直线与平面高考题

合集下载

高考真题与模拟训练 专题15 点、直线、平面之间的位置关系(试题版)

高考真题与模拟训练 专题15 点、直线、平面之间的位置关系(试题版)

专题15 点、直线、平面之间的位置关系第一部分真题分类1.(2021·P 为11B D 的中点,则直线与1AD 所成的角为()A B 3C D2.(2021·1,M ,NA .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB B 平行,直线平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD B 异面,直线平面11BDD B 3.(2019·全国高考真题(理))如图,点N 为正方形ABCD ECD 为正三角形,平面ECD ⊥是线段ED 的中点,则A EN ,且直线B ,且直线,BM EN 是相交直线C .BM EN =,且直线D ,且直线,BM EN 是异面直线4.(2019·AC 所成角为所成角为β角为γ,则A BC.,βαγα<<D.,αβγβ<<5.(2021·全国高考真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的的是()A.B.C.D.6.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.②12p p∧③④34p p⌝∨⌝7.(2019·北京高考真题(理))已知l,m外的两条不同直线.给出下列三个论断:①l⊥m;②m;③l以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.8.(2021·BCD,中点.(1;(21在棱AD上,2DE EA=,且二面角.9.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.10.(2020·全国高考真题(理))如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.第二部分模拟训练一、单选题1l ,m //αβ,则l m ⊥;②若//l m ,则//l m ;④若l m ⊥,则//αβ.其中正确命题的个数是()A .1B .2C .3D .42n 为两条直线,A α,B α,C //m α,//αβD α,3及不在l 上两个不重合的点l 做平面,使得点PB 到平面α的距A .1个B .2个C .3个D .无数个4l ,是//n m 的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原ABCD ,且,AB AD =,则堑堵的体积为()A .8B .12C .16D .186中,1AB =,G 分别为1上的点,AF FB =1G EF D --G FB C --A BC D.与λ有关二、填空题7B,记作:下四个命题:①,则存在点P②,则存在点P满足()()αβf P f P=.③,则不存在点P④若对空间任意一点P,恒有()()()()αββαf f P f f P=其中所有真命题的序号是______.841的中点,点在侧面11AA B B内.若______.9,2AP=,点是矩形ABCD内(含边界)的动点,且1AB=,直线PM与平面4π.记点M tanα=______.。

直线、平面垂直的判定与性质-高考理科数学试题

直线、平面垂直的判定与性质-高考理科数学试题

(三十七)直线、平面垂直的判定与性质小题常考题点——准解快解] [小题常考题点——准解快解] 1.(2018·广东广州模拟)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n解析:选B若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故A错误;∵m⊥α,m∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正确;若m⊥n,m⊂α,n⊂β,则α与β的位置关系不确定,故C错误;若α∥β,m⊂α,n⊂β,则m∥n或m,n异面,故D错误.故选B.2.(2018·湖南一中月考)下列说法错误的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过直线外一点有且只有一个平面与已知直线垂直C.如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直D.如果两条直线和一个平面所成的角相等,则这两条直线一定平行解析:选D如果两条直线和一个平面所成的角相等,这两条直线可以平行、相交、异面.B1C1中,∠BAC=90°,BC1⊥AC,则3.如图,在斜三棱柱ABC-AC1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A连接AC1(图略),由AC⊥AB,AC⊥BC1,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面的交线AB上.4.(2018·河北唐山模拟)如图,在正方形ABCD中,E、F分别是BC、CD的中点,G 是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF解析:选B 根据折叠前、后AH ⊥HE ,AH ⊥HF 不变,∴AH ⊥平面EFH ,B 正确;∵过A 只有一条直线与平面EFH 垂直,∴A 不正确;∵AG ⊥EF ,EF ⊥GH ,AG ∩GH =G ,∴EF ⊥平面HAG ,又EF ⊂平面AEF ,∴平面HAG ⊥AEF ,过点H 作直线垂直于平面AEF ,一定在平面HAG 内,∴C 不正确;由条件证不出HG ⊥平面AEF ,∴D 不正确.故选B.5.如图,直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A.12 B .1 C.32D .2解析:选A 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h .又2×2=h 22+(2)2,所以h =233,DE =33. 在Rt △DB 1E 中,B 1E = ⎝⎛⎭⎫222-⎝⎛⎭⎫332=66.由面积相等得66× x 2+⎝⎛⎭⎫222=22x ,得x =12. 6.如图,已知∠BAC =90°,PC ⊥平面ABC ,则在△ABC ,△PAC的边所在的直线中,与PC 垂直的直线是____________;与AP 垂直的直线是________.解析:∵PC ⊥平面ABC , ∴PC 垂直于直线AB ,BC ,AC . ∵AB ⊥AC ,AB ⊥PC ,AC ∩PC =C , ∴AB ⊥平面PAC ,又∵AP⊂平面PAC,∴AB⊥AP,与AP垂直的直线是AB.答案:AB,BC,AC AB7.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:如图,连接AC,BD,则AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC,∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.(2018·福建泉州模拟)如图,一张A4纸的长、宽分别为22a,2a,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥;②平面BAD⊥平面BCD;③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2.解析:由题意得该多面体是一个三棱锥,故①正确;∵AP⊥BP,AP⊥CP,BP∩CP=P,∴AP⊥平面BCD,又∵AP⊂平面ABD,∴平面BAD⊥平面BCD,故②正确;同理可证平面BAC⊥平面ACD,故③正确;该多面体的外接球半径R=52a,所以该多面体外接球的表面积为5πa2,故④正确.综上,正确命题的序号为①②③④.答案:①②③④[大题常考题点——稳解全解]1.如图,四棱锥P -ABCD 中, AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.求证:(1)AP ∥平面BEF ; (2)BE ⊥平面PAC .证明:(1)设AC ∩BE =O ,连接OF ,EC ,如图所示. 由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC ,因此四边形ABCE 为菱形,所以O 为AC 的中点. 又F 为PC 的中点,因此在△PAC 中,可得AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF .所以AP ∥平面BEF . (2)由题意知ED ∥BC ,ED =BC .所以四边形BCDE 为平行四边形,因此BE ∥CD . 又AP ⊥平面PCD ,所以AP ⊥CD ,因此AP ⊥BE .因为四边形ABCE 为菱形,所以BE ⊥AC . 又AP ∩AC =A ,AP ,AC ⊂平面PAC , 所以BE ⊥平面PAC .2.(2018·广州模拟)在三棱锥P -ABC 中,△PAB 是等边三角形,∠APC =∠BPC =60°.(1)求证:AB ⊥PC ;(2)若PB =4,BE ⊥PC ,求三棱锥B -PAE 的体积.解:(1)证明:因为△PAB 是等边三角形,∠APC =∠BPC =60°,所以△PBC ≌△PAC ,所以AC =BC .如图,取AB 的中点D ,连接PD ,CD ,则PD ⊥AB ,CD ⊥AB ,因为PD ∩CD =D , 所以AB ⊥平面PDC , 因为PC ⊂平面PDC , 所以AB ⊥PC .(2)由(1)知,AB ⊥PC ,又BE ⊥PC ,AB ∩BE =B ,所以PC ⊥平面ABE ,所以PC ⊥AE . 因为PB =4,所以在Rt △PEB 中,BE =4sin 60°=23,PE =4cos 60°=2,在Rt △PEA 中,AE =PE tan 60°=23,所以AE =BE =23,所以S △ABE =12·AB ·BE 2-⎝⎛⎭⎫12AB 2=4 2. 所以三棱锥B -PAE 的体积V B -PAE =V P -ABE =13S △AEB ·PE =13×42×2=823. 3.(2018·合肥质检)如图,平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到四棱锥P -ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面PAB 与平面PCE 相交于直线l ,求证:AB ∥l .证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE =2.连接AC (图略),∵AE =2,∠AEC =60°,∴AC =2.又AP =3,∴在△PAE 中,PA 2+AE 2=PE 2,即AP ⊥AE .同理,AP ⊥AC .而AC ⊂平面ABCE ,AE ⊂平面ABCE ,AC ∩AE =A ,故AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE ,∴AB ∥平面PCE .又平面PAB ∩平面PCE =l ,∴AB ∥l .4.(2018·山西省重点中学联考)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,且AB =2BC ,E ,F 分别在线段AB ,CD 上,G ,H 在线段PC 上,EF ⊥PA ,且BE BA =DF DC =PG PC =CH CP =14.求证: (1)EH ∥平面PAD ; (2)平面EFG ⊥平面PAC .证明:(1)如图,在PD 上取点M ,使得DM DP =14,连接AM ,MH ,则DM DP =CH CP =14,所以MH =34DC ,MH ∥CD ,又AE =34AB ,四边形ABCD 是矩形,所以MH =AE ,MH ∥AE ,所以四边形AEHM 为平行四边形,所以EH ∥AM , 又AM ⊂平面PAD ,EH ⊄平面PAD ,所以EH ∥平面PAD . (2)取AB 的中点N ,连接DN ,则NE =DF ,NE ∥DF , 则四边形NEFD 为平行四边形,则DN ∥EF ,在△DAN 和△CDA 中,∠DAN =∠CDA ,AN DA =12=DACD ,则△DAN ∽△CDA ,则∠ADN =∠DCA ,则DN ⊥AC ,则EF ⊥AC , 又EF ⊥PA ,AC ∩PA =A ,所以EF ⊥平面PAC , 又EF ⊂平面EFG ,所以平面EFG ⊥平面PAC .5.(2018·福州五校联考)如图,在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1是矩形,∠BAC =90°,AA 1⊥BC ,AA 1=AC =2AB =4,且BC 1⊥A 1C .(1)求证:平面ABC 1⊥平面A 1ACC 1;(2)设D 是A 1C 1的中点,判断并证明在线段BB 1上是否存在点E ,使得DE ∥平面ABC 1.若存在,求三棱锥E -ABC 1的体积.解:(1)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1是矩形,∴AA 1⊥AB ,又AA 1⊥BC ,AB ∩BC =B ,∴A 1A ⊥平面ABC ,∴A 1A ⊥AC ,又A 1A =AC ,∴A 1C ⊥AC 1.又BC 1⊥A 1C ,BC 1∩AC 1=C 1,∴A 1C ⊥平面ABC 1, 又A 1C ⊂平面A 1ACC 1,∴平面ABC 1⊥平面A 1ACC 1.(2)当E 为B 1B 的中点时,连接AE ,EC 1,DE ,如图,取A 1A 的中点F ,连接EF ,FD ,∵EF ∥AB ,DF ∥AC 1,又EF ∩DF =F ,AB ∩AC 1=A ,∴平面EFD ∥平面ABC 1, 又DE ⊂平面EFD ,∴DE ∥平面ABC 1.此时VE -ABC 1=VC 1 -ABE =13×12×2×2×4=83. 6.如图,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD .四边形ABCD 为正方形,且点P 为AD 的中点,点Q 为SB 的中点.(1)求证:CD ⊥平面SAD . (2)求证:PQ ∥平面SCD .(3)若SA =SD ,点M 为BC 的中点,在棱SC 上是否存在点N ,使得平面DMN ⊥平面ABCD ?若存在,请说明其位置,并加以证明;若不存在,请说明理由.解:(1)证明:因为四边形ABCD 为正方形,所以CD ⊥AD .又因为平面SAD ⊥平面ABCD ,且平面SAD ∩平面ABCD =AD ,所以CD ⊥平面SAD . (2)证明:如图,取SC 的中点R ,连接QR ,DR .由题意知:PD ∥BC 且PD =12BC .在△SBC 中,点Q 为SB 的中点,点R 为SC 的中点, 所以QR ∥ BC 且QR =12BC ,所以PD ∥QR ,且PD =QR ,所以四边形PDRQ 为平行四边形,所以PQ ∥DR . 又因为PQ ⊄平面SCD ,DR ⊂平面SCD , 所以PQ ∥平面SCD .(3)存在点N 为SC 的中点,使得平面DMN ⊥平面ABCD . 证明如下:如图,连接PC,DM交于点O,连接DN,PM,SP,NM,ND,NO,因为PD∥CM,且PD=CM,所以四边形PMCD为平行四边形,所以PO=CO.又因为点N为SC的中点,所以NO∥SP.易知SP⊥AD,因为平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,并且SP⊥AD,所以SP⊥平面ABCD,所以NO⊥平面ABCD.又因为NO⊂平面DMN,所以平面DMN⊥平面ABCD.1.(2018·河北保定模拟)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1 B.2C.3 D.4解析:选A命题①l可以在平面α内,是假命题;命题②直线a与平面α可以是相交关系,是假命题;命题③a可以在平面α内,是假命题;命题④是真命题.2.(2018·湖南湘中名校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m⊂β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n解析:选D A中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.B1C1D1中,M,N分别4.(2018·襄阳模拟)如图,在正方体ABCD-A是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行解析:选D如图所示,连接AC,C1D,BD,则MN∥BD,而C1C⊥BD,故C1C⊥MN,故A、C正确,D错误,又因为AC⊥BD,所以MN⊥AC,B正确.5.(2018·湖南长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B在三棱柱ABC -A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.6.已知正方体ABCD-A1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D1,BD,因为AB綊C1D1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确.答案:①②④7.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面所在平面中与MN 平行的是________________.解析:连接AM 并延长,交CD 于点E ,连接BN ,并延长交CD 于点F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,连接MN ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD .答案:平面ABC 、平面ABD8.如图所示,三棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,则A 1D ∶DC 1的值为________.解析:设BC 1∩B 1C =O ,连接OD .∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD ,∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形, ∴O 为BC 1的中点,∴D 为A 1C 1的中点,则A 1D ∶DC 1=1. 答案:1[大题常考题点——稳解全解]1.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN ,又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN ,又MN ⊂平面MNG ,BD ⊄平面MNG ,所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .2.(2018·长春质检)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,PD ⊥平面ABCD ,点D 1为棱PD 的中点,过D 1作与平面ABCD平行的平面与棱PA ,PB ,PC 相交于点A 1,B 1,C 1,∠BAD =60°.(1)求证:B 1为PB 的中点;(2)已知棱锥的高为3,且AB =2,AC ,BD 的交点为O ,连接B 1O .求三棱锥B 1-ABO 外接球的体积.解:(1)证明:连接B 1D 1.由题意知,平面ABCD ∥平面A 1B 1C 1D 1,平面PBD ∩平面ABCD =BD ,平面PBD ∩平面A 1B 1D 1=B 1D 1,则BD ∥B 1D 1,即B 1D 1为△PBD 的中位线,即B 1为PB 的中点.(2)由(1)可得,OB 1=32,AO =3,BO =1,且OA ⊥OB ,OA ⊥OB 1,OB ⊥OB 1, 即三棱锥B 1 -ABO 的外接球为以OA ,OB ,OB 1为长,宽,高的长方体的外接球,则该长方体的体对角线长d =12+(3)2+⎝⎛⎭⎫322=52,即外接球半径R =54. 则三棱锥B 1 -ABO 外接球的体积V =43πR 3=43×π×⎝⎛⎭⎫543=125π48. 3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1;(2)EG ∥平面BB 1D 1D ;(3)平面BDF ∥平面B 1D 1H .证明:(1)如图所示,取BB 1的中点M ,连接MH ,MC 1,易证四边形HMC 1D 1是平行四边形,∴HD 1∥MC 1.又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O ,则OE 綊12DC , 又D 1G 綊12DC ,∴OE 綊D 1G , ∴四边形OEGD 1是平行四边形,∴GE ∥D 1O .又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D ,∴EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,∴平面BDF ∥平面B 1D 1H .4.如图,四棱锥P -ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.(1)求证:CE ∥平面PAD .(2)在线段AB 上是否存在一点F ,使得平面PAD ∥平面CEF ?若存在,证明你的结论,若不存在,请说明理由.解:(1)证明:取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点,所以EH∥AB,EH=12AB,又AB∥CD,CD=12AB,所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH⊂平面PAD,CE⊄平面PAD,因此CE∥平面PAD.(2)存在点F为AB的中点,使平面PAD∥平面CEF,证明如下:取AB的中点F,连接CF,EF,所以AF=12AB,又CD=12AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,因此CF∥AD,又CF⊄平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.。

高考数学复习——立体几何:(二)空间直线、平面关系的判断与证明——.线面关系的判断(试题版)

高考数学复习——立体几何:(二)空间直线、平面关系的判断与证明——.线面关系的判断(试题版)

【考点1:空间中点、线、面的基本关系】题型1:平面基本性质及其应用【典型例题】[例1](1)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线(2)下列命题正确的是.①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.(3)以下四个命题中正确的是.①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.[例2]如图所示,正方体ABCD—A1B1C1D1中,E、F 分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点.【变式训练】1.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M2.平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定________个平面.3.如图,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,过E、F、G的平面交AD于点H.(1)求AH∶HD;(2)求证:EH、FG、BD三线共点. 题型2:空间中直线关系的判断【典型例题】[例1](1)(教材习题改编)给出命题:①若两条直线和第三条直线所成的角相等,则这两条直线互相平行.②若两条直线都与第三条直线垂直,则这两直线互相平行.③若两条直线都与第三条直线平行,则这两直线互相平行.其中不正确的命题的个数为________.(2)(2015·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(只填序号).(3)(2014·广东)若空间中四条两两不同的直线l1,l2,l3,l 4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是() A.l1⊥l4 B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定[例2](1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)如图所示,正方体ABCD—A1B1C1D1中,M、N分别是A1B1、B1C1的中点.问:①AM和CN是否是异面直线?说明理由;②D1B和CC1是否是异面直线?说明理由.【变式训练】1.若a,b是异面直线,直线c平行于直线a,那么c与b( )A.一定是异面直线 B.一定是相交直线C.不可能是平行直线ﻩ D.不可能是相交直线2.若空间直线a,b,c满足a⊥b,b⊥c,则直线a与c ()A.平行B.相交C.异面直线D.都有可能3.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b4.已知l1,l2,l3是空间不同的直线,则下列正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3 B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面 D.l1,l2,l3共点⇒l1,l2,l3共面。

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)

【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′­ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。

新高考一轮复习人教版 直线、平面平行的判定和性质 作业

新高考一轮复习人教版 直线、平面平行的判定和性质 作业

8.3直线、平面平行的判定和性质基础篇固本夯基考点一直线与平面平行的判定和性质1.(2021江苏扬州大学附中2月检测,5)已知直三棱柱ABC-A1B1C1中,M,N分别是A1B1,AB的中点,P点在线段B1C上,则NP与平面AMC1的位置关系是()A.垂直B.平行C.相交但不垂直D.要依P点的位置而定答案B2.(2021济南二模,7)已知正四面体ABCD的棱长为2,平面α与棱AB、CD均平行,则α截此正四面体所得截面面积的最大值为()A.1B.√2C.√3D.2答案A3.(多选)(2021山东青岛胶州调研,10)在三棱柱ABC-A1B1C1中,E,F,G分别为线段AB,A1B1,AA1的中点,下列说法正确的是()A.平面AC1F∥平面B1CEB.直线FG∥平面B1CEC.直线CG与BF异面D.直线C1F与平面CGE相交答案AC4.(2020福建漳州适应性测试,16)已知正方体ABCD-A1B1C1D1的棱长为3,点N是棱A1B1的中点,点T是棱CC1上靠近点C的三等分点,动点Q在正方形D1DAA1(包含边界)内运动,且QB∥平面D1NT,则动点Q的轨迹的长为.答案√105.(2022届山东潍坊10月过程性测试,18)如图,平面ABCD⊥平面AEBF,四边形ABCD为矩形,△ABE和△ABF 均为等腰直角三角形,且∠BAF=∠AEB=90°.(1)求证:平面BCE⊥平面ADE;(2)若点G为线段FC上任意一点,求证:BG∥平面ADE.证明(1)因为四边形ABCD为矩形,所以BC⊥AB,又因为平面ABCD⊥平面AEBF,BC⊂平面ABCD,平面ABCD∩平面AEBF=AB,所以BC⊥平面AEBF,又因为AE⊂平面AEBF,所以BC⊥AE.因为∠AEB=90°,即AE⊥BE,且BC、BE⊂平面BCE,BC∩BE=B,所以AE⊥平面BCE,又因为AE⊂平面ADE,所以平面ADE⊥平面BCE.(2)因为BC∥AD,AD⊂平面ADE,BC⊄平面ADE,所以BC∥平面ADE.因为△ABF和△ABE均为等腰直角三角形,且∠BAF=∠AEB=90°,所以∠EAB=∠ABF=45°,所以AE∥BF,又AE⊂平面ADE,BF⊄平面ADE,所以BF∥平面ADE,又BC∩BF=B,所以平面BCF∥平面ADE.又BG⊂平面FBC,所以BG∥平面ADE.6.(2022届广东佛山一中10月月考,20)如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD=√2,四边形ABCD为等腰梯形,BC∥AD,BC=CD=1AD=1,E为PA的中点.2(1)证明:EB∥平面PCD;(2)求平面PAD与平面PCD所成的二面角θ的正弦值.解析(1)证明:取AD的中点O,连接EO,OB,∵E为PA的中点,O为AD的中点,∴OE∥PD,又OE⊄平面PCD,PD⊂平面PCD,∴OE∥平面PCD,又∵BC ∥AD,BC=12AD,∴四边形BCDO 为平行四边形,∴BO ∥CD, 又OB ⊄平面PCD,CD ⊂平面PCD,∴BO ∥平面PCD,又OE ∩BO=O,∴平面EBO ∥平面PCD, 又∵BE ⊂平面EBO,∴BE ∥平面PCD.(2)连接PO,∵PA=PD,O 为AD 的中点,∴PO ⊥AD, 又平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD, 所以PO ⊥平面ABCD,取BC 的中点M,连接OM, ∵四边形ABCD 是等腰梯形,∴OM ⊥AD, 建立如图所示的空间直角坐标系,则P(0,0,1),A(0,-1,0),D(0,1,0),C (√32,12,0),∴PD⃗⃗⃗⃗ =(0,1,-1),CD ⃗⃗⃗⃗ =(−√32,12,0),设平面PCD 的法向量为n=(x,y,z),则{n ·PD ⃗⃗⃗⃗ =y −z =0,n ·CD⃗⃗⃗⃗ =−√32x +12y =0,令x=1,则y=z=√3,则n=(1,√3,√3), 易知平面PAD 的一个法向量为m=(1,0,0), ∴|cos θ|=|cos<m,n>|=|m·n||m||n|=√7,则sin θ=√427. 7.(2019江苏,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为BC,AC 的中点,AB=BC.求证: (1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E.证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE ⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E ⊂平面A1ACC1,所以BE⊥C1E.8.(2020江苏,15,14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.证明(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,又EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB.又AB⊥AC,B1C⊂平面AB1C,AC⊂平面AB1C,B1C∩AC=C,所以AB⊥平面AB1C,又因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.9.(2020北京,16,13分)如图,在正方体ABCD-A1B1C1D1中,E为BB1的中点.(1)求证:BC1∥平面AD1E;(2)求直线AA1与平面AD1E所成角的正弦值.解析 (1)证明:∵ABCD-A 1B 1C 1D 1为正方体,∴D 1C 1∥A 1B 1,D 1C 1=A 1B 1.又AB ∥A 1B 1,AB=A 1B 1,∴D 1C 1∥AB,D 1C 1=AB,∴四边形ABC 1D 1为平行四边形,∴AD 1∥BC 1,又AD 1⊂平面AD 1E,BC 1⊄平面AD 1E,∴BC 1∥平面AD 1E.(2)不妨设正方体的棱长为2,如图,以{AD ⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗ }为正交基底建立空间直角坐标系A-xyz,则A(0,0,0),A 1(0,0,2),D 1(2,0,2),E(0,2,1),∴AA 1⃗⃗⃗⃗⃗⃗ =(0,0,2),AD 1⃗⃗⃗⃗⃗⃗ =(2,0,2),AE ⃗⃗⃗⃗ =(0,2,1),设平面AD 1E 的法向量为n=(x,y,z),直线AA 1与平面AD 1E 所成的角为θ, 则{n ·AD 1⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗ =0,即{2x +2z =0,2y +z =0,令z=-2,则{x =2,y =1,此时n=(2,1,-2),∴sin θ=|cos<n,AA 1⃗⃗⃗⃗⃗⃗ >|=|n·AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√4+1+4×2=23, ∴直线AA 1与平面AD 1E 所成角的正弦值为23.考点二 平面与平面平行的判定和性质1.(2022届重庆巴蜀中学11月月考,8)在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点E,F,G,H 分别为棱AB,BC,C 1D 1,A 1D 1的中点,若平面α∥平面EFGH,且平面α与棱A 1B 1,B 1C 1,B 1B 分别交于点P,Q,S,其中点Q 是棱B 1C 1的中点,则三棱锥B 1-PQS 的体积为( ) A.1 B.12C.13D.16答案 D2.(2019课标Ⅱ文,7,5分)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面 答案 B3.(2021河北邢台月考,19)在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB=4,M,N,P 分别是AD,DD 1,CC 1的中点.(1)证明:平面MNC ∥平面AD 1P;(2)求直线DP 与平面MNC 所成角的正弦值.解析 (1)证明:因为M,N,P 分别是AD,DD 1,CC 1的中点,所以MN ∥AD 1,CN ∥PD 1.又AD 1⊄平面MNC,MN ⊂平面MNC,所以AD 1∥平面MNC,同理PD 1∥平面MNC, 又AD 1∩PD 1=D 1,所以平面MNC ∥平面AD 1P.(2)以D 为坐标原点,建立如图所示的空间直角坐标系D-xyz,则D(0,0,0),P(0,2,2),M(1,0,0),N(0,0,2),C(0,2,0),则DP ⃗⃗⃗⃗ =(0,2,2),MN ⃗⃗⃗⃗⃗ =(-1,0,2),MC⃗⃗⃗⃗⃗ =(-1,2,0). 设平面MNC 的法向量为n=(x,y,z),则{MN⃗⃗⃗⃗⃗ ·n =−x +2z =0,MC ⃗⃗⃗⃗ ·n =−x +2y =0,令z=1,得n=(2,1,1). 设直线DP 与平面MNC 所成角为θ,则sin θ=|cos<DP⃗⃗⃗⃗ ,n>|=|DP⃗⃗⃗⃗⃗ ·n||DP ⃗⃗⃗⃗⃗ ||n|=√33, 所以直线DP 与平面MNC 所成角的正弦值为√33.综合篇 知能转换A 组考法一 判断或证明线面平行的方法1.(2022届T8联考,7)如图,已知四棱柱ABCD-A 1B 1C 1D 1的底面为平行四边形,E,F,G 分别为棱AA 1,CC 1,C 1D 1的中点,则( )A.直线BC 1与平面EFG 平行,直线BD 1与平面EFG 相交B.直线BC 1与平面EFG 相交,直线BD 1与平面EFG 平行C.直线BC 1、BD 1都与平面EFG 平行D.直线BC 1、BD 1都与平面EFG 相交 答案 A2.(2022届湖南岳阳一中入学考试,18)如图,在三棱柱ABC-A 1B 1C 1中,侧面ABB 1A 1是菱形,∠BAA 1=60°,E 是棱BB 1的中点,CA=CB,F 在线段AC 上,且AF=2FC. (1)证明:CB 1∥平面A 1EF;(2)若CA ⊥CB,平面CAB ⊥平面ABB 1A 1,求二面角F-A 1E-A 的余弦值.解析 (1)证明:连接AB 1交A 1E 于点G,连接FG, 易得△AGA 1∽△B 1GE,所以AG GB 1=AA 1EB 1=2,又因为AF FC =2,所以AF FC =AGGB 1,所以FG ∥CB 1,又CB 1⊄平面A 1EF,FG ⊂平面A 1EF,所以CB 1∥平面A 1EF.(2)过C 作CO ⊥AB 于点O,因为CA=CB,所以O 是线段AB 的中点.因为平面CAB ⊥平面ABB 1A 1,平面CAB ∩平面ABB 1A 1=AB,所以CO ⊥平面ABB 1A 1.连接A 1B,OA 1,由题意易知△ABA 1是等边三角形,又O 是线段AB 的中点,所以OA 1⊥AB.以O 为坐标原点,OA ⃗⃗⃗⃗ ,OA 1⃗⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设AB=2,则A(1,0,0),A 1(0,√3,0),C(0,0,1),B(-1,0,0),F (13,0,23),B 1(-2,√3,0),E (−32,√32,0),则A 1E ⃗⃗⃗⃗⃗⃗ =(−32,−√32,0),A 1F ⃗⃗⃗⃗⃗ =13,-√3,23.设平面A 1FE 的法向量为n 1=(x 1,y 1,z 1), 则{A 1F ⃗⃗⃗⃗⃗ ·n 1=0,A 1E ⃗⃗⃗⃗⃗⃗ ·n 1=0,即{x 13−√3y 1+23z 1=0,−32x 1−√32y 1=0,令x 1=1,则n 1=(1,-√3,-5).易知平面ABB 1A 1的一个法向量为n 2=(0,0,1), 则cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-5√2929,由题图可知,二面角F-A 1E-A 的平面角为锐角,所以二面角F-A 1E-A 的余弦值为5√2929. 3.(2022届南京二十九中10月月考,20)如图,在四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AD ∥BC,AB ⊥AD,AB=2BC=4,E 是棱PD 上的动点(除端点外),F,M 分别为AB,CE 的中点. (1)证明:FM ∥平面PAD;(2)若直线EF 与平面PAD 所成的最大角为30°,求平面CEF 与平面PAD 所成锐二面角的余弦值.解析 (1)证明:取CD 的中点N,连接FN,MN,因为F,N 分别为AB,CD 的中点,所以FN ∥AD,又FN ⊄平面PAD,AD ⊂平面PAD,所以FN ∥平面PAD,因为M,N 分别是CE,CD 的中点,所以MN ∥PD,又MN ⊄平面PAD,PD ⊂平面PAD,所以MN ∥平面PAD,又FN ∩MN=N,所以平面MFN ∥平面PAD,又因为FM ⊂平面MFN,所以FM ∥平面PAD.(2)连接AE,因为平面PAD ⊥平面ABCD,且平面PAD ∩平面ABCD=AD,AB ⊥AD,AB ⊂平面ABCD,所以AB ⊥平面PAD,所以∠AEF 即为直线EF 与平面PAD 所成的角,且tan ∠AEF=AF AE =2AE, 当AE 最小,即AE ⊥PD,亦即E 为PD 中点时,∠AEF 最大,为30°,又因为AF=2,所以AE=2√3,所以AD=4. 取AD 的中点O,连接PO,OC,易知PO ⊥平面ABCD,因为AO ∥BC 且AO=12AD=BC,所以四边形ABCO 为平行四边形,所以AB ∥CO,又AB ⊥AD,所以AO ⊥OC,以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.则O(0,0,0),C(4,0,0),D(0,2,0),P(0,0,2√3),E(0,1,√3),F(2,-2,0),则CE ⃗⃗⃗⃗ =(-4,1,√3),FC ⃗⃗⃗⃗ =(2,2,0),设平面CEF 的法向量为n 1=(x,y,z),则{n 1·FC⃗⃗⃗ =0,n 1·CE ⃗⃗⃗ =0,即{2x +2y =0,−4x +y +√3z =0,可取n 1=(√3,-√3,5).易知平面PAD 的一个法向量为n 2=(1,0,0), 所以cos<n 1,n 2>=n 1·n 2|n 1|·|n 2|=√3√31=√9331,所以平面CEF 与平面PAD 所成锐二面角的余弦值为√9331.4.(2019课标Ⅰ理,18,12分)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE; (2)求二面角A-MA 1-N 的正弦值.解析 (1)证明:连接B 1C,ME.因为M,E 分别为BB 1,BC 的中点,所以ME ∥B 1C,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC,可得B 1C A 1D,故ME ND,因此四边形MNDE 为平行四边形,则MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz, A(2,0,0),A 1(2,0,4),M(1,√3,2),N(1,0,2),A 1A ⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗ =(0,-√3,0).设m=(x,y,z)为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗ =0.所以{−x +√3y −2z =0,−4z =0.可取m=(√3,1,0).设n=(p,q,r)为平面A 1MN 的法向量,则{n ·MN⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗ =0.所以{−√3q =0,−p −2r =0.可取n=(2,0,-1).于是cos<m,n>=m·n |m||n|=√32×√5=√155, 所以二面角A-MA 1-N 的正弦值为√105.5.(2021广东珠海一模,19)如图,三棱锥P-ABC 中,PA ⊥AB,AB ⊥AC,AB=AC=√2,PB=PC=√6,点M 是PA 的中点,点D 是AC 的中点,点N 在PB 上,且PN=2NB. (1)证明:BD ∥平面CMN;(2)求直线CN 与平面ABC 所成角的正切值.解析 (1)证明:如图,连接PD 交CM 于O,则O 为△PAC 的重心,PO=2OD,连接ON,因为PN=2NB,所以ON ∥BD,因为ON ⊂平面CMN,BD ⊄平面CMN,所以BD ∥平面CMN.(2)因为PB=PC,AB=AC,PA=PA,所以△PAB ≌△PAC,所以∠PAC=∠PAB=90°,所以PA=√PC 2−AC 2=√6−2=2,又因为PA ⊥AB,AB ∩AC=A,所以PA ⊥平面ABC,过N 作NH ⊥AB 于H,连接HC,因为NH ∥PA,所以NH ⊥平面ABC,所以NH ⊥HC,且AH=23AB,直线CN 与平面ABC 所成角为∠NCH,所以直线CN 与平面ABC 所成角的正切值tan ∠NCH=NH HC=13PA √AC 2+(23AB )2=13×2√(√2)2+(23×√2)2=√2613.6.(2017课标Ⅱ理,19,12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.解析 (1)证明:取PA 的中点F,连接EF,BF.因为E 是PD 的中点,所以EF ∥AD,EF=12AD.由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,所以四边形BCEF 是平行四边形,所以CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB.(2)由已知得BA ⊥AD,以A 为坐标原点,AB ⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,√3),则PC⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗ =(1,0,0). 设M(x,y,z)(0<x<1),则BM ⃗⃗⃗⃗⃗ =(x-1,y,z),PM⃗⃗⃗⃗⃗ =(x,y-1,z-√3).因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的一个法向量,所以|cos<BM⃗⃗⃗⃗⃗ ,n>|=sin45°,即√(x−1)+y 2+z 2=√22,即(x-1)2+y 2-z 2=0.①又M 在棱PC 上,设PM⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗ ,则 x=λ,y=1,z=√3-√3λ.②由①,②解得{ x =1+√22,y =1,z =−√62(舍去),或{ x =1−√22,y =1,z =√62,所以M (1−√22,1,√62),从而AM⃗⃗⃗⃗⃗ =(1−√22,1,√62).设m=(x 0,y 0,z 0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗ =0,即{(2−√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m=(0,-√6,2). 于是cos<m,n>=m·n |m||n|=√105. 易知所求二面角为锐二面角. 因此二面角M-AB-D 的余弦值为√105.考法二 判断或证明面面平行的方法(2021太原一模,19)如图,在三棱锥P-ABC 中,△PAB 是正三角形,G 是△PAB 的重心,D,E,H 分别是PA,BC,PC 的中点,点F 在BC 上,且BF=3FC. (1)求证:平面DFH ∥平面PGE;(2)若PB ⊥AC,AB=AC=2,BC=2√2,求二面角A-PC-B 的余弦值.解析 (1)证明:连接BG,GD,由题意得BG 与GD 共线,且BG=2GD, ∵E 是BC 的中点,BF=3FC,∴F 是CE 的中点, ∴BGGD =BEEF=2,∴GE ∥DF,∵GE ⊂平面PGE,DF ⊄平面PGE,∴DF ∥平面PGE, ∵H 是PC 的中点,∴FH ∥PE,∵HF ⊄平面PGE,PE ⊂平面PGE,∴FH ∥平面PGE, ∵DF ∩FH=F,∴平面DFH ∥平面PGE.(2)∵AB=AC=2,BC=2√2,∴AB 2+AC 2=8=BC 2,∴AB ⊥AC,又∵PB ⊥AC,AB ∩PB=B,∴AC ⊥平面PAB,以A 为坐标原点,向量AB ⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗ 的方向为x 轴,y 轴的正方向建立如图所示的空间直角坐标系A-xyz,由题意得A(0,0,0),B(2,0,0),C(0,2,0),P(1,0,√3),则AC⃗⃗⃗⃗ =(0,2,0),AP ⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗ =(-1,2,-√3),BC ⃗⃗⃗⃗ =(-2,2,0),设平面PAC 的法向量是m=(x 1,y 1,z 1),则{m ·AC⃗⃗⃗⃗ =0,m ·AP⃗⃗⃗⃗ =0,∴{2y 1=0,x 1+√3z 1=0,则y 1=0,令z 1=-1,则x 1=√3,∴m=(√3,0,-1), 设平面PBC 的法向量是n=(x 2,y 2,z 2),则{n ·PC⃗⃗⃗ =0,n ·BC⃗⃗⃗⃗ =0,∴{−x 2+2y 2−√3z 2=0,−2x 2+2y 2=0,令z 2=1,则{x 2=√3,y 2=√3,∴n=(√3,√3,1), ∴cos<m,n>=m·n |m||n|=√77,又知二面角A-PC-B 是锐二面角,∴二面角A-PC-B 的余弦值为√77. B 组1.(多选)(2021南京航空航天大学附中期中,10)已知棱长为1的正方体ABCD-A 1B 1C 1D 1,过对角线BD 1作平面α交棱AA 1于点E,交棱CC 1于点F,以下结论正确的是( ) A.四边形BFD 1E 不一定是平行四边形 B.平面α分正方体所得两部分的体积相等 C.平面α与平面DBB 1不可能垂直 D.四边形BFD 1E 面积的最大值为√2答案 BD2.(多选)(2021广东肇庆二模,12)在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,P 是线段BC 1上的一动点,则下列说法中正确的是( ) A.A 1P ∥平面AD 1CB.A 1P 与平面BCC 1B 1所成角的正切值的最大值是2√55C.A 1P+PC 的最小值为√1705D.以A 为球心,√2为半径的球面与侧面DCC 1D 1的交线长是π2答案 ACD。

高考数学(人教a版,理科)题库:直线、平面垂直的判定及其性质(含答案)

高考数学(人教a版,理科)题库:直线、平面垂直的判定及其性质(含答案)

第5讲直线、平面垂直的判定及其性质一、选择题1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( ).A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m答案 B2.已知α、β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析由面面垂直的判定定理,知m⊥β⇒α⊥β.答案 B3.已知P为△ABC所在平面外的一点,则点P在此三角形所在平面上的射影是△ABC垂心的充分必要条件是().A.P A=PB=PCB.P A⊥BC,PB⊥ACC.点P到△ABC三边所在直线的距离相等D.平面P AB、平面PBC、平面P AC与△ABC所在的平面所成的角相等解析条件A为外心的充分必要条件,条件C、D为内心的必要条件,故选B.答案 B4. 如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在().A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析由BC1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上.答案 A5.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是().A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m⊥n,则n⊥αC.若n⊥α,n⊥β,m⊥β,则m⊥αD.若m∥α,n∥β,m⊥n,则α⊥β解析与α、β两垂直相交平面的交线垂直的直线m,可与α平行或相交,故A错;对B,存在n∥α情况,故B错;对D,存在α∥β情况,故D错.由n⊥α,n⊥β,可知α∥β,又m⊥β,所以m⊥α,故C正确,选C.答案 C6.如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有().A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面解析折成的四面体有AH⊥EH,AH⊥FH,∴AH⊥面HEF.答案 A二、填空题7. 如图,拿一张矩形的纸对折后略微展开,竖立在桌面上,折痕与桌面的位置关系是________.解析折痕与矩形在桌面内的两条相交直线垂直,因此折痕与桌面垂直.答案垂直8.已知直线l⊥平面α,直线m⊂平面β.给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.解析由面面平行的性质和线面垂直的定义可知①正确;因为l⊥α,α⊥β⇒l ∥β或l⊂β,所以l,m平行、相交、异面都有可能,故②错误;由线面垂直的定义和面面垂直的判定定理可知③正确;因为l⊥α,l⊥m⇒m⊂α或m∥α,又m⊂β,所以α,β可能平行或相交,故④错误.答案①③9.已知P为△ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.解析如图所示.∵PA⊥PC、PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC、PC⊥AB.但AB不一定垂直于BC.答案3个10. 如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC.∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF.∴PB⊥EF.故①②③正确.答案①②③三、解答题11.已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,点B1在底面上射影D落在BC上.(1)求证:AC⊥平面BB1C1C;(2)若AB 1⊥BC 1,且∠B 1BC =60°,求证:A 1C ∥平面AB 1D .解析 (1)∵B 1D ⊥平面ABC ,AC ⊂平面ABC ,∴B 1D ⊥AC .又∵BC ⊥AC ,B 1D ∩BC =D ,∴AC ⊥平面BB 1C 1C .(2) ⎭⎬⎫AB 1⊥BC 1AC ⊥BC 1AB 1与AC 相交≠⇒⎭⎬⎫BC 1⊥平面AB 1C B 1C ⊂平面AB 1C ⇒BC 1⊥B 1C , ∴四边形BB 1C 1C 为菱形,∵∠B 1BC =60°,B 1D ⊥BC 于D ,∴D 为BC 的中点.连接A 1B ,与AB 1交于点E ,在三角形A 1BC 中,DE ∥A 1C ,∴A 1C ∥平面AB 1D .12. 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,DB=BC ,DB ⊥AC ,点M 是棱BB 1上一点.(1)求证:B 1D 1∥平面A 1BD ;(2)求证:MD ⊥AC ;(3)试确定点M 的位置,使得平面DMC 1⊥平面CC 1D 1D .(1)证明 由直四棱柱,得BB 1∥DD 1,又∵BB 1=DD 1,∴BB 1D 1D 是平行四边形,∴B 1D 1∥BD .而BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,∴B 1D 1∥平面A 1BD .(2)证明 ∵BB 1⊥平面ABCD ,AC ⊂平面ABCD ,∴BB 1⊥AC .又∵BD ⊥AC ,且BD ∩BB 1=B ,∴AC ⊥平面BB 1D .而MD ⊂平面BB 1D ,∴MD ⊥AC .(3)解 当点M 为棱BB 1的中点时,平面DMC 1⊥平面CC 1D 1D .取DC 的中点N ,D 1C 1的中点N 1,连接NN 1交DC 1于O ,连接OM ,如图所示.∵N 是DC 的中点,BD =BC ,∴BN ⊥DC .又∵DC 是平面ABCD 与平面DCC 1D 1的交线,而平面ABCD ⊥平面DCC 1D 1,∴BN ⊥平面DCC 1D 1.又可证得O 是NN 1的中点,∴BM ∥ON 且BM =ON ,即BMON 是平行四边形.∴BN ∥OM .∴OM ⊥平面CC 1D 1D .∵OM ⊂平面DMC 1,∴平面DMC 1⊥平面CC 1D 1D .13.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M 是BD 的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)若N 是BC 的中点,证明:AN ∥平面CME ;(2)证明:平面BDE ⊥平面BCD .(3)求三棱锥D -BCE 的体积.(1)证明 连接MN ,则MN ∥CD ,AE ∥CD ,又MN =AE =12CD ,∴四边形ANME 为平行四边形,∴AN ∥EM .∵AN ⊄平面CME ,EM ⊂平面CME ,∴AN ∥平面CME .(2)证明 ∵AC =AB ,N 是BC 的中点,AN ⊥BC ,又平面ABC ⊥平面BCD ,∴AN ⊥平面BCD .由(1),知AN ∥EM ,∴EM ⊥平面BCD .又EM ⊂平面BDE ,∴平面BDE ⊥平面BCD .(3)解 V D -BCE =V E -BCD =13S △BCD ·|EM |=13×22×42×2=83.14. 如图,在多面体ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AA 1綉BB 1,AB =AC =AA 1=22BC ,B 1C 1綉12BC .(1)求证:A 1B 1⊥平面AA 1C ;(2)若D 是BC 的中点,求证:B 1D ∥平面A 1C 1C .(3)若BC =2,求几何体ABC -A 1B 1C 1的体积.(1)证明 ∵AB =AC =22BC ,AB 2+AC 2=BC 2,∴AB ⊥AC ,又AA 1⊥平面ABC ,AB ⊂平面ABC , ∴AA 1⊥AB ,AA 1∩AC =A ,∴AB ⊥平面AA 1C ,又∵AA 1綉BB 1,∴四边形ABB 1A 1为平行四边形. ∴A 1B 1∥AB ,∴A 1B 1⊥平面AA 1C .(2)证明 ∵B 1C 1綉12BC ,且D 是BC 的中点,∴CD 綉C 1B 1,∴四边形C 1CDB 1为平行四边形, ∴B 1D ∥C 1C ,B 1D ⊄平面A 1C 1C 且C 1C ⊂平面A 1C 1C , ∴B 1D ∥平面A 1C 1C .(3)解 连接AD ,DC 1,V =V 三棱柱A 1B 1C 1-ABD +V 四棱锥C -AA 1C 1D =12×1×1×2+13×(2×1)×1=526.。

高考专题练习: 直线、平面平行的判定与性质

高考专题练习: 直线、平面平行的判定与性质

1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b常用结论1.三种平行关系的转化线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.2.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l平行于平面α内的无数条直线,则l∥α.()(2)若直线l在平面α外,则l∥α.()(3)若直线l∥b,直线b⊂α,则l∥α.()(4)若直线l∥b,直线b⊂α,那么直线l平行于平面α内的无数条直线.()答案:(1)×(2)×(3)×(4)√二、易错纠偏常见误区|(1)对空间平行关系的相互转化条件理解不够;(2)忽略线面平行、面面平行的条件.1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH 是平行四边形.答案:平行四边形与线、面平行相关命题的判定(师生共研)(1)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β(2)(2020·沈阳市教学质量监测(一))已知a,b为两条不同的直线,α,β,γ为三个不同的平面,则下列说法中正确的是()①若a∥α,α∥β,则a∥β;②若α∥β,β∥γ,则α∥γ;③若a⊥α,b⊥α,则a∥b;④若α⊥γ,β⊥γ,则α⊥β.A.①③B.②③C.①②③D.②③④【解析】(1)A错误,n有可能在平面α内;B错误,平面α可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.(2)若a∥α,α∥β,则a可能平行于β,也可能在β内,故①不正确;若α∥β,β∥γ,则由面面平行的性质知α∥γ,故②正确;若a⊥α,b⊥α,则由线面垂直的性质知a∥b,故③正确;若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故④不正确.综上所述,②③正确,故选B.【答案】(1)D(2)B解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,C,D选项,α均有可能与β相交,故排除A,C,D 选项,选B.线面平行的判定与性质(多维探究)角度一线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC 1D 1是平行四边形,所以HD 1∥MC 1.又因为在平面BCC 1B 1中,BM ∥=FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF ,所以BF ∥HD 1. (2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE ∥=D 1G , 所以四边形OEGD 1是平行四边形,所以GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D .证明直线与平面平行的常用方法(1)利用线面平行的定义.(2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.角度二 线面平行性质定理的应用如图,在五面体ABCDFE 中,底面ABCD 为矩形,EF ∥AB ,过BC的平面交棱FD 于点P ,交棱F A 于点Q .证明:PQ ∥平面ABCD .【证明】 因为底面ABCD 为矩形,所以AD ∥BC ,⎭⎪⎬⎪⎫AD ∥BCAD ⊂平面ADF BC ⊄平面ADF ⇒BC ∥平面ADF ,⎭⎪⎬⎪⎫BC ∥平面ADFBC ⊂平面BCPQ 平面BCPQ ∩平面ADF =PQ ⇒BC ∥PQ ,⎭⎪⎬⎪⎫PQ ∥BCPQ ⊄平面ABCD BC ⊂平面ABCD ⇒PQ ∥平面ABCD .应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行.1.(一题多解)(2021·河南中原名校联考)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是P A ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .证明:方法一:如图,连接AF ,并延长交BC 于点G ,连接PG ,因为BC ∥AD ,所以FG F A =FBFD , 又因为PE EA =BFFD ,所以PE EA =GFF A ,所以EF ∥PG .又因为PG ⊂平面PBC ,EF ⊄平面PBC , 所以EF ∥平面PBC .方法二:如图,过点F 作FM ∥AD ,交AB 于点M ,连接EM ,因为FM ∥AD ,AD ∥BC ,所以FM ∥BC ,又因为FM ⊄平面PBC ,BC ⊂平面PBC , 所以FM ∥平面PBC . 由FM ∥AD 得BM MA =BFFD ,又因为PE EA =BF FD ,所以PE EA =BMMA ,所以EM ∥PB . 因为PB ⊂平面PBC ,EM ⊄平面PBC , 所以EM ∥平面PBC ,因为EM ∩FM =M ,EM ,FM ⊂平面EFM ,所以平面EFM∥平面PBC,因为EF⊂平面EFM,所以EF∥平面PBC.2.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,又因为CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)取AB的中点N,连接DN,MN,因为M是AE的中点,N是AB的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G∥=EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1∥=BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.如图,AB∥平面α∥平面β,过点A,B的直线m,n分别交α,β于点C,E和点D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即AC AE =BDBF,所以BD=AC·BFAE=2×45=85.2.(一题多解)如图,四边形ABCD是正方形,ED⊥平面ABCD,AF⊥平面ABCD.证明:平面ABF∥平面DCE.证明:方法一:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为AF⊄平面DCE,DE⊂平面DCE,所以AF∥平面DCE.因为四边形ABCD是正方形,所以AB∥CD.因为AB⊄平面DCE,CD⊂平面DCE,所以AB∥平面DCE.因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,所以平面ABF∥平面DCE.方法二:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为四边形ABCD为正方形,所以AB∥CD.又AF∩AB=A,DE∩DC=D,所以平面ABF∥平面DCE.方法三:因为DE⊥平面ABCD,所以DE⊥AD,在正方形ABCD中,AD⊥DC.又DE∩DC=D,所以AD⊥平面DEC.同理AD⊥平面ABF.所以平面ABF∥平面DCE.[A级基础练]1.已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β.综上,“α∥β”是“m∥β”的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析:选D.A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.3.(2021·合肥模拟)已知a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a⊂α,b⊂β,a∥b,则α∥βC.若α∥β,a∥α,则a∥βD.若α∩β=a,β∩γ=b,α∩γ=c,a∥b,则b∥c解析:选D.若a∥b,b⊂α,则a∥α或a⊂α,故A不正确;若a⊂α,b ⊂β,a∥b,则α∥β或α与β相交,故B不正确;若α∥β,a∥α,则a∥β或a⊂β,故C不正确;如图,由a∥b可得b∥α,又b⊂γ,α∩γ=c,所以b∥c,故D正确.4.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.5.如图,在三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B.在三棱柱ABC-A1B1C1中,AB∥A1B1.因为AB⊂平面ABC,A1B1⊄平面ABC,所以A1B1∥平面ABC.因为过A1B1的平面与平面ABC交于DE,所以DE∥A1B1,所以DE∥AB.6.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.故EF=12AC= 2.答案: 27.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB1的交线MN是△AA1B的中位线,所以截面是梯形CD1MN,其面积为12×(2+22)×(5)2-⎝⎛⎭⎪⎫222=92.答案:9 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD =D,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P-ABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥P A,又MN⊄平面P AB,P A⊂平面P AB,所以MN∥平面P AB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面P AB,AB⊂平面P AB,所以CN∥平面P AB.又CN∩MN=N,所以平面CMN∥平面P AB.(2)由(1)知,平面CMN∥平面P AB,所以点M到平面P AB的距离等于点C到平面P AB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=3,所以三棱锥P-ABM的体积V=V M­P AB=V C­P AB=V P­ABC=13×12×1×3×2=33.10.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m 的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m ∥AM ,所以l ∥m .[B 级 综合练]11.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A .AC ⊥BDB .AC =BD C .AC ∥截面PQMND .异面直线PM 与BD 所成的角为45° 解析:选B .因为截面PQMN 是正方形, 所以PQ ∥MN ,QM ∥PN ,则PQ ∥平面ACD ,QM ∥平面BDA , 所以PQ ∥AC ,QM ∥BD ,由PQ ⊥QM 可得AC ⊥BD ,故A 正确; 由PQ ∥AC 可得AC ∥截面PQMN ,故C 正确; 由BD ∥PN ,所以∠MPN 是异面直线PM 与BD 所成的角,且为45°,D 正确; 由上面可知:BD ∥PN ,MN ∥AC . 所以PN BD =AN AD ,MN AC =DN AD ,而AN 与DN 关系不确定,PN =MN , 所以BD 与AC 关系不确定.B 错误.故选B .12.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO .解析:如图所示,设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,PO ⊂平面P AO ,P A ⊂平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面P AO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO .答案:Q 为CC 1的中点13.(2021·烟台模拟)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1.一平面截该长方体,所得截面为OPQRST ,其中O ,P 分别为AD ,CD 的中点,B 1S =12,则AT =________.解析:设AT =x ,则A 1T =1-x ,由面面平行的性质得,PO ∥SR ,TO ∥QR ,TS ∥PQ , 所以△DOP ∽△B 1RS .因为DP =OD =1,所以B 1S =B 1R =12, 所以A 1S =C 1R =32.由△ATO ∽△C 1QR ,可得AO AT =C 1RC 1Q ,即1x =32C 1Q ,故C 1Q =3x2.由△A 1TS ∽△CQP ,可得CQ CP =A 1TA 1S ,即1-3x 21=1-x 32,解得x =25.答案:2514.(2020·高考全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B -EB 1C 1F 的体积.解:(1)证明:因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .又因为B 1C 1⊂平面EB 1C 1F ,所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP=ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为12×(B 1C 1+EF )·PN =12×(6+2)×6=24.所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.[C 级 提升练]15.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面P AB 是等腰直角三角形,P A =PB ,平面P AB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面P AD .(1)确定点E ,F 的位置,并说明理由;(2)求三棱锥F -DCE 的体积.解:(1)因为平面CEF ∥平面P AD ,平面CEF ∩平面ABCD =CE ,平面P AD ∩平面ABCD =AD ,所以CE ∥AD ,又AB ∥DC ,所以四边形AECD 是平行四边形,所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面P AD ,平面CEF ∩平面P AB =EF ,平面P AD ∩平面P AB =P A ,所以EF ∥P A ,又点E 是AB 的中点,所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知P A =PB ,AE =EB ,所以PE ⊥AB ,又平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB , 所以PE ⊥平面ABCD .又AB ∥CD ,AB ⊥AD ,所以V F ­DEC =12V P ­DEC =16S △DEC ×PE =16×12×2×2×2=23.。

点,直线,平面之间的位置关系 高考真题

点,直线,平面之间的位置关系 高考真题

点,直线,平面之间的位置关系高考真题(一)选择题1,设为两个不同的平面,l,m为两条不同的直线,且,有如下的两个命题:①若;②若那么()A、①是真命题,②是假命题;B、①是假命题,②是真命题;C、①②都是真命题;D、①②都是假命题.分析:这里 . 对于①,若,则l,m可能平行,也可能异面;对于②,若则可能垂直,也可能不垂直. 故应选D.2、已知m,n 是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:①②③④若m,n是异面直线,其中真命题是()A、①和②B、①和③C、③和④D、①和④分析:由面面平行判定定理知①为真命题;注意到垂直于同一个平面的两个平面不一定平行,②为假命题;③显然为假命题;④由于m,n为异面直线,故可在内确立两条相交直线与平行,因而为真命题. 故应选D.3,设为平面,m,n,l为直线,则m ⊥的一个充分条件是()分析:对于选项A,由于这里的直线m 不一定在内,故不一定有m ⊥;对于选项B,它与m ⊥构成的命题是:若两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;对于选项C,它与m ⊥构成的命题是:若两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m 也垂直于另一个平面,此命题亦为假命题;排除法可知应选D.选项D与m ⊥构成的命题是:若直线m与两个平行平面中的一个平面垂直,那么它和另一个平面也垂直,这显然为真命题.4、对于不重合的两个平面,给定下列条件:①存在平面,使得都垂直于;②存在平面,使得都平行于;③内有不共线三点到的距离相等;④存在异面直线l,m,使得;其中可以判定平行的条件有()A、1个B、2个 C、3个 D、4个分析:对于①,垂直于同一平面的两个平面可能相交;对于②,由面面平行的传递性可以判定;对于③,当相交时,内仍可存在不共线三点到的距离等;对于④,在m上取定点P,经过点P在l 与点P确定的平面内作l'//l,则l'与m 可确定平面 .由于于是可知,本题应选B.(二)填空题1、已知m,n 是不同的直线,是不重合的平面,给下列命题:①若②若③若④m,n是两条异面直线,若上面的命题中,真命题的序号是分析:①显然为假命题;对于②,内的直线m,n不一定相交,故②亦为假命题;对于③,由题设知∴③为真命题;对于④,由前面选择题第4题知此为真命题.因此,答案为③、④.2、在正方体中,过对角线的一个平面交 于E ,交 于F ,则①四边形一定是平行四边形;②四边形有可能是正方形;③四边形在底面ABCD 的投影一定是正方形; ④平面 有可能垂直于平面以上结论正确的为分析:注意到正方体的特性,由面面平行性质定理和,故四边形为平行四边形,①正确;在这里,当时,平行四边形即为矩形,且不可能为正方形,②不正确;③正确;而当平面与底面ABCD(或)重合时有平面,故④正确.于是可知答案为①,③,④.(三)解答题1、如图1,已知ABCD 是上下底面边长分别为2和6,高为的等腰梯形,将它沿对称轴折成直二面角,如图2. (1)证明: ;(2)求二面角的大小.解:(1)证明:由题设知∴∠AOB 是所成的直二面角的平面角,即 ,∴∴OC 是AC 在平面上的射影 ① 又由题设得从而 ② ∴根据三垂线定理由①②得,.(2)解:由(1)知, ,∴设 ,在平面AOC 内过点E 作EF ⊥AC于F ,连结 (三垂线定理)由题设知,∴又∴即所求二面角的大小为.2、在四面体P-ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB =.F 是线段PB 上一点, ,点E 在线段AB 上,且EF ⊥PB.(1)证明:PB ⊥平面CEF ; (2)求:二面角B-CE -F 的大小.解:(1)证明: ∵PA 2+AC 2=36+64=100=PC 2∴△PAC 是以∠PAC 为直角的直角三角形,同理可证:△PAB 是以∠PAB 为直角的直角三角形, △PCB 是以∠PCB 为直角的直角三角形。

历年高考数学真题精选29 直线与平面所成的角

历年高考数学真题精选29 直线与平面所成的角

历年高考数学真题精选(按考点分类) 专题29 直线与平面所成的角(学生版)一.解答题(共15小题)1.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.2.(2019•天津)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.3.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.4.(2018•天津)如图,在四面体ABCD中,ABC∆是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,2AB=,23AD=,90∠=︒.BAD(Ⅰ)求证:AD BC⊥;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.5.(2018•天津)如图,//=,//CD FGEG AD且EG ADAD BC⊥,//AD BC且2=,AD CD且2===.DA DC DG=,DG⊥平面ABCD,2CD FG(Ⅰ)若M为CF的中点,N为EG的中点,求证://MN平面CDE;(Ⅱ)求二面角E BC F--的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60︒,求线段DP的长.6.(2018•浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.7.(2018•新课标Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.8.(2017•上海)如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5. (1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.9.(2017•浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.10.(2017•天津)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,//AD BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.11.(2016•浙江)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.12.(2016•新课标Ⅲ)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.13.(2016•天津)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,//EF AB ,2AB =,3DE =,1BC EF ==,6AE =,60BAD ∠=︒,G 为BC 的中点.(1)求证://FG 平面BED ; (2)求证:平面BED ⊥平面AED ;(3)求直线EF 与平面BED 所成角的正弦值.14.(2015•天津)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,25BC =,17AA =,17BB =E 和F 分别为BC 和1A C 的中点.(Ⅰ)求证://EF 平面11A B BA ; (Ⅱ)求证:平面1AEA ⊥平面1BCB ; (Ⅲ)求直线11A B 与平面1BCB 所成角的大小.15.(2015•新课标Ⅱ)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.历年高考数学真题精选(按考点分类) 专题29 直线与平面所成的角(教师版)一.解答题(共15小题)1.(2019•上海)如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,已知2BM =,3CD =,4AD =,15AA =.(1)求直线1A C 和平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.解:(1)依题意:1AA ⊥平面ABCD ,连接AC ,则1A C 与平面ABCD 所成夹角为1ACA ∠,15AA =Q ,22345AC =+=,∴△1ACA 为等腰三角形, 14ACA π∴∠=,∴直线1A C 和平面ABCD 的夹角为4π, (2)(空间向量),如图建立坐标系,则(0A ,0,0),(3C ,4,0),1(0A ,0,5),(3M ,0,2), ∴(3AC =u u u r ,4,0),1(3A C =u u u u r ,4,5)-,(0MC =u u u u r,4.2)-,设平面1A MC 的法向量(n x =r,y ,)z ,由3450420n AC x y z n MC y z ⎧=+-=⎪⎨=-=⎪⎩u u u r r g u u u u r r g ,可得(2n =r ,1,2), ∴点A 到平面1A MC 的距离222||10||3212AC n d n ===++u u u r rg r . 2.(2019•天津)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.证明:(Ⅰ)连结BD ,由题意得AC BD H =I ,BH DH =, 又由BG PG =,得//GH PD ,GH ⊂/Q 平面PAD ,PD ⊂平面PAD ,//GH ∴平面PAD .(Ⅱ)取棱PC 中点N ,连结DN , 依题意得DN PC ⊥,又Q 平面PAC ⊥平面PCD ,平面PAC ⋂平面PCD PC =, DN ∴⊥平面PAC ,又PA ⊂平面PAC ,DN PA ∴⊥, 又PA CD ⊥,CD DN D =I ,PA ∴⊥平面PCD .解:(Ⅲ)连结AN ,由(Ⅱ)中DN ⊥平面PAC , 知DAN ∠是直线AD 与平面PAC 所成角,PCD ∆Q 是等边三角形,2CD =,且N 为PC 中点, 3DN ∴=,又DN AN ⊥,在Rt AND ∆中,3sin DN DAN DA ∠==. ∴直线AD 与平面PAC 所成角的正弦值为3.3.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.方法一:证明:(Ⅰ)连结1A E ,11A A AC =Q ,E 是AC 的中点, 1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC , 平面11A ACC ⋂平面ABC AC =, 1A E ∴⊥平面ABC ,1A E BC ∴⊥, 1//A F AB Q ,90ABC ∠=︒,1BC A F ∴⊥,BC ∴⊥平面1A EF ,EF BC ∴⊥.解:(Ⅱ)取BC 中点G ,连结EG 、GF ,则1EGFA 是平行四边形, 由于1A E ⊥平面ABC ,故1A E EG ⊥,∴平行四边形1EGFA 是矩形,由(Ⅰ)得BC ⊥平面1EGFA , 则平面1A BC ⊥平面1EGFA ,EF ∴在平面1A BC 上的射影在直线1A G 上,连结1A G ,交EF 于O ,则EOG ∠是直线EF 与平面1A BC 所成角(或其补角), 不妨设4AC =,则在Rt △1A EG 中,123A E =,3EG =, O Q 是1A G 的中点,故1152AG EO OG ===2223cos 25EO OG EG EOG EO OG +-∴∠==⨯⨯,∴直线EF 与平面1A BC 所成角的余弦值为35.方法二:证明:(Ⅰ)连结1A E ,11A A AC =Q ,E 是AC 的中点, 1A E AC ∴⊥,又平面11A ACC ⊥平面ABC ,1A E ⊂平面11A ACC , 平面11A ACC ⋂平面ABC AC =, 1A E ∴⊥平面ABC ,如图,以E 为原点,在平面ABC 中,过E 作AC 的垂线为x 轴, EC ,1EA 所在直线分别为y ,z 轴,建立空间直角坐标系,设4AC =,则1(0A ,0,,B,1B,32F ,(0C ,2,0),32EF =u u u r,(BC =u u u r ,由0EF BC =u u u r u u u rg ,得EF BC ⊥.解:(Ⅱ)设直线EF 与平面1A BC 所成角为θ,由(Ⅰ)得(BC =u u u r ,1(0A C =u u u u r,2,-,设平面1A BC 的法向量(n x =r,y ,)z ,则100BC n y AC n y ⎧=+=⎪⎨==⎪⎩u u u r r g u u u u r rg ,取1x =,得n =r , ||4sin 5||||EF n EF n θ∴==u u u r rg u u u r r g , ∴直线EF 与平面1A BC35=.4.(2018•天津)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,2AB =,23AD =,90BAD ∠=︒. (Ⅰ)求证:AD BC ⊥;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ⋂平面ABD AB =,AD AB ⊥, 得AD ⊥平面ABC ,故AD BC ⊥;(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND ,M Q 为棱AB 的中点,故//MN BC ,DMN ∴∠(或其补角)为异面直线BC 与MD 所成角,在Rt DAM ∆中,1AM =,故2213DM AD AM =+,AD ⊥Q 平面ABC ,故AD AC ⊥,在Rt DAN ∆中,1AN =,故2213DN AD AN =+在等腰三角形DMN 中,1MN =,可得1132cos MNDMN DM ∠==.∴异面直线BC 与MD 13(Ⅲ)解:连接CM ,ABC ∆Q 为等边三角形,M 为边AB 的中点,故CM AB ⊥,3CM =,又Q 平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,则CDM ∠为直线CD 与平面ABD 所成角. 在Rt CAD ∆中,224CD AC AD =+=, 在Rt CMD ∆中,3sin CM CDM CD ∠==. ∴直线CD 与平面ABD 所成角的正弦值为3.5.(2018•天津)如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG 且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(Ⅰ)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ; (Ⅱ)求二面角E BC F --的正弦值;(Ⅲ)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.(Ⅰ)证明:依题意,以D 为坐标原点,分别以DA u u u r 、DC u u u r 、DG u u u r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.可得(0D ,0,0),(2A ,0,0),(1B ,2,0),(0C ,2,0), (2E ,0,2),(0F ,1,2),(0G ,0,2),(0M ,32,1),(1N ,0,2).设0(,,)n x y z =u u r为平面CDE 的法向量,则0020220n DC y n DE x z ⎧==⎪⎨=+=⎪⎩u u r u u u rg u u r u u u r g ,不妨令1z =-,可得0(1,0,1)n =-u u r ; 又3(1,,1)2MN =-u u u u r ,可得00MN n =u u u u r u u r g .又Q 直线MN ⊂/平面CDE , //MN ∴平面CDE ;(Ⅱ)解:依题意,可得(1,0,0)BC =-u u u r ,(1,2,2)BE =-u u u r ,(0,1,2)CF =-u u u r.设(,,)n x y z =r为平面BCE 的法向量,则0220n BC x n BE x y z ⎧=-=⎪⎨=-+=⎪⎩u u u r r g u u u r r g ,不妨令1z =,可得(0,1,1)n =r . 设(,,)m x y z =r为平面BCF 的法向量,则020m BC x m CF y z ⎧=-=⎪⎨=-+=⎪⎩u u u r r g u u u rr g,不妨令1z =,可得(0,2,1)m =r .因此有cos ,||||m n m n m n <>==r rg r r r r gsin ,m n <>=r r.∴二面角E BC F --; (Ⅲ)解:设线段DP 的长为h ,([0,2])h ∈,则点P 的坐标为(0,0,)h , 可得(1,2,)BP h =--u u u r ,而(0,2,0)DC =u u u r为平面ADGE 的一个法向量,故|||cos ,|||||BP CD BP DC BP DC <>==u u u r u u u ru u u r u u u r g u u u r u u u r gsin 60=︒=,解得[0h ,2]. ∴线段DP.6.(2018•浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.()I 证明:1A A ⊥Q 平面ABC ,1B B ⊥平面ABC , 11//AA BB ∴,14AA =Q ,12BB =,2AB =,221111()()22A B AB AA BB ∴+-,又221122AB AB BB +2221111AA AB A B ∴=+, 111AB A B ∴⊥,同理可得:111AB B C ⊥, 又11111A B B C B =I , 1AB ∴⊥平面111A B C .()II 解:取AC 中点O ,过O 作平面ABC 的垂线OD ,交11A C 于D , AB BC =Q ,OB OC ∴⊥,2AB BC ==Q ,120BAC ∠=︒,1OB ∴=,3OA OC ==,以O 为原点,以OB,OC ,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则(0A ,3-,0),(1B ,0,0),1(1B ,0,2),1(0C ,3,1), ∴(1AB =u u u r ,3,0),1(0BB =u u u r ,0,2),1(0AC =u u u u r,23,1),设平面1ABB 的法向量为(n x =r ,y ,)z ,则100n AB n BB ⎧=⎪⎨=⎪⎩u u u r r g u u u r r g ,∴3020x y z ⎧+=⎪⎨=⎪⎩,令1y =可得(3n =-r ,1,0), 1112339cos ,||||213n AC n AC n AC ∴<>===⨯u u u u r r u u u ur g r u u u u r r .设直线1AC 与平面1ABB 所成的角为θ,则139sin |cos ,|n AC θ=<>=u u u ur r .∴直线1AC 与平面1ABB 所成的角的正弦值为39.7.(2018•新课标Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明:由题意,点E 、F 分别是AD 、BC 的中点, 则12AE AD =,12BF BC =, 由于四边形ABCD 为正方形,所以EF BC ⊥. 由于PF BF ⊥,EF PF F =I ,则BF ⊥平面PEF . 又因为BF ⊂平面ABFD ,所以:平面PEF ⊥平面ABFD . (2)在平面PEF 中,过P 作PH EF ⊥于点H ,连接DH , 由于EF 为面ABCD 和面PEF 的交线,PH EF ⊥, 则PH ⊥面ABFD ,故PH DH ⊥.在三棱锥P DEF -中,可以利用等体积法求PH , 因为//DE BF 且PF BF ⊥, 所以PF DE ⊥, 又因为PDF CDF ∆≅∆, 所以90FPD FCD ∠=∠=︒, 所以PF PD ⊥,由于DE PD D =I ,则PF ⊥平面PDE , 故13F PDE PDE V PF S -∆=g ,因为//BF DA 且BF ⊥面PEF , 所以DA ⊥面PEF , 所以DE EP ⊥.设正方形边长为2a ,则2PD a =,DE a = 在PDE ∆中,3PE a , 所以23PDE S ∆,故33F PDE V a -=, 又因为2122DEF S a a a ∆==g ,所以233F PDE V PH a a -==, 所以在PHD ∆中,3sin PH PDH PD ∠==, 即PDH ∠为DP 与平面ABFD 所成角的正弦值为:3.8.(2017•上海)如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5. (1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.解:(1)Q 直三棱柱111ABC A B C -的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.∴三棱柱111ABC A B C -的体积:1ABC V S AA ∆=⨯112AB AC AA =⨯⨯⨯ 1425202=⨯⨯⨯=. (2)连结AM ,Q 直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5,M 是BC 中点, 1AA ∴⊥底面ABC ,11164522AM BC ==+=, 1A MA ∴∠是直线1A M 与平面ABC 所成角,11tan 55AA A MA AM ∠===, ∴直线1A M 与平面ABC 所成角的大小为arctan 5.9.(2017•浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.证明:(Ⅰ)取AD 的中点F ,连结EF ,CF ,E Q 为PD 的中点,//EF PA ∴,在四边形ABCD 中,//BC AD ,22AD DC CB ==,F 为中点, //CF AB ∴,∴平面//EFC 平面ABP , EC ⊂Q 平面EFC , //EC ∴平面PAB .解:(Ⅱ)连结BF ,过F 作FM PB ⊥于M ,连结PF ,PA PD =Q ,PF AD ∴⊥,推导出四边形BCDF 为矩形,BF AD ∴⊥,AD ∴⊥平面PBF ,又//AD BC ,BC ∴⊥平面PBF ,BC PB ∴⊥,设1DC CB ==,由22PC AD DC CB ===,得2AD PC ==,22413PB PC BC ∴=-=-=,1BF PF ==,12MF ∴=, 又BC ⊥平面PBF ,BC MF ∴⊥,MF ∴⊥平面PBC ,即点F 到平面PBC 的距离为12, 12MF =Q ,D 到平面PBC 的距离应该和MF 平行且相等,为12, E 为PD 中点,E 到平面PBC 的垂足也为垂足所在线段的中点,即中位线, E ∴到平面PBC 的距离为14, 在,2,1,2PCD PC CD PD ∆===中, 由余弦定理得2CE =,设直线CE 与平面PBC 所成角为θ,则124sin CE θ==.10.(2017•天津)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,//AD BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【解答】解:(Ⅰ)如图,由已知//AD BC , 故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD PD ⊥.在Rt PDA ∆中,由已知,得225AP AD PD += 故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC 5. 证明:(Ⅱ)因为AD ⊥平面PDC ,直线PD ⊂平面PDC , 所以AD PD ⊥.又因为//BC AD ,所以PD BC ⊥, 又PD PB ⊥,所以PD ⊥平面PBC .解:(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角. 由于//AD BC ,//DF AB ,故1BF AD ==,由已知,得2CF BC BF =-=.又AD DC ⊥,故BC DC ⊥, 在Rt DPF ∆中,可得5sin PD DFP DF ∠==. 所以,直线AB 与平面PBC 5.11.(2016•浙江)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(Ⅰ)求证:BF ⊥平面ACFD ;(Ⅱ)求直线BD 与平面ACFD 所成角的余弦值.【解答】解:(Ⅰ)证明:延长AD ,BE ,CF 相交于一点K ,如图所示:Q 平面BCFE ⊥平面ABC ,且AC BC ⊥;AC ∴⊥平面BCK ,BF ⊂平面BCK ; BF AC ∴⊥;又//EF BC ,1BE EF FC ===,2BC =; BCK ∴∆为等边三角形,且F 为CK 的中点; BF CK ∴⊥,且AC CK C =I ;BF ∴⊥平面ACFD ;(Ⅱ)BF ⊥Q 平面ACFD ;BDF ∴∠是直线BD 和平面ACFD 所成的角; F Q 为CK 中点,且//DF AC ; DF ∴为ACK ∆的中位线,且3AC =;∴32DF =; 又3BF =∴在Rt BFD ∆中,92134BD =+=,3212cos 21DF BDF BD ∠===; 即直线BD 和平面ACFD 所成角的余弦值为2112.(2016•新课标Ⅲ)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.【解答】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG , N Q 为PC 的中点, //NG BC ∴,且12NG BC =, 又223AM AD ==,4BC =,且//AD BC , //AM BC ∴,且12AM BC =, 则//NG AM ,且NG AM =,∴四边形AMNG 为平行四边形,则//NM AG ,AG ⊂Q 平面PAB ,NM ⊂/平面PAB ,//MN ∴平面PAB ;法二、在PAC ∆中,过N 作NE AC ⊥,垂足为E ,连接ME ,在ABC ∆中,由已知3AB AC ==,4BC =,得2224332cos 2433ACB +-∠==⨯⨯,//AD BC Q , 2cos 3EAM ∴∠=,则sin EAM ∠=,在EAM ∆中, 223AM AD ==Q ,1322AE AC ==,由余弦定理得:32EM ==, 2233()()4122cos 339222AEM +-∴∠==⨯⨯,而在ABC ∆中,2223341cos 2339BAC +-∠==⨯⨯,cos cos AEM BAC ∴∠=∠,即AEM BAC ∠=∠, //AB EM ∴,则//EM 平面PAB .由PA ⊥底面ABCD ,得PA AC ⊥,又NE AC ⊥, //NE PA ∴,则//NE 平面PAB . NE EM E =Q I ,∴平面//NEM 平面PAB ,则//MN 平面PAB ;(2)解:在AMC ∆中,由2AM =,3AC =,2cos 3MAC ∠=,得22222cos 9423253CM AC AM AC AM MAC =+-∠=+-⨯⨯⨯=g g . 222AM MC AC ∴+=,则AM MC ⊥,PA ⊥Q 底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ⋂平面PAD AD =,CM ∴⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连接NF ,则ANF ∠为直线AN 与平面PMN 所成角.在Rt PAC ∆中,由N 是PC的中点,得1522AN PC ==,在Rt PAM ∆中,由PA AM PM AF =g g ,得224245542PA AM AF PM ⨯===+g ,45855sin 5252AF ANF AN ∴∠===.∴直线AN 与平面PMN 所成角的正弦值为8525.13.(2016•天津)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,//EF AB ,2AB =,3DE =,1BC EF ==,6AE =,60BAD ∠=︒,G 为BC 的中点.(1)求证://FG 平面BED ; (2)求证:平面BED ⊥平面AED ;(3)求直线EF 与平面BED 所成角的正弦值.【解答】证明:(1)BD 的中点为O ,连接OE ,OG ,在BCD ∆中, G Q 是BC 的中点,//OG DC ∴,且112OG DC ==, 又//EF AB Q ,//AB DC , //EF OG ∴,且EF OG =,即四边形OGEF 是平行四边形,//FG OE ∴,FG ⊂/Q 平面BED ,OE ⊂平面BED ,//FG ∴平面BED ;(2)证明:在ABD ∆中,1AD =,2AB =,60BAD ∠=︒,由余弦定理可得BD =90ADB ∠=︒, 即BD AD ⊥,又Q 平面AED ⊥平面ABCD ,BD ⊂平面ABCD ,平面AED ⋂平面ABCD AD =, BD ∴⊥平面AED , BD ⊂Q 平面BED ,∴平面BED ⊥平面AED .(Ⅲ)//EF AB Q ,∴直线EF 与平面BED 所成的角即为直线AB 与平面BED 所形成的角,过点A 作AH DE ⊥于点H ,连接BH , 又平面BED ⋂平面AED ED =, 由(2)知AH ⊥平面BED ,∴直线AB 与平面BED 所成的角为ABH ∠,在ADE ∆,1AD =,3DE =,AE =,由余弦定理得2cos 3ADE ∠=,sin ADE ∴∠=,AH AD ∴=,在Rt AHB ∆中,sin AH ABH AB ∠==,∴直线EF 与平面BED14.(2015•天津)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,25BC =,17AA =,127BB =,点E 和F 分别为BC 和1A C 的中点.(Ⅰ)求证://EF 平面11A B BA ; (Ⅱ)求证:平面1AEA ⊥平面1BCB ; (Ⅲ)求直线11A B 与平面1BCB 所成角的大小.【解答】(Ⅰ)证明:连接1A B ,在△1A BC 中,E Q 和F 分别是BC 和1A C 的中点,1//EF A B ∴,又1A B ⊂Q 平面11A B BA ,EF ⊂/平面11A B BA , //EF ∴平面11A B BA ;(Ⅱ)证明:AB AC =Q ,E 为BC 中点,AE BC ∴⊥, 1AA ⊥Q 平面ABC ,11//BB AA ,1BB ∴⊥平面ABC ,1BB AE ∴⊥,又1BC BB B =Q I ,AE ∴⊥平面1BCB ,又AE ⊂Q 平面1AEA ,∴平面1AEA ⊥平面1BCB ;(Ⅲ)取1BB 中点M 和1B C 中点N ,连接1A M ,1A N ,NE , N Q 和E 分别为1B C 和BC 的中点,NE ∴平行且等于112B B ,NE ∴平行且等于1A A ,∴四边形1A AEN 是平行四边形, 1A N ∴平行且等于AE ,又AE ⊥Q 平面1BCB ,1A N ∴⊥平面1BCB , 11A B N ∴∠即为直线11A B 与平面1BCB 所成角,在ABC ∆中,可得2AE =,12A N AE ∴==, 1//BM AA Q ,1BM AA =,1//A M AB ∴且1A M AB =,又由1AB BB ⊥,11A M BB ∴⊥,在RT △11A MB 中,2211114A B B M A M =+=, 在RT △11A NB 中,111111sin 2A N AB N A B ∠==, 1130A B N ∴∠=︒,即直线11A B 与平面1BCB 所成角的大小为30︒15.(2015•新课标Ⅱ)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH 如图: (2)作EM AB ⊥,垂足为M ,则: 10EH EF BC ===,18EM AA ==;∴226MHEH EM =-=,10AH ∴=;以边DA ,DC ,1DD 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则: (10A ,0,0),(10H ,10,0),(10E ,4,8),(0F ,4,8); ∴(10,0,0),(0,6,8)EF EH =-=-u u u r u u u r;设(,,)n x y z =r为平面EFGH 的法向量,则: 100680n EF x n EH y z ⎧=-=⎪⎨=-=⎪⎩u u u r r g u u u rr g ,取3z =,则(0,4,3)n =r ; 若设直线AF 和平面EFGH 所成的角为θ,则:45sin |cos ,|1805AF n θ=<>==u u u r r g ; ∴直线AF 与平面α所成角的正弦值为45.。

2023高考数学复习专项训练《空间中直线与平面的位置关系》(含解析)

2023高考数学复习专项训练《空间中直线与平面的位置关系》(含解析)

2023高考数学复习专项训练《空间中直线与平面的位置关系》一、单选题(本大题共12小题,共60分)1.(5分)设m,n为两条不同的直线,α,β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α//β②若m//α,m//β,则α//β③若m//α,n//α,则m//n④若m⊥α.n⊥α,则m//n上述命题中,所有真命题的序号是()A. ①④B. ②③C. ①③D. ②④2.(5分)直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,下列命题正确的是:A. l与l1,l2都不相交B. l与l1,l2都相交C. l至多与l1,l2中的一条相交D. l至少与l1,l2中的一条相交3.(5分)已知α、β是不同的平面,m、n是不同的直线,则下列命题不正确的是()A. 若m⊥α,m//n,n⊂β,则α⊥βB. 若m//α,α∩β=n,,则m//nC. 若m//n,m⊥α,则n⊥αD. 若m⊥α,m⊥β,则α//β4.(5分)已知两条直线m、n,两个平面α、β,给出下面四个命题:①m//n,m⊥α⇒n⊥α①α//β,m⊂α,n⊂β⇒m//n①m//n,m//α⇒n//α①α//β,m//n,m⊥α,⇒m⊥β其中正确命题的序号是()A. ①①B. ①①C. ①①D. ①①5.(5分)已知α,β是两个不同的平面,下列四个条件中能推出α//β的是()①存在一条直线m,m⊥α,m⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线m,n,m⊂α,n⊂β,m//β,n//α;④存在两条异面直线m,n,m⊂α,n⊂β,m//β,n//α.A. ①①B. ①①C. ①①D. ①①6.(5分)棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A. 平行B. 相交C. 平行或相交D. 不相交7.(5分)若α,β是两个不同的平面,m,n,l是三条不同的直线,则下列命题错误的是()A. 若m⊂α,l∩α=A,且A∉m,则l与m不共面B. 若m,l是异面直线,l//α,m//α,且n⊥l,n⊥m,则n⊥αC. 若l⊂α,m⊂α,l∩m=A,l//β,m//β,则α//βD. 若l//α,m//β,α//β,则l//m8.(5分)已知平面α⊥平面β,α∩β=n,直线l⊂α,直线m⊂β,则下列说法正确的个数是()①若l⊥n,l⊥m,则l⊥β;②若l//n,则l//β;③若m⊥n,l⊥m,则m⊥α.A. 0B. 1C. 2D. 39.(5分)已知a,b为两条不同直线,α、β为两个不同平面.下列命题中正确的是()A. 若a//α,b//α,则a与b共面B. 若a⊥α,α//β,则a⊥βC. 若a⊥α,α⊥β,则a//βD. 若α//b,β//b,则α//β10.(5分)若直线l平行于平面α,则()A. α内所有直线与l平行B. 在α内不存在直线与l垂直C. α内存在唯一的直线与l平行D. α内存在无数条直线与l成60°角11.(5分)在空间中,设l是一条直线,α,β是两个不同的平面.下列结论正确的是()A. 若l//α,l//β,则α//βB. 若l⊥α,l⊥β,则α//βC. 若l//α,α//β,则l//βD. 若l//α,α⊥β,则l⊥β12.(5分)直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共25分)13.(5分)设l,m,n是空间三条不同的直线,α,β是空间两个不重合的平面,给出下列四个命题:①若l与m异面,m//n,则l与n异面;②若l//α,α//β,则l//β;③若α⊥β,l⊥α,m⊥β,则l⊥m;④若m//α,m//n,则n//α.其中正确命题的序号有 ______ .(请将你认为正确命题的序号都填上)14.(5分)作直线a、b和平面α,则下列小组内两个事件互为对立事件的有 ______组(请填写个数).A组:“a//b”和“a⊥b”;B组:“a、b为异面直线”和“a⊥b”;C组:“a//α或a⊂α”和“a与α相交”.15.(5分)已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m//α且n//α,则m//n;②若m⊥β且m⊥n,则n//β;③若m⊥α且m//β,则α⊥β;④若n⊂α且m不垂直于α,则m不垂直于n.其中正确命题的序号为______.16.(5分)若α、β是两个相交平面,则在下列命题中,真命题的序号为______.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线.④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.17.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,那么P到平面ABC的距离为________.三、解答题(本大题共6小题,共72分)18.(12分)如图,四棱锥P−ABCD中,AD//BC,AB=BC=1AD,E,F,H分别为线段AD,PC,CD的中点,AC2与BE交于O点,G是线段OF上一点.(1)求证:AP//平面BEF;(2)求证:GH//平面PAD.19.(12分)用符号语表示图中点、直线、平面的位置关系.20.(12分)如图,在正三棱柱ABC−A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为√29,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)21.(12分)如图,正方体ABCD−A1B1C1D1中,M,N分别是AB,A1D1的中点.判断直线MN与平面BB1D1D的位置关系,并说明理由.22.(12分)如图,在棱长为a的正方体ABCD−A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF。

高考数学刷题评估练:核心素养提升练 直线、平面垂直的判定及其性质

高考数学刷题评估练:核心素养提升练  直线、平面垂直的判定及其性质

核心素养提升练四十二直线、平面垂直的判定及其性质(30分钟60分)一、选择题(每小题5分,共30分)1.m是一条直线,α,β是两个不同的平面,以下命题正确的是( )A.若m∥α,α∥β,则m∥βB.若m∥α,m∥β,则α∥βC.若m∥α,α⊥β,则m⊥βD.若m∥α,m⊥β,则α⊥β【解析】选D.A.若m∥α,α∥β,则m∥β或m⊂β,A错;B,若m∥α,m∥β,则α∥β或α∩β=l,B错;C,若m∥α,α⊥β,则m与β相交或m∥β或m⊂β,C错;D,因为m∥α,存在直线n,使m∥n,n⊂α.因为m⊥β,所以n⊥β.又因为n⊂β,所以α⊥β.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【解析】选C.A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D 中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.3.下列三个命题中,正确命题的个数是( )①若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;②平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;③直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0B.1C.2D.3【解析】选B.①,例如墙角的三个面,则α⊥β;②,如果加入条件AB⊂α,则AB⊥β;③,从向量角度看,m与n分别是α,β的法向量,显然m⊥n,即α⊥β.所以只有③正确.4.四面体P-ABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC⊥平面ABC,则球O的表面积为( )A.64πB.65πC.66πD.128π【解析】选B.如图,D,E分别为BC,PA的中点,易知球心点O在线段DE上,因为PB=PC=AB=AC,则PD⊥BC,AD⊥BC,PD=AD.又因为平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,所以PD⊥平面ABC,所以PD⊥AD,所以PD=AD=4.因为点E是PA的中点,所以ED⊥PA,且DE=EA=PE=4 .设球O的半径为R,OE=x,则OD=4-x.在Rt△OEA中,有R2=16+x2,在Rt△OBD中,有R2=4+(4-x)2,解得R2=,所以S=4πR2=65π.5.如图,在四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是( )A.PB⊥ACB.PD⊥平面ABCDC.AC⊥PDD.平面PBD⊥平面ABCD【解析】选B.取BP的中点O,连接OA,OC,易得BP⊥OA,BP⊥OC⇒BP⊥平面OAC⇒BP⊥AC⇒选项A正确;又AC⊥BD⇒AC⊥平面BDP⇒AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确.6.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF相交于点E.要使AB1⊥平面C1DF,则线段B1F的长为( )A. B.1 C. D.2【解析】选A.设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h.又2×=h,所以h=,DE=.在Rt△DB1E中,B1E==.由面积相等得×=x,得x=.二、填空题(每小题5分,共10分)7.α,β是两个平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF,现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.【解析】由题意得,AB∥CD,所以A,B,C,D四点共面,①因为AC⊥β,EF⊂β,所以AC⊥EF,又因为AB⊥α,EF⊂α,所以AB⊥EF,因为AB∩AC=A,所以EF⊥平面ABDC,又因为BD⊂平面ABDC,所以BD⊥EF,故①正确;②由①可知,若BD⊥EF成立,则有EF⊥平面ABDC,则有EF⊥AC成立,而AC与α,β所成角相等是无法得到EF⊥AC的,故②错误;③由AC与CD在β内的射影在同一条直线上可知EF⊥AC,由①可知③正确;④仿照②的分析过程可知④错误.答案:①③8.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.【解析】由题意知PA⊥平面ABC,所以PA⊥BC.又AC⊥BC,且PA∩AC=A,所以BC⊥平面PAC,所以BC⊥AF.因为AF⊥PC,且BC∩PC=C,所以AF⊥平面PBC,所以AF⊥PB,又AE⊥PB,AE∩AF=A,所以PB⊥平面AEF,所以PB⊥EF.故①②③正确.答案:①②③三、解答题(每小题10分,共20分)9.如图,在三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD.(2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积. 【解析】(1)因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又因为CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,所以CD⊥平面ABD.(2)由AB⊥平面BCD,得AB⊥BD.又AB=BD=1,所以S△ABD=×12=.因为M是AD的中点,所以S△ABM=S△ABD=.根据(1)知,CD⊥平面ABD,则三棱锥C-ABM的高h=CD=1,故V A-MBC=V C-ABM=S△ABM·h=.10.如图,在四棱锥P-ABCD中,四边形ABCD是菱形,△PAD≌△BAD,平面PAD⊥平面ABCD,AB=4,PA=PD,M在棱PD上运动.(1)当M在何处时,PB∥平面MAC.(2)已知O为AD的中点,AC与OB交于点E,当PB∥平面MAC时,求三棱锥E-BCM的体积.【解析】(1)如图,设AC与BD相交于点N,当M为PD的中点时,PB∥平面MAC,证明:因为四边形ABCD是菱形,可得DN=NB,又因为M为PD的中点,可得DM=MP,所以NM为△BDP的中位线,可得NM∥PB,又因为NM⊂平面MAC,PB⊄平面MAC,所以PB∥平面MAC.(2)因为O为AD的中点,PA=PD,则OP⊥AD,又△PAD≌△BAD,所以OB⊥AD,且OB=2,又因为△AEO∽△CEB,所以==,所以BE=OB=,所以S△EBC=×4×=.又因为OP=4×=2,点M为PD的中点,所以M到平面EBC的距离为,所以V E-BCM=V M-EBC=××=.(20分钟40分)1.(5分)如图,在三棱锥D ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE【解析】选C.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC ⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.2.(5分)下列命题中错误的是( )A.如果直线a与平面α不平行,则平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果直线l⊥平面β,那么过直线l的所有平面都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交【解析】选A.如果直线a与平面α不平行,则直线a可能是平面α内一条直线,所以A错误;在平面γ内作两条相交直线m,n分别垂直于平面α与平面γ的交线及平面β与平面γ的交线,则由平面α⊥平面γ,平面β⊥平面γ,得m,n分别垂直于平面α及平面β,即m,n都垂直于直线l,因此直线l⊥平面γ,即B正确;由面面垂直的判定定理可知C正确;当一条直线与两个平行平面中的一个平面相交时,若此直线在另一个平面内,则与原平面无交点,矛盾,若此直线与另一个平面平行,则可得此直线与原平面平行或在原平面内,矛盾,因此此直线必与另一个平面相交,即D正确.3.(5分)在Rt△ABC中,AC⊥BC,BC=3,AB=5,点D,E分别在AC,AB边上,且DE∥BC,沿着DE将△ADE 折起至△A′DE的位置,使得平面A′DE⊥平面BCDE,其中点A′为点A翻折后对应的点,则当四棱锥A′-BCDE的体积取得最大值时,AD的长为________.【解析】由勾股定理易得:AC=4,设AD=x,则CD=4-x,而△AED∽△ABC,故DE=x,四棱锥A′-BCDE的体积:V(x)=×××(4-x)×x=(16x-x3)(0<x<4).求导可得:V′(x)=(16-3x2)(0<x<4),当0<x<时,V′(x)>0,V(x)单调递增;当<x<4时,V′(x)<0,V(x)单调递减;故当x=时,V(x)取得最大值.答案:4.(12分)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC.(2)求证:平面MOC⊥平面VAB.(3)求三棱锥V-ABC的体积.【解析】(1)因为点O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,点O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB=.又因为OC⊥平面VAB,所以三棱锥C-VAB的体积等于×OC×S△VAB=.又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为.5.(13分)如图M,N,P分别是正方体ABCD-A1B1C1D1的棱AB,BC,DD1上的点.(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN.(2)棱DD1上是否存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.【解析】(1)连接AC,BD,在△ABC中,因为=,所以MN∥AC.又因为AC⊥BD,DD1⊥底面ABCD.所以DD1⊥AC,因为BD∩DD1=D,所以AC⊥平面BDD1B1.所以MN⊥平面BDD1B1.因为BP⊂平面BDD1B1,所以MN⊥BP.(2)假设存在点P,使平面APC1⊥平面ACC1,过点P作PF⊥AC1,则PF⊥平面ACC1.又因为BD⊥平面ACC1,所以PF∥BD,而两平行线PF,BD所确定的平面即为两相交直线BD,DD1确定的对角面BB1D1D,所以F为AC1与对角面BB1D1D的交点,故F为AC1的中点,由PF∥BD,P∈DD1知,点P也是DD1的中点.显然,当点P为DD1的中点,点F为AC1的中点时,AP=PC1,所以PF⊥AC1又PF∥BD,BD⊥AC,所以PF⊥AC.从而PF⊥平面ACC1,则平面APC1⊥平面ACC1.故存在点P,当点P为DD1中点时,平面APC1⊥平面ACC1.关闭Word文档返回原板块。

秒杀真题之十年高考真题分类训练与答案(理科)空间中点、直线、平面之间的位置关系

秒杀真题之十年高考真题分类训练与答案(理科)空间中点、直线、平面之间的位置关系

秒杀真题之十年高考真题分类训练与答案(理科)空间中点、直线、平面之间的位置关系2019年1.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线2.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面3.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .4.(2019北京理12)已知l ,m 是平面a 外的两条不同直线.给出下列三个论断: ①l m ⊥; ②m a P ; ③l a ⊥以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: ______.2010-2018年一、选择题1.(2018全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D2.(2018全国卷Ⅱ)在长方体1111-ABCD A B C D 中,1==AB BC ,1=AA 线1AD 与1DB 所成角的余弦值为A .15B .6C .5D .23.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤5.(2017新课标Ⅱ)已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A B C D 6.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CR QC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则RQ P AB C DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α 7.(2016年全国I )平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI 平面ABCD =m ,αI 平面11ABB A =n ,则m ,n 所成角的正弦值为A.2 B.2 C.3 D .138.(2015福建)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2015浙江)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CD B '--的平面角为α,则10.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定11.(2014浙江)设,m n 是两条不同的直线,,αβ是两个不同的平面A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥则m α⊥C .若,,m n n ββα⊥⊥⊥则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥12.(2014辽宁)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥13.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值ABCD 14.(2014四川)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A1A. B.C .D . 15.(2013新课标Ⅱ)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足,l m l n ⊥⊥,,l l αβ⊄⊄,则A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l16.(2013广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥17.(2012浙江)设l 是直线,,αβ是两个不同的平面A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, l ∥α,则l ⊥β18.(2012浙江)已知矩形ABCD ,1AB =,BC =将ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直19.(2011浙江)下列命题中错误..的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β20.(2010山东)在空间,下列命题正确的是A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行二、填空题21.(2018全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为_____.22.(2016年全国II )α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥.②如果m α⊥,n α∥,那么m n ⊥.③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 .(填写所有正确命题的编号)23.(2015浙江)如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .24.(2015四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,,E F 分别为,AB BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为_________.25.(2017新课标Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°;其中正确的是________.(填写所有正确结论的编号)三、解答题26.(2018江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.D 11B 1A 1DC B A求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .27.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.C 1B 1A 1C BA(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.28.(2017浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.ED B AP29.(2017江苏)如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .F AB C DE30.(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.31.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.32.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E BC A --的余弦值.33.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '=(I )证明:D H '⊥平面ABCD ;(II )求二面角B D A C '--的正弦值.34.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(Ⅰ)证明MN 平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.BD35.(2014山东)如图,四棱锥P ABCD -中,AP PCD ⊥平面,AD BC ∥,1,,2AB BC ADE F ==分别为线段,AD PC 的中点.(Ⅰ)求证:AP BEF ∥平面; (Ⅱ)求证:BE PAC ⊥平面.36.(2014江苏)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证:(Ⅰ)直线PA ∥平面DEF ;(Ⅱ)平面BDE ⊥平面ABC .37.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD求三棱锥E ACD -的体积.38.(2014天津)如图四棱锥P ABCD -的底面ABCD是平行四边形,BA BD ==,2AD =,PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值.39.(2013浙江)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==,PA =120ABC ∠=,G 为线段PC 上的点.PDB(Ⅰ)证明:BD ⊥面APC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC ⊥面BGD ,求PGGC的值. 40.(2013辽宁)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)设Q 为PA 的中点,G 为AOC ∆的重心,求证:QG ∥平面PBC .41.(2012江苏)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.1求证:(Ⅰ)平面ADE ⊥平面11BCC B ;(Ⅱ)直线1//A F 平面ADE .42.(2012广东)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高.(Ⅰ)证明:PH ⊥平面ABCD ; (Ⅱ)若1,1PH AD FC ===,求三棱锥E BCF -的体积;(Ⅲ)证明:EF ⊥平面PAB .43.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点.C求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .44.(2011广东)如图在椎体P ABCD -中,ABCD 是边长为1的棱形,且DAB ∠=60︒,PA PD ==2PB =,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AD ⊥平面DEF ;(Ⅱ)求二面角P AD B --的余弦值.45.(2010天津)如图,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC∥AD ,CD =1,AD =,∠BAD =∠CDA =45°.(Ⅰ)求异面直线CE 与AF 所成角的余弦值; (Ⅱ)证明CD ⊥平面ABF ; (Ⅲ)求二面角B EF A --的正切值.46.(2010浙江)如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°.E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.(Ⅰ)求证:BF ∥平面A DE ';(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.答案部分2019年1.解析 如图所示,联结BE ,BD .因为点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,所以BM ⊂平面BDE ,EN ⊂平面BDE ,因为BM 是BDE △中DE 边上的中线,EN 是BDE △中BD 边上的中线,直线BM,EN 是相交直线,设DE a =,则BD=,BE==, 所以BM =,EN a ==,所以BM EN ≠.故选B .2.解析:对于A ,α内有无数条直线与β平行,则α与β相交或βα∥,排除; 对于B ,α内有两条相交直线与β平行,则βα∥;对于C ,α,β平行于同一条直线,则α与β相交或βα∥,排除; 对于D ,α,β垂直于同一平面,则α与β相交或βα∥,排除. 故选B .3.证明:(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .4.解析:由l ,m 是平面α外的两条不同直线,知: 由线面平行的判定定理得: 若l l m α⊥⊥,,则m αP . 由线面平行、垂直的性质定理得m αP ,l α⊥,则l m ⊥.2010-2018年1.A 【解析】记该正方体为''''-ABCD A B C D ,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱'A A ,''A B ,''A D 与平面α所成的角都相等,如图,连接'AB ,'AD ,''B D ,因为三棱锥'''-A AB D 是正三棱锥,所以'A A ,''A B ,''A D 与平面''AB D 所成的角都相等,分别取''C D ,''B C ,'BB ,AB ,AD ,'DD 的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面''AB D 平行,且截正方体所得截面的面积最大,又======EF FG GH IH IJ JE,所以该正六边形的面积为26(434⨯⨯=,所以α截此正方体所得截面面积的最大值为4,故选A . 2.C 【解析】解法一 如图,F 1E 1F D 1A 1B 1C 1E C D AB补上一相同的长方体1111-CDEF C D E F ,连接1DE ,11B E . 易知11∥AD DE ,则11∠B DE 为异面直线1AD 与1DB 所成角. 因为在长方体1111-ABCD A B C D 中,1==AB BC,1=AA所以12===DE,1==DB11===B E ,在11∆B DE中,由余弦定理,得11cos ∠==B DE , 即异面直线1AD 与1DB所成角的余弦值为5,故选C . 解法二 以D 为坐标原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知(0,0,0)D ,(1,0,0)A,1D,1(1B ,所以1(1=-AD,1(1,1=DB ,则由向量夹角公式,得111111cos ,||||2⋅<>===AD DB AD DB AD DB即异面直线1AD 与1DB C . 3.A 【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .4.D 【解析】由题意知四棱锥S ABCD -为正四棱锥,如图,EMSODCBA连接BD ,记AC BD O =,连接SO ,则SO ⊥平面ABCD ,取AB 的中点M ,连接SM ,OM ,OE ,易得AB SM ⊥,则2S E O θ=∠,3SMO θ=∠,易知32θθ≥.因为OM ∥BC ,BC AB ⊥,SM AB ⊥,所以3θ也为OM 与平面SAB 所成的角,即BC 与平面SAB 所成的角,再根据最小角定理知,31θθ≤,所以231θθθ≤≤,故选D .5.C 【解析】如图所示,把三棱柱补成四棱柱,异面直线1AB 与1BC 所成角为11B AD ∠B 1A 1D 1C 1DCBA2111B D===1AD =1AB ,∴22222211111111cos 25AB AD B D B AD AB AD +-∠===⨯⨯.选C . 6.B 【解析】设O 为三角形ABC 中心,底面如图2,过O 作OE RP ⊥,OF PQ ⊥,OG RQ ⊥,由题意可知tan DO OE α=,tan OD OF β=,tan ODOGγ=,GF EO DC BAPQR图1 图2由图2所示,以P 为原点建立直角坐标系,不妨设2AB =,则(1,0)A -,(1,0)B,C,(0,3O ,∵AP PB =,2BQ CR QC RA==,∴1(,33Q,2(,33R -,则直线RP的方程为2y x =-,直线PQ的方程为y =,直线RQ的方程为39y x =+,根据点到直线的距离公式,知21OE =39OF =,13OG =,∴OF OG OE <<,tan tan tan αγβ<<, 因为α,β,γ为锐角,所以αγβ<<.选B7.A 【解析】因为过点A 的平面α与平面11CB D 平行,平面ABCD ∥平面1111A B C D ,所以m ∥11B D ∥BD ,又1A B ∥平面11CB D ,所以n ∥1A B ,则BD 与1A B 所成的角为所求角,所以m ,nA . 8.B 【解析】由“m α⊥且l m ⊥”推出“l α⊂或l α∥”,但由“m α⊥且l α∥”可推出“l m ⊥”,所以“l m ⊥”是“l α∥”的必要而不充分条件,故选B . 9.B 【解析】解法一 设ADC θ∠=,2AB =,则由题意知1AD BD A D '===.在空间图形中,连结A B ',设A B '=t .在ΔA DB '中,2222222112cos 22112A D DB A B t t A DB A D DB ''+-+--'∠==='⨯⨯⨯.过A '作A N DC '⊥,过B 作BM DC ⊥,垂足分别为N M 、. 过N 作//NP MB ,使四边形BPNM 为平行四边形,则NP DC ⊥,连结,A P BP ',则A NP '∠就是二面角A CD B '--的平面角,所以A NP α'∠=. 在ΔRt A ND '中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=. 同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==. 显然BP ⊥平面A NP ',故BP A P '⊥.在ΔRt A BP '中,222222(2cos )4cos A P A B BP t t θθ''=-=-=-.在ΔA NP '中,222cos cos 2A N NP A P A NP A N NPα''+-'=∠='⨯22222sin sin (4cos )2sin t θθθθ+--==222222222cos 2cos 2sin 2sin sin t t θθθθθ+--=+2221cos cos sin sin A DB θθθ'=∠+, 所以2221cos cos cos cos cos sin sin A DB A DB A DB θαθθ'''-∠=∠+-∠ 2222221sin cos cos cos (1cos )0sin sin sin A DB A DB θθθθθθ-''=∠+=+∠≥, 所以cos cos A DB α'∠≥(当2πθ=时取等号),因为α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数, 所以A DB α'∠≤,故选B .解法二 若CA CB ≠,则当απ=时,A CB π'∠<,排除D ; 当0α=时,0A CB '∠>,0A DB '∠>,排除A 、C ,故选B . 10.D 【解析】利用正方体模型可以看出,1l 与4l 的位置关系不确定.选D .11.C 【解析】选项,,A B D 中m 均可能与平面α平行、垂直、斜交或在平面α内,故选C . 12.B 【解析】对于选项A ,若//,//,m n αα,则m 与n 可能相交、平行或异面,A 错误;显然选项B 正确;对于选项C ,若m α⊥,m n ⊥,则n α⊂或//n α,C 错误;对于选项D ,若//m α,m n ⊥,则//n α或n α⊂或n 与α相交,D 错误.故选B .13.D 【解析】作PH BC ⊥,垂足为H ,设PH x =,则CH =,由余弦定理AH =1tan tan (0)PHPAH AHxθ=∠==>,故当1125x =时,tan θ取得最大值,最大值为9. 14.B 【解析】直线OP 与平面1A BD 所成的角为α的取值范围是1112AOA C OA π∠→→∠,由于1sin AOA ∠=11sin 2C OA ∠==>,sin 12π= 所以sin α的取值范围是. 15.D 【解析】作正方形模型,α为后平面,β为左侧面可知D 正确.16.D 【解析】A 中,m n 可能平行、垂直、也可能为异面;B 中,m n 还可能为异面;C 中m应与β中两条相交直线垂直时结论才成立,选D .17.B 【解析】利用排除法可得选项B 是正确的,∵l ∥α,l ⊥β,则αβ.如选项A :l ∥α,l ∥β时,α⊥β或α∥β;选项C :若α⊥β,l ⊥α,l ∥β或l β⊂;选项D :若α⊥β, l ⊥α,l ∥β或l ⊥β.18.B 【解析】过点A 作AE BD ⊥,若存在某个位置,使得AC BD ⊥,则BD ⊥面ACE ,从而有BD CE ⊥,计算可得BD 与CE 不垂直,则A 不正确;当翻折到AC CD ⊥时,因为BC CD ⊥,所以CD ⊥面ABC ,从而可得AB CD ⊥;若AD BC ⊥,因为BC CD ⊥,所以BC ⊥面ACD ,从而可得BC AC ⊥,而1AB BC =<=,所以这样的位置不存在,故C 不正确;同理,D 也不正确,故选B .19.D 【解析】对于D ,若平面α⊥平面β,则平面α内的某些直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其余选项易知均是正确的. 20.D 【解析】D 两平行直线的平行投影不一定重合,故A 错;由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可知B 、C 均错误,故选D . 21.【解析】如图所示,S'SAB设S 在底面的射影为S ',连接AS ',SS '.SAB ∆的面积为2211sin 22SA SB ASB SA SA ⋅⋅⋅∠=⋅==, ∴280SA =,SA =.∵SA 与底面所成的角为45,∴45SAS '∠=,cos 45452AS SA '=⋅==. ∴底面周长2l AS π'=⋅=,∴圆锥的侧面积为12⨯=. 22.②③④【解析】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为 直线n ,ABCD 所在的平面为α.ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立.命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则l n ∥, 由m α⊥,有m l ⊥,从知m n ⊥结论正确. 由平面与平面平行的定义知命题③正确. 由平行的传递性及线面角的定义知命题④正确. 23.78【解析】如图连接ND ,取ND 的中点E ,连接,ME CE ,则//ME AN .则异面直线AN ,CM 所成的角为EMC ∠,由题意可知1CN =,AN =∴ME.又CM =DN =NECE =则2227cos 28CM EM CE CME CM EM +-∠===⨯. 24.25【解析】AB 为x 轴,AD 为y 轴,AQ 为z 轴建立坐标系, 设正方形边长为2.cos θ=令[]()0,2)f m m =∈()f m '=[]0,2,()0m f m '∈∴< max 2()(0)5f m f ==,即max 2cos 5θ=. 25.②③【解析】如图BDEF 为底面圆的内接正方形,设1AC BC ==,则AB AD AE AF FB FE ED BD ========,即侧面均为等边三角形,∵AC ⊥底面BDEF ,FEDCBA假设a FB ∥,由题意b BD ∥,当直线AB 与a 成60°角时,由图可知AB 与b 成60°角,所以①错,②正确;假设a EB ∥,可知③正确,④错.所以正确为②③. 26.【证明】(1)在平行六面体1111ABCD A B C D -中,AB ∥11A B .因为AB ⊄平面11A B C ,11A B ⊂平面11A B C , 所以AB ∥平面11A B C .D 1C 1B 1A 1DCBA(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形, 因此1AB ⊥1A B .又因为1AB ⊥11B C ,BC ∥11B C , 所以1AB ⊥BC . 又因为1ABBC =B ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC . 因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .27.【解析】(1)由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C = 由2AB BC ==,120ABC ∠=得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .DABCA 1B 1C 1由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由11B C =11A B =,11AC得111cos C A B ∠=,111sin C A B ∠=,所以1C D,故111sin C D C AD AC ∠==.因此,直线1AC 与平面1ABB. 方法二 (1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O xyz -.A由题意知各点坐标如下:(0,A ,(1,0,0)B,1(0,A ,1(1,0,2)B,1C ,因此1(1AB =,11(12)A B =-,113)AC =-,由1110AB A B ⋅=得111AB A B ⊥. 由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知1AC =,AB =,1(0,0,2)BB =, 设平面1ABB 的法向量=()x,y,z n .由100AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n,即020x z ⎧+=⎪⎨=⎪⎩,可取(=n .所以111||sin |cos ,|13||||AC AC AC θ⋅=<>==⋅n n n .因此,直线1AC 与平面1ABB28.【解析】(Ⅰ)如图,设P A 中点为F ,连结EF ,FB .DA因为E ,F 分别为PD ,P A 中点,所以EF ∥AD 且12EF AD =, 又因为BC ∥AD ,12BC AD =,所以 EF ∥BC 且EF =BC ,即四边形BCEF 为平行四边形,所以CE ∥BF , 因此CE ∥平面P AB .(Ⅱ)分别取BC ,AD 的中点为M ,N .连结PN 交EF 于点Q ,连结MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ ∥CE . 由PAD ∆为等腰直角三角形得 PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得 BN ⊥AD .所以AD ⊥平面PBN ,由BC ∥AD 得BC ⊥平面PBN , 那么,平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连结MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在PCD ∆中,由PC =2,CD =1,PD CE在△PBN 中,由PN =BN =1,PB 得14QH =,在Rt MQH ∆中,14QH =,MQ ,所以sin 8QMH ∠=,所以,直线CE 与平面PBC 所成角的正弦值是8. 29.【解析】证明:(1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD . 又AB AD ⊥,BCAB B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD AC ⊥.30.【解析】(Ⅰ)因为AP BE ⊥,AB BE ⊥,AB ,AP ⊂平面ABP ,ABAP A =,所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE BP ⊥,又120EBC ∠=︒, 因此30CBP ∠=︒ (Ⅱ)解法一:取EC 的中点H ,连接EH ,GH ,CH . 因为120EBC ∠=︒, 所以四边形BEHC 为菱形,所以AE GE AC GC ===== 取AG 中点M ,连接EM ,CM ,EC . 则EM AG ⊥,CM AG ⊥, 所以EMC ∠为所求二面角的平面角.又1AM =,所以EM CM === 在BEC ∆中,由于120EBC ∠=︒,由余弦定理得22222222cos12012EC =+-⨯⨯⨯︒=,所以EC =EMC ∆为等边三角形, 故所求的角为60︒. 解法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得(0,0,3)A (2,0,0)E,G,(C -,故(2,0,3)AE =-,AG =,(2,0,3)CG =,设111(,,)m x y z =是平面AEG 的一个法向量.由00m AE m AG ⎧⋅=⎪⎨⋅=⎪⎩可得1111230,0,x z x -=⎧⎪⎨+=⎪⎩ 取12z =,可得平面AEG的一个法向量(3,2)=m .设222(,,)n x y z =是平面ACG 的一个法向量.由00n AG n CG ⎧⋅=⎪⎨⋅=⎪⎩可得22220,230,x x z ⎧+=⎪⎨+=⎪⎩ 取22z =-,可得平面ACG的一个法向量(3,2)n =-. 所以1cos ,||||2m n m n m n ⋅<>==⋅. 因此所求的角为60︒.31.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为AC =40AM =.所以30MN ==,从而3sin 4MAC ∠=. 记AM 与水平的交点为1P ,过1P 作11PQ AC ⊥,1Q 为垂足,则11PQ ⊥平面ABCD ,故1112PQ =, 从而11116sin PQ AP MAC==∠. 答:玻璃棒l 没入水中部分的长度为16cm .( 如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,1O 是正棱台的两底面中心.由正棱台的定义,1OO ⊥平面 EFGH ,所以平面11E EGG ⊥平面EFGH ,1OO ⊥EG .同理,平面11E EGG ⊥平面1111E F G H ,1OO ⊥11E G .记玻璃棒的另一端落在1GG 上点N 处.过G 作GK ⊥11E G ,K 为垂足, 则GK =1OO =32.因为EG = 14,11E G = 62,所以1KG =6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是sin sin()sin()sin cos cos sin NEG αβαβαβαβ=π--=+=+∠42473(35)525255=⨯+-⨯=. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则 22P Q ⊥平面EFGH ,故22P Q =12,从而 2EP =2220sin P NEGQ =∠. 答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)32.【解析】(Ⅰ)由已知可得AF DF ⊥,AF FE ⊥,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(Ⅱ)过D 作DG EF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF .以G 为坐标原点,GF 的方向为x 轴正方向,||GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =,DG =,可得(1,4,0)A ,(3,4,0)B -,(3,0,0)E -,D .由已知,AB EF ∥,所以AB ∥平面EFDC .又平面ABCD 平面EFDC DC =,故AB CD ∥,CD EF ∥.由BE AF ∥,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角, 60CEF ∠=.从而可得(C -.所以EC =,(0,4,0)EB =,(3,AC =--,(4,0,0)AB =-. 设(),,n x y z =是平面BCE 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧+=⎪⎨=⎪⎩,所以可取(3,0,n =. 设m 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-.故二面角C E-B -A 的余弦值为.33.【解析】(I )证明:∵54AE CF ==, ∴AE CF AD CD=,∴EF AC ∥. ∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥,∴EF DH ⊥,∴EF D H '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =, ∴1AE OH OD AO =⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD .(Ⅱ)建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =uu u r ,,,()'133AD =-uuur ,,,()060AC =uuu r ,,,设面'ABD 法向量()1n x y z =,,u r ,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取45y z ⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量()2301n =u u r ,,,∴1212cos n n n n θ⋅==u r u u r u r u u r,∴sin θ. 34.【解析】(Ⅰ)由已知得232==AD AM , 取BP 的中点T ,连接TN AT ,.由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形A M NT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥, 且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN , )2,1,25(=.设(,,)x y z =n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩n n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =, 于是||85|cos ,|25||||n AN n AN n AN ⋅<>== 35.【解析】(Ⅰ)设AC BE O =,连结OF ,EC ,由于E 为AD 的中点,1,//2AB BC AD AD BC ==, 所以//,AE BC AE AB BC ==,因此四边形ABCE 为菱形,所以O 为AC 的中点,又F 为PC 的中点,因此在PAC ∆中,可得//AP OF .又OF ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(Ⅱ)由题意知,//,ED BC ED BC =,所以四边形BCDE 为平行四边形, 因此//BE CD .又AP ⊥平面PCD ,所以AP CD ⊥,因此AP BE ⊥. 因为四边形ABCE 为菱形,所以BE AC ⊥.又AP AC A =,AP ,AC ⊂平面P AC ,所以BE ⊥平面PAC .36.【解析】(Ⅰ)∵D E ,为PC AC ,中点,∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ,∴P A ∥平面DEF(Ⅱ)∵D E ,为PC AC ,中点,∴132DE PA == ∵E F ,为AC AB ,中点,∴142EF BC == ∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥∵AC EF E =,∴DE ⊥平面ABC∵DE⊂平面BDE,∴平面BDE⊥平面ABC.37.【解析】(Ⅰ)连接BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(Ⅱ)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,AP为单位长,建立空间直角坐标系A xyz-,则D1),2E1(0,)2AE=.设(,0,0)(0)bm m ,则(c m(AC m=.设1(,,)n x y z=为平面ACE的法向量,则110,0,n ACn AE⎧⋅=⎪⎨⋅=⎪⎩即0,10,2mxy z⎧+=+=,可取1nm=-.又2(1,0,0)n=为平面DAE的法向量,由题设121cos,2n n=12=,解得32m=.因为E为PD的中点,所以三棱锥EACD-的高为12.三棱锥E ACD-的体积11313222V=⨯⨯=.38.【解析】(Ⅰ)证明:如图取PB中点M,连接MF,AM.因为F为PC中点,故MF//BC 且MF=12BC .由已知有BC//AD ,BC=AD .又由于E 为AD 中点, 因而MF//AE 且MF=AE ,故四边形AMFE 为平行四边形,所以EF//AM ,又AM ⊂平面PAB ,而EF ⊄平面PAB ,所以EF//平面PAB .(Ⅱ)(i )证明:连接PE ,BE .因为PA=PD ,BA=BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P-AD-B 的平面角.在三角形PAD 中,由2,AD PA PD ===PE=2.在三角形ABD 中,由BA BD ==,可解得BE=1.在三角形PEB 中,PE=2,BE=1,60PEB ∠=,由余弦定理,可解得90PBE ∠=,即BE ⊥PB ,又BC//AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD , 所以平面PBC ⊥平面ABCD .(ii )连接BF ,由(i )知BE ⊥平面PBC .所以∠EFB 为直线EF 与平面PBC 所成的角,由,∠ABP 为直角,而MB=12,可得,故,又BE=1,故在直角三角形EBF 中,sin BE EFB EF ∠==所以直线EF 与平面PBC 39.【解析】(Ⅰ)设点O 为AC ,BD 的交点,由AB =BC ,AD =CD ,得BD 是线段AC 的中垂线.所以O 为AC 的中点,BD ⊥AC .又因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .所以BD ⊥平面APC .(Ⅱ)连结OG .由(1)可知OD ⊥平面APC ,则DG 在平面APC 内的射影为OG ,所以∠OGD是DG与平面APC所成的角.由题意得OG=12P A在△ABC中,AC所以OC=12 AC在直角△OCD中,OD2.在直角△OGD中,tan∠OGD=3ODOG=.所以DG与平面APC.(Ⅲ)连结OG.因为PC⊥平面BGD,OG⊂平面BGD,所以PC⊥OG.在直角△P AC中,得PC所以GC=5AC OCPC⋅=.从而PG,所以32 PGGC=.40.【解析】(Ⅰ)由AB是圆O的直径,得AC⊥BC.由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC,又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.(Ⅱ)连OG并延长交AC与M,链接QM,QO.由G为∆AOC的重心,得M为AC中点,由G为PA中点,得QM//PC.又O 为AB 中点,得OM//BC .因为QM∩MO=M,QM ⊂平面QMO .所以QG//平面PBC .41.【解析】(Ⅰ)因为111A B C ABC -是直三棱柱,所以1CC ⊥平面ABC,又AD ⊂平面ABC ,所以1CC AD ⊥,又因为AD 1,,DE CC ⊥DE ⊂平面11BCC B ,1CC ,DE E ⋂=所以AD ⊥平面11BCC B ,又AD ⊂平面ADE,所以平面ADE ⊥平面11BCC B .(Ⅱ)因为1111AB AC =,F 为11C B 的中点,所以111A F B C ⊥.因为1CC ⊥平面111ABC ,且1A F ⊂平面111ABC ,所以1CC 1.A F ⊥又因为1CC ,11B C ⊂平面11BCC B , 1CC ⋂111B C C =,所以1A F ⊥平面11BCC B ,所以1//A F AD .又AD ⊂平面ADE ,1A F ⊄平面ADE ,所以1//A F 平面ADE .42.【解析】(Ⅰ)AB ⊥平面PAD ,PH ⊂面PAD PH AB ⇒⊥又,PH AD AD AB A PH ⊥=⇒⊥面ABCD(Ⅱ)E 是PB 中点⇒点E 到面BCF 的距离1122h PH == 三棱锥E BCF -的体积1111113326212BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯= (Ⅲ)取PA 的中点为G ,连接,DG EG ,PD AD DG PA =⇒⊥,又AB ⊥平面PAD ⇒面PAD ⊥面PAB DG ⇒⊥面PAB ,点,E G 是棱,PB PA 的中点11//,//////22EG AB DF AB EG DF DG EF ⇒⇒⇒,得:EF ⊥平面PAB .43.【证明】:(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以△ABD 为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .44.【解析】法一:(Ⅰ)证明:取AD 中点G ,连接PG ,BG ,BD .因PA=PD ,有PG AD ⊥,在ABD ∆中,1,60AB AD DAB ==∠=︒,有ABD ∆为等边 三角形,因此,BG AD BG PG G ⊥⋂=, 所以AD ⊥平面PBG ,.AD PB AD GB ⇒⊥⊥又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ⋂=, 所以AD ⊥平面DEF .(Ⅱ),PG AD BG AD ⊥⊥,PGB ∴∠为二面角P —AD —B 的平面角,在2227,4Rt PAG PG PA AG ∆=-=中 在3sin 60Rt ABG BG AB ∆⋅中,==222734cos 27PG BG PB PGB PG BG +-+-∴∠===-⋅法二:(Ⅰ)取AD 中点为G ,因为,.PA PD PG AD =⊥又,60,AB AD DAB ABD =∠=︒∆为等边三角形,因此,BG AD ⊥, 从而AD ⊥平面PBG .延长BG 到O 且使得PO ⊥OB ,又PO ⊂平面PBG ,PO ⊥AD ,,AD OB G ⋂=所以PO ⊥平面ABCD .以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图所示空间直角坐标系. 设11(0,0,),(,0,0),(,,0),(,,0).22P m G n A n D n -则||||sin 60GB AB=︒=11(((,0),(,).2222n m B nC n E n F ∴++++ 由于3(0,1,0),(,0,0),()2242n mAD DE FE ===+- 得0,0,,,AD DE AD FE AD DE AD FE DE FE E⋅=⋅=⊥⊥⋂=AD ∴⊥平面DEF .(Ⅱ)1(,,),()22PA n mPB n m =--=+-22,1,m m n ====解之得 取平面ABD 的法向量1(0,0,1),n =- 设平面PAD 的法向量2(,,)n a b c = 由2230,0,0,0,2222b bPA n a c PD n a c ⋅=--=⋅=+-=得由得取2n=12cos,7n n∴<>==-45.【解析】(Ⅰ)因为四边形ADEF是正方形,所以FA//ED.故C E D∠为异面直线CE 与AF所成的角.因为FA⊥平面ABCD,所以FA⊥CD.故ED⊥CD.在Rt△CDE中,CD=1,ED=,CE故cos CED∠=EDCE=3.所以异面直线CE和AF所成角的余弦值为3.(Ⅱ)证明:过点B作BG//CD,交AD于点G,则45BGA CDA∠=∠=.由45BAD∠=,可得BG⊥AB,从而CD⊥AB,又CD⊥FA,FA⋂AB=A,所以CD⊥平面ABF.(Ⅲ)解:由(Ⅱ)及已知,可得AG,即G为AD的中点.取EF的中点N,连接GN,则GN⊥EF,因为BC//AD,所以BC//EF.过点N作NM⊥EF,交BC于M,则GNM∠为二面角B-EF-A的平面角.连接GM,可得AD⊥平面GNM,故AD⊥GM.从而BC⊥GM.由已知,可得GM=2.由NG//FA,FA⊥GM,得NG⊥GM.在Rt△NGM中,tanGM1NG4GNM∠==,所以二面角B-EF-A的正切值为14.46.【解析】(Ⅰ)取A D'的中点G,连结GF,CE,由条件易知。

高考复习29-直线、平面平行与垂直的判定与性质高考试题解读与变式

高考复习29-直线、平面平行与垂直的判定与性质高考试题解读与变式

高考复习29:直线、平面平行与垂直的判定与性质【典型高考试题变式】(一)空间点、直线、平面之间的位置关系例1.α,β是两个平面,m,n 是两条直线,有下列四个命题:①如果m ⊥n,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β. ④如果m ∥n,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)【变式1】【改编例题中问法,考查对课本中公理的掌握情况】在下列命题中,不是公理..的是( ) A.平行于同一个平面的两个平面相互平行 B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【变式2】【改编例题的条件和问法】已知,m n 是异面直线, m ⊥平面α, n ⊥平面β,直线l 满足,l m l n ⊥⊥,且,l l αβ⊄⊄,则( )A. //αβ,且//l αB. αβ⊥,且l β⊥C. α与β相交,且交线垂直于lD. α与β相交,且交线平行于l 【变式3】【改编例题的条件和问法】在下列命题中,属于真命题的是( ) A. 直线,m n 都平行于平面α,则//m nB. 设l αβ--是直二面角,若直线m α⊥,则//m βC. 若直线,m n 在平面α内的射影依次是一个点和一条直线,(且m n ⊥),则n 在α内或n 与α平行D. 设,m n 是异面直线,若m 与平面α平行,则n 与α相交 (二)截面问题例 2.平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( ).A.B.2C.D.13【变式1】【改编例题的条件,正方体中动态截面问题】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是 (写出所有正确命题的编号). ①当102CQ <<时,S 为四边形 ②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足113C R =④当314CQ <<时,S 为六边形⑤当1CQ =时,S 的面积为62【变式2】【改编例题的条件,截面面积的求解】如图所示,在正方体1111ABCD A B C D -中,点G 在棱1AA 上, 11,,3AG AA E F =分别是棱1111,C D B C 的中点,过,,E F G 三点的截面α将正方体分成两部分,则正方体的四个侧面被截面α截得的上、下两部分面积之比为( )A.16 B. 14 C. 13 D. 12(三)平行关系例3.如图所示,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=,E 是PD 的中点.证明:直线//CE 平面PAB .【变式1】【改编例题的问法,依据平行求参数值】如图,在棱台ABC FED -中, DEF ∆与ABC ∆分别是棱长为1与2的正三角形,平面ABC ⊥平面BCDE ,四边形BCDE 为直角梯形, BC CD ⊥, 1CD =,EM DCBAPN 为CE 中点,(,0)AM R AFλλλ=∈>.(Ⅰ)是否存在实数λ使得//MN 平面ABC ?若存在,求出λ的值;若不存在,请说明理由;【变式2】【改编例题的问法,证明线线平行】在四棱锥P ABCD -中,底面是边长为2的菱形,060BAD ∠=, 3PB PD ==, 11PA =, AC BD O ⋂=. (1)设平面ABP ⋂平面DCP l =,证明: //l AB ; (2)若E 是PA 的中点,求三棱锥P BCE -的体积P BCE V -.【变式3】【改编例题的问法,证明面面平行】如图,在矩形中,,平面,分别为的中点,点是上一个动点.(1) 当是中点时,求证:平面平面;(2) 当时,求的值.(四)垂直关系例4.如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ;【变式1】【改编例题的问法,证明线线垂直】在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 是PD 的中点,90ABC ACD ∠=∠=︒, 60BAC CAD ∠=∠=︒,2AC AP ==.(1)求证: PC AE ⊥;【变式2】【改编例题的问法,证明面面垂直】如下图所示的几何体中,111ABC A B C -为三棱柱,且1AA ABC ⊥平面,四边形ABCD 为平行四边形,2AD CD =, 060ADC ∠=.(1)求证: 11//C D AB C 平面;DCBAP(2)若1AA AC =,求证: 111AC A B CD ⊥平面;(3)若2CD =,二面角1A C D C --的余弦值为若55,求三棱锥11C A CD -的体积. 【方法技巧】1.三种垂直关系的证明 (1)判定线线垂直的方法①定义:两条直线所成的角为90°;②平面几何中证明线线垂直的方法; ③线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ;④线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . (2)判定线面垂直的常用方法①利用线面垂直的判定定理;②利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”; ③利用“一条直线垂直于两平行平面中的一个,则与另一个也垂直”;④利用面面垂直的性质. (3)判定面面垂直的方法①利用定义:两个平面相交,所成的二面角是直二面角;②判定定理:a ⊂α,a ⊥β⇒α⊥β. 2.线面垂直、面面垂直的常见性质(1)垂直于同一条直线的两个平面平行(2)过一点有且只有一条直线与已知平面垂直. (3)过一点有且只有一个平面与已知直线垂直. 3.三种垂直关系的转化在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若图中不存在这样的直线,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.【平行与垂直的综合应用问题处理的两个策略】(1)探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.(2)折叠问题中的平行与垂直关系的处理关键是结合图形弄清折叠前后变与不变的数量关系,尤其是隐含着的垂直关系. 【典例试题演练】1.如图,矩形ABCD 中, 2,AB AD E =为边AB 的中点,将ADE ∆直线DE 翻转成1(A BE A ∆∉平面ABCD ),若,M O 分别为线段1,A C DE 的中点,则在ADE ∆翻转过程中,下列说法错误的是( )A. 与平面1A DE 垂直的直线必与直线垂直B. 异面直线BM 与1A E 所成角是定值C. 一定存在某个位置,使DE MO ⊥D. 三棱锥1A ADE -外接球半径与棱AD 的长之比为定值2.已知m 、n 是两条不同直线, α、β、γ是三个不同平面,则下列正确的是( ) A. 若//,//m n αα,则//m n B. 若,αγβγ⊥⊥,则//αβ C. 若//,//m n αβ,则//αβ D. 若,m n αα⊥⊥,则//m n 3.对于直线,m n 和平面,αβ,下列条件中能得出αβ⊥的是( ) A. ,//,//m n m n αβ⊥ B. ,,m n m n αβα⊥⋂=⊂ C. //,,m n n m βα⊥⊂ D. //,,m n m n αβ⊥⊥4.已知正方体1111ABCD A B C D -,点,,E F G 分别是线段1,DC D D 和1D B 上的动点,给出下列结论 ①对于任意给定的点E ,存在点F ,使得1AF A E ⊥; ②对于任意给定的点F ,存在点E ,使得1AF A E ⊥; ③对于任意给定的点G ,存在点F ,使得1AF B G ⊥; ④对于任意给定的点F ,存在点G ,使得1AF B G ⊥。

高考数学 考点42 直线、平面平行的判定与性质必刷题

高考数学 考点42 直线、平面平行的判定与性质必刷题

考点42 直线、平面平行的判定与性质1.如图,在棱长为1的正方体中,点在线段上运动,则下列命题错误的是()A.异面直线和所成的角为定值B.直线和平面平行C.三棱锥的体积为定值D.直线和平面所成的角为定值【答案】D,由线面夹角的定义,令与的交点为,可得即为直线和平面所成的角,当移动时这个角是变化的,故错误故选2.平面过正方体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的正切值为()A. B. C. D.【答案】A3.已知直三棱柱ABC—A1B1C1的底面为等边三角形,且底面积为,体积为,点P,Q分别为线段A1B,B1C上的动点,若直线PQ∩平面ACC1A1=,点M为线段PQ的中点,则点M的轨迹长度为A. B. C. D.【答案】D4.棱长为2的正方体中,为棱中点,过点,且与平面平行的正方体的截面面积为()A. 5 B. C. D. 6【答案】C【解析】结合两个平行平面与第三个平面相交,交线平行的结论,找到平面截正方体所得的截面多边形,画好之后能够确定其为菱形,之后借助于菱形的面积公式等于两条对角线乘积的一半,从而求得结果.取BC中点M,取中点N,则四边形即为所求的截面,根据正方体的性质,可以求得,根据各边长,可以断定四边形为菱形,所以其面积,故选C.5.在菱形中,且,点分别是棱的中点,将四边形沿着转动,使得与重合,形成如图所示多面体,分别取的中点.(Ⅰ)求证:平面;(Ⅱ)若平面平面,求与平面所成的正弦值.【答案】(1)见解析;(2)与平面所成的正弦值为.6.如图,四棱锥,,,,,M,O分别为CD和AC的中点,平面ABCD.求证:平面平面PAC;Ⅱ是否存在线段PM上一点N,使得平面PAB,若存在,求的值,如果不存在,说明理由.【答案】(1)见解析(2)当N为PM靠近P点的三等分点时,平面PAB.7.如图,四棱锥中,底面为矩形,平面,为的中点.(1)证明:∥平面;(2)设,若点到平面的距离为,求二面角的大小.【答案】(1)见解析(2)【解析】(1)证明:连结交于点,连结,因为为矩形,所以为的中点,又为的中点,所以,平面平面,所以平面8.如图1,在△中,分别为的中点,为的中点,.将△ADE沿DE 折起到△的位置,使得平面如图2.(Ⅰ)求证:;(Ⅱ)求二面角的平面角的余弦值.图1 图2【答案】(I)见解析;(II).,设面的法向量,则,解得所以二面角的平面角的余弦值9.如图,在多面体中,是正方形,平面,平面,,点为棱的中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求直线与平面所成的角的正弦值.【答案】(1)见解析.(2) .10.如图,已知平面平面,为线段的中点,,四边形为边长为1的正方形,平面平面,,,为棱的中点.(1)若为线上的点,且直线平面,试确定点的位置;(2)求平面与平面所成的锐二面角的余弦值.【答案】(1)见解析;(2)又平面的一个法向量所求锐二面角的余弦值约:.11.如图所示, 平面,平面平面,四边形为正方形,,,点在棱上.(1)若为的中点为的中点,证明:平面平面;(2)设,是否存在,使得平面平面?若存在,求出的值;若不存在,说明理由.【答案】(1)见解析(2) 不存在,使得平面平面则.12.在三棱柱中,已知侧棱与底面垂直,,且,,为的中点,为上一点,.(1)若三棱锥的体积为,求的长;(2)证明:平面.【答案】(1).(2)见解析.又,∴,而平面,平面,∴平面.13.如图,三棱柱中,四边形为菱形,,平面平面,在线段上移动,为棱的中点.(1)若为线段的中点,为中点,延长交于,求证:平面;(2)若二面角的平面角的余弦值为,求点到平面的距离. 【答案】(1)见解析(2)则14.在四棱锥中,侧面底面,底面为直角梯形,,,,,,分别为,的中点.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2) .平面中,设法向量为,则 ,取,,所以二面角的余弦值为.15.如图,在四棱锥中,四边形是边长为的菱形,且,与交于点,底面,.(1)求证:无论为何值,在棱上总存在一点,使得平面;(2)当二面角为直二面角时,求的值.【答案】(1)见解析;(2)1设平16.四棱锥中,底面是边长为2的菱形,.,且平面,,点分别是线段上的中点,在上.且.(Ⅰ)求证:平面;(Ⅱ)求直线与平面的成角的正弦值;(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.【答案】(1)见解析(2)(3)四边形为平面与四棱锥的表面的交线【解析】分析:(Ⅰ)推导出,由此能证明平面;(Ⅱ)推导出,,,以O为原点,OA、OB、OP分别为x、y、z轴建立空间直角做消息,利用向量法能求出直线AB与平面EFG的所成角的正弦值;(Ⅲ)法1:延长分别交延长线于,连接,发现刚好过点,,连接,则四边形所以直线与平面的成角的正弦值为(Ⅲ)法Ⅰ:延长分别交延长线于,连接,发现刚好过点,,连接,则四边形为平面与四棱锥的表面的交线.法2:记平面与直线的交点为,设,则由,可得.所以即为点.所以连接,,则四边形为平面与四棱锥的表面的交线.17.如图,四棱柱为长方体,点是中点,是的中点.(I)求证: 平面;(l)若,求证:平面平面.【答案】(1)证明见解析;(2)证明见解析.18.在等腰直角中,,分别为,的中点,,将沿折起,使得二面角为.(1)作出平面和平面的交线,并说明理由;(2)二面角的余弦值.【答案】(1)见解析(2)【解析】分析:(1)通过找到解题思路,再根据线面平行的判定、性质以及公理“过平面内一点,作平面内一条直线的平行线有且只有一条”说明理由.(2)过点作的垂线,垂足为,以F为坐标原点,FB所在方向为轴正方向,建立空间直角坐标系,应用空间向量,分别求得两平面的法向量,两平面法向量夹角详解:(1)在面内过点作的平行线即为所求.19.如图,四边形和四边形均是直角梯形,,二面角是直二面角,,,.(1)求证:面;(2)求二面角的大小. 【答案】(1)见解析(2)20.如图所示的几何体中,四边形是矩形,平面,平面,且,.(1)求证: 面;(2)求棱锥的体积.【答案】(1)见解析(2).【解析】分析:(1) 取中点,根据平几知识得四边形为矩形,即得,再根据线面平行判定定理得结论, (2)先证AD垂直平面ABNM,再根据等体积法以及锥体体积公式得结果.21.如图,矩形中,,为的中点,现将与折起,使得平面及平面都与平面垂直.(1)求证:平面;(2)求二面角的余弦值.【答案】(1)见解析(2)∴,注意到此二面角为钝角,故二面角的余弦值为.22.已知矩形与直角梯形,,点为的中点,,在线段上运动.(1)证明:平面;(2)当运动到的中点位置时,与长度之和最小,求二面角的余弦值.【答案】(1)见解析;(2)23.如图,在四棱锥中,,,,,,是棱中点且.(1)求证:平面;(2)设点是线段上一动点,且,当直线与平面所成的角最大时,求的值.【答案】(1)证明见解析.(2).又面的法向量为,24.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点.(1)证明:平面;(2)证明:平面平面;(3)求直线与直线所成角的正弦值.【答案】(1)见解析(2)见解析(3)【解析】分析:(1)先证明,再证明平面.(2)先证明面,再证明平面平面.(3)利用异面直线所成的角的定义求直线与直线所成角的正弦值为.详解:(1)证明:连接,∵、分别是、的中点,即直线与直线所成角的正弦值为.25.底面为正方形的四棱锥,且底面,过的平面与侧面的交线为,且满足.(1)证明:平面;(2)当时,求二面角的余弦值.【答案】(1)见解析(2)所以,故,二面角的余弦值为.。

高考数学题型归纳,直线、平面平行与垂直的综合问题

高考数学题型归纳,直线、平面平行与垂直的综合问题

第六节直线、平面平行与垂直的综合问题考点一立体几何中的探索性问题[典例](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D 的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.[解](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,所以BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.因为DM⊂平面AMD,所以平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为四边形ABCD为矩形,所以O为AC的中点.连接OP,因为P为AM的中点,所以MC∥OP.又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.[题组训练]1.如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)在线段PC上是否存在点M,使得AC⊥BM,若存在,请说明理由,并求PMMC的值.解:(1)由题设AB=1,AC=2,∠BAC=60°,可得S△ABC=12·AB·AC·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ⊂平面MBN , 所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD ,BC ⊂平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以PC ⊥BC .(2)连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO ⊂平面MEG ,P A ⊄平面MEG ,所以P A ∥平面MEG .因为△OCG ≌△OAM ,所以AM =CG =23,所以AM 的长为23.考点二 平面图形的翻折问题[典例] (2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =23DA ,求三棱锥Q -ABP 的体积.解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC .又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =23DA ,所以BP =2 2.如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 綊13DC .由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP×Q E =13×12×3×22sin 45°×1=1.[题组训练]1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB=2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,得到如图2所示的几何体D -ABC .(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积. 解:(1)证明:∵AC =AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,几何体F -BCE 的体积V F -BCE =V B -CEF =13×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=12,∴V F -BCE =13×12×22=23.2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =57.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,得到如图2所示的四棱锥P -ABCE .(1)求证:AP ⊥平面ABCE ;(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =57,由余弦定理得CE = (7)2+(7)2-2×7×7×57=2.连接AC ,∵AE =2,∠AEC =60°, ∴AC =2. 又AP =3,∴在△P AE 中,AP 2+AE 2=PE 2, 即AP ⊥AE . 同理,AP ⊥AC .∵AC ∩AE =A ,AC ⊂平面ABCE ,AE ⊂平面ABCE , ∴AP ⊥平面ABCE .(2)∵AB ∥CE ,且CE ⊂平面PCE ,AB ⊄平面PCE , ∴AB ∥平面PCE .又平面P AB ∩平面PCE =l ,∴AB ∥l .[课时跟踪检测]1.如图,四棱锥P -ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P -ABCD 的体积.(2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)因为BD 是圆W 的直径,所以BA ⊥AD ,因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,所以四棱锥P -ABCD 的体积V =13S 四边形ABCD ·P A =233.(2)存在,A Q =23.理由如下.延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =ABAE.经计算可得BE =2,所以AE =AB +BE =3,所以A Q =23.故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =23.2.如图,侧棱与底面垂直的四棱柱ABCD -A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.已知点E 是直线CD 上的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由; (2)求三棱锥M -BC 1E 的体积.解:(1)点E 在线段CD 上且EC =1,理由如下:在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 綊A 1D 1綊AD .所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ⊄平面BC 1E ,EC 1⊂平面BC 1E , 所以AM ∥平面BC 1E . 故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,所以V M -BC 1E =V A -BC 1E =V C 1-ABE=13×⎝⎛⎭⎫12×3×3×4=6.3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1-ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB 的值;若不存在,请说明理由.解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2, ∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE , ∴BE ⊥平面D 1AE .(2)当AM AB =14时,MF ∥平面D 1AE ,理由如下:取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =14AB ,∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =14.4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1-BCD ,如图2所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.解:(1)证明:∵D,M分别为AC,FC的中点,∴DM∥EF,又∵EF⊂平面A1EF,DM⊄平面A1EF,∴DM∥平面A1EF.(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,A1E⊂平面A1EF,EF⊂平面A1EF,∴BD⊥平面A1EF,又A1F⊂平面A1EF,∴BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD,又∵A1B⊂平面A1BD,∴A1B⊥EF,又∵DM∥EF,∴A1B⊥DM.假设A1B⊥CD,∵DM∩CD=D,∴A1B⊥平面BCD,∴A1B⊥BD,与∠A1BD为锐角矛盾,∴直线A1B与直线CD不能垂直.5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB =a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC ⊥平面ACFE ;(2)当EM 为何值时,AM ∥平面BDF ?证明你的结论.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =a ,∠ABC =60°,所以四边形ABCD 是等腰梯形,且∠DCA =∠DAC =30°,∠DCB =120°, 所以∠ACB =∠DCB -∠DCA =90°,所以AC ⊥BC .又平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD , 所以BC ⊥平面ACFE . (2)当EM =33a 时,AM ∥平面BDF ,理由如下: 如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2. 易知EF =AC =3a ,所以AN =233a .因为EM =33a , 所以MF =23EF =233a ,所以MF 綊AN ,所以四边形ANFM 是平行四边形,所以AM ∥NF ,又NF ⊂平面BDF ,AM ⊄平面BDF , 所以AM ∥平面BDF .6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;(2)求三棱锥G -ECD 的体积.贾老师数学解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下.取点H 为AD 的中点,连接GH ,因为点G 为AC 的中点,所以在△ACD 中,由三角形中位线定理可知GH ∥CD ,又GH ⊄平面BCD ,CD ⊂平面BCD ,所以GH ∥平面BCD .(2)因为AD ∥CF ,AD ⊂平面ADEB ,CF ⊄平面ADEB ,所以CF ∥平面ADEB ,因为CF ⊂平面CFEB ,平面CFEB ∩平面ADEB =BE ,所以CF ∥BE ,又CF ⊂平面ACFD ,BE ⊄平面ACFD ,所以BE ∥平面ACFD ,所以V G -ECD =V E -GCD =V B -GCD .因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°,又CA =CB =CF =1,所以CD =3,CG =12, 又BC ⊥平面ACFD ,所以V B -GCD =13×12CG ×CD ×BC =13×12×12×3×1=312. 所以三棱锥G -ECD 的体积为312.。

高考数学专题复习:直线与平面、平面与平面的垂直

高考数学专题复习:直线与平面、平面与平面的垂直

高考数学专题复习:直线与平面、平面与平面的垂直一、单选题1.如图,在三棱锥P ABC -中,2PA PC AC AB BC =====,平面PAC ⊥平面ABC ,D 为PC 中点,则异面直线BD 与P A 所成的角为( )A .30°B .45°C .60°D .90°2.已知m ,n 表示两条不同的直线,α,β表示两个不同的平面,则下列命题中正确的是( ) A .若αβ⊥,m αβ=,n m ⊥,则n β⊥B .若m α⊥,βn//,且//αβ,则m n ⊥C .若//m n ,n α⊂,则//m αD .若//m α,βn//,且//αβ,则//m n3.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若3SA ==,则SED △的面积的最小值为( ) A .6B .92C .3D .944.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD 沿AF 折起,使平面ADF ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AKt ,则t 的取值范围是( )A .20,5⎛⎫ ⎪⎝⎭B .12,35⎛⎫ ⎪⎝⎭C .21,52⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭5.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列结论正确的是( )A .若//m n ,//m α,则//n αB .若αβ⊥,m β⊥,则//m αC .若//m α,//m β,则//αβD .若m α⊥,n α⊥,则//m n6.下列叙述不正确的是( )A .已知a ,b 是空间中的两条直线,若a b ⋂=∅,则直线a 与b 平行或异面B .已知l 是空间中的一条直线,α是空间中的一个平面,若l α⋂≠∅,则l α⊂或l 与α只有一个公共点C .已知α,β是空间两个不同的平面,若αβ⋂≠∅,则α,β必相交于一条直线D .已知直线l 与平面α相交,且l 垂直于平面α内的无数条直线,则l α⊥7.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为矩形的棱台称为刍童.如图所示的某刍童1111ABCD A BC D -中,1O ,O 为上、下底面的中心,1OO ⊥平面ABCD ,11112A B A D ==,4AB AD ==,侧棱1A A 所在直线与直线1O O 所成的角为45°,则该刍童1111ABCD A BC D -的体积为( )A .BC .563D 8.已知菱形ABCD ,60DAB ∠=︒,E 为边AB 上的点(不包括A B ,),将ABD △沿对角线BD 翻折,在翻折过程中,记直线BD 与CE 所成角的最小值为α,最大值为β( ) A .αβ,均与E 位置有关B .α与E 位置有关,β与E 位置无关C .α与E 位置无关,β与E 位置有关D .αβ,均与E 位置无关9.点P 是等腰三角形ABC 所在平面外一点,PA ⊥平面ABC ,8PA =,在三角形ABC 中,底边6BC =,5AB =,则P 到BC 的距离为( ).A .BC .D .10.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,ABC 为等边三角形,2PA AB ==,点N 为BC 的中点,若点M 为ABC 内一点,且有30MPA ∠=,则MN 的最小值为( )A 1BCD .111.在三棱锥P ABC -中,已知PA ⊥平面ABC ,2PA AB BC ===,2ABC π∠=.若该三棱锥的顶点都在同一个球面上,则该球的表面积为( ) A .4πB .10πC .12πD .48π12.如图,正方体1111ABCD A BC D -中,M 、N 分别是1AA 、AB 上的点,若190NMC ∠=°,那么1NMB ∠( )A .大于90度B .小于90度C .等于90度D .不能确定二、填空题13.如图,四边形ABCD 中,1AB AD CD ===,BD =,BD CD ⊥.将四边形ABCD 沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则BC 与平面ACD '所成的角的正弦值为__________.14.异面直线a ,b 所成角为π3,直线c 与a ,b 垂直且分别交于A ,B ,点C ,D 分别在直线a ,b 上,若1AC =,2AB =,3BD =,则CD =__________.15.三棱锥P ABC -的高为PH ,若三条侧棱PA 、PB 、PC 两两垂直,则H 为ABC 的________心.16.如图,已知PD 垂直于正方形ABCD 所在的平面,连接PB ,PC ,P A ,AC ,BD ,则一定互相垂直的平面有__________对.三、解答题17.如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC .(1)证明:平面PBC ⊥平面PAC ;(2)若点E 是PC 的中点,在AC 上找一点F 使得直线//EF 平面PAB ,并说明理由. (3)设2AB PC ==,1AC =,求二面角B PA C --的余弦值.18.在如图所示的空间几何体中,平面ACD ⊥平面ABC ,△ACD 与△ACB 均是等边三角形,4AC BE ==,BE 和平面ABC 所成的角为60︒.过点E 作平面ABC 的垂线,垂足F 在ABC ∠的平分线上.(1)求证:DE ⊥平面ADC ; (2)求点B 到平面ADE 的距离; (3)求二面角A BC E --的正切值.19.如图,点C 在直径为AB 的半圆O 上,CD 垂直于半圆O 所在平面,平面ADE ⊥平面ACD ,且CD ∥BE .(1)证明:CD =BE ;(2)若AC =1,AB ∠ADC =45°,求四棱锥A -BCDE 的内切球的半径.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,1PD BC ==,二面角P CD A --为直二面角.(1)若E 为线段PC 的中点,求证:DE PB ⊥;(2)若PC =,求PC 与平面PAB 的所成角的正弦值21.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BCD ︒∠=,//AB CD ,又1AB BC PC ===,PB =2CD =,AB PC ⊥.(1)求证:PC ⊥平面ABCD ;(2)求PA 与平面ABCD 所成角的余弦值;22.如图,已知矩形ABCD 中,10,6AB BC ==,将矩形沿对角线BD 把ABD △折起,使A 移动到点1A ,且1A 在平面BCD 上的射影O 恰好在CD 上.(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ; (3)求三棱锥1A BCD -的体积.参考答案1.C 【分析】将异面直线所成的角,转化为相交直线所成角,取AC 中点E ,连接BE 、DE ,即转化为求解BDE ∠. 【详解】取AC 中点E ,连接BE 、DE .由D ,E 分别为PC ,AC 中点,得DE PA ∥,则BDE ∠即为所求(或其补角).因为2PA PC AC AB BC =====,所以BE AC ⊥,又平面PAC ⊥平面ABC ,由面面垂直的性质定理可证BE ⊥平面P AC ,可得BE DE ⊥.在Rt BDE △中,BE ==112DE PA ==,则tan BE BDE DE ∠==(]0,90BDE ∠∈︒,所以60BDE ∠=︒.故选:C . 2.B 【分析】题目考查立体几何线面位置关系的性质和判定,A 选项中,缺少线在面内的条件,错误;B 选项是线面垂直的性质,正确;C 选项中,缺少线不在面内的条件,错误;D 选项中,面面平行推出线线平行缺少第三个面,错误 【详解】选项A 中,考查面面垂直的性质定理,面面垂直时,其中一个面内垂直于交线的线,垂直于另外一个面,选项中垂直于交线的线n ,没有说明在α面内,所以不正确选项B 中,考查线面垂直的性质定理,m α⊥,//αβ,则m β⊥,所以m 垂直于面内所有的线,βn//,所以m n ⊥,B 选项正确选项C 中,没有说明m 不在面内,所以不一定平行,可能是在面内的选项D 中,已知面面平行,两个平面内的线,或者与面平行的线,线线的位置关系是任意的,不能推出线线平行,推出线线平行需要借助第三个面 故选:B 3.B【分析】求得三角形SED 面积的表达式,结合基本不等式求得面积的最小值. 【详解】设BE x =,EC y =,则BC AD x y ==+. 因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥. 又AE ED ⊥,=SA AE A ⋂,所以ED ⊥平面SAE ,则ED SE ⊥.AE ED =在Rt AED 中,222AE ED AD +=, 即()22233x y x y +++=+,化简得3xy =.在Rt SED 中,SE ED ==所以12SEDSSE ED =⋅因为22108336x x +≥=,当且仅当x =y =所以92SED S ≥. 故选:B4.C【分析】在平面ADF 内,作DM AF ⊥,垂足为M ,连结MK ,利用线面垂直的性质定理及线面垂直的判定定理可得AB ⊥平面DMK ,从而可得AB MK ⊥,设112DF x ⎛⎫=∈ ⎪⎝⎭,,再将AK 表示为x 的函数,即可求出t 的取值范围. 【详解】在平面ADF 内,作DM AF ⊥,垂足为M ,连结MK , 因为平面ADF ⊥平面ABC ,DM AF ⊥,平面ADF 平面ABC AF =,DM ⊂平面ADF ,所以DM ⊥平面ABC ,AB平面ABC ,所以DM AB ⊥,又DK AB ⊥,DKDM D =,,DK DM ⊂平面DMK ,所以AB ⊥平面DMK ,又MK ⊂平面DMK ,所以AB MK ⊥,设112DF x ⎛⎫=∈ ⎪⎝⎭,,在Rt ADF 中,1AD =,AF = 又2AD AM AF =⋅,即21AM =AM ,所以DM在Rt ADM △中,sin DM DAM AD ∠=,又90DAM MAK ∠+∠=,所以在AMK Rt △中,21cos 11x AK AM MAK x x x=⋅∠==++,因为函数1y x x =+在112⎛⎫⎪⎝⎭,单调递减,所以152,2x x ⎛⎫+∈ ⎪⎝⎭, 所以21,52AK ⎛⎫∈ ⎪⎝⎭.故选:C 5.D 【分析】利用线面平行的性质定理可以得到判定A 错误的例子;利用面面垂直的性质定理可举出B 错误的例子;利用线面平行的判定定理可以举出C错误的例子;利用线面垂直的性质定理可知D 正确. 【详解】若//m n ,//m α,则n 可能在α内,只要过m 作平面β与α相交,交线即可作为直线n ,故A 错误;若αβ⊥,m β⊥,则m 可能在α内,只要m 在α内垂直于两平面α,β的交线即有m ⊥β,故B 错误;若//m α,//m β,则α,β可能相交,只要m 不在α,β内,且平行于α,β的交线即可,故C 错误;若m α⊥,n α⊥,根据线面垂直的性质定理可知//m n ,故D 正确; 故选:D. 6.D 【分析】利用空间直线与直线、直线与平面、平面与平面的位置关系对各选项逐一判断作答. 【详解】对于A ,空间两直线没有公共点,由空间两直线位置关系的分类知,两直线平行或是异面直线,A 正确;对于B ,直线与平面有公共点,由直线与平面位置关系的分类知,直线与平面有无数个公共点(直线在平面内)或仅只一个,即B 正确;对于C ,两个不重合平面有公共点,由平面基本性质知,它们有且只有一条经过公共点的公共直线,即C 正确;对于D ,正三棱锥的侧棱垂直于底面三角形与该棱相对的边,而在底面三角形所在平面内与该边平行的直线都垂直于这条棱,正三棱锥侧棱不垂直于底面,即D 不正确. 故选:D 7.B 【分析】将侧棱延长交于P ,连接11,AO AO ,先利用已知条件分别计算大四棱锥P ABCD -和小四棱锥1111P A BC D -的高和底面面积,再利用1111P ABCD P A B C D V V V --=-求棱台体积即可. 【详解】设四条侧棱延长交于顶点P ,连接11,AO AO ,由题中已知条件可知,底面矩形ABCD 中,4AB AD ==知,AO =又侧棱1A A 所在直线与直线1O O 所成的角为45°,再由线面垂直关系知等腰直角POA 中,PO =同理可得11AO =1PO 又上底面面积14S =,下底面面积16S =,所以该刍童1111ABCD A BC D -的体积1111P ABCD P A B C D V V V --=-1111111643333S PO S PO =⋅-⋅=⨯⋅⨯. 故选:B. 8.C 【分析】数形结合,作EF //BD ,利用线面垂直得到EF CP ⊥,然后找到异面直线所成角CEP ∠,并表示tan CPCEP PE∠=,通过讨论点C 位置得到结果. 【详解】作EF //BD 交AD 于点F ,分别取,EF BD 的中点,P Q 连接,,,CQ CP AQ CE ,如图,由翻折前该四边形为菱形,且60DAB ∠=︒,所以,ABD BDC 为等边三角形 同时P 点在AQ 上,由,,,,BD CQ BD AQ CQ AQ Q CQ AQ ⊥⊥⋂=⊂平面CPQ 所以BD ⊥平面CPQ ,又EF //BD ,所以EF ⊥平面CPQ ,所以EF CP ⊥ 直线BD 与CE 所成角即直线EF 与CE 所成角,该角为CEP ∠ 所以tan CPCEP PE∠=,由点E 不与,A B 重合, 所以当点C 翻折到与点A 重合时,CP 最小,60CEP ∠=为最小与点E 位置无关; 当没有翻折时,CP 最大,tan CEP ∠最大,则CEP ∠最大,与点E 位置有关 故选:C 9.A 【分析】首先取BC 的中点D ,连接AD ,PD ,易证BC ⊥平面PAD ,从而得到BC PD ⊥,再计算PD 的长度即可. 【详解】取BC 的中点D ,连接AD ,PD ,如图所示:因为AB AC =,D 为BC 中点,所以AD BC ⊥,又因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥. 又因为AD PA A ⋂=,所以BC ⊥平面PAD . 又因为PD ⊂平面PAD ,所以BC PD ⊥.因为4AD ,所以PD =故选:A 10.B 【分析】首先根据已知条件得出AM为定长,点M的轨迹是圆上且位于ABC内的一段弧上,连接AN,由对称性可知MN的最小值为AN得长减去半径即可求解.【详解】因为PA⊥底面ABC,AM⊂面ABC,所以PA AM⊥,在Rt PAM中,2PA=,30MPA∠=,所以23tan303 AM PA=⋅=,所以点M在以A ABC内,即DE连接AN交DE于点M,此时MN最小,由ABC为等边三角形,2AB=可得2cos303AN==所以MN,故选:B.11.C【分析】根据题意找到球心所在位置,然后借助勾股定理求出球半径,进而结合球的表面积公式即可求解.【详解】取边AB 的中点M ,边PC 的中点O ,由于2ABC π∠=,所以点M 为ABC 外接圆的圆心,连接,OM OA ,则OMPA ,又因为PA ⊥平面ABC ,所以OM ⊥平面ABC ,因为AC ⊂平面ABC ,BM ⊂平面ABC ,所以OM AC ⊥,OM BM ⊥,又因为BM MA MC ==,所以OB OA OC OP ===,则点O 为外接球的球心,又因为1==12OM PA ,1=2MA CA 24=12ππ⨯,故选:C. 12.C 【分析】根据190NMC ∠=°可得1MN MC ⊥,又由正方体可知11B C ⊥平面11ABB A ,即11B C ⊥MN ,则可证得MN ⊥平面11MB C ,故可得1MN MB ⊥,则190NMB ∠=︒. 【详解】因为190NMC ∠=°,即1MN MC ⊥,又由正方体可知11B C ⊥平面11ABB A ,且MN ⊂平面11ABB A 则11B C MN ⊥,因为1111MC BC C ⋂=,所以MN ⊥平面11MB C ,又因为1MB ⊂平面11MB C ,所以1MN MB ⊥,即190NMB ∠=︒. 故选:C.13【分析】利用面面垂直的性质定理得到CD ⊥平面A BD '.然后利用勾股定理逆定理和线面垂直判定定理得到'⊥BA 平面ACD ',进而得到直线BC 与平面ACD '所成的角,然后计算求解.【详解】因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD '平面BCD BD =,CD ⊂平面BCD ,故CD ⊥平面A BD '.因为BA '⊂平面A BD ',故CD BA '⊥.因为1A B A D ''==,BD =, 故222BD A B A D ''=+,故''⊥BA A D , 又A D DC D '⋂=,故'⊥BA 平面ACD ',∴BCA '∠为直线BC 与平面ACD '所成的角,A C 'BC 又∵'⊥BA 平面ACD ',∴''⊥BA A C ,∴sinA B BCA BC ∠='',14【分析】首先作出图形,转化异面直线a ,b 所成角为3CAE π∠=或23π,再利用余弦定理,以及勾股定理求CD . 【详解】如图,过点A 作//AE BD ,且AE BD =,连结ED ,CE ,因为异面直线a ,b 所成角为π3,所以3CAE π∠=或23π,1,3AC AE ==,当3CAE π∠=时,22213213cos73CE π=+-⨯⨯⨯=,所以CE ,当23CAE π∠=时,222213213cos 133CE π=+-⨯⨯⨯=,所以CE 因为//AE BD ,且AE BD =,所以四边形AEDB 是平行四边形,即2DE =, 又因为,ca cb ,即DE AE ⊥,且DE AC ⊥,AC AE A ⋂=,所以DE ⊥平面ACE ,所以DE CE ⊥,当CE =,2DE =时,CD =当CE =2DE =时,CD =15.垂 【分析】根据题意可证明PA ⊥面PBC ,结合PH 为三棱锥的高可以证明AH BC ⊥,同理:,BH AC CH AB ⊥⊥,进而得到答案.【详解】如图,因为,,PA PB PA PC PB PC P ⊥⊥⋂=,所以PA ⊥面PBC ,则P A ⊥BC ,又PH ⊥平面ABC ,所以PH ⊥BC ,而PA PH P =,所以BC ⊥面P AH ,所以AH BC ⊥,同理可证:,BH AC CH AB ⊥⊥,所以点H 为垂心.故答案为:垂. 16.7 【分析】根据PD ⊥平面ABCD ,利用面面垂直的判定定理可得3对互相垂直的平面;再证明图中的线面垂直关系,结合面面垂直的判定定理又可得4对互相垂直的平面,总共有7对互相垂直的平面. 【详解】在四棱锥P ABCD -,①因为PD ⊥平面ABCD ,PD ⊂平面PAD ,所以平面PAD ⊥平面ABCD ; 同理可证:平面PBD ⊥平面ABCD ;平面PCD ⊥平面ABCD ; ②因为PD ⊥平面ABCD ,AB平面ABCD ,所以PD AB ⊥.因为ABCD 为正方形,所以AB AD ⊥.又PD ,AD 在平面PAD 内,且相交于点D ,所以AB ⊥平面PAD . 又AB平面PAB ,所以平面PAB ⊥平面PAD .同理可证:平面PCB ⊥平面PCD ,平面PAC ⊥平面PBD ,平面PCD ⊥平面PAD 所以一定互相垂直的平面有7对. 故答案为:7.17.(1)证明见解析;(2)点F 为AC 的中点,证明见解析;(3. 【分析】(1)由已知可得BC AC ⊥,再由PC ⊥平面ABC ,得PC BC ⊥,然后根据直线与平面垂直的判定定理可得BC ⊥平面PAC ,进而可证平面PBC ⊥平面PAC ; (2)取AC 中点为F ,根据线面平行的判定定理,即可证明;(3)过C 作CM PA ⊥于M ,连结BM ,可证BMC ∠为二面角B PA C --的平面角,然后在Rt BMC △中,解三角形得cos BMC ∠,即为二面角B PA C --的余弦值. 【详解】解:(1)证明:AB 是圆O 的直径,BC AC ∴⊥,又PC ⊥平面ABC ,BC ⊂平面ABC ,PC BC ∴⊥, PCAC C =,且PC ,AC ⊂平面PAC ,BC ∴⊥平面PAC ,又BC ⊂平面PBC , ∴平面PBC ⊥平面PAC ;(2)F 为AC 的中点,证明如下:证明:取AC 的中点F ,由于点E 为PC 的中点, 所以//EF AP ,因为EF ⊄平面PAB ,AP ⊂平面PAB , 所以//EF 平面PAB ;(3)BC ⊥平面PAC ,PA ⊂平面PAC ,PA BC ∴⊥, 过C 作CM PA ⊥于M ,连结BM ,BCCM C =,且BC ,CM ⊂平面BCM ,PA ∴⊥平面BCM ,从而得PA BM ⊥,BMC ∴∠为二面角B PA C --的平面角,在Rt BMC △中,2CM =BC ,∴BMcos MC BMC BM ∠= ∴二面角B PA C --.18.(1)证明见解析;(2(3)【分析】(1)取AC 中点O ,连接BO ,DO ,易知EF ⊥面ABC ,根据面面垂直的性质有DO ⊥面ABC 、BO ⊥面ADC ,则//DO EF ,由已知可得DO EF =,则EFOD 为平行四边形,即可证DE ⊥平面ADC .(2)利用等体积法B ADE A BDE V V --=,求B 到平面ADE 的距离;(3)过F 作FG BC ⊥于G ,连接EG ,由线面垂直的性质及判定得EG BC ⊥,结合二面角的定义知EGF ∠为二面角A BC E --的平面角,进而求其正切值. 【详解】(1)取AC 中点O ,连接BO ,DO ,由题意,BO 为ABC ∠的平分线,且BO AC ⊥,DO AC ⊥,即F 在BO 上,连接EF , ∴EF ⊥面ABC ,∵面ACD ⊥面ABC ,面ACD面ABC AC =,DO AC ⊥∴DO ⊥面ABC ,同理,BO ⊥面ADC ,又EF ⊥面ABC , ∴//DO EF ,又BE 和面ABC 所成的角为60︒,即60EBF ∠=︒,∴DO EF ==EFOD 为平行四边形,故//DE BO ∴DE ⊥平面ADC(2)设点B 到平面ADE 的距离为d ,由B ADE A BDE V V --=,∴11233ADE BDE S d S ⋅=⋅△△,即111123232AD DE d ED DO ⋅⋅⋅⋅=⋅⋅⋅⋅,解得d =(3)在面ABC 内,过F 作FG BC ⊥于G ,连接EG , ∵EF ⊥平面ABC ,BC ⊂平面ABC , ∴EF BC ⊥,又EF FG F ⋂=, ∴BC ⊥平面EFG ,又EG ⊂平面EFG ,∴EG BC ⊥,即EGF ∠为二面角A BC E --的平面角, 在Rt EFB △中,1cos 60422BF BE =︒=⨯=, 在Rt FGB 中,1sin 30212FG BF =︒=⨯=,在Rt EFG 中,tan EFEGF FG∠==A BC E --的正切值为19.(1)证明见解析;(2【分析】()1利用平面的基本性质得到CD,BE共面,记作平面BCDE.利用线面垂直判定定理证得AC⊥平面BCDE,得到AC⊥DE,在平面ACD中,作CF⊥AD, 由面面垂直的性质定理证得DF⊥平面ADE, 得到DF⊥DE,进而得到DE⊥平面ACD,得到DE⊥CD,结合BC⊥CD,得到BC//ED, 进而四边形BCDE为平行四边形,即可得到结论;()2先求四棱锥A BCDE-的表面积S,再利用体积法,求出四棱锥A BCDE-的内切球的半径3VrS =.【详解】(1)证明:∵CD∥BE,∴CD,BE共面,记作平面BCDE.∵点C在直径为AB的半圆O上,AB是直径∴CB⊥AC, ∵CD⊥平面ACB,AC⊂平面ACDB∴CD⊥AC,∵CB∩CD=C,∴AC⊥平面BCDE,∵DE⊂平面BCDE,∴AC⊥DE①,在平面ACD中,作CF⊥AD,垂足为F.∵平面ADE⊥平面ACD,平面ADE∩平面ACD=AD,∴DF⊥平面ADE,又∵DE⊂平面ADE,∴DF⊥DE②,又∵AC∩AD=A, 结合①②,可得DE⊥平面ACD,又∵CD⊂平面ACD,∴ED⊥CD③,又∵CD⊥平面ABC,BC⊂平面ABC,∴CD⊥BC④,由③④可得BC//ED,又∵DC //EB ,∴四边形BCDE 为平行四边形,∴CD =BE ;(2)解:45ADC ∠=.1CD AC ∴==,2BC .由()1可证AC ⊥平面BCDE .∴四棱锥A BCDE -的体积1211233V =⨯⨯⨯=. 又四棱锥A BCDE -的表面积(1121112122S =⨯+⨯+⨯+= 故四棱锥A BCDE -的内切球的半径3V r S ==20.(1)证明见解析;(2【分析】(1)由等腰三角形的性质可得DE PC ⊥,再由面面垂直的性质定理可得BC ⊥平面PCD ,即可得到BC DE ⊥,从而得到DE ⊥平面PBC ,即可得证;(2)首先利用余弦定理求出PD C ∠,过点P 作PH CD ⊥于H ,由面面垂直的性质定理可得PH ⊥平面ABCD ,即可求出PH ,再过H 点作//HG DA ,且HG 与BA 的延长线交于G 点,即可求出PG ,利用等体积法求出点C 到平面PAB 的距离,设PC 与平面PAB 的所成角为θ,则sin h PCθ=,即可得解; 【详解】证明:(1)1PD DC ==,且E 为PC 的中点所以DE PC ⊥又二面角P CD A --为直二面角∴平面PCD ⊥平面ABCDBC CD ⊥,平面PCD 平面ABCD CD =, BC ⊂平面ABCDBC ∴⊥平面PCD因为DE ⊂平面PCD.BC DE ∴⊥BC ⊂平面PBC ,PC ⊂平面PBC ,BC PC C ⋂=DE ∴⊥平面PBC ,PB ⊂平面PBCDE PB ∴⊥(2)若PC =,由余弦定理可得222222111cos 22112PD DC PC PDC PD DC+-+-∠===-⋅⨯⨯,因为()0,PDC π∠∈,所以120PDC ∠=︒过点P 作PH CD ⊥于H , 因为平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,PH ⊂平面PCD所以PH ⊥平面ABCD在RT PHD 中,sin 60PH PD ︒=⋅= 过H 点作//HG DA ,且HG 与BA 的延长线交于G 点. 因为ABCD 为正方形,所以HG AB ⊥,又PH ⊥平面ABCD ,AB平面ABCD所以PH AB ⊥PH HG H =,,PH HG ⊂平面PHG 所以AB ⊥平面PHG ,又PG ⊂平面PHG所以.PG AB ⊥在 Rt PHG 中,PG三棱锥 P ABC -的体积11111332ABC V S PH =⋅=⨯⨯⨯=设点C 到平面PAB 的距离为h则三棱锥C PAB -的体积1111332ABP V S h =⋅=⨯⨯解得h =设PC 与平面PAB 的所成角为θ,所以sin h PC θ==,即PC 与平面PAB21.(1)证明见解析;(2【分析】 (1)由勾股定理逆定理得PC BC ⊥,结合AB PC ⊥,由线面垂直的判定定理即可求证; (2)由PC ⊥平面ABCD 可得PAC ∠为PA 与平面ABCD 所成的角,在PAC △中可求PAC ∠的余弦值即可;【详解】(1)在PBC 中,由1BC PC ==,PB =所以222BC PC PB +=,即PC BC ⊥,又因为AB PC ⊥,AB BC B ⋂=所以PC ⊥平面ABCD .(2)如图,连接AC ,由(1)知PC ⊥平面ABCD ,所以AC 为PA 在平面ABCD 内的射影,所以PAC ∠为PA 与平面ABCD 所成的角.在ABC 中,由90ABC ︒∠=,1AB BC ==,可得:AC在PAC △中,由90PCA ︒∠=,1PC =,AC可得PA =所以cos AC PAC PA ∠==,所以PA 与平面ABCD22.(1)证明见解析;(2)证明见解析;(3)48.【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理进行证明即可;(2)根据矩形的性质,结合(1)中结论,利用线面垂直的判定定理、面面垂直的判定定理进行证明即可;(3)利用三棱锥的体积性质,结合三棱锥的体积公式进行求解即可.【详解】(1)因为1A 在平面BCD 上的射影O 恰好在CD 上,所以1AO ⊥平面BCD , 又BC ⊂平面BCD ,所以1BC AO ⊥,又BC DC ⊥,1CD AO O =,1,CD AO ⊂平面1ACD ,所以BC ⊥平面1ACD , 又1A D ⊂平面1ACD ,所以1BC A D ⊥. (2)因为ABCD 是矩形,所以11A D A B ⊥,由(1)知11,A D BC A B BC B ⊥=,所以1A D ⊥平面1A BC ,又1A D ⊂平面1A BD ,所以平面1A BC ⊥平面1A BD .(3)因为1A D ⊥平面1A BC ,所以11A D AC ⊥,因为16,10A D CD ==,所以18AC =,所以11A BCD B A DC V V --==11(68)64832⨯⨯⨯⨯=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章直线与平面考试内容:平面.平面的基本性质.平面图形直观图的画法.两条直线的位置关系.平行于同一条直线的两条直线互相平行.对应边分别平行的角.异面直线所成的角.两条异面直线互相垂直的概念.异面直线的公垂线及距离.直线和平面的位置关系.直线和平面平行的判定与性质.直线和平面垂直的判定和性质.点到平面的距离.斜线在平面上的射影,直线和平面所成的角.三垂线定理及其逆定理.两上平面的位置关系.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.考试要求:(1)掌握平面的基本性质、空间两条直线、直线和平面、两个平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念.对于异面直线的距离,只要求会计算已给出公垂线时的距离.(2)能运用上述概念以及有关两条直线、直线和平面、两个平面平行和垂直关系的性质与判定,进行论证和解决有关问题.(3)会用斜二测的画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图.能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系.(4)理解用反证法证明命题的思路,会用反证法证明一些简单的问题.一、选择题1.(85广东)设a、b、c是空间三条直线,下面给出四个命题:①如果a⊥b,b⊥c,则a∥c;②如果a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③如果a与b相交,b与c相交,则a与c也相交;④如果a与b共面,b与c共面,则a与c也共面.那么在上述命题中,真命题的个数是A.4B.3C.2D.1E.02.(86(8)3分)在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G 1,G2,G3三点重合,重合后的点记为G,那么,在四面体S-EFG中必有A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面3.(87(4)3分)已知:E,F,G,H为空间中四个点,设命题甲:点E,F,G,H不共面,命题乙:直线EF与GH不相交.那么A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件4.(87上海)在空间中,下述命题正确的是A.若直线a∥平面M,直线b⊥直线a,则直线b⊥平面MB.若平面M∥平面N,则平面M内任意一条直线a∥平面NC.若平面M与平面N的交线为a,平面M内的直线b⊥直线a,则直线b⊥平面ND.若平面N内的两条直线都平行于平面M,则平面N∥平面M5.(88(9)3分)如图:正四棱台中,A′D′所在的直线与BB′所在的直线是A.相交直线B.平行直线C.不垂直的异面直线D.互相垂直的异面直线A BCDA' B'C'D'SG1G2G3EFDαβCAEB6. (88(15)3分)如图:二面角α-AB -β的平面角是锐角,C 是面α内一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任一点,那么A.∠CEB>∠DEBB.∠CEB=∠DEBC.∠CEB<∠DEBD.∠CEB 与∠DEB 的大小关系不能确定7. (90(11)3分)如图:正三棱锥S -ABC 的侧棱与底面边长相等,如果E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于A.90°B.45°C.60°D.30°8. (90上海)设a 、b 是两条异面直线,那么下列命题中的假命题是A.经过直线a 有且只有一个平面平行于直线bB.经过直线a 有且只有一个平面垂直于直线bC.存在分别经过a 和b 的两个互相平行的平面D.存在分别经过a 和b 的两个互相垂直的平面9. (90广东)如果直线l 是平面α的斜线,那么在平面α内A.不存在与l 平行的直线B.不存在与l 垂直的直线C.与I 垂直的直线只有一条D.与l 平行的直线有无穷多条10. (91(4)3分)如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有A.12对B.24对C.36对D.48对11. (91(6)3分)如果三棱锥S -ABC 的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S 在底面的射影O 在△ABC 内,那么O 是△A BC 的A.垂心B.重心C.外心D.内心12. (91上海)设直线a 在平面M 内,则直线M 平行于平面N 是直线a 平行于平面N 的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件13. (92(9)3分)在四棱锥的四个侧面中,直角三角形最多可有A.1个B.2个C.3个D.4个14. (92(14)3分)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别为A 1B 1和的中点,那么直线AM 与CN 所成角的余弦值是 A.23 B.1010 C.53 D.54 15. (92上海)在下列条件中,可判定平面α与平面β平行的是 A.α、β都垂直于平面γ B.α内有不共线的三点到β的距离相等C.l ,m 是α内两条直线,且l ∥β,m∥βD.l ,m 是两条异面直线,且l ∥α,m∥α,l ∥β,m∥β16. (92三南)在长方体ABCD -A′B′C ′D ′中,如果AB =BC =a ,AA′=2a ,那么点A 到直线A ′C 的距离等于 A.362 a B.263 a C.332 a D.36a 17. (93(18)3分)已知异面直线a 与b 所成的角为50°,P 为空间一点,则过点P 且与a ,b 所成角都是30°的直线有且仅有A.1条B.2条C.3条D.4条18. (93上海)设a 与b 是异面直线,下列命题正确的是A.有且仅有一条直线与a,b 都垂直B.有一个平面与a,b 都垂直C.过直线a 有且仅有一个平面与b 平行D.过空间任意一点必可作一条直线与a,b 都相交19. (94(11)5分)对于直线m ,n 和平面α,β,α⊥β的一个充要条件是A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m ,n ⊂βC.m∥n,n⊥β,m ⊂αD.m∥n,m⊥α,n⊥β20. (94上海)在棱长为1的正方体ABCD -A′B′C ′D ′中,M 、N 分别为A ′B ′和BB ′的中点,那么AM 和CN 所成角的余弦值为A B C D D 1 C 1 B 1 A 1 M N D AF B C E SA.23 B.210 C.53 D.52 21. (94上海)已知a 、b 是异面直线,直线c 平行与直线a ,那么c 与bA.肯定是异面直线B.肯定是相交直线C.不可能是平行直线D.不可能是相交直线22. (95(10)4分)已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒l ⊥m;②α⊥β⇒l ∥m;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β.其中正确的两个命题是A.①与②B.③与④C.②与④D.①与③23. (95(15)5分)如图,A 1B 1C 1-ABC 是直三棱柱,∠BCA=90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 A.1030 B.0.5 C.1530 D.1015 24. (96(5)4分)如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l ∥α,m ⊂α和m⊥γ,那么必有A.α⊥γ且l ⊥mB.α⊥γ且m∥βC.m∥β且l ⊥mD.α∥β且α⊥γ25. (96上海)在下列命题中,真命题是A.若直线m 、n 都平行于平面α,则m∥n;B.设α-l -β是直二面角,若直线m⊥l ,则m⊥β;C.若直线m 、n 在平面α内的射影依次是一个点和一条直线,且m⊥n,则n 在α内或n 与α平行;D.设m 、n 是异面直线,若m 与α平行,则n 与α相交 26. (97(4)4分)已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 A.arccos 33 B.arccos 31 C.2π D.32π 27. (98上海)在下列命题中,假命题是A.若平面α内的一条直线l 垂直于平面β内的任一直线,则α⊥β;B.若平面α内的任一直线平行于平面β,则α∥β;C.若平面α⊥平面β,任取直线l ∩α,则必有l ⊥β;D.若平面α∥平面β,任取直线l ∩α,则必有l ∥β28. (2001(9)5分)在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°29. (2001北京(11)5分)右图是正方体的平面展开图,在这个正方体中, ①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成 60角④DM 与BN 垂直以上四个命题中,正确命题的序号是(A ) ②③ (B )②④ (C )③④ (D )②③④30.(2001上海(15))若有平面α与β,且l P P l ∉α∈β⊥α=βα,,, ,则下列命题中的假命题为( )A .过点P 且垂直于α的直线平行于β.B .过点P 且垂直于l 的平面垂直于β.C .过点P 且垂直于β的直线在α内.D .过点P 且垂直于l 的直线在α内.二、填空题1. (88(20)4分)如图,四棱锥S -ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面,并且SB =3,用α表示∠ASD,则sin α=__________.2. (89(18)4分)如图,已知圆柱的底面半径是3,S A BD A B O'O C A B C 1 A 1 B 1 D 1 F 1高是4,A ,B 两点分别在两底的圆周上,并且AB =5,那么直线AB 与轴OO′之间的距离等于_________.注:现行考试大纲指出:“对于异面直线的距离,只要求会计算已给出公垂线时的距离”。

因此本题考察范围超出大纲要求。

3. (93上海)正方体ABCD -A ′B ′C ′D ′中,过顶点B 、D 、C ′作截面,则二面角B -DC ′-C 的大小为____________4. (96(19)4分)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60o 的二面角,则异面直线AD 与BF 所成的角的余弦值为___________.5. (97(19)4分)已知m ,l 是直线,α,β是平面,给出下列命题: ①若l 垂直于α内的两条相交直线,则l ⊥α;②若l 平行于α,则l 平行于α内的所有直线;③若m ∩α,l ∩β,且l ⊥m,则α⊥β; ④若l ∩β,且l ⊥α,则α⊥β;⑤若m ∩α,l ∩β,且α∥β,则m∥l .其中正确的命题序号是____________(注:把你认为正确的命题的序号都填上)6. (99(18)4分)α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m⊥n,②α⊥β,③n⊥β,④m⊥α.以其中三个论断作为条件,余下一个作为结论,写出你认为正确的一个命题:_________________三、解答题1. (85(13)15分)如图,设平面AC 和BD 相交于BC ,它们所成的一个二面角为45o ,P 为面AC 内一点,Q 为面BD 内一点,圆周直线MQ 是直线PQ 在平面BD 内的射影,并且M 在BC 中,又设PQ 与平面BD 所成的角为β,∠CMQ=θ(0o <θ<90o =,线段PM 的长为a ,求线段PQ 的长.2. (86(17)10分)如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A ,B 的任意一点,求证:平面PAC⊥平面PBC. 3. (86上海)Rt △ABC 的两直角边长分别为AC =2,BC =3,P 是斜边BC 上一点,沿PC 将起折为直二面角A -PC -B ,此时AB =7,求二面角P -AC -B 的大小4. (90(23)8分)如图,在三棱锥S -ABC 中,SA⊥底面ABC ,AB⊥BC,DE 垂直平分SC ,且分别交AC 、SC 于点D 、E ,又SA =AB ,SB =BC ,求以BD 为棱,以BDE 与BDC 为面的二面角的度数.5. (90广东)在三棱锥S -ABC 中,SA⊥地面ABC ,AB⊥BC,DE 垂直平分SC ,且分别交AC 、SC 于点D 、E ,又SA =AB =a ,BC =2a(同上题图),求证:SC⊥面BDE.6. (90上海)如图,平面α、β相交于直线MN ,点A 在平面α上,点B 在平面β上,点C 在直线MN 上,∠ACM=∠BCN=45°.二面角A -MN -B 的大小为60°,AC=1.求: ⑴点A 到平面β的距离; ⑵二面角A -BC -M 的大小(用反三角函数表示)7. (91(23)10分)已知ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于ABCD 所在平面,且GC =2,求点B 到平面EFG 的距离. G BC D FA EB ACDE S Q A B C M P D a P A C B O A B C D EF A B C M N α β A P B C C A P B8. (91上海)如图,设△ABC 和△DBC 所在的两个平面互相垂直,且AB =BC =BD ,∠CBA=∠DBC =120°,求:⑴AD 的连线与平面BCD 所成的角; ⑵AD 得连线与直线BC 所成的角;⑶二面角A -BD -C 的大小9. (92(26)10分)已知:两条异面直线a 、b 所成的角为θ,它们的公垂线段AA 1的长度为d ,在直线a 、b 上分别取点E 、F ,设A 1E =m ,AF =n ,求证:EF =2m ncos θn m d 222±++10. 已知平面α和不在这个平面内的直线a 都垂直于平面β,求证:a∥α(92三南)11. (93上海)如图,已知二面角α-PQ -β为60°,点A 和点B分别在平面α和β上,点C 在PQ 上,∠ACP=∠BCP=30°,CA=CB =a⑴求证:AB⊥PQ;⑵求点B 到平面α的距离;⑶设R 是线段CA 上一点,直线BR 与平面α所成角的大小为45°,求线段CR 的长.12. (94上海)如图,在梯形ABCD 中,AD∥BC,∠ABC=90°,AB=a,AD =3a,且∠ADC=arcsin 55,又PA⊥平面ABCD ,PA =a,求: ⑴二面角P -CD -A 的大小(用反三角函数表示);⑵点A 到平面PBC 的距离. 13. (96上海)如图,在二面角α-l -β中,A 、B∈α,C 、D∈l ,ABCD 为矩形,P∈β,PA⊥α,且PA =AD ,M 、N 依次是AB 、PC 的中点⑴求二面角α-l -β的大小; ⑵求证:MN⊥AB; ⑶求异面直线PA 与MN 所成角的大小.14. (97上海)如图,在三棱柱ABC -A ′B ′C ′中,四边形A ′ABB ′为菱形,四边形BCC ′B ′为矩形,C ′B ′⊥AB⑴求证:平面CA ′B ⊥平面A ′AB ; ⑵若C ′B ′=2,AB =4,∠ABB ′=60°,求AC ′与平面BCC ′所成角的大小(用反三角函数表示)15. (2001(17)12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21. (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 16. (2001(19)12分) 已知vc 是ABC ∆所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在ABC ∆的高CD 上,AB=a ,VC 与AB 之间的距离为h ,点VC M ∈。

相关文档
最新文档