( )A.01100B.11010C.10110D.11000答案 D解析 A 选项原信息为110,则h 1=a 1⊕a 2=1⊕1=0,h 2=h 1⊕a 3=0⊕0=0,所以传输信息为01100,A 选项正确;B 选项原信息为101,则h 1=a 1⊕a 2=1⊕0=1,h 2=h 1⊕a 3=1⊕1=0,所以传输信息为11010,B 选项正确;C 选项原信息为011,则h 1=a 1⊕a 2=0⊕1=1,h 2=h 1⊕a 3=1⊕1=0,所以传输信息为10110,C 选项正确;D 选项原信息为100,则h 1=a 1⊕a 2=1⊕0=1,h 2=h 1⊕a 3=1⊕0=1,所以传输信息为11001,D 选项错误;故选D.14.一质点从坐标原点出发,按如图的运动轨迹运动,每步运动一个单位,例如第3步结束时该质点所在位置的坐标为(0,1),第4步结束时质点所在位置的坐标为(-1,1),那么第2 018步结束时该质点所在位置的坐标为________.答案 (16,-22)解析 当运动:1+1+2+2步时,坐标为(-1,-1);当运动:1+1+2+2+3+3+4+4步时,坐标为(-2,-2);当运动:1+1+2+2+3+3+4+4+5+5+6+6步时,坐标为(-3,-3);……当运动:1+1+2+2+3+3+4+4+5+5+6+6+…+n +n (n 为偶数)步时,坐标为⎝⎛⎭⎫-n 2,-n 2. 而1+1+2+2+3+3+4+4+5+5+6+6+…+n +n ≤2 018,即n (n +1)≤2 018(n ∈N +),解得n ≤44.当n =44时,该点的坐标为(-22,-22),共走了1 980步,此时还需向右走38步,故最终坐标为(16,-22).15.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A.6B.7C.8D.9答案 C解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N +)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N +)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6·n (n -1)2=3n 2-3n +1,由题意,得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8,故共有8层.16.分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段AB 的长度为a ,在线段AB 上取两个点C ,D ,使得AC =DB =14AB ,以CD 为一边在线段AB 的上方做一个正六边形,然后去掉线段CD ,得到图2中的图形;对图2中的最上方的线段EF 做相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第n 个图形(图1为第1个图形)中的所有线段长的和为S n ,现给出有关数列{S n }的四个命题:①数列{S n }不是等比数列;②数列{S n }是递增数列;③存在最小的正数a ,使得对任意的正整数n ,都有S n >2 019;④存在最大的正数a ,使得对任意的正整数n ,都有S n <2 019.其中真命题的序号是________.(请写出所有真命题的序号)答案 ①②④解析 由题意,得图1中的线段为a ,S 1=a ,图2中的正六边形的边长为a 2, S 2=S 1+a 2×4=S 1+2a , 图3中的最小正六边形的边长为a 4, S 3=S 2+a 4×4=S 2+a , 图4中的最小正六边形的边长为a 8, S 4=S 3+a 8×4=S 3+a 2, 由此类推,S n -S n -1=a 2n -3(n ≥2), 即{S n }为递增数列,且不是等比数列,即①,②正确;因为S n =S 1+(S 2-S 1)+(S 3-S 2)+…+(S n -S n -1)=a +2a +a +a 2+…+a 2n -3=a +2a ⎝⎛⎭⎫1-12n -11-12=a +4a ⎝⎛⎭⎫1-12n -1<5a (n ≥2,n ∈N +), 又S 1=a <5a ,所以存在最大的正数a =2 0195, 使得对任意的正整数n ,都有S n <2 019, 即④正确,③错误.。
归纳与技巧:合情推理与演绎推理(含解析)
归纳与技巧:合情推理与演绎推理基础知识归纳一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:基础题必做1.(教材习题改编)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 由5-2=3,11-5=6,20-11=9. 则x -20=12,因此x =32.3.(教材习题改编)给出下列三个类比结论. ①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8 5. 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74 ……照此规律,第五个不等式为___________________________________________________. 解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n 2<2n -1n(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<116解题方法归纳1.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1]已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.[自主解答]依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x(22-1)x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x(23-1)x+23,…,由此归纳可得f n(x)=x(2n-1)x+2n(x>0).[答案]x(2n-1)x+2n(x>0)解题方法归纳1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1. 将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.类 比 推 理典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD=13(S 1+S 2+S 3+S 4)r . [答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解题方法归纳1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p·b n -p m ·b p -mn =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1. 答案:b m -n p·b n -p m ·b p -mn =1演 绎 推 理典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)解题方法归纳演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B. 2. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.3. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4. 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6. 下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀ x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f (2n ),右边应当为n +22,即可得一般的结论为f (2n )≥n +22.答案:f (2n )≥n +228 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n , 所以f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB+V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1. 观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数,再猜想|x |+|y |=n 时,对应的不同整数解的个数.通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.2. 已知如下等式:3-4=17(32-42), 32-3×4+42=17(33+43), 33-32×4+3×42-43=17(34-44), 34-33×4+32×42-3×43+44=17(35+45), 则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *). 解析:依题意及不完全归纳法得,3n -3n -1×4+3n -2×42-…+(-1)n 4n =17[3n +1-(-4)n +1].答案:17[3n +1-(-4)n +1]。
合情推理与演绎推理(总结)
2.从推理的结论来看:
合情推理的结论不一定正确,有待证明; 演绎推理得到的结论一定正确.
联系:二者相辅相成,演绎推理是证明数学结论、建立数学体系的思维过 程,但数学结论、证明思路的发现主要靠合情推理.
+(n+1)=n(n+3)/2个圈,由n(n+3)/2≤55知,n最大为9,即前
55个圈中的●有9个,故选B.
答案:B
9.在平面几何中有如下结论:正三角ABC的内 切圆面积为S1,外接圆面积为S2,则S2(S1)=4(1), 推广到空间可以得到类似结论:正四面体P-ABC 的内切球体积为V1,外接球体积为V2,则V1/V2= ________.
C
[解析] 只有选项C是由 一般到特殊的推理,属 于演绎推理.
4.(2019·哈尔滨师大附中高二月考)《论语·学路》篇中
说:“名不正,则言不顺;言不顺,则事不成;事不成,则
礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措
手足;所以,名不正,则民无所措手足.”上述推理用的是
() A.类比推理
B.归纳推理
C.演绎推理
D.一次三段论
解析:这是一个复合三段论,从“名不正”推出“民无
所措手足”,连续运用五次三段论,属演绎推理形式.
答案:C
5.“指数函数是增函数,函数 f(x)=2x 是指数函数,所
以函数 f(x)=2x 是增函数”,以上推理( )
A.大前提不正确 B.小前提不正确
C.结论不正确
D.正确
解析:指数函数 y=ax(a>0 且 a≠1),当 a>1 时,指数函
解析: 正四面体的内切球的半径为r1,外接球的半径为 r2,则r1/r2=1/3,∴V1/V2=1/27. 答案:1/27
合情推理与演绎推理
合情推理与演绎推理1.推理一般包括合情推理和演绎推理;2.合情推理包括和;归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、 .类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、 .3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M是P,②,③S是P;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。
演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.例1. 已知:23150sin 90sin 30sin 222=++ ; 23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题:________________________________________=23( * )并给出( * )式的证明.解:一般形式: 23)120(sin )60(sin sin 222=++++ ααα证明:左边 = 2)2402cos(12)1202cos(122cos 1 +-++-+-ααα = )]2402cos()1202cos(2[cos 2123 ++++-ααα= -+-+- 240cos 2cos 120sin 2sin 120cos 2cos 2[cos 2123ααα]240sin 2sin α = ]2sin 232cos 212sin 232cos 212[cos 2123ααααα+----= 右边=23 (将一般形式写成 2223sin (60)sin sin (60),2ααα-+++=2223sin (240)sin (120)sin 2ααα︒︒-+-+=等均正确。
高考数学一轮复习课件6.6合情推理与演绎推理
•(2)类比推理
•①定义:由两类对象具有某类些似特征
____________和其中一类对象的某些已知特
征,推出另一类对象也具有这些特征的推理
称为类比推理(简称类比). 特殊
•②特点:类比推理是由特殊到________的
推理.
类比
•(3)合情推理:归纳推理和类比推理都是根据
已有的事实,经过观察、分析、比较、联想,
【解析】 观察每个不等式的特点,可知第n个不等式 为1+212+312+…+(n+1 1)2<2nn++11,
故第五个不等式为1+212+312+412+512+612<161. 【答案】 1+212+312+412+512+612<161
设函数f(x)=
x x+2
(x>0),且f1(x)=f(x)=
x x+2
,当
n∈N*且n≥2时,fn(x)=f[fn-1(x)],则f3(x)=________,猜 想fn(x)(n∈N*)的表达式为________.
•【审题视点】 由fn(x)=f[fn-1(x)]分别求f2(x), f3(x),然后观察f1(x),f2(x),f3(x)中等式的分 子与分母,分母中常数项与x的系数相差为1, 且常数项为2n.
•1.(人教A版教材习题改编)已知数列{an}中, a1=1,n≥2时,an=an-1+2n-1,依次计算 a2,a3,a4后,猜想an的表达式是( )
•A.3n-1
B.4n-3
•C.n2
D.3n-1
•【解析】 a1=1,a2=4,a3=9,a4=16, 猜想an=n2. •【答案】 C
2.“因为指数函数y=ax是增函数(大前提),而y=(
因为an=a1+(n-1)d,bn=b1qn-1,am+n=nnb--mma,
【数学知识点】合情推理和演绎推理的区别
【数学知识点】合情推理和演绎推理的区别
合情推理是由特殊到一般或特殊到特殊的推理,演绎推理是由一般到特殊的推理。
从推理的结论来看,合情推理的结论不一定正确有待证明;演绎推理得到的结论一定正确。
演绎推理是证明数学结论,建立数学体系的重要思维过程。
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
感谢您的阅读,祝您生活愉快。
合情推理和演绎推理
合情推理和演绎推理
合情推理是在已有数据的基础上推断出有关行为结果的一种技能,是一种不完
全有效的推理形式,有时也称为模糊推理。
它着重于考虑其他因素的影响,以洞察个体行为的潜在诱因,并根据这些判断或找到最优解决方案。
而演绎推理是一种基于已有信息推断出结论的逻辑推理方法,通常使用这种推
理推测某事物的成因,或判断某个案例时,用这种方法洞察案例关键信息,把一切密切相关而且重要的事实综合起来,以作出正确的判断。
在现代市场竞争中,行业竞争实践者越来越重视合情推理与演绎推理的结合,
也正因此它们逐步成为竞争中一个关键的部分。
首先,合情推理帮助分析市场行为,识别消费者在某些市场上的活动,有助于情境分析,指导发展和市场定位。
其次,演绎推理帮助从现有的价值观中总结出前提和假设,从而指导发展战略,确定营销活动,精准发掘客户与市场的关系,结合行业的实际情况行动,确保行业的顺利运营。
另外,合情推理与演绎推理结合在一起,可以进一步提升竞争力,发现新型机会。
合情推理能够洞察出合理的情景模式,它能根据现实环境和关联事件推出更全面的市场状况,为企业把握发展的重点提供影响;而演绎推理能够洞察涉及的各种因素,进一步分析影响这些因素在不同市场的表现,从而了解市场发展趋势,把握投资机会。
总之,只有结合合情推理与演绎推理,企业才能有效地严格分析市场信息,把
握市场动态,建立更有效的市场细分体系,实现可持续竞争优势。
合情推理与演绎推理
合情推理与演绎推理作者:杭毅来源:《初中生世界·七年级》2020年第08期初中数学要求将推理能力的培养贯穿整个数学学习之中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,一般包括合情推理和演绎推理。
其中,合情推理是归纳推理、类比推理等或然性推理(即推理的结论不一定成立的推理)的特称。
比如,用手扔一个石子,它要掉下来;再扔一个玻璃球,它也要掉下来;再扔一个苹果,它还是要掉下来。
我们会想到:不论扔什么东西,它都要掉下来;进一步去想这是为什么,想到最后,认为是由于地球有引力。
但是,我们并没有把每件东西都扔上去试试。
试了若干次,就认为这是普遍规律,这种推理方法,叫作归纳推理。
所谓归纳推理,就是从若干特殊现象中总结出一般规律,是从特殊到一般。
类比推理是由两个或两类思考对象在某些属性上的相同或相似,推出它们另一属性也相同或相似的一种推理,是从特殊到特殊。
比如乒乓球和网球,比赛形式都分单打或双打,比赛场地都用网相隔,并且规定球都要直接打到对方领域。
于是,人们就可以从乒乓球比赛“交换发球”这个规则,类比规定网球比赛也要“交换发球”,甚至还会联想到羽毛球、排球比赛,但很少会联想到篮球、足球比赛,因为后者在形式上不类似,不存在联想的基础。
但在数学研究中,要证明一条几何定理,就要从公理、定义和以前的定理出发,一步一步地按逻辑规则推出来,这也表明,数学需要演绎推理。
归纳推理只能作为提出猜想的基础,不能作为证明的依据。
演绎推理是从已有的事实(包括定义、公理、定理等)确定的规则出发,得到某个具体结论的推理,主要形式是“三段论”,由大前提、小前提、结论三部分组成一个“连珠”。
大前提是已知的一般原理;小前提是研究的特殊場合;结论是将特殊场合回归到一般原理之下得出的新知识。
例如,大前提:凡人都会死;小前提:苏格拉底是人;结论:所以,苏格拉底会死。
从这个“三段论”中可以看到,推理的前提是一般,推出的结论是个别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、演绎推理 1.定义:从 一般性的原理出发,推出_某__个__特__殊__情__况__ 下的结论,我们把这种推理称为演绎推理. 2.特点:演绎推理是由 一般到特殊 的推理.
3.模式:三段论.“三段论”是演绎推理的一般模式,
包括:
“三段 论”的
结构
①大前提—已知的 一般原理 ; ②小前提—所研究的特殊情况; ③结论—根据一般原理,对 特殊情况 的判断
[自主解答] 依题意得,f1(x)=x+x 2,
x f2(x)=x+xx+2+2 2=3xx+4=22-1xx+22,
x f3(x)=3x3x+x+4+4 2=7xx+8=23-1xx+23,…,由此归
纳可得 fn(x)=2n-1xx+2n(x>0). [答案] 2n-1xx+2n(x>0)
D.使用了“三段论”,但小前提错误
解析:由条件知使用了三段论,但推理形式是错误的.
答案:C
2.数列2,5,11,20,x,47,…中的x等于
A.28
B.32
C.33
D.27
解析:由5-2=3,11-5=6,20-11=9.
则x-20=12,因此x=32.
答案:B
()
3.(教材习题改编)给出下列三个类比结论.
1.归纳是依据特殊现象推断出一般现象,因而由 归纳所得的结论超越了前提所包含的范围.
2.归纳的前提是特殊的情况,所以归纳是立足于 观察、经验或试验的基础之上的.
[注意] 归纳推理所得结论未必正确,有待进一步 证明,但对数学结论和科学的发现很有用.
1.(2012·枣庄模拟)将正奇数按如图所示的规律排列,则
[自主解答] 三角形的面积类比为四面体的体积,三 角形的边长类比为四面体四个面的面积,内切圆半径类
比为内切球的半径.二维图形中12类比为三维图形中的13, 得 V 四面体 ABCD=13(S1+S2+S3+S4)r.
[答案] V 四面体 ABCD=13(S1+S2+S3+S4)r
1.类比推理是由特殊到特殊的推理,命题有其特 点和求解规律,可以从以下几个方面考虑类比:类比 定义、类比性质、类比方法、类比结构.
5.(2012·陕西高考)观察下列不等式 1+212<32, 1+212+312<53, 1+212+312+412<74 …… 照此规律,第五个不等式为___________________.
解析:观察得出规律,左边为项数个连续自然数平方的倒
数和,右边为项数的 2 倍减 1 的差除以项数,即 1+212+312+ 412+512+…+n12<2nn-1(n∈N*,n≥2), 所以第五个不等式为 1+212+312+412+512+612<161. 答案:1+212+312+412+512+612<161
类比推理
[例 2] 在平面几何里,有“若△ABC 的三边长分别为 a,b,c 内切圆半径为 r,则三角形面积为 S△ABC=12(a+b +c)r”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为 S1,S2,S3,S4,内切球的半径为 r, 则四面体的体积为________________”.
归纳推理
[例 1] (2012·河南调研)已知函数 f(x)=x+x 2(x>0).如 下 定 义 一 列 函 数 : f1(x) = f(x) , f2(x) = f(f1(x)) , f3(x) = f(f2(x)),…,fn(x)=f(fn-1(x)),…,n∈N*,那么由归纳推理 可得函数 fn(x)的解析式是 fn(x)=________.
①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn;
②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α +β)=sin αsin β;
③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=
a2+2a·b+b2.
其中结论正确的个数是
()
1.合情推理主要包括归纳推理和类比推理,合情推 理具有猜测和发现结论,探索和提供思路的作用.合情 推理的结论可能为真,也可能为假,结论的正确性有待 于进一步的证明.
2.应用三段论解决问题时,应首先明确什么是大前 提,什么是小前提,如果大前提、小前提与推理形式是 正确的,结论必定是正确的.如果大前提错误,尽管推 理形式是正确的,所得结论也是错误的.
做出
“三段 ①大前提—M是P;
论”的 ②小前提—S是M; 表示 ③结论—_S_是__P__
[小题能否全取]
1.(教材习题改编)命题“有些有理数是无限循环小数,整
数是有理数,所以整数是无限循环小数”是假命题,推
理错误的原因是
()
A.使用了归纳推理
பைடு நூலகம்
B.使用了类比推理
C.使用了“三段论”,但推理形式错误
A.0
B.1
C.2
D.3
解析:只有③正确.
答案:B
4.在平面上,若两个正三角形的边长的比为1∶2,则它 们的面积比为1∶4.类似地,在空间中,若两个正四面 体的棱长的比为1∶2,则它们的体积比为________. 1 解析:VV12=313SS12hh12=SS12·hh12=14×12=18. 答案:1∶8
特 由 部分 到 整体 、由 点 个别 到 一般 的推理
由 特殊 到 特殊 的推理
(1)通过观察个别情况发 (1)找出两类事物之间的
一
现某些相同性质;(2)从 相似性或一致性;(2)用
般
已知的相同性质中推出 一类事物的性质去推测
步
一个明确的一般性命题( 另一类事物的性质,得
骤
猜想)
出一个明确的命题(猜想)
第21行从左向右的第5个数为
()
1
357
9 11 13 15 17
19 21 23 25 27 29 31
…
…
…
A.809
B.852
C.786
D.893
解析:前20行共有正奇数1+3+5+…+39=202=400个, 则第21行从左向右的第5个数是第405个正奇数,所以这 个数是2×405-1=809. 答案: A
[知识能否忆起] 一、合情推理
归纳推理
类比推理
由某类事物的 部分对象 具有 由两类对象具有_类__似_
某些特征,推出该类事物的 特征 和其中一类对 定 全部对象 都具有这些特征 象的某些已知特征 推 义 的推理,或者由 个别事实 概 出另一类对象也具有
括出 一般结论 的推理
这些特征的推理
归纳推理
类比推理