大学期末考试机械优化设计复习题复习课程
机械 机械优化设计复习题
![机械 机械优化设计复习题](https://img.taocdn.com/s3/m/e23d51c2da38376baf1fae69.png)
山东理工大学成人高等教育机械优化设计复习题一、填空题1、搜索区间的确定最常用的是 法,在一维探索时,首先保证探索区间函数具有____________性。
2、工程设计优化问题通常把高维问题转化为 问题求解,采用 方法来近似原目标函数。
3、复合形各顶点的选择和替换,不仅要满足目标函数的 ,还应当满足 。
4、内点惩罚函数法整个迭代过程限制在 ,迭代点均为 。
5、函数在x (k)点的最速下降方向是 方向,最速上升方向是 方向,它们都是函数的 性质。
6、工程设计优化问题可以描述为:在满足给定的 下,选择适当的 ,使目标函数值达到最优。
7、惩罚函数法包括: 法和 法两种。
8、可行方向法的探索路线有三种 :(1) ,(2) ,(3) 。
9、黄金分割法的基本思想是通过计算和比较单峰区间内 ,不断 ,使搜索区间 ,直至极小点所在的区间 ,得到近似最优解。
10、可行域内的任一设计点都代表一个 ,这样的点叫做 点。
二、计算题1. 对于约束极值问题,试运用K-T 条件判明目标函数在约束条件下点X*=[2,0]T 是否为约束极值点。
2、求函数()5221222122141+-++-=x x x x x x X f 的极值点,极值并判断其性质。
3、求函数121222122123)(x x x x x x f --+=的无约束极值点,并判断它们是极小点、极大()()22213min x x X f +-=..t s ()()()000413222211≤-=≤-=≤-+=x X g x X g x x X g点还是鞍点?三、简答题1、试述黄金分割法首轮搜索区间插入点具有什么特点?2、试述随机方向法的搜索过程3、Powell 是如何对其基本算法进行修正的?4、试述随机方向法的计算过程5、修正Powell 法是如何确定下一轮迭代的方向组的?6、变尺度法的基本思想是什么?7、修正Powell 法是如何确定下一轮迭代的方向组的?8、无约束优化方法属于间接解法的有哪些?四、分析题1、试用牛顿法列出求解 ()8723241234+---=x x x x X f 近似极小的程序框图。
~机械优化设计复习题及答案 (2)
![~机械优化设计复习题及答案 (2)](https://img.taocdn.com/s3/m/3a6db036227916888486d7e1.png)
欢迎共阅机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0∇=,()*H X为正定F X∇= B. ()*0F X⎣⎦A.正定B.负定C.不定D.半正定8.内点罚函数法的罚因子为()。
A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列9.多元函数F(X)在点X *附近的偏导数连续,∇F(X *)=0且H(X *)正定,则该点为F(X)的( )。
A.极小值点 B.极大值点 C.鞍点 D.不连续点10.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( )。
A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 1616.约束极值点的库恩—塔克条件为∇F(X)=)X (g i q1i i ∇λ-∑=,当约束条件g i (X)≤0(i=1,2,…,m)和λi ≥0时,则q 应为 ( )。
A.等式约束数目;B.不等式约束数目;C.起作用的等式约束数目D.起作用的不等式约束数目17 已知函数F(X)=-1222121x 2x x x 2x 2+-+,判断其驻点(1,1)是( )。
A.最小点B.极小点C.极大点D.不可确定18.对于极小化F(X),而受限于约束g μ(X)≤0(μ=1,2,…,m)的优化问题,其内点罚函数表达式为( )A. Ф(X, r (k))=F(X)-r (k)11/()gX u u m =∑ B. Ф(X, r (k))=F(X)+r (k)11/()g X u u m =∑C. Ф(X, r (k))=F(X)-r (k)max[,()]01gX u u m =∑ D. Ф(X, r (k))=F(X)-r (k)min[,()]01g X u u m =∑23. 在共轭梯度法中,新构造的共轭方向S (k+1)为( )A. S (k+1)= ∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数B. S (k+1)=∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数C. S (k+1)=-∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数D. S (k+1)=-∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数24. 用内点罚函数法求目标函数F(X)=ax+b 受约束于g(X)=c-x ≥0的约束优化设计问题,其惩罚函数表达式为( )A. ax+b-r (k)x-c 1,r (k)为递增正数序列B. ax+b-r (k)x-c 1,r (k)为递减正数序列 C. ax+b+ r (k)x-c 1,r (k)为递增正数序列 D. ax+b+r (k)x-c 1,r (k)为递减正数序列 25. 已知F(X)=x 1x 2+2x 22+4,则F(X)在点X (0)=⎭⎬⎫⎩⎨⎧-11的最大变化率为( ) A. 10 B. 4 C. 2 D. 105.函数()2212144f x x x x =+-+,在点()[]132TX = 处的梯度为 。
机械优化设计复习题最新版
![机械优化设计复习题最新版](https://img.taocdn.com/s3/m/a3eb32b9dc3383c4bb4cf7ec4afe04a1b071b0f0.png)
机械优化设计复习题一、单项选择题5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24)A .约束线性B .无约束线性C .约束非线性D .无约束非线性6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24)A .多变量无约束的非线性B .多变量无约束的线性C .多变量有约束的非线性D .多变量有约束的线性7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目标函数值( )(P25-28)A .变化最大B .变化最小C .近似恒定D .变化不确定8.()f x ∇方向是指函数()f x 具有下列哪个特性的方向( )(P25-28)A . 最小变化率B .最速下降C . 最速上升D .极值9. 梯度方向是函数具有( )的方向 (P25-28)A .最速下降B .最速上升C .最小变化D .最大变化率10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28)A .最速上升方向B .上升方向C .最速下降方向D .下降方向11. n 元函数()f x 在点x 处梯度的模为( )(P25-28)A.f ∇= B .12...nf f f f x x x ∂∂∂∇=++∂∂∂ C .22212()()...()n f f f f x x x ∂∂∂∇=++∂∂∂ D.f ∇=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31)A .曲面或曲线B .曲线或等值面C .曲面或等值线D .等值线或等值面13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件( )(P29-31)A.*()0f x ∇=B. *()0G x =C. 海赛矩阵*()G x 正定D. **()0G()f x x ∇=,负定14.12(,)f x x 在点*x 处存在极小值的充分条件是:要求函数在*x 处的Hessian 矩阵*()G x 为( )(P29-31) A .负定 B .正定 C .各阶主子式小于零 D .各阶主子式等于零15.在设计空间内,目标函数值相等点的连线,对于四维以上问题,构成了( )(P29-33)A .等值域B .等值面C .同心椭圆族D .等值超曲面16.下列有关二维目标函数的无约束极小点说法错误的是( )(P31-32)A .等值线族的一个共同中心点B .梯度为零的点C .驻点D .海赛矩阵不定的点17.设()f x 为定义在凸集D 上且具有连续二阶导数的函数,则()f x 在D 上为凸函数的充分必要条件是海赛矩阵()G x 在D 上处处( )(P33-35)A .正定B .半正定C .负定D .半负定18.下列哪一个不属于凸规划的性质( )(P33-35)A.凸规划问题的目标函数和约束函数均为凸函数B.凸规划问题中,当目标函数()f x 为二元函数时,其等值线呈现为大圈套小圈形式C.凸规划问题中,可行域{|()01,2,...,}i D x g x j m =≤=为凸集D.凸规划的任何局部最优解不一定是全局最优解19.拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种( )(P36-38)A .降维法B .消元法C .数学规划法D .升维法20.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( )矩阵(P36-45)A .正定B .正定二次型C .负定D .负定二次型21.约束极值点的库恩-塔克条件为1()()qi i i f x g x λ=∇=-∇∑,当约束条件()0(1,2,...)i g x i m ≤=和0i λ≥时,则q 应为( )(P39-47) A .等式约束数目 B .起作用的等式约束数目C .不等式约束项目D .起作用的不等式约束数目22.一维优化方法可用于多维优化问题在既定方向上寻求下述哪个目的的一维搜索( )(P48-49)A .最优方向B .最优变量C .最优步长D .最优目标23.在任何一次迭代计算过程中,当起始点和搜索方向确定后,求系统目标函数的极小值就是求( )的最优值问题(P48-49)A .约束B .等值线C .步长D .可行域24.求多维优化问题目标函数的极值时,迭代过程每一步的格式都是从某一定点()k x 出发,沿使目标函数满足下列哪个要求所规定方向()k d 搜索,以找出此方向的极小值(1)k x +( )(P48-49)A .正定B .负定C .上升D .下降25.对于一维搜索,搜索区间为[a,b],中间插入两个点1111a b a b <、,,计算出11()()f a f b <,则缩短后的搜索区间为( )(P49-51)A . [a 1,b 1]B . [b 1,b]C . [a 1,b]D . [a,b 1]26.函数()f x 为在区间[10,20]内有极小值的单峰函数,进行一搜索时,取两点13和16,若f (13)<f(16),则缩小后的区间为( )(P49-51)A.[10,16]B.[10,13]C. [13,16]D. [16,20]27.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按()变化的单峰区间为止 (P49-52)A .高-低-高B .高-低-低C .低-高-低D .低-低-高28.0.618法是下列哪一种缩短区间方法的直接搜索方法( )(P51-53)A .等和B .等差C .等比D .等积29.假设要求在区间[a,b]插入两点12αα、,且12αα< ,下列关于一维搜索试探方法——黄金分割法的叙述,错误的是( )(P51-53)A.其缩短率为0.618B.1()b b a αλ=--C.1()a b a αλ=+-D.在该方法中缩短搜索区间采用的是区间消去法。
《机械优化设计》复习题-答案讲解
![《机械优化设计》复习题-答案讲解](https://img.taocdn.com/s3/m/d89355ce26fff705cc170ad5.png)
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 错误!未找到引用源。
,充分条件是 错误!未找到引用源。
(错误!未找到引用源。
正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 错误!未找到引用源。
。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
《机械优化设计》复习题-答案
![《机械优化设计》复习题-答案](https://img.taocdn.com/s3/m/e804a2694a7302768f993952.png)
《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d0、d1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(x x f ,若在),(x 0x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H,向量 d 1,向量 d2,当满足d1THd 2=0,向量 d1和向量 d2是关于H共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。
《机械优化设计》复习题 答案 (2)
![《机械优化设计》复习题 答案 (2)](https://img.taocdn.com/s3/m/f40d37e7250c844769eae009581b6bd97f19bccd.png)
机械优化设计复习题解答一、填空题1、用最速下降法求fX=100x 2- x 12 2+1- x 1 2的最优解时,设X 0=,T ,第一步迭代的搜索方向为 -47,-50T ;2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长;3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解;4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势;5、包含n 个设计变量的优化问题,称为 n 维优化问题;6、函数C X B HX X T T++21的梯度为B ; 7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足d 0T Gd 1=0,则d 0、d 1之间存在共轭关系;8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素;9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是f(x 10,x 20)=0 ,充分条件是2fx 10,x 20)=0正定 ;10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合; 11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 10 ; 12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件;13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置; 14、将函数fX=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 12[x 1x 2][2−1−12][x 1x 2]+[−10−4][x 1x 2]+60 ;15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭; 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点;17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长;1k k H g --二、选择题1、下面C 方法需要求海赛矩阵; A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 ;D A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B 优化问题; A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为a,b,中间插入两个点a 1、b 1,a 1<b 1,计算出fa 1<fb 1,则缩短后的搜索区间为D ; A a 1,b 1 B b 1,b C a 1,b D a,b 15、D 不是优化设计问题数学模型的基本要素; A 设计变量 B 约束条件 C 目标函数 D 最佳步长6、变尺度法的迭代公式为x k+1=x k -αk H k ▽fx k ,下列不属于H k 必须满足的条件的是C ;A. Hk之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的A;A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数;A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)(Xf为定义在凸集R上且具有连续二阶导数的函数,则)(Xf在R上为凸函数的充分必要条件是海塞矩阵GX在R上处处B;A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间a,b插入两点α1、α2,且α1<α2;A、其缩短率为B、α1=b-λb-aC、α1=a+λb-aD、在该方法中缩短搜索区间采用的是外推法;11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值 C方向;A、上升B、下降C 、不变D 、为零12、二维目标函数的无约束极小点就是 B ; A 、等值线族的一个共同中心 B 、梯度为0的点C 、全局最优解D 、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k 和d k+1必为 B 向量; A 相切 B 正交 C 成锐角 D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A ; A 可用来求解含不等式约束和等式约束的最优化问题; B 惩罚因子是不断递减的正值C 初始点应选择一个离约束边界较远的点;D 初始点必须在可行域内 三、问答题看讲义1、试述两种一维搜索方法的原理,它们之间有何区别2、惩罚函数法求解约束优化问题的基本原理是什么3、试述数值解法求最佳步长因子的基本思路;4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点;5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义;6、什么是共轭方向满足什么关系共轭与正交是什么关系 四、解答题1、试用梯度法求目标函数fX=+ x 1x 2-2x 1的最优解,设初始点x 0=-2,4T ,选代精度ε=迭代一步;解:首先计算目标函数的梯度函数 f =[3∗x1−x2−2x2−x1],计算当前迭代点的 梯度向量值 f(X (0))=[−3∗2−4−24+2]=[−126]梯度法的搜索方向为 S (k )=−f , 因此在迭代点x 0 的搜索方向为12,-6T在此方向上新的迭代点为:X (k+1)=X (k )+αS (k )=X (0)+αS (0)=[−24]+α[12−6]=[−2+12α4−6α]把新的迭代点带入目标函数,目标函数将成为一个关于单变量α的函数F(α) f(X (k+1))=f ([−2+12α4−6α])=1.5(−2+12α)2+0.5(4−6α)2−(−2+12α)(4−6α)− 2(−2+12α)=F(α) 令dF(α)dα=−180+612α=0,可以求出当前搜索方向上的最优步长α=517≈0.2941新的迭代点为X (0)+αS (0)= [1.52922.2354]当前梯度向量的长度‖f ‖=√12x12+6x6=13.4164>ε, 因此继续进行迭代; 第一迭代步完成;2、试用牛顿法求f X =x 1-22+x 1-2x 22的最优解,设初始点x 0=2,1T ; 解1:注:题目出题不当,初始点已经是最优点,解2是修改题目后解法; 牛顿法的搜索方向为S (k)=−2(f )−1(f),因此首先求出当前迭代点x 0的梯度向量、海色矩阵及其逆矩阵(f )=[4∗x1 − 4∗x2 − 48∗x2 − 4∗x1](f (x (0)))=[00]2(f )=[4−4−48] 2(f )−1= 14[2111]S (k)=−2(f )−1(f )=[00]不用搜索,当前点就是最优点;解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当;以下修改求解题目的初始点,以体现牛顿方法的典型步骤;以非最优点x 0=1,2T 作为初始点,重新采用牛顿法计算牛顿法的搜索方向为S (k)=−2(f )−1(f),因此首先求出当前迭代点x 0的梯度向量、以及海色矩阵及其逆矩阵梯度函数:(f )=[4∗x1 − 4∗x2 − 48∗x2 − 4∗x1]初始点梯度向量:(f (x (0)))=[−812]海色矩阵:2(f )=[4−4−48]海色矩阵逆矩阵:2(f )−1 = 14[2111]当前步的搜索方向为: S (k)=−2(f )−1(f)=− 14[2111][−812]=[−11] 新的迭代点位于当前的搜索方向上 : X (k+1)=X (k )+αS (k )=X (0)+αS (0) =[12]+α[−11]=[1−α2+α]把新的迭代点带入目标函数,目标函数将成为一个关于单变量α的函数F(α) f(X (k+1))=f ([1−α2+α])=(α + 1)2 + (3α + 3)2=F(α) 令dF(α)dα=20α+ 20=0,可以求出当前搜索方向上的最优步长α=−1新的迭代点为 X (1)=X (0)+αS (0)= [12] –[−11]= [21]当前梯度向量的长度‖f ‖=√12x12+8x8=14.4222>ε, 因此继续进行迭代; 第二迭代步:(f )=[4∗x1 − 4∗x2 − 48∗x2 − 4∗x1](f (x (1)))=[0]‖f ‖=0<ε因此不用继续计算,第一步迭代已经到达最优点;这正是牛顿法的二次收敛性;对正定二次函数,牛顿法一步即可求出最优点; 3、设有函数 fX=x 12+2x 22-2x 1x 2-4x 1,试利用极值条件求其极值点和极值; 解:首先利用极值必要条件(f )=[00]找出可能的极值点:令(f )=[2∗x1 − 2∗x2 − 44∗x2 − 2∗x1]=[00]求得[x1x2]=[42],是可能的极值点;再利用充分条件2(f )正定或负定确认极值点;2(f )=[2−2−24]|2|=2>0|2−2−24|=8−4=4>0 因此2(f )正定, X ∗=[x1x2]=[42]是极小点,极值为fX=-84、求目标函数f X =x 12+x 1x 2+2x 22 +4x 1+6x 2+10的极值和极值点; 解法同上5、试证明函数 f X =2x 12+5x 22 +x 32+2x 3x 2+2x 3x 1-6x 2+3在点1,1,-2T 处具有极小值; 解: 必要条件:(f )=[ 4∗x1 + 2∗x310∗x2 + 2∗x3 − 62∗x1 + 2∗x2 + 2∗x3]将点1,1,-2T 带入上式,可得(f )=[ 000]充分条件2(f )=[4020102222] |4|=4>0|40010|=40>0|4020102222|=80−40−16=24>0 2(f )正定;因此函数在点1,1,-2T 处具有极小值 6、给定约束优化问题min fX=x 1-32+x 2-22 . g 1X=-x 12-x 22+5≥0 g 2X=-x 1-2x 2+4≥0 g 3X= x 1≥0 g 4X=x 2≥0验证在点T X ]2[,1=Kuhn-Tucker 条件成立; 解:首先,找出在点T X ]2[,1=起作用约束: g 1X =0 g 2X =0 g 3X =2 g 4X =1因此起作用约束为g 1X 、g 2X;然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合;(f )=[2∗x1 − 6 2∗x2 − 4]=[−2−2](g1)=[ −2∗x1 −2∗x2]=[−4−2], (g2)=[−1−2]求解线性组合系数 (f )=λ1?(g1)+λ2?(g2) [−2−2]=λ1[−4−2]+λ2[−1 −2] 得到 λ1=13,λ2=23, 均大于0因此在点T X ]2[,1=Kuhn-Tucker 条件成立 7、设非线性规划问题用K-T 条件验证[]TX 0,1*=为其约束最优点;解法同上8、已知目标函数为fX= x 1+x 2,受约束于:g 1X=-x 12+x 2≥0 g 2X=x 1≥0 写出内点罚函数; 解:内点罚函数的一般公式为其中: r 1>r 2 >r 3… >r k … >0 是一个递减的正值数列 r k=Cr k-1, 0<C <1 因此 罚函数为:(X,r(k ))=x1+x2+r(k )(1−x12+x2+1x1) 9、已知目标函数为fX= x 1-12+x 2+22受约束于:g 1X=-x 2-x 1-1≥0g 2X=2-x 1-x 2≥0 g 3X=x 1≥0 g 4X=x 2≥0试写出内点罚函数; 解法同上10、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法x 取何值才能获得最大容器的箱子;试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;11、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;12、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序;13、求表面积为300m2的体积最大的圆柱体体积;试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序;14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大;写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解写出M文件和求解命令;15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1;管道内液体的流速与管道截面的周长s的倒数成比例关系s只包括底边和两侧边,不计顶边;试按照使液体流速最大确定该管道的参数;写出这一优化设计问题的数学模型;并用matlab软件的优化工具箱求解写出M文件和求解命令;16、某电线电缆车间生产力缆和话缆两种产品;力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元;若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用;如要获得最大利润,每天应生产力缆、话缆各多少米写出该优化问题的数学模型以及用MATLAB软件求解的程序;。
机械优化设计复习题及答案
![机械优化设计复习题及答案](https://img.taocdn.com/s3/m/ebba779850e2524de5187ee2.png)
机械优化设计复习题一.单项选择题1.一个多元函数()F X在X* 附近偏导数连续,则该点位极小值点的充要条件为()A.()*0F X∇= B. ()*0F X∇=,()*H X为正定C.()*0H X= D. ()*0F X∇=,()*H X为负定2.为克服复合形法容易产生退化的缺点,对于n维问题来说,复合形的顶点数K应()A.1K n≤+ B. 2K n≥ C. 12n K n+≤≤ D. 21n K n≤≤-3.目标函数F(x)=4x21+5x22,具有等式约束,其等式约束条件为h(x)=2x1+3x2-6=0,则目标函数的极小值为()A.1 B. 19.05 C.0.25 D.0.14.对于目标函数F(X)=ax+b受约束于g(X)=c+x≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M(k))为( )。
A. ax+b+M(k){min[0,c+x]}2,M(k)为递增正数序列B. ax+b+M(k){min[0,c+x]}2,M(k)为递减正数序列C. ax+b+M(k){max[c+x,0]}2,M(k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A0.186 C6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。
A.x 1 B.x 3 C.x 2D.x 47.已知二元二次型函数F(X)=AX X 21T ,其中A=⎥⎦⎤⎢⎣⎡4221,则该二次型是( )的。
A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。
《机械优化设计》复习题答案
![《机械优化设计》复习题答案](https://img.taocdn.com/s3/m/acdb0a1910661ed9ac51f320.png)
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
机械优化设计复习题-答案
![机械优化设计复习题-答案](https://img.taocdn.com/s3/m/e7bf88ea1711cc7930b71639.png)
《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[,]T ,第一步迭代的搜索方向为 [-47,-50]T 。
2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。
3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。
8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [ 10] 。
12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。
13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。
大学期末考试机械优化设计复习题
![大学期末考试机械优化设计复习题](https://img.taocdn.com/s3/m/c99b5036ee06eff9aef8075b.png)
五、用内点惩罚函数法求下面问题的约束最优解:
(15分)
(构造惩罚函数,用解析法求解。)
六、用用复合形法求解二维约束优化问题(20分)
s.t.
要求迭代计算两个新复合形.初始复合形的3个顶点为:
共3页第3页
六、用改进的鲍威尔法求函数 的极小点。初始点为
(迭代一轮)(20分)
三、设目标函数
f(x)=4+4.5x1-4x2+x12+2x22-2x1x2+x14-2x12x2求其无约束的最优点(x1*,x2*)。(10分)
(A)卷2008-2009学年第1学期班级:姓名:学号:
…………………………………装……………………………订…………………………线………….………………………………
适用专业
机设2005级
考核性质
考查
开卷
命题教师
赵静
考试时间
100分钟
题号
一
二
三
四
五
六
七
八
九
十
十一
总分
得分
评阅人
复核人
一、填空题(每空2分,共20分)
1.优化设计问题的基本解法有解析法法和数值ห้องสมุดไป่ตู้法。
2.无约束优化问题取得极值的充分必要条件是和。
3.在进行一维搜索时,所要确定的搜索区间应为的趋势。
4.机械优化设计数学模型的三要素是、、。
5. K-T条件的几何意义是。
6.多元函数求极值的阻尼牛顿法的迭代公式为。
二、简答题(每题5分,共20分)
1.建立优化设计数学模型的基本原则。
机械优化设计复习题及答案
![机械优化设计复习题及答案](https://img.taocdn.com/s3/m/ad5ad06a814d2b160b4e767f5acfa1c7aa0082f9.png)
机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X附近偏导数连续;则该点位极小值点的充要条件为A .()*0F X ∇= B. ()*0F X ∇=;()*H X 为正定 C .()*0H X = D. ()*0F X ∇=;()*H X 为负定2.为克服复合形法容易产生退化的缺点;对于n 维问题来说;复合形的顶点数K 应A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数Fx=4x 21+5x 22;具有等式约束;其等式约束条件为hx=2x 1+3x 2-6=0;则目标函数的极小值为A .1B . 19.05C .0.25D .0.14.对于目标函数FX=ax+b 受约束于gX=c+x ≤0的最优化设计问题;用外点罚函数法求解时;其惩罚函数表达式ΦX;M k 为 .. A. ax+b+M k {min0;c+x}2;M k 为递增正数序列 B. ax+b+M k {min0;c+x}2;M k 为递减正数序列 C. ax+b+M k {maxc+x;0}2;M k 为递增正数序列hn D. ax+b+M k {maxc+x;0}2;M k 为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 0.186 C6.FX 在区间x 1;x 3上为单峰函数;x 2为区间中一点;x 4为利用二次插值法公式求得的近似极值点..如x 4-x 2>0;且Fx 4>Fx 2;那么为求FX 的极小值;x 4点在下一次搜索区间内将作为 ..A.x 1B.x 3C.x 2D.x 47.已知二元二次型函数FX=AX X 21T ;其中A=⎥⎦⎤⎢⎣⎡4221;则该二次型是 的.. A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列9.多元函数FX 在点X 附近的偏导数连续;∇FX=0且HX 正定;则该点为FX 的 ..A.极小值点B.极大值点C.鞍点D.不连续点10.FX 为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数;若HX 正定;则称FX 为定义在凸集D 上的 ..A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A11.在单峰搜索区间x 1 x 3 x 1<x 3内;取一点x 2;用二次插值法计算得x 4在x 1 x 3内;若x 2>x 4;并且其函数值Fx 4<Fx 2;则取新区间为 .. A. x 1 x 4 B. x 2 x 3 C. x 1 x 2 D. x 4 x 312.用变尺度法求一n 元正定二次函数的极小点;理论上需进行一维搜索的次数最多为A. n 次B. 2n 次C. n+1次D. 2次 13.在下列特性中;梯度法不具有的是 ..A.二次收剑性B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向14.外点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列15.内点惩罚函数法的特点是 ..A .能处理等式约束问题 B.初始点必须在可行域中C.初始点可以在可行域外D.后面产生的迭代点序列可以在可行域外16.约束极值点的库恩—塔克条件为∇FX=)X (g i q1i i ∇λ-∑=;当约束条件g i X ≤0i=1;2;…;m 和λi ≥0时;则q 应为 ..A.等式约束数目;B.不等式约束数目;C.起作用的等式约束数目D.起作用的不等式约束数目17 已知函数FX=-1222121x 2x x x 2x 2+-+;判断其驻点1;1是 ..A.最小点B.极小点C.极大点D.不可确定18.对于极小化FX;而受限于约束g μX ≤0μ=1;2;…;m 的优化问题;其内点罚函数表达式为 A. ФX; r k=FX-rk11/()gX u u m=∑ B. ФX; r k =FX+rk11/()gX u u m=∑C. ФX; r k =FX-rkmax[,()]01gX u u m=∑ D. ФX; r k =FX-rkmin[,()]01gX u u m=∑19. 在无约束优化方法中;只利用目标函数值构成的搜索方法是A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A20. 利用0.618法在搜索区间a;b 内确定两点a 1=0.382;b 1=0.618;由此可知区间a;b 的值是A. 0;0.382B. 0.382;1C. 0.618;1D. 0;1 21. 已知函数FX=x 12+x 22-3x 1x 2+x 1-2x 2+1;则其Hessian 矩阵是 A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minFX 受约束于g i x ≤0i=1;2;…;m 的约束优化设计问题;当取λi ≥0时;则约束极值点的库恩—塔克条件为 A. ∇FX=∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子B. -∇F X= ∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子C. ∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数D. -∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数23. 在共轭梯度法中;新构造的共轭方向S k+1为 A. S k+1= ∇FX k+1+βk S K ;其中βk 为共轭系数 B. S k+1=∇FX k+1-βk S K ;其中βk 为共轭系数C. S k+1=-∇FX k+1+βk S K;其中βk为共轭系数D. S k+1=-∇FX k+1-βk S K;其中βk为共轭系数24. 用内点罚函数法求目标函数FX=ax+b受约束于gX=c-x≥0的约束优化设计问题;其惩罚函数表达式为A. ax+b-r kx-c1;r k为递增正数序列B. ax+b-r kx-c1;r k为递减正数序列C. ax+b+ r kx-c1;r k为递增正数序列D. ax+b+r kx-c1;r k为递减正数序列25. 已知FX=x1x2+2x22+4;则FX在点X0=⎭⎬⎫⎩⎨⎧-11的最大变化率为A. 10B. 4C. 2D. 1026.在复合形法中;若映射系数α已被减缩到小于一个预先给定的正数δ仍不能使映射点可行或优于坏点;则可用A.好点代替坏点B.次坏点代替坏点C.映射点代替坏点D.形心点代替坏点1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A27. 优化设计的维数是指A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中;如已知x=0:10;则x有______个元素..A. 10B. 11C. 9D. 1229.如果目标函数的导数求解困难时;适宜选择的优化方法是 ..A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 30.在0.618法迭代运算的过程中;迭代区间不断缩小;其区间缩小率在迭代的过程中 ..A .逐步变小B 不变C 逐步变大D 不确定二 填空1.在一般的非线性规划问题中;kuhn-tucker 点虽是约束的极值点;但 是全域的最优点..2.判断是否终止迭代的准则通常有 . 和 三种形式..3.当有两个设计变量时;目标函数与设计变量关系是 中一个曲面..4.函数在不同的点的最大变化率是 ..5.函数()2212144f x x x x =+-+;在点()[]132TX = 处的梯度为 ..6.优化计算所采用的基本的迭代公式为 .. 7.多元函数Fx 在点x 处的梯度▽Fx =0是极值存在的 条件.. 8.函数Fx=3x 21+x 22-2x 1x 2+2在点1;0处的梯度为 .. 9.阻尼牛顿法的构造的迭代格式为 .. 10.用二次插值法缩小区间时;如果p x x <2;p f f >2;则新的区间a;b 应取作 ;用以判断是否达到计算精度的准则是 .. 11.外点惩罚函数法的极小点是从可行域之 向最优点逼近;内点惩罚函数法的极小点是从可行域之 向最优点逼近.. 12.罚函数法中能处理等式约束和不等式约束的方法是 罚函数法..13.Powell 法是以 方向作为搜索方向..14.当有n 个设计变量时;目标函数与n 个设计变量间呈 维空间超曲面关系..1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1三 问答题1. 变尺度法的基本思想是什么2. 梯度法的基本原理和特点是什么3.什么是库恩-塔克条件 其几何意义是什么4. 在内点罚函数法中;初始罚因子的大小对优化计算过程有何影响5. 选择优化方法一般需要考虑哪些因素6. 满足什么条件的方向是可行方向 满足什么条件的方向是下降方向 作图表示..7. 简述传统的设计方法与优化设计方法的关系.. 8. 简述对优化设计数学模型进行尺度变换有何作用.. 9. 分析比较牛顿法.阻尼牛顿法和共轭梯度法的特点 10.为什么选择共轭方向作为搜索方向可以取得良好的效果11.多目标问题的解与单目标问题的解有何不同 如何将多目标问题转化为单目标问题求解12.黄金分割法缩小区间时的选点原则是什么 为何要这样选点四.计算题1.用外点法求解此数学模型2 将()22121212262233f x x x x x x x =+++++写成标准二次函数矩阵的形式..3 用外点法求解此数学模型 :()()()12211221min ..00f X x x s tg X x x g X x =+=-≤=-≤4 求出()221122262420f x x x x x =-+-+的极值及极值点..5 用外点法求解此数学模型 :()()()()31211221min 13..100f X x x s tg X x g X x =++=-+≤=≥6.用内点法求下列问题的最优解:提示:可构造惩罚函数 []∑=-=21)(ln )(),(u u x g r x f r x φ;然后用解析法求解....7.设已知在二维空间中的点[]T x x x 21=;并已知该点的适时约束的梯度[]T g 11--=∇;目标函数的梯度[]T f 15.0-=∇;试用简化方法确定一个适用的可行方向..8. 用梯度法求下列无约束优化问题:Min FX=x 12+4x 22;设初始点取为X 0=2 2T ;以梯度模为终止迭代准则;其收敛精度为5..9. 对边长为3m 的正方形铁板;在四个角处剪去相等的正方形以制成方形无盖水槽;问如何剪法使水槽的容积最大 建立该问题的优化设计的数学模型.. 10. 已知约束优化问题: 试以[][][]T T T x x x 33,14,1230201===为复合形的初始顶点;用复合形法进行一次迭代计算..机械优化设计综合复习题参考答案一.单项选择题1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A 二 填空1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1 三 问答题1.变尺度法的基本思想是:通过变量的尺度变换把函数的偏心程度降低到最低限度;显着地改进极小化方法的收敛性质..2.梯度法的基本原理是搜索沿负梯度方向进行;其特点是搜索路线呈“之”字型的锯齿路线;从全局寻优过程看速度并不快..3.库恩-塔克条件是判断具有不等式约束多元函数的极值条件..库恩—塔克条件的几何意义是: 在约束极小值点*X 处;函数()x F 的负梯度一定能表示成所有起使用约束在该点梯度法向量的非负线性组合..4.初始罚因子0r ;一般来说0r 太大将增加迭代次数;0r 太小会使惩罚函数的性态变坏;甚至难以收敛到极值点..5.选择优化方法一般要考虑数学模型的特点;例如优化问题规模的大小;目标函数和约束函数的性态以及计算精度等..在比较各种可供选用的优化方法时;需要考虑的一个重要因素是计算效率.. 6.可行条件应满足第二式: 7.下降条件应满足第一式:搜索方向应与起作用的约束函数在k x 点的梯度及目标函数的梯度夹角大于或等于900..8.数学模型的尺度变换是一种改善数学模型性态;使之易于求解的技巧..一般可以加速优化设计的收敛;提高计算过程的稳定性.. 9.牛顿法的迭代关系式为:阻尼牛顿法的迭代关系式为: 共轭梯度法的迭代关系式为:牛顿法适合二次型问题;阻尼牛顿法有防止目标函数值上升的阻尼因子;适合非二次型问题;两者均需计算海森矩阵及其逆矩阵;计算量大..共轭梯度法用梯度构造共轭方向;仅需梯度计算且具有共轭性质;收敛速度快;不必计算海森矩阵;使用更加方便..10.根据共轭方向的性质:从任意初始点出发顺次沿n 个G 的共轭方向进行一维搜索;最多经过n 次迭代就可找到二次函数的极小点;具有二次收敛性.. 11.单目标问题的解一般是唯一理想解;多目标的解一般是相对理想解..多目标问题转成单目标问题的常用方法有:主要目标法.线性加权法.理想点法.平方和加权法.分目标乘除法.功率系数法和极大极小法..12.选点原则是插入点应按0.618分割区间..因为这样选点可以保持两次迭代区间的相同比例分布;具有相同的缩短率.. 四.计算题1.提示:先转化为惩罚函数形式 答案1=x 2.二次函数的矩阵标准形式为C x B Gx x T T++21 答案为121[()]()(0,1,2,)k k kk f fk +-=-∇∇=x x x x⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1222421T x x +[]32x +3 3.参考第六章复习题提示 结果为][T x 00= 4. 用梯度计算极值点 答案为][T 15.1 5. 先构造外点罚函数 答案为][T 01- 6. 先构造内点罚函数 答案为][T 317. 用图解法;先画出约束函数梯度及目标函数梯度;做两者的垂线;与两梯度夹角均大于900的任意方向均可..8. 以负梯度为搜索方向进行迭代计算 答案为[]T 00 9. 设剪掉的正方形边长为1x数学模型为 Min []12)23()(x x x F -=10. 提示 先算三点的目标函数值并排序;将最差点沿其余点中心进行反射;计算反射点函数值并判断可行性.. 答案为][T 5.31。
机械优化设计复习题答案
![机械优化设计复习题答案](https://img.taocdn.com/s3/m/b326395b366baf1ffc4ffe4733687e21ae45ff1f.png)
机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。
A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。
A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。
A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。
答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。
答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。
答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。
2. 描述机械优化设计中约束条件的分类及其意义。
答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。
等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。
这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。
3. 举例说明机械优化设计中设计变量的选择原则。
答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。
大学期末考试机械优化设计复习题
![大学期末考试机械优化设计复习题](https://img.taocdn.com/s3/m/73e7503bd0d233d4b04e6923.png)
6.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步长按一定的比例递增的方法。
7.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较慢。
8.二元函数在某点处取得极值的必要条件是 ,充分条件是该点处的海赛矩阵正定
9. 在可行方向法中,产生可行方向的条件是什么?
答:1.可行性条件
dk与起作用的约束函数在xk点的梯度∇g(Xk)的夹角大于或等于90°:[∇g(Xk)]Tdk≤0
*若迭代点Xk处于J个约束边界的相交处,应同时成立:[∇g(Xk)]Tdk≤0(j=1,2,…J)
2.下降性条件
dk与目标函数在Xk点的梯度∇f(Xk)的夹角大于90°:[∇f(Xk)]Tdk< 0
2.可行搜索方向:是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。
3.设计空间:n个设计变量为坐标所组成的实空间,它是所有设计方案的组合
4..可靠度:
5.收敛性:是指某种迭代程序产生的序列 收敛于
6.非劣解:是指若有m个目标 ,当要求m-1个目标函数值不变坏时,找不到一个X,使得另一个目标函数值 比 ,则将此 为非劣解。
9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无约束优化问题,这种方法又被称为升维法。
10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩
11坐标轮换法的基本思想是把多变量的优化问题转化为单变量的优化问题
12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。
一、填空题
1.组成优化设计数学模型的三要素是设计变量、目标函数、约束条件。
机械优化设计复习题备课讲稿
![机械优化设计复习题备课讲稿](https://img.taocdn.com/s3/m/0396dc6acc7931b764ce156f.png)
简答题:1.等值线有哪些特点?2.什么是机械优化设计?3.简述传统的设计方法与优化设计方法的关系4.试写出多目标优化问题数学模型的一般形式5.一维搜索优化方法一般分为哪几步进行?6.为什么选择共轭方向作为搜索方向可以取得良好地效果?7.优化设计的数学模型一般包括哪几部分?8.常用的迭代终止准则有哪些?9.常用无约束优化方法有哪些?(写出三种即可)10.常用的约束优化方法有哪些?(写出三种即可)11.选择优化方法一般需要考虑哪些因素?12.黄金分割法缩小区间时的选点原则是什么?为什么要这样选点?13.试证明黄金分割法中区间缩短率为0.61814.试比较黄金分割法、二次插值法以及格点法三种一维优化方法的特点和适用条件15.梯度法的基本原则和特点是什么?16.变尺度法的基本思想是什么?17.在变尺度法中,为使变尺度矩阵与海塞矩阵的逆矩阵相似,并具有容易计算的特点,变尺度矩阵必须满足什么条件?18.分析比较原始牛顿法、阻尼牛顿法和共轭梯度法的特点。
19.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明20.为什么说共轭梯度法实质上是对最速下降法进行的一种改进?21.简述随机方向法的基本思路22.什么是库恩-塔克条件?其几何意义是什么?23.多元函数f(x1,x2,x3)在点x*存在极小值的充分必要条件是什么?24.什么是内点法,什么是外点法,它们适用的优化问题是什么?在构造惩罚函数时,内点法和外点法的惩罚因子的选取有何不同?25.在内点罚函数法中,初始罚因子的大小对优化计算过程有何影响?26.简述对优化设计数学模型进行尺度变换有何作用?27.多目标问题的解与单目标问题的解有何不同?如何将多目标问题转化为单目标问题进行求解?28.梯度和方向导数间有何关系?名词解释1.可行域2.起作用约束和不起作用约束3.消极约束4. 二次收敛性5. 离散变量6. 裂解7. 非裂解8. 可行搜索方向9. 设计空间10. 线性规划计算题1. 4. 试用黄金分割法求函数aa a f 20)(+=的极小点和极小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。
2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数 。
4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。
5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。
6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步长按一定的比例 递增的方法。
7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。
8.二元函数在某点处取得极值的必要条件是()00f X ∇= , 充分条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无约束优化问题,这种方法又被称为 升维 法。
10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。
13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。
14.数学规划法的迭代公式是 1k k k k XX d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 。
15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。
16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。
1. 优化设计问题的基本解法有 解析法 法和 数值法2. 无约束优化问题取得极值的充分必要条件是 一阶导数等于零 和 二阶导数大于零。
3. 在进行一维搜索时,所要确定的搜索区间应为 高低高 的趋势。
4. 多元函数求极值的阻尼牛顿法的迭代公式为:二、名词解释1.凸规划: 对于约束优化问题 ()min f X..s t ()0j g X ≤ (1,2,3,,)j m =⋅⋅⋅若()f X 、()jg X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。
2.可行搜索方向:是指当设计点沿该方向作微量移动时,目标函数值下降,且不会越出可行域。
3.设计空间:n 个设计变量为坐标所组成的实空间,它是所有设计方案的组合4..可靠度:5.收敛性:是指某种迭代程序产生的序列(){}0,1,k X k =⋅⋅⋅收敛于1lim k k XX +*→∞=6. 非劣解:是指若有m 个目标()()1,2,i f X i m =⋅⋅⋅,当要求m-1个目标函数值不变坏时,找不到一个X ,使得另一个目标函数值()i f X 比()i f X *,则将此X *为非劣解。
7. 黄金分割法:是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值。
8.可行域:满足所有约束条件的设计点,它在设计空间中的活动范围称作可行域。
9.维修度 略三、简答题1.什么是内点惩罚函数法?什么是外点惩罚函数法?他们适用的优化问题是什么?在构造惩罚函数时,内点惩罚函数法和外点惩罚函数法的惩罚因子的选取有何不同?1)内点惩罚函数法是将新目标函数定义于可行域内,序列迭代点在可行域内逐步逼近约束边界上的最优点。
内点法只能用来求解具有不等式约束的优化问题。
内点惩罚函数法的惩罚因子是由大到小,且趋近于0的数列。
相邻两次迭代的惩罚因子的关系为 1(1,2,)kk r cr k -==⋅⋅⋅c 为惩罚因子的缩减系数,其为小于1的正数,通常取值范围在0.1~0.72)外点惩罚函数法简称外点法,这种方法新目标函数定义在可行域之外,序列迭代点从可行域之外逐渐逼近约束边界上的最优点。
外点法可以用来求解含不等式和等式约束的优化问题。
外点惩罚函数法的惩罚因子,它是由小到大,且趋近于∞的数列。
惩罚因子按下式递增1(1,2,)kk r cr k -==⋅⋅⋅,式中c 为惩罚因子的递增系数,通常取5~10c =2.共轭梯度法中,共轭方向和梯度之间的关系是怎样的?试画图说明。
. 对于二次函数,()12T T f X X GX b X c =++,从k X 点出发,沿G 的某一共轭方向k d 作一维搜索,到达1k X +点,则1k X+点处的搜索方向jd 应满足()()10Tj k k dgg +-=,即终点1k X +与始点k X 的梯度之差1k k g g +-与k d 的共轭方向j d 正交。
3.为什么说共轭梯度法实质上是对最速下降法进行的一种改进?.答:共轭梯度法是共轭方向法中的一种,在该方法中每一个共轭向量都依赖于迭代点处的负梯度构造出来的。
共轭梯度法的第一个搜索方向取负梯度方向,这是最速下降法。
其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。
所以共轭梯度法的实质是对最速下降法的一种改进。
4.写出故障树的基本符号及表示的因果关系。
5.算法的收敛准则由哪些?试简单说明。
6.优化设计的数学模型一般有哪几部分组成?简单说明。
7.简述随机方向法的基本思路答:随机方向法的基本思路是在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中选择一个能使目标函数值下降最快的随机方向作为可行搜索方向。
从初始点出发,沿搜索方向以一定的步长进行搜索,得到新的X 值,新点应该满足一定的条件,至此完成第一次迭代。
然后将起始点移至X ,重复以上过程,经过若干次迭代计算后,最终取得约束最优解。
8. 复合形法的基本思路是什么?答:在可行域中选取K 个设计点(n+1≤K≤2n)作为初始复合形的顶点。
比较各顶点目标函数值的大小,去掉目标函数值最大的顶点(称最坏点),以坏点以外其余各点的中心为映射中心,用坏点的映射点替换该点, 构成新的复合形顶点。
反复迭代计算,使复合形不断向最优点移动和收缩,直至收缩到复合形的顶点与形心非常接近,且满足迭代精度要求为止。
9. 在可行方向法中,产生可行方向的条件是什么?答:1.可行性条件d k 与起作用的约束函数在x k 点的梯度∇g (X k )的夹角大于或等于90°:[∇g (X k)]T dk≤ 0* 若迭代点X k 处于J 个约束边界的相交处,应同时成立: [∇g (X k )]T d k ≤ 0 (j=1,2,…J )2. 下降性条件d k 与目标函数在X k 点的梯度∇f (X k )的夹角大于90°:[∇f (X k)] Td k< 0综上所述,当X k 处于J 个起作用的约束面上时,适用可行方向的数学条件是:三、计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX=。
初始点为()[]01010TX=,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()0100010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααm i n 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=,从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。
按上面的过程依次进行下去,便可求得最优解。
2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--=()2()0.20.61810.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。
因为()()12ff αα>。
所以消去区间[]1,a α,得到新的搜索区间[]1,b α,即[][][]1,,0.5056,1b a b α==。
第一次迭代:插入点10.6944α=, 20.50560.618(10.5056)0.8111α=+-=相应插入点的函数值()()1229.4962,25.4690f f αα==,由于()()12ff αα>,故消去所以消去区间[]1,a α,得到新的搜索区间[]1,b α,则形成新的搜索区间[][][]1,6944.0,,1==b a b α。
至此完成第一次迭代,继续重复迭代过程,最终可得到极小点。
3.用牛顿法求目标函数()22121625f X x x =++5的极小点,设()[]022TX=。
解:由 ()[]022T X=,则()11022326450100f x x f X x f x ∂⎢⎥⎢⎥∂⎡⎤⎡⎤⎢⎥∇===⎢⎥⎢⎥∂⎢⎥⎣⎦⎣⎦⎢⎥∂⎣⎦()22211220222212320050f f x x x f X f f x x x ⎢⎥∂∂⎢⎥∂∂∂⎡⎤⎢⎥∇==⎢⎥⎢⎥∂∂⎣⎦⎢⎥∂∂∂⎣⎦,其逆矩阵为()12010321050f X -⎡⎤⎢⎥⎡⎤∇=⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦因此可得:()()11020010264032211000050X X f X f X -⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤=-∇∇=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦()15f X =,从而经过一次迭代即求得极小点[]00TX *=,()5f X *=优化设计期末考试(二)1优化问题的三要素:设计变量,约束条件, 目标函数。
2机械优设计数学规划法的核心:一、建立搜索方向,二、计算最佳步长因子 3外推法确定搜索区间,函数值形成 高-低-高 区间 4数学规划法的迭代公式是1k k kk X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长5若n 维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在_共轭关系6,与负梯度成锐角的方向为函数值 下降 方向,与梯度成直角的方向为函数值 不变 方向。