油气层保护第二章PPT课件

合集下载

保护油气层钻井完井液技术2010-0902

保护油气层钻井完井液技术2010-0902

1.2.2 油气层敏感性评价
指通过岩心流动实验对油气层的速敏、水敏、 盐敏、碱敏和酸敏性强弱及其所引起的油气层损 害程度进行评价,通常简称为五敏实验。
A.速敏评价实验
B.水敏评价实验 C.盐敏评价实验 D.碱敏评价实验 E.酸敏评价实验
A 速敏评价实验
在钻井、完井、试油、注水、开采和实施增产措施等作业或 生产过程中,流体的流动引起油气层中的微粒发生运移,致
用不当,经常会影响测井资料与试油结果对储层物性参数
的正确解释; 在钻井完井作业中应用保护油气层配套技术,可以使油气 井产量得到明显提高,同时可以大大减少试油、酸化、压 裂和修井等井下作业的工作量,降低生产成本;
保护油气层有利于油气井产量和油气田开发经济效益 的提高;
有利于油气井的增产和稳产,在油气开采的漫长时期,
–油藏类型、储层特点 –钻井液完井液类型及参数 –屏蔽暂堵剂规格要求及加量 –油气层保护施工技术措施
1.2油气层损害的评价方法
岩心分析 油气层敏感性评价 工作液对油气层的损害评价 油气层损害的矿场评价技术简介
1.2.1 岩心分析
岩心分析——认识油气层地质特征的必要手段,保护油气
层技术中不可缺少的基础工作。油气层的敏感性评价、损害
现象均称为对油气层的损害。
表现形式:油气层渗透率的降低,包括油藏岩石绝
对渗透率和油气相对渗透率的降低 。渗透率降低越多, 油气层损害越严重。
保护油气层:主要是指尽可能防止近井壁带的油气
层受到不应有的损害。
1.1.2保护油气层的重要性
在油气勘探过程中,保护油气层工作的好坏直接关系到能 否及时发现油气层和对储量的正确估算; 在探井的钻井完井过程中,如果钻井液完井液的设计和使

石油地质学 第二章 储集层及盖层之一

石油地质学 第二章 储集层及盖层之一
0.01 0 5 10 15 20 25
1000
渗透率(10-3 μm2 )
孔隙度(%)
100 10 1 0.1
陕北斜坡某油田长6油层组孔—渗关系
0.01 0.001 0 5 10 15 20 25 30
孔隙度(%)
陕北斜坡某油田延9油层组孔—渗关系
四、孔隙度与渗透率的关系
一般地,孔隙度相同时,孔、喉小的比孔喉大的渗透率 低,孔喉形态简单的比复杂的渗透率高。 从孔隙和喉道的不 同配置关系,可使储层呈现不同的性质,主要有: ①孔隙较大,喉道较粗,一般表现为孔隙度大,渗透率高; ②孔隙较大,喉道较细,一般表现为孔隙度中等,渗透率低; ③孔隙较小,喉道较粗,一般表现为孔隙度低~中等,渗透 率中等一偏低;
主要与岩石本身有关。
2、绝对渗透率(absolute permeability):K
从理论上讲,岩石的绝对渗透率只反映岩石本身的 特性,而与测定所用流体性质及测定条件无关。一般来 说,孔隙直径小的岩石比孔隙直径大的岩石渗透率低, 孔隙形状复杂的岩石比形状简单的岩石渗透率低。这是 因为孔隙直径越小,形状越复杂,单位面积孔隙空间的 表面积越大,则对流体的吸附力、毛细管阻力和流动摩 擦力也越大。
第二章 储集层和盖层
刚才我们讲到油储存在储层中,由于油气的密度较小, 会受到浮力的作用,有向上流动的趋势,这时候如果没有 岩层阻止其向上流动,我们可以想象一下会发生什么情况? 会一直逸散到地表,所以,要想让油能储集在储集层中, 必要要有能够阻止其向上逸散的岩层,这就是接下来要介 绍的盖层所行使的职能。 所谓的盖层就是位于储集层的上方、能够阻止油气向 上逸散的细粒、致密岩层叫做盖岩,也习惯地叫做(封) 盖层。通常会见到那些岩石能作为盖层呢?一般一些致密 的粉砂质泥岩、泥岩、盐岩、膏岩等常常作为盖层。

第2章 岩心分析

第2章  岩心分析

第二章岩心分析回顾:◆油气层损害的定义◆研究油气层保护技术的方法◆发展历程等。

岩心分析是认识油气层地质特征的必要手段,油气层的敏感性评价、损害机理的研究、油气层损害的综合诊断、保护油气层技术方案的设计都必须建立在岩心分析的基础之上。

所以,岩心分析是保护油气层技术系列中不可缺少的重要组成部分,也是保护油气层技术这一系统工程的起始点第一节概述1、岩心分析的目的(1)全面认识油气层的岩石物理性质及岩石中敏感性矿物的类型、产状、含量及分布特点(2)确定油气层潜在损害类型、程度及原因(3)为各项作业中保护油气层工程方案设计提供依据和建议保护油气层技术的研究与实践表明,油气层地质研究是保护油气技术的基础工作,而岩心分析在油气地质研究中具有重要作用。

2、岩心分析的意义油气层地质研究的目的是,准确地认识油气层的初始状态及钻开油气层后油气层对环境变化的响应,即油气层潜在损害类型及程度。

其内容包括六个方面:(1)矿物性质,特别是敏感性矿物的类型、产状和含量(2)渗流多孔介质的性质,如孔隙度、渗透率、裂隙发育程度、孔隙及喉道的大小、形态、分布和连通性(3)岩石表面性质,如比表面、润湿性等(4)地层流体性质,包括油、气、水的组成,高压物性、析蜡点、凝固点、原油酸值等(5)油气层所处环境,考虑内部环境和外部环境两个方面(6)矿物、渗流介质、地层流体对环境变化的敏感性及可能的损害趋势和后果其中,岩石物理性质、岩石结构与矿物的特性主要是通过岩心分析获得,从而体现了岩心分析在油气层地质研究中的核心作用。

下图说明了六项内容之间的相互联系,最终应指明潜在油气层损害和敏感性,并有针对性地提出施工建议值得注意的是,室内敏感性评价和工作液筛选使用的岩心数量有限,不可能全部考虑油气层物性及敏感性矿物所表现出来的各种复杂情况,岩心分析则能够确定整个油气层中某一块具有代表性的实验岩样,进而可通过为数不多的实验结果,建立油气层敏感性的整体轮廓,指导保护油气层工作液的研制和优选岩心分析的六个方面:4、取样要求岩心分析的样品可以来自全尺寸成形的岩心,也可以是井壁取心或钻屑。

《油气水层的综合判断》课件

《油气水层的综合判断》课件
(3)油、气、水层分析模式 最简单的模式是油-气-水重力分异模式。
第二章 油气层识别与评价
(4)油层-低产油层-干层与油层-油水同层-水层变化分析模式 油层→低产油层→干层变化分析模式:随着渗透性变差,产 层含油饱和度呈规律性减小。
油层→油水同层→水层变化分析模式:含油饱和度的降低主要不 受渗透率变化控制,而是自 由水增加的结果。
③水层:Sw Sor Swm Swi Sor 1 Sor S0 Som 0
表明储层孔隙空间不含油或只含残余油,主要被 水所饱和。
第二章 油气层识别与评价
(2)分析方法 “可动水分析法”具有形象直观的特点,便于做出完整的
解释。通常,采用交会法和重叠法进行分析。
3.地层不同性质产液的定量描述 利用测井信息直接计算产层的油气、水相对渗透率与
第二章 油气层识别与评价
油藏形成过程中,油、气、水对岩石润湿性的差异以及 发生在孔隙内的毛细现象,决定了油、气、水在孔隙空间内 独特的分布方式与流动特点。油气由生油层向储层运移的过 程就发生了油、气驱水的过程。但是,油气最终不可能把产 层孔隙内的水完全排出,总有一部分原生水由于毛细管阻力 而滞留在油气层的微小毛细管内,或者被亲水岩石颗粒表面 所吸附。因此,这部分水的相对渗透率极小,不能流动,称 为“不动水”。此时,水主要占据在微小毛细管孔隙中或被岩 石颗粒表面所吸附,不易流动;油气则主要分布于较大的孔 道或孔隙内,形成只有油气流动而水不能流动的状态。
L
Qg KgA • p
g L
式中:Q0、Qr、Qw——储集层油气水的分流量;
K0、Kg、Kw——油气水的有效渗透率:
μo、μg、μw——油气水的粘度; A——渗流截面; p ——压力梯度。
L
第二章 油气层识别与评价

第二章钻井液与油气层保护技术

第二章钻井液与油气层保护技术

第二章钻井液与油气层保护技术第一节钻井液性能对钻井的影响一、钻井液的稳定性钻井液是一种分散体系,即粘土分散在水中。

钻井液中的粘土颗粒多数在悬浮体范围(O.1~O.2um)内,少数在溶胶范围(O.1um~1nm)内,所以钻井液是溶胶与悬浮体的混合物。

钻井液中胶体颗粒含量的大小,对钻井液的稳定性影响很大。

胶体含量的大小主要取决于粘土在钻井液中的分散状态—分散、絮凝和聚结。

粘土的造浆率高,颗粒分散得细,钻井液相对来讲就稳定;若粘土造浆率低,颗粒分散得粗,钻井液相对来讲就不稳定,易呈絮凝或聚结状态。

因此,钻井液稳定的首要条件是钻井液中粘土颗粒要细,即从粘土在水中的稳定角度来看,分散得越细越好(胶体含量越高越好)。

这种稳定性称为沉降稳定性。

然而,即使很细的颗粒,因它具有极大的表面积和很高的表面能,根据表面能自发减小的原理,其发展趋势必然是小颗粒自行聚结变大,最后下沉。

由于某种原因分散相颗粒具有对抗小颗粒自行粘结变大所具有的性质称为聚结稳定性。

沉降稳定性和聚结稳定性是互相联系的。

只有保持聚结稳定性,使小颗粒不聚结为大颗粒,钻井液才能有沉降稳定性,才不至于因聚结而下沉。

所以,聚结稳定性是矛盾的主要方面。

二、钻井液几个重要的流变参数(1)动切应力(屈服值)。

动切应力(rn)反映钻井液在层流流态时,粘土颗粒之间及高聚物分子之间的相互作用力(形成空间网架结构之力)。

影响动切应力的因素有钻井液的固相含量、固体分散度、粘土的水化程度、粘土吸附处理剂的情况及聚合物的使用等。

(2)表观粘度。

又称有效粘度或视粘度。

它的定义是在某一速度梯度下,用流速梯度去除相应的切应力所得的商。

表观粘度不仅与流体本身性质有关,还受测定仪器的几何形状和尺寸、速度梯度的变化及测量方法的影响。

(3)塑性粘度。

塑性粘度是指钻井液在层流时,钻井液中的固体颗粒与固体颗粒之间,固体颗粒与液体分子之间,液体分子与液体分子之间三种内摩擦力的总和。

(4)触变性。

石油天然气盖层

石油天然气盖层
盖层的相对不渗透性:膏 盐、泥岩、致密碳酸盐岩
二、盖层的微观封闭(Sealing )机理
1.物性封闭
毛细管力(capillary pressure):
PC
2
cos
r
由于储盖层之间的毛(capillary sealing)。
盖层的毛细管力:
PCC
2 cos
第二章 储集层和盖层
第五节 盖层
一、盖层的类型 盖层:覆盖在储集层之上,能够 阻止油气向上运动的细粒、致密的 岩层
1.按岩性划分 ①膏盐类盖层:石膏、硬石膏、岩盐
②泥质岩类盖层:泥岩、页岩;
③碳酸盐岩类盖层:泥灰岩、泥质灰岩、 纯的致密石灰岩
一、盖层的类型
2.按分布范围划分 ①区域性盖层:指遍布在盆地或拗陷大部分地区, 厚度大、面积广且分布稳定的盖层。 对盆地内的油气起保护作用,使之不散失
一、盖层的类型
②局部性盖层:指分布在盆地的某一部分, 或某些局部构造范围的盖层, 对油气藏中的油气起保护作用
3.按与油气藏位置的关系划分
①直接盖层:紧邻油气层之上的封闭性岩层
②上覆盖层:位于直接盖层之上的所有盖层
一、盖层的类型
渤海湾盆地盖层分布,区域盖层和局部盖层的相对性
二、盖层的微观封闭(Sealing )机理
大厚度的盖层对封闭油气是有利的: ①减小孔隙连通机会,增强封闭性能 ②不易被小断层错断而形成连通的裂缝 ③易于形成超压
三、盖层的宏观封闭性
3.盖层的连续性
盖层的分布范围:面积 盖层被断裂的破坏程度 盖层被剥蚀的情况
C1 C2
C1<C2
C1 C2
C1>C2
三、盖层的宏观封闭性
1.盖层的岩性 盖层的主要岩性: 泥岩、岩盐、石膏、硬石膏 页岩、泥岩:65% 岩盐、石膏:33% 碳酸盐岩 : 2% 不同岩性的盖层具有不同的韧性: 岩盐→硬石膏→石膏→富含有机质的泥岩 →泥岩→粉砂质页岩

《油气藏评价》PPT课件

《油气藏评价》PPT课件

有六种基本驱动能量——驱动方式:
1、岩石及流体弹性驱 1、驱替效率最低
2、溶解气驱
2、采收率5%~25%;
3、气压驱动
3、采收率20~40%;
4、水驱动
4、采收率35%~75%;
5、重力驱动
5、采收率80%;
6、复合驱动
6、比溶解气高,比水驱低。
第二节 油气藏驱动类型及其开采特征
一、封闭弹性驱动
形成条件: (1)油藏无边底水或边水不活跃; (2)Pi>Pb。
井底流动压力(Pwf): 油井正常生产时测得的井底压力。
第一节 油藏温压系统
一、油藏的压力系统
2、原始油层压力的确定
(1)井口压力推算法
Pi=a+GDD
式中:
Pi ——原始地层压力,MPa; a ——关闭后的井口静压,MPa; GD——井筒内静止液体压力梯度,MPa /m; D ——埋深,m。
井筒内的液体静止梯度,由下式表示:
油层折算压力(Pc):为了消除构造因素的影响,把已测出的 油层各点的实测压力值,按静液柱关系
折算到同一基准面上的压力。
一、油藏的压力系统
第一节 油藏温压系统
目前油层压力(P): 在开发后某一时间测量的油层压力。
一般用油层静止压力(Pws)和井底流动压力(Pwf)来表示。
油层静止压力(Pws):油井生产一段时间后关闭,待压力恢复 到稳定状态后,测得的井底压力值。
p0: 余压
pi=p0 + GpD
•判断流体类型
1.0g/cm3 水
GP 0.5~1g/cm3 油
g
<0.5g/cm3 气
•确定流体界面
p
po p0o Gpo D

钻井过程中的保护油气层技术

钻井过程中的保护油气层技术
保护油气层技术的主要特点
1、涉及多学科、多专业和多部门的系统工程 由于油气层损害的普遍性和相互联系性,使
钻开油层、测试、完井、试油、增产、投产等每 一个生产作业过程均可能使油气层受到损害,而 且,前一过程的油气层损害会影响后一过程的生 产作业效果,后一过程没有搞好保护油气层工作, 就有可能使前面各项作业中获得的保护油气层成 效部分或全部丧失。所以,保护油气层技术是一 项系统工程。
盐水液
KCl NaCl KBr HCOONa HCOOK HKOOCS CaCl2 NaBr NaCl/ NaBr CaCl2/CaBr2 CaBr2 ZnBr2/ CaBr2 CaCl2/CaBr2/ZnBr2
浓度/重量百分比 密度g/cm3 (21℃)
26
1.07
26
1.17
39
1.20
45
1.34
完善推广
(三)试油保护油气层技术的思路与原则
试油保护油气层应遵循的原则
1、解除钻井损害,减少试油损害原则 2、针对性原则 3、配伍性原则 4、效果与效益结合原则
钻井过程中防止油气层损害是保护油气层系统工程的 第一个工程环节。其目的是交给试油或采油部门一口无损 害或低损害、固井质量优良的油气井。
油气层损害具有累加性。 钻井中对油气层的损害不仅 影响油气层的发现和油气井的初期产量 , 还会对今后各项 作业损害油层的程度以及作业效果带来影响。因此搞好钻 井过程中的保护油气层工作 , 对提高勘探、开发经济效益 至关重要, 必须把好这一关。
(1) 压差
1)压差的增大→钻井液的滤失量增加 →钻井液进 入油气层的深度和损害油气层的严重程度增大。
2)当钻井液有效液柱压力超过地层破裂压力, 钻井 液就有可能漏失至油气层深部, 加剧对油气层的损 害。

油气田地下地质学 第二章油、气、水的综合识别

油气田地下地质学 第二章油、气、水的综合识别
所以,稠油油层的含油饱和度普遍高 于稀油油层。
总之,含油性和不含可动水是油、气 层的两个重要特征,并在事实上构成了判 断油、气、水层的两个重要条件。其中含 油性是评价油、气层的依据,分析产层的 可动水则能把握油、气层的变化和界限, 而对油、气层的最终评价则取决于对地层 油、气、水相渗透率的分析.★★
1、选择测井系列的主要原则
➢ 能够确定岩性的成分、清楚的划分渗透层; ➢ 至少能够比较完整的提供下列主要参数:孔隙度、含油饱和 度、束缚水饱和度、可动油量和残余油饱和度、泥质含量以及 渗透率的近似值等;
➢ 能够比较清楚的区分油层、气层、水层,确定有效厚度和计 算地质储量;
➢ 能够尽量的较少和克服井眼、围岩和钻井液侵入的影响,至 少在通常情况下,不使测井信息失真;
只含“不动水” 不含“可动水”
油、气层
(三)储集层的产流体性质主要取决于油、气、水 各项的相渗透率
绝对渗透率:当单向流体充满岩石孔隙,流体不 与岩石发生任何物理化学反应,流体的流动符合 达西直线渗滤定律时,所测得的岩石对流体的渗
透能力称为该岩石的绝对渗透率。
2 bt a / bQ K (P1 P2 )F L
短电极视电阻率为高阻,长
电极为低阻;
感应曲线为高电导值;
水 层
声波时差中等,呈平台状。
4、快速直观显示油、气、水层的方法
A、声波时差-中子伽马曲线重叠
一、评价油、气层的地质依据
(一)含油性是评价油气层的重要依据
习惯概念:以含油饱和度的大小作为划分油、气、 水层的主要标准
特殊情况: 1、低渗透砂岩油气层含油性普遍解释偏低 2、高渗透砂岩油气层的含油性解释偏高
1、低渗透率砂岩油气层
低渗透产层的特点:

油气层保护

油气层保护


收集现场资料,开展室内试验,分析研究油气层在各项作业过程中潜在
损害因素被诱发的原因、过程及防止措施。 按照系统工程研究各项作业中所选择的保护油气层技术措施的可行性与

经济上的合理性,通过综合研究配套形成系列,纳入钻井、完井与开发
方案设计及每一项作业的具体设计中。

各项作业结束后进行诊断与测试,获取油气层损害的信息,并评价保护

负压差急剧变化造成的油气层损害
油气层损害机理
压差是指井筒内液柱压力与地层孔隙压力的差值。通 常钻井液的滤失量随压差的增大而增加.因而钻井液 进入油气层的深度和损害油气层的严重程度均随正压 环空返速越大,钻井液对井壁泥饼的冲 钻井过程中造成的损害的工程因素当油气层被钻开时,钻井液固相或滤 钻井液性能好坏与油气层损害程度高低紧密相关。钻井液固 差的增加而增大。负压差可以阻止钻井液进入油气层, 相和液相进入油气层的深度及损害程度均随钻井液静滤失量、
堵技术、应用聚合醇和正电胶钻井液体系,较 好地解决了钻井过程中对油气层造成的伤害。 近几年,钻井系统形成了一套较完善的油气层 保护技术系列,这些技术系列先后在油田各区 块都得到了应用和推广。
中原油田油气层保护技术

在采油工艺方面,油田先后进行了各种化学添加剂、 入井液合理矿化度的确定、入井液合理PH值的确定、 入井液合理表面张力的确定、入井液固相颗粒和固 体颗粒直径的确定、入井液合理细菌含量的确定等 研究和开发,解决了采油过程中对油气层造成的伤害 问题。目前,油田的酸化技术水平在国内处于领先地 位。此外,在压裂、射孔等增产措施中,油田也特别 注重对油气层进行合理的保护,油田的复合射孔技术、 二氧化碳泡沫压裂技术、二氧化碳吞吐压裂技术,在 国内也都处于先进水平。

《油层物理学》PPT课件

《油层物理学》PPT课件

PTP课件
11
学科的发展历史
20-30年代——美国前苏联注意到油藏流体特性及影响, 初步形成了流体性质的测试方法。 49年——M.麦盖特的《采油物理原理》汇总了20世纪上半 叶关于储油岩石和油、气、水流体性质的研究实践资料, 概括并提升到物理学角度予以描述和解释,指导了各种驱 动类型油气田的科学开发。 56年——苏联莫斯科石油学院卡佳霍夫出版了《油层物理 基础》,把油层物理从采油工程中独立出来,形成一个新 的学科分支。
4.吴迪祥,张继芬等,《油层物理》,石油工业 出版社,1994年4月。
5、杨胜来,魏俊之,《油层物理学》,石油工业 出版社,2004
6、沈平平,《油水在多孔介质中的运动理论与实 践》,石油工业出版社,2000
PTP课件
15
第一大部分 储层屑颗粒、胶结物 岩石空隙——孔隙、裂隙、溶孔、溶洞等
25
浊流
辫状河
曲流河 三角洲和障壁坝 浅滩
风成沙丘
A::悬浮为主
B:悬浮和跳跃
C:跳跃和悬浮
D:跳跃、滚动和悬浮
E:跳跃、滚动和悬浮
F:跳跃 PTP课件
26
2、参数法
不均匀系 a数 d60 分选系数 S d75
d10
d25
平均 M z 值 163 5084
标准 偏 (84 差 1)6(95 5)
研究储油气层内与油气运动有关的问题,
包括:
1、影响油气储集与渗流的介质特征
2、储油气岩石介质中的流体特征
3、储油气岩石中油气的流动特征及其与
介质的相互作用
PTP课件
6
课程主要内容——渗流力学部分
1、渗流力学的基本理论、基本概念和基本规律
2、表征流体渗流过程的基本能量方程、流体势方程、达

《保护油气层》课件

《保护油气层》课件
《保护油气层》PPT课件
欢迎来到《保护油气层》的PPT课件。在本课程中,我们将探讨油气层的定 义、保护措施以及其意义与价值,让我们开始吧!
什么是油气层
• 油气层的定义 • 油气层的特点 • 油气层的作用
油气层的保护
1 为什么要保护油气
层?
油气资源的稀缺性,环 境保护的需要
2 如何保护油气层? 3 具体保护措施
资源保障
有效保护油气层能够确保油 气资源的可持续发展
战略意义
油气层保护对国家战略安全 具有重要意义
结束语
保护油气层是我们的责任,安全高效开发油气资源是我们的目标。
管理体系建设,技术手段
地质勘探与评价,坑探 技术,压裂技术,井下 防漏技术,油气田开发 与生产中的保护措施
ቤተ መጻሕፍቲ ባይዱ
持续改进保护措施
1
监测评估
及时检测油气层保护状况以及效果评估
2
技术创新
不断引进新技术、新方法,提高保护效果
3
人才培养
培养专业人才,推动油气层保护研究及实践
油气层保护的意义与价值
环保效益
保护油气层有助于减少环境 污染、保护生态平衡

油层物理第二章(new)

油层物理第二章(new)
(据Brown等,1948)
三、双组分烃的相态特征
双组分混合物的相图 aC:泡点线; bC:露点线; ☆ 等液量线; 液相区、气相区、两相区。
C点:临界点,泡点线和露点线 的交点。
P 点:临界凝析压力点,它是两 相共存的最高压力点; T 点:临界凝析温度点,它是两 相共存的最高温度点。
M ( yi M i )
i 1
n
3.天然气的分类
矿藏分类: 气藏气、油藏气和凝析气藏气。
按井口流出物中C5或C3以上液态烃含量划分:
单组分烃的p—V图
泡点A:少量分子首次从液体中 逸出,形成小气泡的点。
露点B:仅有无限少量液体存留。
对于单组分烃,泡点和露点压力 等于在相应温度下该组分的饱和 蒸汽压。
随着温度的变化可绘出若干条等 温线;且随着温度的升高,两相 共存段减少;露点和泡点最后重 合与C点。
图2-1-6 乙烷的P-V关系图
油层物理学
成都理工大学
能源学院
第二章 储油气层中流体的 物理性质
主要内容
第一节 油层烃类的相态特征
第二节 天然气的物理性质
第三节 地层原油的物理性质 第四节 油层水的物理性质 第五节 油层流体的高压物性研究 第六节 油层烃类的相态方程
储集岩孔隙空间中储集的流体:天然气,石油,以 及地层水。 油层流体的特点:处于高温、高压条件下,石油中 常溶解有大量的烃类气体,地下的油层流体的物理
,
气+液
,
多组分烃体系的P-T图
逆行区:图中的阴影部分,逆 行指的是与正常变化相反。 , 等温逆行区:Tc<T<T , 等压逆行区:Pc<P<P 相变过程分析: 等温降压,正常相变为蒸发; , 当Tc<T<T 等温降压时, A气相—B少量液相—D液量增 加(D为最大值)—E液量减少, 气量增加—F气相 B—D 气—液 等温反凝析 D—B 液—气 等温反蒸发 在等压逆行区则有: 等压反凝析 等压反蒸发

钻井液与油气层保护技术

钻井液与油气层保护技术

第二节 油气层损害与保护
油气层保护技术简介
保护油气层技术的特点 1)保护油气层技术是一项涉及多学科、多专业、多部门,
并贯穿整个油气生产过程的系统工程。 2)保护油气层技术具有很强的针对性。 3)保护油气层技术在研究方法上要采用三结合: ? 微观研究与宏观研究相结合; ? 机理研究与应用规律研究相结合; ? 室内研究与现场实践相结合。
损害趋势和后果
第二节 油气层损害与保护
岩心分析
1 、岩心特征 孔隙结构是从微观角度来描述油气层的储渗特性 孔隙度与渗透率是从宏观角度来描述油气层的储渗特性
第二节 油气层损害与保护
油气层保护技术简介
保护油气层技术的主要内容包括八大方面: ? 岩心分析、油气水分析及测试技术; ? 油气层敏感性和工作液损害室内评价技术; ? 油气层损害机理研究和保护油气层技术系统方案初步设计; ? 钻井过程中油气层损害因素分析和保护油气层措施; ? 完井过程中油气层损害因素分析和保护油气层措施及解堵技术; ? 油气田开发生产中的损害因素分析和保护油气层措施; ? 油气层损害现场诊断和矿场评价技术; ? 保护油气层总体效果评价和经济效益综合分析技术。
钻井液与油气层保护技术
钻井工程技术研究院 油气层保护研究所
提纲
? 第一节 钻井液性能及作用
?
钻井液的稳定性和功用
?
钻井液性能
? 第二节 油气层损害与保护
?
概述
?
油气层保护技术简介
?岩心分析Fra bibliotek?油气层损害机理
?
保护油气层技术
第一节 钻井液性能及作用
?
钻井液的稳定性和功用
?
钻井液性能
第一节 钻井液性能对钻井的影响

油气田地下地质学ppt课件

油气田地下地质学ppt课件

三.裂缝、 溶洞型油水层的评价 1.径向电阻率重叠法(Rt,Rxo) 油层----减阻侵入,Rt>Rxo 水层----增阻侵入,Rt<Rxo 致密层 Rt,Rxo重叠, 高阻,低GR 泥岩层 Rt,Rxo重叠, 低阻,高GR
三.裂缝,溶洞型油水层的评价
2.利用油水界面标高判断油水层
油层
FD缝洞型油水界面
第二章 油气水层综合评价
第一节 砂泥岩剖面油气水层的判断 第二节 膏盐剖面油气水层的判断 第三节 低电阻率油气水层的判断 第四节 碳酸盐岩剖面油气水层的判断 第五节 评价地层含油性的几个快速直
观的测井方法
第一节 砂泥岩剖面油气水层的判断
砂泥岩剖面sand-shale: 岩性简单稳定 孔隙分布均匀 油气水分布规律清楚 泥浆侵入规律性强 测井效果好
2.参数的求取
(3)粒度中值Md的求取
lgMd=C0+C1△GR
GR GR - GRmin GR max GR min
纯粉砂岩地层: Md=0.1mm
△GR=0, C0=lgMd=lg0.1=-1
泥岩地层:Md=0.018mm, △GR=1
C0+C1=lgMd, C1=-0.75
lgMd=-1-0.75 △GR
1.常规测井特征 三低 电阻率, 中子伽马,自然伽马 二高 声波时差,中子孔隙度 一小 密度
二.储集层的划分
(二)裂缝性储层(fractured reservoir)的测井特征
2.其它测井方法
(1)裂缝识别测井fracture identification log (2)深浅侧向-冲洗带电阻率测井 (3)井下声波电视 (4)岩性密度测井(litho-density log) (5)咝声测井(sibilation log) (6)井温测井(temperature log)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意: X射线衍射技术测出的物相是固态物质,不是元素,而 采用化学分析或者光谱分析技术,得到的矿物元素。
第二节 岩心分析技术及应用
XRD的分析原理
当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样, 它们的衍射特征可以用各个反射面网的面网间距(d值)和反射的相 对强度(I/ I0)来表征。其中面网间距d值与晶胞的形状和大小有关, 相对强度(I / Io)则与晶体质点的种类及其在晶胞中的位置有关。
第二节 岩心分析技术及应用
b.全岩分析
对粒径大于5µm的非粘土矿物部分进行XRD分析,可以知道 诸如云母、碳酸盐矿物、黄铁矿、长石的相对含量,对酸敏(HF, HCI)性研究和酸化设计有帮助。长石含量高的砂岩,当酸液浓度 和处理规模过大时,会削弱岩石结构的完整性,并且存在着酸化 后的二次沉淀问题,可能导致土酸酸化失-长石
Q
Ch I
Q
C
F
55 10
15
20
衍射角(0)
岩石粉晶衍射图谱
25
30
第二节 岩心分析技术及应用
XRD的分析方法
粘土矿物分离方法:先将岩石抽提干净,然后碎样,用蒸馏水浸泡, 最好湿式研磨,并用超声波振荡加速粘土从颗粒上脱落,提取粒径小 于2um(泥、页岩)或小于5um(砂岩)的部分,沉降分离、烘干; XRD分析使用的定向片:包括自然干燥的定向片、经乙二醇饱和的定向 片(再加热至550℃),或盐酸处理之后的自然干燥定向片。粒径大于 2um或5um的部分研磨至粒径小于40um的粉末,用压片法制片。
地层微粒指粒径小于37µm (或44µm)即能通过400目(或 325目)筛的细粒物质,它是砂岩中重要的损害因素,砂岩中 与矿物有关的地层损害都与其有密切的联系。
地层微粒的分析为矿物微粒稳定剂的筛选、解堵措施的优 化提供依据。除粘土矿物外,常见的其它地层微粒有长石、 石英、云母、菱铁矿、方解石、白云石、石膏等。
35
20 12.03 67.67 0.00 20.3
35
41 9.09 54.55 9.09 27.27
40
50 23.08 57.69 0.00 19.23
40
64 4.55 88.64 0.00 6.82
30
90 2.33 87.21 0.00 10.47
25
第二节 岩心分析技术及应用
X射线衍射在保护油气层中的应用 a.地层微粒分析
岩石物理性质
φ、k测定 铸体薄片 扫描电镜 压汞技术 图像分析 接触角法
孔隙度 渗透率 孔隙结构 岩石表面性质
岩心
岩石结构与矿物
铸体薄片 X射线衍射 扫描电镜 电子探针 红外光谱
岩石的稳 定性与强度
地层微粒和矿物 的稳定性
地层流体
化学分析 光谱分析 色谱分析 高压物性
结垢趋势及 类型
内部环境: 压力 温度
第一节 岩心分析概述
油气层地质研究的主要内容:
1、矿物性质:敏感性矿物的类型、产状和含量; 2、孔隙介质的特性:孔隙度、渗透率、裂隙发育程度、孔隙及孔 喉大小、形状、分布和连通性 ; 3、岩石表面性质:比表面、润湿性; 4、孔隙流体性质:油气水组成,高压物性,析蜡点,凝固点,原 油酸值; 5、岩石所处环境:岩石所处的内外环境; 6、岩石对环境变化的敏感性:矿物、孔隙特性、孔隙 流体对环境变化的敏感性
原地应力 天然驱动能量
潜在油气层损害类型和敏感性
外部环境: 流速
工作液性质 外来固相侵入
压差
保护油气层技术措施建议
油气层保护技术中地质研究的内容及岩心分析的作用
鄂尔多斯盆地北部气田,二叠系
川西新场气田,侏罗系沙溪庙组
哈萨克斯坦扎那若尔油田,石炭系
第一节 岩心分析概述
2)岩石结构与矿物 骨架颗粒:粒度大小、分布、成分、含量; 填充物------(粘土矿物和非粘土矿物):类型、产状、成分、含量
第二节 岩心分析技术及应用
定性分析---确定矿物组分
根据面网间距d和相对反射强度(I/Io)来确定矿物成分
定量分析 ---确定矿物含量含量 – 根据矿物成分含量与衍射峰值强度成正比的关系来确定矿物含量
Ii
Xi
X石英
KiI石英
Xi-测定矿物含 Ii-量矿;物相特征峰度衍;射强 X石英 -样中石英含 I石英 量 -; 石英特征峰衍;射强度 Ki-矿物相特征峰石相英对特于征峰的强。度因子
第二节 岩心分析技术及应用
玉门油田青西地区下沟组地层的粘土矿物分布
序井 号号 1 Long1 2 Long1 3 Long3 4 Long3 5 Liu102 6 Liu102
下沟组粘土矿物相对含量分析结果

粘土矿物相对含量
S%
号 高岭石 伊利石 绿泥石 伊/蒙间层 (I/S)
2 14.29 64.29 0.00 21.43
任何一种结晶物质的衍射数据d值和相对强度(I / lo)值都是其 晶体结构的必然反映,它在衍射图谱上表现出不同的衍射角和不同 的衍射峰高(强度)。因而可以根据I 0 它们来鉴别各类结晶物质包括岩 石中各种矿物组成。
70 50 30 10 %
第二节 岩心分析技术及应用
(矿 物
)组 分
I---伊利石 Q---石英
XRD分析借助于X射线衍射仪来实现,它主要由光源、测角仪 、X 射线检测和记录仪构成 。
第二节 岩心分析技术及应用
➢X射线衍射技术用途
• 确定各类粘土矿物,包括混层粘土矿物。 • 确定混层粘土矿物的比例。比如伊蒙粘土矿物中蒙脱石的比例。 • 确定粘土矿物的结构类型。比如蒙脱石是钠蒙脱石还是钙蒙脱石。 • 鉴定非晶质粘土矿物,比如水铝石英、硅铁石等。
X射线衍射和 扫描电镜分析样品 密度大约为铸体薄 片的1/3~1/2,对 油气层要加密,水 层及夹层进行控制 性分析
压汞分析的岩 样,对于一个油组 (或厚油层),每 个渗透率级别至少 有3~5条毛管压力 曲线,最后可根据 物性分布求取该油 组的平均毛管压力 曲线
第二节 岩心分析技术及应用
➢X射线衍射 X-Ray Diffraction (XRD)
孔喉
充填物 骨架颗粒
孔隙
岩心分析揭示的内容和所用的方法
第一节 岩心分析概述
➢取样要求
井底取出岩心
实验岩心 3 0 3 0 3 0 3 0 3 0 3 0
Slice
30
K、F、 Capillary pressure
RXD SEM
第一节 岩心分析概述
➢取样要求
铸体薄片样品应 能包括油气层剖面 上所有岩石性质的 极端情况,如粒度、 颜色、胶结程度、 结核、裂缝、针孔、 含油级别等,样品 间距1~5块/m,必 要时加密
相关文档
最新文档