15.2分式的运算(1)
八年级数学上册15.2 分式的运算(有答案)
八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。
最简公式的定义:分子与分母没有公因式的分式。
分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。
注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。
人教版八年级数学上册说课稿15.2分式的运算
人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
八年级数学上册 第十五章《分式》15.2 分式的运算 15.2.1 分式的乘除 15.2.1.1 分
15.2分式的运算15.2.1分式的乘除第1课时分式的乘除◇教学目标◇【知识与技能】理解并掌握分式的乘除法那么,运用法那么进展运算,能解决一些与分式有关的实际问题.【过程与方法】经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.【情感、态度与价值观】通过让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验.◇教学重难点◇【教学重点】掌握分式的乘除运算.【教学难点】分子、分母为多项式的分式乘除法运算.◇教学过程◇一、情境导入观察以下运算:.猜一猜=?=?二、合作探究探究点1分式的乘法典例1化简分式的结果是()A. B. C. D.[解析]进展分式乘除法运算时,先约分,再化简即可..[答案] B变式训练计算的结果是()A.-1B.0[解析]原式==1.[答案] C探究点2分式的除法典例2化简的结果是()A.a2B.C. D.[解析]先将分子因式分解,再将除法转化为乘法后约分即可.原式=.[答案] D变式训练计算:,其结果正确的选项是()A. B.C. D.[答案] D探究点3分式乘除混合运算典例3计算的结果是()A. B.-C. D.-[解析]先将除法转化为乘法,再根据分式的乘法法那么计算、约分即可.=-.[答案] B【技巧点拨】做分式乘除混合运算时,一般是先统一为乘法运算,所以分式乘除法的运算,归根到底是乘法的运算,运算的最后结果是最简分式或整式.计算÷(y-x)·.[解析]÷(y-x)·.三、板书设计分式的乘除分式的乘除◇教学反思◇在分式的乘除法这一课的教学中,仍然采用类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法那么与分数的乘除法法那么类似,要求他们用语言描述分式的乘除法法那么.学生反响较好,能根本上完整地讲出分式的乘除法法那么;要让学生明确分式乘除运算的结果是最简分式或整式,最后的结果是要化简的.如有侵权请联系告知删除,感谢你们的配合!。
第十五章 15.2 15.2.2 第1课时 分式的加减
解:原式=(x+5)10(x x-5)-(x+5)2(x x-5)=
(x+5)8(x x-5), 解不等式得-5≤x<6,取 x=0, 则原式=0.
9. 已知: (x2+y2)-(x-y)2+2y(x-y)÷4y=1, 求4x24-x y2-2x+1 y的值. 解:由已知得 x-12y=1, 原式=2x1-y=12.
∴A--3AB-=B1, =5,解得
A=-1, B=-2.
1. (2017·滨州)观察下列各式:1×23=11-13,2×24=12- 14,3×25=13-15,
… 请利用你所得结论,化简代数式1×13+2×14+3×15+… +n(n1+2)(n≥3 且 n 为整数),其结果为
3n2+5n 4(n+1)(n+2) .
.
知识点 同分母分式加减
15.2.1分式的乘除
• 学习目标: 1.理解分式乘方的运算法则,能根据法则进行乘方 运算,体会数式通性. 2.能根据混合运算法则进行分式乘除、乘方混合运 算.
• 学习重点:
分式的乘方及分式乘除、乘方混合运算.
探究分式的乘除混合运算
例1
计算:
2x
3
5x-325x2-9
x. 5x+3
解:
2x
3
x
5x-325x2-9 5x+3
=52x-x3
25x2-9 3
x 5x+3
= 2x2 . 3
课堂练习
练习1 计算:
(
1)
2 3
m p
2
q
n
2
5 p 2q 4mn2
5mnp ; 3q
(
2
) (
m 2-n2 m - n)2
( n - m )2
m 2n2
m+n ; m
(
3)
a
16-a2 2 + 8 a +1
6
a-4 2a+8
运用分式的乘方法则计算
例3
计算:(a2b
-cd3
) 3
2a d3
(c ) 2. 2a
解:
(a2b -cd3
) 3 2a d3
(c ) 2 2a
= a6b3 -c3d9
2a
d3
c2 4a2
= a6b3 -c3d9
d3 2a
c2 4a2
= - a 3b 3 . 8cd 6
运用分式的乘方法则计算
分式的乘除、乘方混合运算与分数的乘除、乘方混 合运算有什么联系和区别吗?
人教版八年级数学上册15. 分式的乘除(一)
15.2.1 分式的乘除(一) 课堂导案
2xy 1
15.2.1 分式的乘除(一) 课堂导案
15.2.1 分式的乘除(一) 课后练案
x
6.计算:
x3 y2
·
y 2x2
=__2__y__.
7.计算:
ab a+b
·
a+b a
=___b___.
8.计算:
2a2b c
÷
4acb22=___a2_cb____.
15.2.1 分式的乘除(一) 课后练案
(3)
a-1 a-2
·
a2-4 a2-2a+1
÷
1 a2-1
;
(4)
x2-16 x2+4x+4
÷
x+4 x+2
·
x+2 2x-8
.
15.2.1 分式的乘除(一) 课后练案
12.化简后求值:已知a=2- 2,b=2+ 2,
求
a3b+a2b2 a2+2ab+b2
4 15
,…,若10+
a b
=102×
a b
(a,
b为正整数),求分式 a2+2ab+b2 的值. ab2+a2b
感谢聆听
第十五章
分式
15.2.1 分式的乘除(一)
15.2.1 分式的乘除(一)
1 …核…心……目…标..… 2 …课…前……学…案..… 3 …课…堂……导…案..… 4 …课…后……练…案..… 5 …能…力……培…优..…
15.2.1 分式的乘除(一) 核心目标
理解并掌握分式 的乘除法则,能熟练运 用法则进行运算.
15.2分式的运算
15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a b ·c d =a ·c b ·d. (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b; (2)a 2-1a 2+2a +1÷a 2-a a +1; (3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2). 解:(1)4a 4b 215x 2·9x 8a 4b =4a 4b 2·9x 15x 2·8a 4b =3b 10x; (2)a 2-1a 2+2a +1÷a 2-a a +1=(a +1)(a -1)(a +1)2·a +1a (a -1)=(a +1)(a -1)(a +1)a (a +1)2(a -1)=1a ; (3)a 2-4a 2+4a +4·2a a 2-4a +4=(a +2)(a -2)(a +2)2·2a (a -2)2=2a (a +2)(a -2)(a +2)2(a -2)2 =2a a 2-4;(4)4x 2+4xy +y 22x +y÷(4x 2-y 2) =(2x +y )22x +y ·1(2x +y )(2x -y )=12x -y . 2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34;(2)⎝⎛⎭⎫x 2y -z 23. 解:(1)⎝ ⎛⎭⎪⎫a 2-b 34=(a 2)4(-b 3)4=a 8b 12; (2)⎝ ⎛⎭⎪⎫x 2y -z 23=(x 2y )3(-z 2)3=x 6y 3-z 6=-x 6y 3z 6. 3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减;②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减; ②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2; (4)12m 2-9+23-m; (5)x -3x 2-1-2x +1; (6)4a +2-a -2. 解:(1)(a -b )22ab +(a +b )22ab=(a -b )2+(a +b )22ab=a 2-2ab +b 2+a 2+2ab +b 22ab =2a 2+2b 22ab=a 2+b 2ab; (2)a a 2-1-11-a 2=a a 2-1+1a 2-1=a +1a 2-1=a +1(a +1)(a -1)=1a -1; (3)1x +y -1x -y +2x x 2-y 2 =1x +y -1x -y +2x (x +y )(x -y ) =(x -y )-(x +y )+2x (x +y )(x -y )=2x -2y (x +y )(x -y )=2(x -y )(x +y )(x -y )=2x +y ; (4)12m 2-9+23-m =12(m +3)(m -3)-2m -3=12(m +3)(m -3)-2(m +3)(m +3)(m -3)=12-2(m +3)(m +3)(m -3)=-2(m -3)(m +3)(m -3)=-2m +3; (5)x -3x 2-1-2x +1=x -3(x +1)(x -1)-2(x -1)(x +1)(x -1)=x -3-2(x -1)(x +1)(x -1)=-(x +1)(x +1)(x -1) =-1x -1; (6)4a +2-a -2=4a +2-(a +2) =4a +2-(a +2)1=4a +2-(a +2)2a +2 =4-(a +2)2a +2=4-a 2-4a -4a +2=-a 2+4a a +2. 4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m-n ,因此a m ÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n .这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m ) n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1. 解:(1)⎝⎛⎭⎫-23-2=1⎝⎛⎭⎫-232=149=94; (2)a 2b -3(a -1b )3÷(ab )-1=a 2b -3·a -3b 3·ab =a 0b =b .5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000;(2)-36 900 000;(3)0.000 002 1;(4)-0.000 006 57.解:(1)650 000=6.5×105;(2)-36 900 000=-3.69×107;(3)0.000 002 1=2.1×10-6;(4)-0.000 006 57=-6.57×10-6.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1. 分析:按照从左到右的顺序依次运算,把除法运算转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式或整式.解:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1 =(1+x )(1-x )(x +2)2·1(x -1)2·(x +1)(x +2)x -1=-(x +1)2(x +2)(x -1)2. 【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab . 解:原式=⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝ ⎛⎭⎪⎫a +b ab 2·2a 2-b 2+2ab=⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ·(ab )2(a +b )2·2a 2-b 2+2ab =⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab (a +b )2·2a 2-b 2+2ab=⎣⎢⎡⎦⎥⎤a 2-b 2(a +b )2+2ab (a +b )2·2a 2-b 2+2ab =a 2-b 2+2ab (a +b )2·2a 2-b 2+2ab=2(a +b )2. 【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.解:原式=3x (x +1)-x (x -1)(x +1)(x -1)·(x +1)(x -1)2x =3x 2+3x -x 2+x 2x =2x 2+4x 2x =2x ·(x +2)2x=x +2. 当x =-3时,原式=-3+2=-1.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小. 解:4x +y -x +y xy =4xy -(x +y )2xy (x +y )=-(x -y )2xy (x +y ). 因为x ≠y ,x >0,y >0.所以-(x -y )2xy (x +y )<0,即4x +y<x +y xy . 【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?解:设甲每小时生产这种零件x 个,则乙每小时生产这种零件(x -8)个,甲完成任务需要时间为168x 小时,乙完成任务需要时间为144x -8小时. 168x -144x -8=168(x -8)-144x x (x -8)=24(x -56)x (x -8). ∵x >8,∴x -8>0,∴x (x -8)>0.故当x >56时,168x -144x -8>0; 当x =56时,168x -144x -8=0; 当x <56时,168x -144x -8<0. 所以若甲每小时生产零件多于56个,则乙先完成任务;若甲每小时生产零件等于56个,则两人同时完成任务;若甲每小时生产零件小于56个且多于8个,则甲先完成任务.10.分式混合运算的开放型题运用分式的混合运算解决开放型问题,关键还是进行分式的混合运算,只是题目具有一定的开放性,所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.解:选一:(A -B)÷C =⎝ ⎛⎭⎪⎫1x -2-2x 2-4÷x x +2=x(x +2)(x -2)×x +2x =1x -2, 当x =3时,原式=13-2=1. 选二:A -B÷C =1x -2-2x 2-4÷x x +2=1x -2-2(x +2)(x -2)×x +2x =1x -2-2x (x -2)=x -2x (x -2)=1x , 当x =3时,原式=13.。
八年级数学上册 15.2 分式的运算 15.2.3 整数指数幂说课稿 (新版)新人教版
八年级数学上册 15.2 分式的运算 15.2.3 整数指数幂说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第15章“分式的运算”中的第15.2.3节“整数指数幂”是本节课的主要内容。
这部分内容是在学习了分式的概念、分式的乘除法、分式的加减法等基础知识后进行的,是分式运算的一个重要组成部分。
本节课主要让学生掌握整数指数幂的运算方法,理解整数指数幂与分数指数幂之间的关系,以及能够运用整数指数幂解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和运算规则有一定的了解。
但是,学生在学习过程中,可能会对整数指数幂的运算规则理解不深,难以将整数指数幂与分数指数幂之间的关系运用到实际问题中。
因此,在教学过程中,需要注重引导学生理解整数指数幂的运算规则,并通过实际例子让学生体会整数指数幂的应用价值。
三. 说教学目标1.知识与技能目标:使学生掌握整数指数幂的运算方法,理解整数指数幂与分数指数幂之间的关系,能够运用整数指数幂解决实际问题。
2.过程与方法目标:通过自主学习、合作交流等方法,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的意志。
四. 说教学重难点1.教学重点:整数指数幂的运算方法,整数指数幂与分数指数幂之间的关系。
2.教学难点:如何引导学生理解整数指数幂的运算规则,并将整数指数幂应用于实际问题中。
五. 说教学方法与手段本节课采用自主学习、合作交流、讲解演示等教学方法。
利用多媒体课件辅助教学,通过生动的动画和实例,帮助学生理解整数指数幂的运算规则,提高学生的学习兴趣和参与度。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何运用整数指数幂解决问题,激发学生的学习兴趣。
2.自主学习:让学生自主探究整数指数幂的运算方法,总结运算规则。
3.合作交流:学生分组讨论,分享各自的学习心得,互相解答疑惑。
15.2.1_分式的乘除(1)(最新)
【例题】
【例1】 计算:
4x y ab3 5a 2 b 2 . (1) 3 (2) 2 2c 4cd 3y 2x
6x y 3x
【解析】 (1) 4 x y = 4 xy 2 . 3 3 2
3y 2x
2
ab 5a b ab 4cd 2bd 2 2 2 2 2c 4cd 2c 5a b 5ac
所有因式的最高次幂的积作为公分母,也叫最简公分母.
问题1
一个长方体容器的容积为V,底面的长为a,宽为
m b,当容器内的水占容积的 时,水面的高度是多少? n
V 长方体容器的高为 , ab
V m 水面的高度为 · . ab n
问题2
大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大
拖拉机的工作效率是小拖拉机的工作效率的多少倍? 大拖拉机的工作效率是
人教版数学教材八年级上
第15章 分式
15.2.1 分式的乘除
1.掌握分式的乘除运算法则,
2.能应用分式的乘除法法则进行运算 .
1、分式的概念:
一般地,如果A、B表示两个整式,并且B中含有字母,
A 那么式子 叫做分式,(其中B≠0) B
2、分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式 ,
a c b d
a c bd
2 4 2 5 25 (3) = = 3 5 3 4 3 4
a c ? b d
分式的除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘. 用符号语言表达:a c a d a d .
b d b c bc
2 2
【试一试】
根据已知条件求分式的值
x y z x yz 1 已知 ,试求 的 。 值 2 3 4 x yz
八年级数学上册分层辅导试卷:15.2.1 分式的乘除 第1课时 分式的乘除
15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除01 基础题知识点1 分式的乘法1.计算ax 2by ·b 2y ax 的结果是(B )A .axB .bxC .x bD .x a 2.计算-b 2a ·(-4a 3b )·(-2a 3b )的结果是(D )A .-b aB .b aC .-b 4aD .-4a 9b3.计算:(1)2x 3z y 2·3y 24xz 2;解:原式=6x 3y 2z 4xy 2z 2=3x 22z .(2)x 2-xyxy 2·yy -x ;解:原式=x (x -y )xy 2·yy -x=-xy (x -y )xy 2(x -y )=-1y .(3)x 2-6x +9x 2-1·x 2+xx -3.解:原式=(x -3)2(x +1)(x -1)·x (x +1)x -3=x (x -3)x -1=x 2-3x x -1.知识点2 分式的除法4.计算3ab÷b 3a的结果是(D ) A .b 2 B .18a C .9a D .9a 25.(济南中考)化简2x 2-1÷1x -1的结果是(A ) A .2x +1B .2xC .2x -1D .2(x +1) 6.计算:(1)12x 2y 5z 2÷4xy 215z 2; 解:原式=12x 2y 5z 2·15z 24xy 2=9x y.(2)a 2-1a 2+2a +1÷a 2-a a +1; 解:原式=(a +1)(a -1)(a +1)2·a +1a (a -1)=1a.(3)2x +6x 2+2x÷(x +3). 解:原式=2(x +3)x 2+2x ·1x +3=2x 2+2x.知识点3 分式乘除法的应用7.由甲地到乙地的一条铁路全长为s km ,火车的运行时间为a h ;由甲地到乙地的公路全长为这条铁路全长的m 倍,汽车全程运行b h .那么火车的速度是汽车速度的b am倍. 8.甲乙两个工程队合修一条公路,已知甲工程队每天修(a 2-4)米,乙工程队每天修(a -2)2米(其中a>2),则甲工程队修900米所用时间是乙工程队修600米所用时间的多少倍?解:900a 2-4÷600(a -2)2=3a -62a +4. 答:甲工程队修900米所用时间是乙工程队修600米所用时间的3a -62a +4倍.02 中档题9.使代数式x +2x -3÷x +1x -2有意义的条件是(D ) A .x ≠3且x ≠2 B .x ≠3且x ≠-1C .x ≠2且x ≠-2D .x ≠-1且x ≠2且x ≠310.已知分式x 2-y 2x 乘以一个分式后结果为-(x -y )2x ,则这个分式为-x -y x +y. 11.李明同学骑自行车上学用了a 分钟,放学时沿原路返回家用了b 分钟,则李明同学上学与回家的速度之比是b a.12.计算:(1)(a -2)·a 2-4a 2-4a +4; 解:原式=(a -2)·(a +2)(a -2)(a -2)2=a +2.(2)(珠海中考)(a 2+3a)÷a 2-9a -3; 解:原式=a(a +3)·a -3(a +3)(a -3)=a.(3)(镇江中考)x 2-1x 2-2x +1÷(x +1);解:原式=(x +1)(x -1)(x -1)2·1x +1=1x -1.(4)x 2+2xy +y 2xy -y 2÷xy +y 2x 2-2xy +y 2. 解:原式=(x +y )2y (x -y )·(x -y )2y (x +y )=(x +y )(x -y )y 2=x 2-y 2y 2.13.先化简,再求值:a 2-4a 2+6a +9÷a -22a +6,其中a =-5. 解:原式=(a +2)(a -2)(a +3)2·2(a +3)a -2=2(a +2)a +3=2a +4a +3. 当a =-5时,原式=2×(-5)+4-5+3=3.14.有这样一道题:计算x 2-2x +1x 3-x ÷x -1x 2+x的值,其中x =2 017,某同学把x =2 017错抄成2 071,但他的计算结果正确,你说这是怎么回事?解:原式=(x -1)2x (x +1)(x -1)·x (x +1)x -1=1. 计算的结果与x 的值无关,∴他的计算结果正确.15.(永州中考)先化简:x +3x 2-4x +4÷x 2+3x (x -2)2,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.解:原式=x +3x 2-4x +4÷x 2+3x (x -2)2=x +3(x -2)2÷x (x +3)(x -2)2=x +3(x -2)2·(x -2)2x (x +3)=1x. 当x =1时,原式=1.03 综合题16.有甲、乙两筐水果,甲筐水果重(x -1)2千克,乙筐水果重(x 2-1)千克(其中x>1),售完后,两筐水果都卖了50元.(1)哪筐水果的单价卖得低?(2)高的单价是低的单价的多少倍?解:(1)甲筐水果的单价为50(x -1)2, 乙筐水果的单价为50x 2-1. ∵0<(x -1)2<x 2-1,∴50x 2-1<50(x -1)2. 答:乙筐水果的单价低.(2)50(x -1)2÷50x 2-1=50(x -1)2·(x +1)(x -1)50 =x +1x -1. 答:高的单价是低的单价的x +1x -1倍.。
15.2.1分式的乘除(1)
500
aHale Waihona Puke 21千克 / 米 ; 丰收2号”小麦的试
2 2
2
(a 1) 米 ,
是
田面积是
(a 1)
2 500 单位面积产量 千米 / 米 . 2
∵a2-1 -(a2-2a+1)=2a-2=2(a-1)>0 (a>1) 500 500 2 2 < ∴0<(a-1) <a -1 2 2 a 1 a 1
V 长方体容器的高为 ab
V m ,水高为 . ab n
问题2
大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大拖拉机的工作效率是小拖拉机的工 作效率的多少倍?
b 工作效率是 公顷/天,大拖拉机的工作效率 n
是小拖拉机的工作效率的(
a 大拖拉机的工作效率是 公顷/天,小拖拉机的 m
a b m n
a2 a 2a 1
a 1 a2 1 ( 2) 2 2 a 4a 4 a 4 2 a 1 a 4 a 2 4a 4 a 2 1
分子分母分解因式
你能说出 每一步的 依据吗?
除号变乘号 分子分母都颠倒
ad a c ? bc b d
分式乘除法法则:
分式乘分式,用分子的积做积的分子,分母的积 做积的分母。 分式除以分式,把除式的分子、分母颠倒位置 后与被除式相乘。
a c ac b d bd a c a d ad b d b c bc
例1 计算:
a2 1 (2) 2 a 2 a 2a
( m 2 4m)
课堂练习
计算
3ab 10xy (2) 2 21b 4x y
3a 16b (1) 2 4b 9a
万年县第五中学八年级数学上册第十五章分式15.2分式的运算15.2.2分式的加减1导学案新版新人教版
15.2.2 分式的加减(1)1.使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算.2.通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式的通分,培养学生分式运算的能力.重点:让学生熟练地掌握同分母、异分母分式的加减法.难点:分式的分子是多项式的做减法时注意符号,去括号法则的应用.一、自学指导自学1:自学课本P139-140页“问题3、问题4、思考、例6”,掌握同分母、异分母分式加减的方法,完成填空.(7分钟)①计算:15+25,15-25,12+13,12-13.总结归纳:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减.a c +bc =a +b c ;a b +cd =ad bd +bc bd =ad +bc bd. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P141页练习题1,2. 2.计算:(1)2x -5x 2;(2)x 2+xy xy -x 2-xy xy ;(3)a -2a +1-2a -3a +1; (4)a +1a -1-a -1a +1; (5)x 2x -2-4x x -2+4x -2; (6)2m -n n -m +m m -n +n n -m.点拨精讲:分式加减的结果要化为最简分式.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 探究1 已知A x -1+B x +1=x -3x 2-1,求A 与B 的值.解:∵A x -1+B x +1=A (x +1)(x +1)(x -1)+B (x -1)(x +1)(x -1)=A (x +1)+B (x -1)(x +1)(x -1)=(A +B )x +(A -B )(x +1)(x -1),又∵A x -1+B x +1=x -3x 2-1,∴⎩⎪⎨⎪⎧A +B =1,A -B =-3,∴⎩⎪⎨⎪⎧A =-1,B =2.点拨精讲:先将左边相加,再与右边对比即可. 探究2 计算:11-x +11+x +21+x 2+41+x4.解:原式=21-x 2+21+x 2+41+x 4=41-x 4+41+x 4=81-x 8.点拨精讲:巧用乘法公式,逐项通分.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.计算:(1)(5a +3b a +b +3b -4a a +b -a +3ba +b ;(2)12-x +4x 2-4+x -12+x ; (3)a -b +2b2a +b.2.分式1a +1+1a (a +1)的计算结果是1a .3.先化简,再求值:a2a -1-a -1,其中a =-1.解:(略)(3分钟)1.异分母分式的加减法步骤:①正确地找出各分式的最简公分母;②准确地得出各分式的分子、分母应乘的因式;③通分后进行同分母分式的加减运算;④公分母保持积的形式,将各分子展开;⑤将得到的结果化成最简分式(整式).求最简公分母概括为:①取各分母系数的最小公倍数;②凡出现以字母为底数的幂的因式都要取;③相同字母的幂的因式取指数最大的.这些因式的积就是最简公分母.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)4 分式方程第1课时分式方程的概念及解法【知识与技能]1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程 ;3.学生掌握解分式方程的基本方式和步骤.【过程与方式]通过列出的方程归纳出它们的共同特点 , 得出分式方程的概念.了解分式的概念 , 明确分式和整式的区别 ; 经历和体会解分式方程的必要步骤 ; 使学生进一步了解数学思想中的〞转化〞思想.【情感态度]在建立分式方程的数学模型的过程中培养能力和克服困难的勇气 , 并从中获得成就感 , 提高解决问题的能力.【教学重点]掌握分式方程的解法、解 , 分式方程要验根.【教学难点]掌握分式方程的解法、解 , 分式方程要验根.一.情景导入 , 初步认知在这一章的第一节【分式]中 , 我们曾研究过一个〞固沙造林 , 绿化家园〞的问题.面対日益严重的土地沙化问题 , 某县决定分期分批固沙造林 , 一期工程计划在一定期限内固沙造林2400公顷 , 实际每月固沙造林的面积比原计划多30公顷 , 结果提前4个月完成计划任务.原计划每月固沙造林多少公顷?分析 : 这一问题中有哪些已知量和未知量?已知量 : 造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务未知量 : 原计划每月固沙造林多少公顷这一问题中有哪些等量关系?实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷原计划完成的时间-完成实际的时间=4个月我们设原计划每月固沙造林x公顷 , 那么原计划完成一期工程需要_____个月 , 实际完成一期工程用了______个月 , 根据题意 , 可得方程____________.【教学说明]为了让学生经历从实际问题抽象.概括分式方程这一〞数学化〞的过程 , 体会分式方程的模型在解决实际生活问题中作用 , 利用第一节【分式]中一个熟悉的问题 , 引导学生努力寻找问题中的所有等量关系 , 发展学生分析问题.解决问题的能力.二.思考探究 , 获取新知探究1 : 分式方程的概念问题 : 甲.乙两地相距 1400 km , 乘高铁列车从甲地到乙地比乘特快列车少用 9 h , 已知高铁列车的平均行驶速度是特快列车的 2.8 倍.〔1〕你能找出这一问题中的所有等量关系吗?〔2〕如果设特快列车的平均行驶速度为 x km/h , 那么 x 满足怎样的方程?〔3〕如果设小明乘高铁列车从甲地到乙地需 y h , 那么 y 满足怎样的方程?问题 : 为了帮助遭受自然灾害的地区重建家园 , 某学校号召同学们自愿捐款.已知初一同学捐款总额为4800 元 , 初二同学捐款总额为5000元 , 初二捐款人数比初一多20人 , 而且两个年级人均捐款额恰好相等.如果设初一捐款人数为 x 人 , 那么 x 满足怎样的方程?【教学说明]再次让学生经历从实际问题抽象.概括分式方程这一〞数学化〞的过程 , 体会分式方程的模型作用.回顾刚才我们得出的 4个方程 :它们和我们以前所碰到的方程一样吗?有什么不一样的地方?上面所得到的方程有什么共同特点?【教学说明]【归纳结论]分母中中含有未知数的方程叫做分式方程探究2 : 分式方程的解法1.解以下分式方程 :【教学说明]通过观察 , 使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师対例题讲解 , 让学生明确解分式方程的一般步骤.【归纳结论]1.解分式方程的一般步骤 :〔1〕去分母〔即在方程的两边都乘以最简公分母〕 , 把原分式方程化为_____ ;〔2〕解这个整式方程 ;2.以下哪种解法正确?解分式方程解法一 : 将原方程变形为方程两边都乘以x-2,得 : 1-x=-1-2解这个方程 , 得 : x=4.解法二 : 将原方程变形为方程两边都乘以x-2 ,得 : 1-x=-1-2(x-2)解这个方程 , 得 : x=2你认为x=2是原方程的根?与同伴交流.【归纳结论]增根概念 : 将分式方程变形为整式方程时 , 方程两边同乘以一个含未知数的整式 , 并约去分母 , 有时可能产生不适合原分式方程的解(或根) , 这种根通常称为增根 ;认识增根 :①增根是去分母后所得的根 ;①增根使最简公分母的值为 ;③增根〔填〞是〞或〞不是〞〕原方程的根.三.运用新知 , 深化理解A.2个 B.3个 C.4个 D.5个答案 : B.〔〕是分式方程,〔〕是整式方程.答案 : B;A、C3.王军同学准备在课外活动时间组织局部同学参加电脑网络培训 , 按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍 , 费用享受了优惠 , 一共只需要480元 , 参加活动的每个同学平均分摊的费用比原计划少4元 , 原定的人数是多少?如果设原定是x人 , 那么 x 满足怎样的分式方程?解 : 方程两边都乘以y〔y-1〕 ,得2y2+y〔y-1〕=〔y-1〕〔3y-1〕 ,2y2+y2-y=3y2-4y+1 , 3y=1 ,解得y=1/3.检验 : 当y=1/3时 , y〔y-1〕=1/3×1/3-1=-2/9≠0 ,∴y=1/3是原方程的解 ,∴原方程的解为y=1/3.解 : 两边同时乘以〔x+1〕〔x-2〕 ,得x〔x-2〕-〔x+1〕〔x-2〕=3.解这个方程 , 得x=-1.检验 : x=-1时〔x+1〕〔x-2〕=0 , x=-1不是原分式方程的解 ,∴原分式方程无解.〔3〕解 : 方程的两边同乘〔x-1〕〔x+1〕 ,得3x+3-x-3=0 , 解得x=0.检验 : 把x=0代入〔x-1〕〔x+1〕=-1≠0.∴原方程的解为 : x=0.〔4〕解 : 方程的两边同乘〔x+2〕〔x-2〕 , 得2-〔x-2〕=0 , 解得x=4.检验 : 把x=4代入〔x+2〕〔x-2〕=12≠0.∴原方程的解为 : x=4.再两边同乘以3x-1 , 得3〔3x-1〕-1=2 , 3x-1=1 , x=2/3.检验 : 把x=2/3代入〔3x-1〕 : 〔3x-1〕≠0 ,∴x=2/3是原方程的根.∴原方程的解为x=2/3.〔6〕解 : 方程两边同乘以2〔3x-1〕 ,得 : -2+3x-1=3 , 解得 : x=2 ,检验 : x=2时 , 2〔3x-1〕≠0.所以x=2是原方程的解.【教学说明]通过学生的反馈练习 , 考察学生対分式方程概念的理解 ; 以及解分式方程.使教师能全面了解学生対解分式方程是否清楚 , 以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤 :〔1〕去分母〔即在方程的两边都乘以最简公分母〕 , 把原分式方程化为_____ ;〔2〕解这个整式方程 ;〔3〕检验 : 把整式方程的根代入最简公分母 , 使最简公分母的值不等于零的根是原分式方程的_____ , 使最简公分母的值等于零的根是原方程的_____.五.教学板书布置作业:教材〞习题5.7”中第1、2、3题.〞习题5.8”中第1、2题.虽然在课堂上做了很多 , 但也存在许多缺乏的地方 , 以下是教师在教学中应该注意的地方 : 第一 , 讲例题时 , 先讲一个产生增根的较好 , 这样便于说明分式方程有时无解的原因 , 也便于讲清分式方程检验的必要性 , 也是解分式方程与整式方程最大的区别所在 , 从而再强调解分式方程必须检验 , 不能省略不写这一步 ; 第二 , 给学生的鼓励不是很多.鼓励可以让学生有充分的自信心.〞信心是成功的一半〞 , 在今后的课堂教学中 , 应尊重其差异性 , 尽可能分层教学 , 评价标准多样化 , 多鼓励 , 少批评 ; 多肯定 , 少指责.用动态的、发展的、积极的眼光看待每个学生 , 帮助他们树立自信心.赞美的力量是巨大的 , 有时 , 一句赞美的话 , 可以改变人的一生.一句肯定的话、一个赞许的点头、一张表示优秀的卡片 , 都是很好的鼓励 , 会起到意想不到的良好结果.巧用“规形”性质求星形角度之和如图1,这种图形形似圆规,我们不妨称之为“规形”.它有一条重要性质:∠BOC=∠A+∠B+∠C.证明留给读者.本文运用这条性质来求一类星形角度和,既快又准确.例1 如图2,∠1+∠2+∠3+∠4+∠5=__.(第三届“希望杯”初二试题)解依“规形”性质得:∠7=∠6=∠5+∠2+∠4.而∠1+∠3+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.例2 如图3,∠A+∠B+∠C+∠D+∠E+∠F=__.(1986年吉林省八市初中数学赛题)解依“规形”性质得:∠1=∠2=∠B+∠C+∠D,而∠A+∠1+∠E+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例3 如图4所示的七角星形中,已知∠B=14°,∠C=15°,∠F=16°,并且∠A+∠D+∠E+∠G=k·45°,则k=__.(1991年北京市初二数学赛题)解依“规形”性质得:∠2=∠1=∠B+∠F+∠C,∠4=∠3=∠A+∠D+∠G.而∠E+∠2+∠4=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°,∴k·45°+14°+15°+16°=180°,∴k=3.。
最新人教版八年级数学上册《15.2.1 分式的乘除(第1课时)》优质教学课件
15.2
分式的运算
15.2.1 分式的乘除
第1课时
导入新知
通过前面分式的学习,我们知道分式和
分数有很多的相似性,如基本性质、约分和
通分.那么在运算上它们有相似性吗?
素养目标
2.能准确地进行分式的乘除法的计算.
1.知道并熟记分式乘除法法则.
探究新知
知识点
分式的乘除法法则
500
a 2 -1 a +1
2
(2)
=
=
.
2
2
(a -1) a -1 (a -1) 500
a -1
∴“丰收2号”小麦的单位面积产量是“丰收1号”小麦的
单位面积产量的
倍.
巩固练习
取一条长度为1个单位的线段AB,如图
第一步,把线段AB三等分,以中间
的一段为边作等边三角形,然后去掉这
一段,就得到由4条长度相等的线段组
则,说出分式的乘除法法则吗?
怎样用字母来表示分式的乘除法法则呢?
探究新知
分式的乘除法法则
a c
ac
a
c
a d
a d
;
.
b d
bd
b
d
b c
bc
乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的
分母.
除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式
相乘.
C.ab
D.
课堂检测
基础巩固题
−
1.化简
A.
2.计算:
三沙市一中八年级数学上册 第十五章 分式15.2 分式的运算15.2.1 分式的乘除第1课时 分式的
2.如下图 , 在△ABC中 , AB=AC , ∠A=36° , BD平分∠ABC , DE⊥AB于点E.假设CD=4 , 且△BDC的周长为24 , 求AE的长.
解:∵AB=AC,∠A=36°,∴∠ABC=∠C=12 ×(180°-∠A)=72 °.∵BD 平分∠ABC,∴∠ABD=12 ∠ABC=36°.∴∠A=∠ABD,∠BDC =∠A+∠ABD=72°.∴AD=BD,∠C=∠BDC,∴BC=BD.∴△BCD 周长 =BD+CD+BC=2BD+4=24,∴BD=10,∴AD=10,AC=AD+CD=14. 又∵DE⊥AB,∴AE=12 AB=12 AC=7
类型三 整式乘法整体代入的思想 6.(1)已知a+b=1 , ab=-4 , 求(a-2)(b-2)的值 ; 解 : 原式=ab-2(a+b)+4=-4-2×1+4=-2 (2)已知(x+ay)(x+by)=x2-11xy+6y2 , 求整式3(a+b)-2ab的 值. 解 : ∵(x+ay)(x+by)=x2+(a+b)xy+aby2 , ∴a+b=-11 , ab=6 , ∴3(a+b)-2ab=3×(-11)-2×6=-45
;
解:9yx
(2)(2019·乐山)x2-x2-2x+ 1 1 ÷xx2+-1x . 解:1x
知识点3 : 分式乘除的简单应用 9.一位同学花了2m元买了3n个笔记本 , 笔记本的单价是铅笔盒单价的倍 , 那么铅笔盒的单价是 ______2_b_m__元.
3an
10.甲、乙两个工程队合修一条公路 , 已知甲工程队每天修(a2-4)米 , 乙工 程队每天修(a-2)2米(其中a>2) , 那么甲工程队修900米所用时间是乙工程队 修600米所用时间的多少倍 ?
第十五章 分 式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程
2、例题 1、计算: ab3 4x y 5a 2b 2 (1) × ; (2) 2 ÷ 。 2c 3y 2 x3 4cd 1、例题 2、计算: a 1 a 2 4a 4 (1) 2 × a 2 4; a 2a 1 (2)
1 1 ÷ 2 2 49 m m 7m
a c ÷ = b d
5a
15.2.1 分式的乘除 1、分式乘除法则 板书设计 2、例题讲解 3、练习讲解 4、课堂小结
2
乘。
a × b
d c
。
2、练习:P138 页:第 3 题。
1
无为县第三中学电子备课教学设计
2 2 3、 计算 (1)c a b
2
ab
c
2 2 (2) n 4m3
2m 5n
(3) y
2
2 7x x
(4) -8xy 2 y
5x
(5) 2a 4
2
a 1 a 2a 1 a 4a 4
会用分式乘除的法则进行运算. 灵活运用分式乘除的法则进行运算 . 多媒体 1 第一课时
课时目标
15.2.1《分式的乘除》 1、一个水平放置的长方体容器,其体积为 V,底面长为 a,宽为 b,当容器内水 m 占容积的 时,水面高度为多少? n 2、大拖拉机 m 天耕地 a 公顷,小拖拉机 n 天耕地 b 公顷,大拖拉机的工作效率 是小拖拉机工作效率的多少倍? 3、分数的乘除法则。 1、分式的乘除法则: (1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分 母。 a c ac × = b d bd (2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相
2 2
(6) y
6y 9 (3 y) y2
1、例题 3:P136 页:例题。 2、练习:P147 页:习题 15.2:第 10 题。 课堂小结 1、分式的乘除法则: (1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分 母。 a c ac × = b d bd (2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相
a b
安全提示
乘。 ÷
c a = b d
×
d c
放学了,请同学们注意交通安全! 1、P146 页:习题 15.2:第 1、2 题。 2、课课练。 3、计算
1 (1) x 2 y x
3
练习设计
y
(2) 5b
10bc 3ac 21a
2
(3) 12 xy 8 x 2 y
无为县第三中学电子备课教学设计
教学内容
15.2.1《分式的乘除》 知识与技能:理解分式乘除法的法则,会进行分式乘除运算.
教学目标
过程与方法:利用分式与分数有许多类似之处,从分数入手,探究分式的乘除, 提高分析、解决问题的能力. 情感、态度与价值观:培养学生的类比意识和探究精神。
教学重点 教学难点 教学准备 课时安排