2010年广州市二模数学试题(理科)
增城市2010届广州市高三“二模”数学试题分
增城市2010届⼴州市⾼三“⼆模”数学试题分增城市2010届⼴州市⾼三“⼆模”数学试题分析及教学建议⼀、数据分析平均分为77.8,难度是0.52;⽐“⼀模”82.7少4.9分,主要是⽴体⼏何、概率、解析⼏何(中等题)学⽣存在的问题较多。
从各分数段可以看出基本成正太分布,区分度较好(0.41),信度是0.74(较⾼),反映学⽣的真实⽔平。
其中⽴体⼏何试题设置较好,能较好检验学⽣存在的问题,概率题对学⽣提⾼阅读理解能⼒有帮助。
60分以下的学⽣增加很多(“⼀模”有456⼈,“⼆模”有637⼈,增加181⼈);100分以上的⼈数减少(“⼀模”有688⼈,“⼆模”有534⼈,减少155⼈);“⼆模”后应加强概率、⽴⼏、解⼏三个模块的试题的分析和训练。
⽂科平均分为74.3,难度是0.5,区分度为0.41,信度为0.75,区分度较好,信度较⾼;从各分数段可以看出成偏正太分布,⾼分层较少,低分层较多。
⽐“⼀模”多2.1分,主要是第19题的贡献。
其中⼀卷32.9分⽐“⼀模”34.5分少1.6分,主要是选择题第9题学⽣做的不好。
⼆、试题分析(⼀)理科试题分析:理科选择题答题情况1.本题主要考查复数的基本概念。
平均分为4.8,难度是0.962.本题主要考查集合的交集、并集、补集及性质等知识,考查了集合元素个数的计算。
平均分为4.4,难度是0.88,选D 的学⽣有247⼈,其原因主要是题意不明或不会,可特殊化,设A={1,2,3},B={3,4},即得答案。
3.本题主要考查向量的加法、模及三⾓函数的最⼤值,考查了三⾓函数的计算和化归。
平均分为4,难度是0.8.选C 有113⼈,选D 有322⼈,其主要原因是计算错误或三⾓函数变形错误或先平⽅后忘记开⽅。
4.本题主要考查空间线⾯的平⾏、垂直的判断。
选A 有408⼈,其原因是对直线与平⾯平⾏的判定定理不理解。
需要加强⽴体⼏何定理的梳理和进⼀步理解。
5.本题主要考查条件框图。
2010年普通高等学校招生全国统一考试(广东卷)数学试题 (理科)(全解析)(word版)
绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A ∩B=( )A .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x << 1.D .【解析】A ∩B =2.若复数11z i =+,23z i =-,则12z z ⋅=( )A .42i +B .2i +C .22i +D .3i + 2.A .【解析】12(1)(3)1311(31)42z z i i i i ⋅=+⋅-=⨯+⨯+-=+3.若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则 ( ) A .()()f x g x 与均为偶函数 B .()f x 为偶函数,()g x 为奇函数 C .()()f x g x 与均为奇函数 D .()f x 为奇函数,()g x 为偶函数 3.B .【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.4.已知数列{}n a 为等比数列,n S 是是它的前n 项和,若2312a a a ⋅=,且4a 与27a 的等差中项为54,则5S = ( )A .35B .33C .3lD .294.C .【解析】设{n a }的公比为q ,则由等比数列的性质知,231412a a a a a ⋅=⋅=,即42a =。
2010年高考数学广东(理)(word版含答案)
了抽样调查,其中 n 位居民的月均用水量分别为 x1, ,xn (单位:吨),根据图 2 所示的程 序框图,若 n 2 ,且 x1,x2 分别为 1,2,则输出地结果 s 为 开始 输入 n,x1,x2, , xn .
s1 0,s2 0,i 1
i i 1
1 1 s ( si xi2 ) i i
2.若复数 z1 1 i,z2 3 i ,则 z1 · z2 ( A. 4 2i
x x
B. 2 i
x
C. 2 2i
x
3.若函数 f (x) 3 3 与 g (x) 3 3 的定义域均为 R ,则 A. f ( x ) 与 g ( x) 均为偶函数 C. f ( x ) 与 g ( x) 均为奇函数 B. f ( x ) 为偶函数, g ( x) 为奇函数 D. f ( x ) 为奇函数, g ( x) 为偶函数
试卷类型:A
2010 年普通高等学校招生全国统一考试(广东卷) 数 学(理 科)
本试卷共 4 页,21 小题,满分 150 分.考试用时 120 分钟. 注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座 位号填写在答题卡上.用 2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.将 条形码横贴在答题卡右上角“条形码粘贴处” . 2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内 相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔 和涂改液.不按以上要求作答的答案无效. 4.作答选做题时,请先用 2B 铅笔填涂选做题的题给号对应的信息点,再作答.漏涂、 错涂、多涂的,答案无效. 5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. . 一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分. 在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.若集合 A {x | 2 x 1} , B {0 x 2} ,则集合 A∩B = A. {x | 1 x 1 |} C. {x | 2 x 2 |} B. {x | 2 x 1 |} D. {x | 0 x 1 |} ) D. 3 i
2010年广东省高考数学试卷(理科)答案与解析
2010年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•广东)若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=() A.{x|﹣1<x<1} B.{x|﹣2<x<1}C.{x|﹣2<x<2}D.{x|0<x<1} 【考点】并集及其运算.【专题】集合.【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)(2010•广东)若复数z1=1+i,z2=3﹣i,则z1•z2=()A.4+2i B.2+i C.2+2i D.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z1=1+i,z2=3﹣i代入z1•z2,按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式.【解答】解:z1•z2=(1+i)•(3﹣i)=1×3+1×1+(3﹣1)i=4+2i;故选A.【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2010•广东)若函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x的定义域均为R,则()A.f(x)与g(x)均为偶函数 B.f(x)为奇函数,g(x)为偶函数C.f(x)与g(x)均为奇函数 D.f(x)为偶函数,g(x)为奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】首先应了解奇函数偶函数的性质,即偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).然后在判断定义域对称性后,把函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x 代入验证.即可得到答案.【解答】解:由偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).对函数f(x)=3x+3﹣x有f(﹣x)=3﹣x+3x满足公式f(﹣x)=f(x)所以为偶函数.对函数g(x)=3x﹣3﹣x有g(﹣x)=3﹣x﹣3x=﹣g(x).满足公式g(﹣x)=﹣g(x)所以为奇函数.所以答案应选择D.【点评】此题主要考查函数奇偶性的判断,对于偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x)做到理解并记忆,以便更容易的判断奇偶性.4.(5分)(2010•广东)已知数列{a n}为等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,则S5=()A.35 B.33 C.31 D.29【考点】等比数列的性质;等比数列的前n项和.【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2•a3=2a1求得a4,再根据a4+2a7=a4+2a4q3,求得q,进而求得a1,代入S5即可.【解答】解:a2•a3=a1q•a1q2=2a1∴a4=2a4+2a7=a4+2a4q3=2×∴q=,a1==16故S5==31故选C.【点评】本题主要考查了等比数列的性质.属基础题.5.(5分)(2010•广东)“”是“一元二次方程x2+x+m=0有实数解”的()A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断;一元二次方程的根的分布与系数的关系.【专题】简易逻辑.【分析】利用充分必要条件的判断法判断这两个条件的充分性和必要性.关键看二者的相互推出性.【解答】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解"必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.(5分)(2010•广东)如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图(也称主视图)是()A. B. C. D.【考点】简单空间图形的三视图.【专题】立体几何.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC,且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图中,CC′必为虚线,排除B,C,3AA′=BB′说明右侧高于左侧,排除A.故选D【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.7.(5分)(2010•广东)sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【考点】两角和与差的余弦函数.【专题】三角函数的求值.【分析】由题意知本题是一个三角恒等变换,解题时注意观察式子的结构特点,根据同角的三角函数的关系,把7°的正弦变为83°的余弦,把53°的余弦变为37°的正弦,根据两角和的余弦公式逆用,得到特殊角的三角函数,得到结果.【解答】解:sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选:A.【点评】本题考查两角和与差的公式,是一个基础题,解题时有一个整理变化的过程,把式子化归我可以直接利用公式的形式是解题的关键,熟悉公式的结构是解题的依据.8.(5分)(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒【考点】分步乘法计数原理;排列及排列数公式.【专题】排列组合.【分析】彩灯闪烁实际上有5个元素的一个全排列,每个闪烁时间为5秒共5×120秒,每两个闪烁之间的间隔为5秒,共5×(120﹣1),解出共用的事件.【解答】解:由题意知共有5!=120个不同的闪烁,每个闪烁时间为5秒,共5×120=600秒;每两个闪烁之间的间隔为5秒,共5×(120﹣1)=595秒.那么需要的时间至少是600+595=1195秒.故选C【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.二、填空题(共7小题,满分30分)9.(5分)(2011•上海)函数f(x)=lg(x﹣2)的定义域是(2,+∞).【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查对数函数的定义域,是基础题.10.(5分)(2010•广东)若向量,,,满足条件,则x=2.【考点】空间向量运算的坐标表示.【专题】空间向量及应用.【分析】先求出,再利用空间向量的数量积公式,建立方程,求出x【解答】解:,,解得x=2,故答案为2.【点评】本题考查了空间向量的基本运算,以及空间向量的数量积,属于基本运算.11.(5分)(2010•广东)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC=1.【考点】正弦定理.【专题】解三角形.【分析】先根据A+C=2B及A+B+C=180°求出B的值,再由正弦定理求得sinA的值,再由边的关系可确定A的值,从而可得到C的值确定最后答案.【解答】解:由A+C=2B及A+B+C=180°知,B=60°,由正弦定理知,,即;由a<b知,A<B=60°,则A=30°,C=180°﹣A﹣B=90°,于是sinC=sin90°=1.故答案为:1.【点评】本题主要考查正弦定理的应用和正弦函数值的求法.高考对三角函数的考查以基础题为主,要强化记忆三角函数所涉及到的公式和性质,做到熟练应用.12.(5分)(2010•广东)若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是(x+2)2+y2=2.【考点】关于点、直线对称的圆的方程.【专题】直线与圆.【分析】设出圆心,利用圆心到直线的距离等于半径,可解出圆心坐标,求出圆的方程.【解答】解:设圆心为(a,0)(a<0),则,解得a=﹣2.圆的方程是(x+2)2+y2=2.故答案为:(x+2)2+y2=2.【点评】圆心到直线的距离等于半径,说明直线与圆相切;注意题目中圆O位于y轴左侧,容易疏忽出错.13.(5分)(2010•广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1。
2010年高考广东理科数学试题及答案
6.如图1, EMBED Equation.DSMT4 为正三角形, EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4
EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 =_________.
15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)
( EMBED Equation.DSMT4 )中,曲线 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 的交点
A.4 B.2+ i C.2+2 i D.3
3.若函数 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 的定义域均为R,则
A. EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 均为偶函数 B. EMBED Equation.DSMT4 为奇函数, EMBED Equation.DSMT4 为偶函数
(1)根据频率分布直方图,求重量超过505
克的产品数量。
(2)在上述抽取的40件产品中任取2件,
设Y为重量超过505克的产品数量,
求Y的分布列。
(3)从流水线上任取5件产品,求恰有2
件产品合格的重量超过505克的概率。
18.(本小题满分14分)
如图5, EMBED Equation.DSMT4 是半径为 EMBED Equation.DSMT4 的半圆, EMBED Equation.DSMT4 为直径,点 EMBED Equation.DSMT4 为 EMBED Equation.DSMT4 的中点,点 EMBED Equation.DSMT4 和点 EMBED Equation.DSMT4 为线段 EMBED Equation.DSMT4 的三等分点,平面 EMBED Equation.DSMT4 外一点 EMBED Equation.DSMT4 满足 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 。
2010年广州高二数学水平测试试题(附答案)
秘密★启用前2010学年度上学期广州市高中二年级学生学业水平测试数 学(必修)本试卷共4页. 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.本次考试不允许使用计算器.5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 20y -=的倾斜角为 A .6π B .3π C .23π D .56π3.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则()UA B =ðA .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,64.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛 得分的情况用如图1平均数分别为A .14、12B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为 A .4π B .14π- C .8π D .18π-6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于图12A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示 (单位:cm ),则该几何体的表面积...为 A .212cm π B. 215cm πC. 224c m π D. 236cm π8.若23x <<,12xP ⎛⎫= ⎪⎝⎭,2log Q x =,R则P ,Q ,R 的大小关系是A .Q P R <<B .Q R P <<C .P R Q <<D .P Q R << 9.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像 如图3所示,则函数)(x f 的解析式是A .10()2sin 116f x x π⎛⎫=+⎪⎝⎭B .10()2sin 116f x x π⎛⎫=-⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭ D .()2sin 26f x x π⎛⎫=-⎪⎝⎭10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是最小角的2倍,则这个三角形最小角的余弦值为AB .34 CD .18二、填空题:本大题共4小题,每小题5分,满分20分.主视图6侧视图图2图3数学学业水平测试 第 3 页 共 1011.圆心为点()0,2-,且过点()14,的圆的方程为 . 12.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3,则输出的()h x 的值为 .13.若函数()()()2213f x a x a x =-+-+是偶函数,则函数()f x 的单调递减区间为 .14.设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D ,若直线0kx y k -+=上存在区域D 上的点,则k 的取值范围是 .三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)在△ABC 中,角A ,B ,C 成等差数列. (1)求角B 的大小;(2)若()sin A B +=sin A 的值. 16.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查(1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率. 17.(本小题满分14分)图44如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证:PB平面ACE ;(2)若四面体E ACD -的体积为23,求AB 的长. 18.(本小题满分14分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. 19.(本小题满分14分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值. 20.(本小题满分14分)已知函数()213f x ax x a =+-+()a ∈R 在区间[]1,1-上有零点,求实数a 的取值范围.数学学业水平测试 第 5 页 共 10 页2010学年度广州市高中二年级学生学业水平测试数学试题参考答案及评分标准5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.11.()22225x y ++=(或224210x y y ++-=)12.913.()0,+∞(或[)0,+∞)14.122⎡⎤⎢⎥⎣⎦,三、解答题15.本小题主要考查解三角形、三角恒等变换等基础知识,考查运算求解能力.满分12分. 解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+.解得3B π=.(2)方法1:由()sin 2A B +=()sin2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3Bπ=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=⨯+ 4=. 方法2:因为A ,B 是△ABC 的内角,且()sin 2A B +=, 所以4A B π+=或34A B π+=.6由(1)知3B π=,所以34A B π+=,即512A π=. 以下同方法1. 方法3:由(1)知3B π=,所以sin 32A π⎛⎫+= ⎪⎝⎭即sin coscos sin332A A ππ+=.即1sin 2A A +=.sin A A .即223cos 2sin A A A =-+. 因为22cos 1sin A A =-,所以()2231sin 2sin A A A -=-+.即24sin 10A A --=.解得sin 4A =. 因为角A 是△ABC 的内角,所以sin 0A >.故sin A =.16.本小题主要考查统计与概率等基础知识,考查数据处理能力.满分12分. 解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.数学学业水平测试 第 7 页 共 10 页所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.17.本小题主要考查直线与平面的位置关系、体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分14分.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点.因为点E 是PD 的中点,所以EO 是△DPB 的中位线. 所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===. 解得2x =.故AB 的长为2.18.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和推理论证能力.满分14分. 解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-.8(2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ① 即 111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.19.本小题主要考查直线与圆、基本不等式等基础知识,考查运算求解能力.满分14分. 解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =,,所以21AB x x =-= 所以12S AB b== 22422b b +-=≤.当且仅当b =b =S 取得最大值2.(2)设圆心O 到直线2y kx=+的距离为d,则d =.因为圆的半径为2R =, 所以2AB ===.数学学业水平测试 第 9 页 共 10 页于是241121k S AB d k =⨯===+,即2410k k -+=,解得2k =故实数k的值为2+22-2-20.本小题主要考查二次函数、函数的零点等基础知识,考查运算求解能力,以及分类讨论的数学思想方法.满分14分. 解法1:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,函数()f x 在区间[]1,1-上有零点分为三种情况: ①方程()0f x =在区间[]1,1-上有重根, 令()14130a a ∆=--+=,解得16a =-或12a =. 当16a =-时,令()0f x =,得3x =,不是区间[]1,1-上的零点. 当12a =时,令()0f x =,得1x =-,是区间[]1,1-上的零点. ②若函数()y f x =在区间[]1,1-上只有一个零点,但不是()0f x =的重根, 令()()()114420f f a a -=-≤,解得102a <≤. ③若函数()y f x =在区间[]1,1-上有两个零点,则()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥<-<->++-=∆>.01-,01,1211,01412,02f f a a a a 或()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤<-<->++-=∆<.01-,01,1211,01412,02f f a a a a 解得a ∈∅.综上可知,实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.解法2:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,()213f x ax x a =+-+在区间[]1,1-上有零点⇔()231x a x +=-在区间[]1,1-上有解⇔213xa x -=+在区间[]1,1-上有解.10问题转化为求函数213xy x -=+在区间[]1,1-上的值域. 设1t x =-,由[]1,1x ∈-,得[]0,2t ∈.且()2013ty t =≥-+.而()214132ty t t t==-++-. 设()4g t t t=+,可以证明当(]0,2t ∈时,()g t 单调递减. 事实上,设1202t t <<≤, 则()()()()121212121212444t t t t g t g t t t t t t t --⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭, 由1202t t <<≤,得120t t -<,1204t t <<,即()()120g t g t ->. 所以()g t 在(]0,2t ∈上单调递减. 故()()24g t g ≥=. 所以()1122y g t =≤-.故实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.。
2010年广东省高考数学模拟试卷(理科)
2010年广东省深圳市中考数学试卷深圳市菁优网络科技有限公司一、选择题(共8小题,每小题5分,满分40分)1、集合,集合,则P与Q的关系是()A、P=QB、P⊃且≠QC、P⊂≠QD、P∩Q=φ2、已知复数z满足z•i=2﹣i,i为虚数单位,则z=()A、2﹣iB、1+2iC、﹣1+2iD、﹣1﹣2i3、下列函数中,在区间(0,1)上是增函数的是()A、y=tanxB、C、y=2﹣xD、y=﹣x2﹣4x+14、公差不为零的等差数列{a n}中,a2,a3,a6成等比数列,则其公比q为()A、1B、2C、3D、45、某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形、则该儿何体的体积为()A、24B、80C、64D、2406、下列有关选项正确的是()A、若p∨q为真命题,则p∧q为真命题B、“x=5”是“x2﹣4x﹣5=0”的充分不必要条件C、命题“若x<﹣1,则x2﹣2x﹣3>0”的否定为:“若x≥﹣1,则x2﹣3x+2≤0”D、已知命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∃x∈R,使得x2+x﹣1≥07、如图在等腰直角△ABC中,点O是斜边BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若,则mn的最大值为()A、B、1C、2D、38、现有5位同学准备一起做一项游戏,他们的身高各不相同.现在要从他们5个人当中选择出若干人组成A,B两个小组,每个小组都至少有1人,并且要求B组中最矮的那个同学的身高要比A组中最高的那个同学还要高.则不同的选法共有A、50种B、49种C、48种D、47种二、填空题(共7小题,13-14为任选题,只选其中一题作答,每小题5分,满分30分)9、不等式|x﹣1|<1表示的平面区域落在抛物线y2=4x内的图形的面积是_________ .10、如果随机变量ξ~B(n,p),且Eξ=4,且Dξ=2,则p= _________ .11、已知点F、A分别为双曲线C:(a>0,b>0)的左焦点、右顶点,点B(0,﹣b)满足,则双曲线的离心率为_________ .12、在程序框图中,输入n=2010,按程序运行后输出的结果是_________ .13、将正整数排成下表:则数表中的2010出现的行数和列数是分别是第_________ 行和第_________ 列.14、在极坐标系中,圆ρ=3被直线θ=分成两部分的面积之比是_________ .15、已知PA是圆O(O为圆心)的切线,切点为A,PO交圆O于B,C两点,,∠PAB=30°,则圆O的面积为_________ .三、解答题(共6小题,满分80分)16、已知角A是△ABC的内角,向量,,且,,(Ⅰ)求角A的大小;(Ⅱ)求函数的单调递增区间.17、黄山旅游公司为了体现尊师重教,在每年暑假期间对来黄山旅游的全国各地教师和学生,凭教师证和学生证实行购买门票优惠.某旅游公司组织有22名游客的旅游团到黄山旅游,其中有14名教师和8名学生.但是只有10名教师带了教师证,6名学生带了学生证.(Ⅰ)在该旅游团中随机采访3名游客,求恰有1人持有教师证且持有学生证者最多1人的概率;(Ⅱ)在该团中随机采访3名学生,设其中持有学生证的人数为随机变量ξ,求ξ的分布列及数学期望Eξ.18、在直四棱柱ABCD﹣A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.(Ⅰ)求二面角D1﹣AE﹣C的大小;(Ⅱ)求证:直线BF∥平面AD1E.19、已知定点A(0,﹣1),点B在圆F:x2+(y﹣1)2=16上运动,F为圆心,线段AB的垂直平分线交BF于P.(I)求动点P的轨迹E的方程;若曲线Q:x2﹣2ax+y2+a2=1被轨迹E包围着,求实数a的最小值.(II)已知M(﹣2,0)、N(2,0),动点G在圆F内,且满足|MG|•|NG|=|OG|2,求的取值范围.20、设数列{a n}的前n项和为S n,且a1=1,S n=a n+1﹣1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在实数λ,使得数列{S n+λ•n﹣λ•2n}为等差数列?若存在,求出λ的值;若不存在,则说明理由.(Ⅲ)求证:.21、设函数f(x)=x2+2x﹣2ln(1+x).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当时,是否存在整数m,使不等式m<f(x)≤﹣m2+2m+e2恒成立?若存在,求整数m的值;若不存在,请说明理由.(Ⅲ)关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.答案与评分标准一、选择题(共8小题,每小题5分,满分40分)1、集合,集合,则P与Q的关系是()A、P=QB、P⊃且≠QC、P⊂≠QD、P∩Q=φ考点:集合的包含关系判断及应用。
2010广东高考数学(理科)试卷及详细解答
绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x <1},B=A={x|0<x <2},则集合A ∩B= ( D )A.{x|-1<x <1}B.{x|-2<x <1}C.{x|-2<x <2}D.{x|0<x <1}2.若复数z 1=1+i,z 2=3-i,则=⋅21z z ( A )A.4+2iB.2+iC.2+2iD.3+i3.若函数f(x)=3x+3x -与g(x)=33x x--的定义域均为R ,则 ( D )A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数,g(x)为奇函数4.已知数列{n a }为等比数列,n S 是它的前n 项和,若1322a a a =⋅,且4a 与27a 的等差中项为54,则5S =( C ) A .35 B .33 C .3l D .29 5.“14m <”是“一元二次方程20x x m ++=有实数解”的 ( A ) A.充分非必要条件 B.充分必要条件 C.必要非充分条件 D.非充分非必要条件6.如图1,ABC 为正三角形,'''////AA BB CC ,''''3CC BB CC AB ⊥===平面ABC 且3AA则多面体'''ABC A B C -的正视图(也称主视图)是 ( D )7.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= ( B ) A.0.1588 B.0.1587 C.0.1586 D.0.15858.为了迎接2010年广州亚运会,某大楼安装了5个彩灯,他们闪亮的顺序不固定,每个彩灯只能闪亮红橙 黄绿蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒,如果要实现所有不同的闪烁,那么需要的时间至少是 ( C )A.1205秒B.1200秒C.1195秒D.1190秒二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分 (一)必做题(9~13题)9.函数,f (x )=lg (x -2)的定义域是 (2,)+∞ .10.若向量a =(1,1,x),b =(1,2,1),c =(1,1,1)满足条件(c —a )·2b =-2,则x= 2 . 11.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若 a =1, b =3,A +C =2B ,则sin C = 1 .12.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x+y=0 相切,则圆O 的方程是 2)2(22=++y x .13.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民 某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,n x (单位:吨).根据图2所示的程序框图, 若n=2且1x ,2x 分别为1,2,则输出的结果s 为 41 .(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,AB,CD 是半径为a 的圆O 的两条弦, 他们相交于AB 的中点P ,32a PD =,∠OAP=30°则CP= a 89 .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线1cos sin 2-==θρθρ与的极坐标为 )43,2(π.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分l4分)()()()sin 3(0,0412212sin .3125f x A x A x x f f f πϕϕππαα=+∈-∞+∞=已知函数>,,<<),在时取得最大值。
广东省六校联合体2010届高三联考数学理科
六校[来源:学 _科_网] 联合体[来源: 学_科_网 Z_X_X_K][来 广东省[来 源:学科网 源:] 汕头市潮阳第一中学 佛山市南海中学 揭阳市普 ZXXK][来源: 学科网 宁第二中学 ZXXK][来源: 学&科&网 Z&X&X&K]广州市广东番禺仲元中学 中山市第一中学 深圳 市宝安中学[来源:学科网][来源:学,科,网][来 源:][来源:学科网]2009——2010 年度高三年级第二次考试试题 数学(理科)命题人:张镜鹏 审题人:马文燕 一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分.在每小题给出的四个选项中 ,只有一项是符合题 目要求的。
b5E2RGbCb5E2RGbC 1.复数 (A) 2.当 (A) (C) 3.若集合 -1 时,比较 时, 时, ( 为虚数单位) ,若 z 是纯虚数,则实数 a 的值为( (B)0 和 (C)1 的大小并猜想 (B) (D) 时, 时, ,则“ ”是“ ”的 ( ) (D)2 ( ) )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)非充分非必要条件 4.在半径为 3 的圆内有一内接锐角 ,其中 的概率为 (A) 5.将函数 y= 值是 (A) 6.在 ,则 等于 (B) 的图像向左平移 (C) (,现向圆内抛掷一点,则点落在三角形内 )p1EanqFDp1EanqFD (D) 的图像,则 的个单位,再向上平移 1 个单位,得到 ( )DXDiTa9EDXDiTa9E (D) 上,若 ,则 · ( )的(B) 中,点 在边(C) 中线( )RTCrpUDGRTCrpUDG (A)最大值为 8 (B)最大值为 4 (C)最小值-4 (D)最小值为-8 7.4 个茶杯和 5 包茶叶的价格之和小于 22 元,而 6 个茶杯与 3 包茶叶的价格之和大于 24 元,则 2 个茶杯 和 3 包茶叶的价格比较 ( )5PCzVD7H5PCzVD7H (A)2 (B)3 包茶叶贵 (C) (D)8.已知等差数列的前 n 项和为 Sn,且 S2=10, S5=55,则过点 P(n,)、Q( n+2,)(n∈N+)的直线的一个方向向量的坐标为 ( )jLBHrnAIjLBHrnAI (A)(1,1) (B)(1,2 ) (C) (1,3) (D)(1,4)xHAQX74JxHAQX74J 二、填空题:本大题共 7 小题,考生作答 6 小题,每小题 5 分,满分 30 分。
2010广二模 理科数学
2010年广州市普通高中毕业班综合测试(二)数 学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,若复数()()11a a -++i 为实数,则实数a 的值为 A .1- B .0 C .1 D .不确定2. 已知全集U =A B 中有m 个元素,()()U U A B 痧中有n 个元素.若A B I 非空, 则A B I 的元素个数为A .mn B .m n +C .m n -D . n m - 3. 已知向量a ()sin ,cos x x =,向量b (=,则+a b 的最大值为 A. 13 D.9 4. 若,m n 是互不相同的空间直线,α是平面, 则下列命题中正确的是A. 若//,m n n α⊂,则//m αB. 若//,//m n n α,则//m αC. 若//,m n n α⊥,则m α⊥D. 若,m n n α⊥⊥,则m α⊥ 5. 在如图1所示的算法流程图, 若()()32,xf xg x x ==,则()2h 的值为(注:框图中的赋值符号“=” 也可以写成“←” 或“:=”) A. 9 B. 8C. 66. 已知点(),P x y 的坐标满足10,30,2.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩O 为坐标原点, 则PO 的最小值为A.2 B. 27. 已知函数()sin f x x x =, 若12,,22x x ππ⎡⎤∈-⎢⎥⎣⎦且()()12f x f x <, 则下列不等式中正确的是 A. 12x x > B. 12x x < C. 120x x +< D. 2212x x <8. 一个人以6米/秒的匀速度去追赶停在交通灯前的汽车, 当他离汽车25米时交通灯由红变绿, 汽车开始作变速直线行驶 (汽车与人的前进方向相同), 汽车在时刻t 的速度为()v t t =米/秒, 那么, 此人A. 可在7秒内追上汽车B. 可在9秒内追上汽车C. 不能追上汽车, 但其间最近距离为14米D. 不能追上汽车, 但其间最近距离为7米 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题) 9.若函数()()()cos cos 02f x x x π⎛⎫=ω-ωω>⎪⎝⎭的最小正周期为π,则ω的值为 . 10. 已知椭圆C 的离心率e =且它的焦点与双曲线2224x y -=的焦点重合, 则椭圆C 的方 程为 .11.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是.图312.图2是一个有n 层()2n ≥的六边形点阵.它的中心是一个点, 算作第一层, 第2层每边有2个点,第3层每边有3个点 ,…, 第n 层每边有n 个点, 则这个点阵的点数共有个. 13. 已知2nx ⎫⎪⎭的展开式中第5项的系数与第3项的系数比为 则该展开式中2x 的系数为 . 图2 (二)选做题(14~ 15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知直线l 的参数方程为1,42.x t y t =+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2,2sin .x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈),则直线l 被圆C 所截得的弦长为 .15.(几何证明选讲选做题)如图3, 半径为5的圆O 的两条弦 AD 和BC 相交于点P , ,OD BC P ⊥为AD 的中点, 6BC =, 则弦AD 的长度为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤,16. (本小题满分12分) 已知1tan 2,tan 42παβ⎛⎫+==⎪⎝⎭.(1) 求tan α的值; (2) 求()()sin 2sin cos 2sin sin cos αβαβαβαβ+-++的值.17. (本小题满分12分)如图4, 在直角梯形ABCD 中, 90,30,1,ABC DAB CAB BC AD CD ︒︒∠=∠=∠===, 把△DAC 沿对角线AC 折起后如图5所示(点D 记为点P ), 点P 在平面ABC 上的正投影 E 落在线段AB 上, 连接PB .(1) 求直线PC 与平面PAB 所成的角的大小;求二面角P AC B --的大小的余弦值.18.(本小题满分14分) 一射击运动员进行飞碟射击训练, 每一次射击命中飞碟的概率p 与运动员离飞碟的距离s (米)成反比, 每一个飞碟飞出后离运动员的距离s (米)与飞行时间t (秒)满足()()15104s t t =+≤≤, 每个飞碟允许该运动员射击两次(若第一次射击命中,则不再进行第二次射击).该运动员在每一个飞碟飞出0.5秒时进行第一次射击, 命中的概率为45, 当第一次射击没有命中飞碟, 则在第一次射击后 0.5秒进行第二次射击,子弹的飞行时间忽略不计.(1) 在第一个飞碟的射击训练时, 若该运动员第一次射击没有命中, 求他第二次射击命中飞碟的概率; (2) 求第一个飞碟被该运动员命中的概率;(3) 若该运动员进行三个飞碟的射击训练(每个飞碟是否被命中互不影响), 求他至少命中两个飞碟的概率.19. (本小题满分14分) 已知抛物线C :22x py=()0p >的焦点为F ,A 、B 是抛物线C 上异于坐标原点O 的不同两点,抛物线C 在点A 、B 处的切线分别为1l 、2l ,且12l l ⊥,1l 与2l 相交于点D . (1) 求点D 的纵坐标;(2) 证明:A 、B 、F 三点共线; (3) 假设点D 的坐标为3,12⎛⎫- ⎪⎝⎭,问是否存在经过A 、B 两点且与1l 、2l 都相切的圆, 若存在,求出该圆的方程;若不存在,请说明理由.20. (本小题满分14分)已知函数()32f x x x ax b =-++(a,b ∈R )的一个极值点为1x =.方程20ax x b ++=的两个实根为,αβ()αβ<, 函数()f x 在区间[],αβ上是单调的.(1) 求a 的值和b 的取值范围; (2) 若[]12,,x x αβ∈, 证明:()()121f x f x -≤.D BCAEPBCA2010年广州市普通高中毕业班综合测试(二)数 学(理科) 答 题 卷班级__________ 姓名___________ 分数 ________ 一、9. ________,______; 10. _________; 11. _________; 12. _________. 13. _________; 14. _________; 15. _________. 三、解答题:16. (本小题满分14分)17.(本小题满分12分) 18.(本小题满分14分)19.(本小题满分12分)20.(本小题满分14分)21. (本小题满分14分)已知数列{}n a和{}n b满足11a b=,且对任意n∈N*都有1n na b+=, 121n nn na ba a+=-.(1) 求数列{}n a和{}n b的通项公式;(2) 证明:()31324122341123ln1n nn na a a aa a a anb b b b b b b b++++++<+<++++.2010年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1 10. 22182x y += 11. 乙 12. 2331n n -+ 13. 180 14.515. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和与差的三角公式等知识, 考查化归与转化的数学思想方法和运算求解能力)(1)解法1:∵tan 24πα⎛⎫+=⎪⎝⎭, ∴tantan 421tantan 4+=-παπα. …2分 ∴1tan 21tan αα+=-. 解得1tan 3α=. …4分解法2:∵tan 24πα⎛⎫+=⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦tan tan441tan tan44ππαππα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭…2分 21121-=+⨯13=. …4分(2)解:()()sin 2sin cos 2sin sin cos αβαβαβαβ+-++sin cos cos sin 2sin cos 2sin sin cos cos sin sin αβαβαβαβαβαβ+-=+- …6分cos sin sin cos cos cos sin sin αβαβαβαβ-=+()()sin cos βαβα-=- …8分()tan βα=- tan tan 1tan tan -=+βαβα…10分112311123-=+⨯ 17=. …12分17. (本小题满分12分)(本小题主要考查空间线面关系、空间角等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 方法一:DBCA图 5FEPBCA(1) 解:在图4中,∵90,30,1,ABC DAB CAB BC ︒︒∠=∠=∠==∴tan 30BC AB ︒===, 121sin302BC AC ︒===, 60DAC ︒∠=. ∵AD CD =,∴△DAC 为等边三角形. ∴2AD CD AC ===. …2分 在图5中,∵点E 为点P 在平面ABC 上的正投影,∴PE ⊥平面ABC . ∵BC ⊂平面ABC , ∴PE ⊥BC .∵90CBA ︒∠=, 图4 ∴BC AB ⊥.∵,PE AB E PE =⊂ 平面PAB , AB ⊂平面PAB , ∴BC ⊥平面PAB .(数学驿站 )∴CPB ∠为直线PC 与平面PAB 所成的角. …4分 在Rt △CBP 中, 1,2BC PC DC ===, ∴1sin 2BC CPB PC ∠==. ∵090CPB ︒︒<∠<, ∴30CPB ︒∠=.∴直线PC 与平面PAB 所成的角为30︒. …6分(2) 解:取AC 的中点F , 连接PF ,EF .∵ =PA PC , ∴ ⊥PF AC .∵PE ⊥平面ABC ,AC ⊂平面ABC , ∴PE AC ⊥.∵,=⊂ PF PE P PF 平面PEF , PE ⊂平面PEF , ∴AC ⊥平面PEF .∵⊂EF 平面PEF , ∴⊥EF AC .∴PFE ∠为二面角P AC B --的平面角. …8分在R t △EFA 中,11302︒==∠=AF AC ,FAE , ∴=EF AF tan30︒⋅===AE . 在R t △PFA 中,==PF 在R t △PEF中,1cos 3∠===EF PFE PF . ∴二面角P AC B --的大小的余弦值为13. …12分 方法二: 解:在图4中,∵90,30,1,ABC DAB CAB BC ︒︒∠=∠=∠==∴tan 30BC AB ︒===, 121sin302BC AC ︒===, 60DAC ︒∠=. ∵AD CD =,DBCA图5CA∴△DAC 为等边三角形. ∴2AD CD AC ===. …2分 在图5中,∵点E 为点P 在平面ABC 上的射影,∴PE ⊥平面ABC . ∵BC ⊂平面ABC , ∴PE ⊥BC .∵90CBA ︒∠=, 图4 ∴BC AB ⊥.∵,PE AB E PE =⊂ 平面PAB , AB ⊂平面PAB ,∴BC ⊥平面PAB . …4连接EC ,在R t △PEA 和R t △PEC 中,2,PA PC PE PE ===, ∴R t △PEA ≅R t △PEC . ∴EA EC =.∴30ECA EAC ︒∠=∠=.∴60CEB ︒∠=.在R t △CBE中,tan 60BC EB ︒===∴3AE AB EB =-=. 在R t △PEA中,PE ==. …6分以点E 为原点,EB 所在直线为x 轴,与BC 平行的直线为y 轴,EP 所在直线为z 轴,建立空间直角坐标系E xyz -,则()0,0,0E,A ⎛⎫ ⎪ ⎪⎝⎭,B ⎫⎪⎪⎝⎭,C ⎫⎪⎪⎝⎭, P ⎛ ⎝⎭. ∴()0,1,0BC =,0,0,3EP ⎛= ⎝⎭,)AC =,33PC ⎛=- ⎝⎭.(1)∵cos ,BC PCBC PC BC PC==12,∴,30BC PC ︒= .∴ 直线PC 与平面PAB 所成的角为30︒. …9分 (2) 设平面PAC 的法向量为n (),,x y z =,由0,0.⎧=⎪⎨=⎪⎩ n AC n PC得0,0y x y z +=+-=. 令1x =,得y ==z . ∴n 1,⎛= ⎝⎭为平面PAC 的一个法向量.∵EP ⎛= ⎝⎭ 为平面ABC 的一个法向量, ∴cos ,= n EPn EPn EP13=-.∵二面角P AC B --的平面角为锐角, ∴二面角P AC B --的平面角的余弦值为13. …12分 18. (本小题满分14分)(本小题主要考查古典概型、二项分布等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意设(kp k s=为常数),由于()()15104s t t =+≤≤, ∴ ()()04151kp t t =≤≤+. …2分当0.5t =时, 145p =, 则()45150.51k =⨯+,解得18k =. ∴()()()1860415151p t t t ==≤≤++. …4分当1t =时, 263525p ==⨯. ∴该运动员第二次射击命中飞碟的概率为35. …6分 (2) 解:设“该运动员第一次射击命中飞碟”为事件A ,“该运动员第二次射击命中飞碟”为事 件B ,则“第一个飞碟被该运动员命中”为事件:A AB +. …7分 ∵()()43,55P A P B ==, ∴()()()()P A AB P A P A P B +=+44323155525⎛⎫=+-⨯=⎪⎝⎭. ∴第一个飞碟被该运动员命中的概率为2325. …10分(3) 解:设该运动员进行三个飞碟的射击训练时命中飞碟的个数为ξ, 则23325B ,ξ⎛⎫ ⎪⎝⎭. ∴至少命中两个飞碟的概率为()()23P P P ξξ==+= …12分=C ()2231p p -+ C 333p23232233252525⎛⎫⎛⎫=⨯⨯+ ⎪⎪⎝⎭⎝⎭=1534115625. …14分19. (本小题满分14分)(本小题主要考查直线、圆、抛物线、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1) 解:设点A 、B 的坐标分别为()11,x y 、()22,x y , ∵ 1l 、2l 分别是抛物线C 在点A 、B 处的切线, ∴直线1l 的斜率1'11x x x k y p===,直线2l 的斜率2'22x x x k y p===. ∵ 12l l ⊥,(数学驿站 )∴ 121k k =-, 得212x x p =-. ① …2分 ∵A 、B 是抛物线C 上的点,∴ 221212,.22x x y y p p==∴ 直线1l 的方程为()21112x x y x x p p -=-,直线2l 的方程为()22222x xy x x p p-=-.由()()21112222,2,2x x y x x p p x x y x x p p ⎧-=-⎪⎪⎨⎪-=-⎪⎩解得12,2.2x x x p y +⎧=⎪⎪⎨⎪=-⎪⎩ ∴点D 的纵坐标为2p-. …4分(2) 证法1:∵ F 为抛物线C 的焦点, ∴ 0,2p F ⎛⎫ ⎪⎝⎭.∴ 直线AF 的斜率为21221111122202AFx p p y x p p k x x px ---===-, 直线BF 的斜率为22222222222202BFx p p y x p p k x x px ---===-. ∵ 2222121222AF BFx p x p k k px px ---=-…6分 ()()22222112122x x p x x p px x ---=()()2121212122x x x x p x x px x -+-=()()221212122p x x p x x px x --+-=0=. ∴AF BF k k =.∴A 、B 、F 三点共线. …8分 证法2:∵ F 为抛物线C 的焦点, ∴ 0,2p F ⎛⎫ ⎪⎝⎭. ∴2221111,,222x p x p AF x x p p ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,2222222,,222x p x p BF x x p p ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭. ∵ 221222112112222222122222p x p x x x x x pp x p x x x x x p----===----, …6分 ∴ //AF BF.∴A 、B 、F 三点共线. 证法3:设线段AB 的中点为E , 则E 抛物线C 的准线为:2pl y =-. 作11,AA l BB l ⊥⊥, 垂足分别为11,A B . ∵ 由(1)知点D 的坐标为12,22x x p +⎛⎫- ⎪⎝⎭∴DE l ⊥.∴DE 是直角梯形11AA B B 的中位线. ∴()1112DE AA BB =+. …6分 根据抛物线的定义得:11,AA AF BB BF ==, ∴()()111122DE AA BB AF BF =+=+. ∵AD DB ⊥,E 为线段AB 的中点,∴12DE AB =. ∴()1122AB AF BF =+,即AB AF BF =+. ∴A 、B 、F 三点共线. …8分 (3)解: 不存在. 证明如下:假设存在符合题意的圆,设该圆的圆心为M , 依题意得,MA AD MB BD ⊥⊥,且MA MB =, 由12l l ⊥,得AD BD ⊥. ∴ 四边形MADB 是正方形.∴ AD BD =. …10分∵点D 的坐标为3,12⎛⎫- ⎪⎝⎭,∴12-=-p,得2p =. 把点D 3,12⎛⎫- ⎪⎝⎭的坐标代入直线1l , 得211131422x x x ⎛⎫--=⨯- ⎪⎝⎭解得14x =或11x =-,∴点A 的坐标为()4,4或11,4⎛⎫- ⎪⎝⎭.同理可求得点B 的坐标为()4,4或11,4⎛⎫- ⎪⎝⎭.由于A 、B 是抛物线C 上的不同两点,不妨令11,4A ⎛⎫- ⎪⎝⎭,()4,4B .∴AD ==BD ==…13分∴AD BD ≠, 这与AD BD =矛盾.∴经过A 、B 两点且与1l 、2l 都相切的圆不存在. …14分 20. (本小题满分14分)(本小题主要考查函数和方程、函数导数、不等式等知识, 考查函数与方程、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力) (1) 解:∵()32f x x x ax b =-++,∴()'232fx x x a =-+.∵()32f x x x ax b =-++的一个极值点为1x =,∴()'2131210f a =⨯-⨯+=.∴ 1a =-. …2分 ∴()()()'2321311f x x x x x =--=+-, 当13x <-时, ()'0f x >;当113x -<<时, ()'0f x <;当1x >时, ()'0f x >; ∴函数()f x 在1,3⎛⎤-∞- ⎥⎝⎦上单调递增, 在1,13⎡⎤-⎢⎥⎣⎦上单调递减,在[)1,+∞上单调递增.∵方程20ax x b ++=的两个实根为,αβ, 即20x x b --=的两根为,αβ()αβ<,∴αβ==. ∴1,b αβαβ+==-,αβ-=…4分 ∵ 函数()f x 在区间[],αβ上是单调的,∴区间[],αβ只能是区间1,3⎛⎤-∞- ⎥⎝⎦,1,13⎡⎤-⎢⎥⎣⎦,[)1,+∞之一的子区间.由于1,αβ+=αβ<,故[]1,,13αβ⎡⎤⊆-⎢⎥⎣⎦. 若0α<,则1αβ+<,与1αβ+=矛盾. ∴[][],0,1αβ⊆.∴方程20x x b --=的两根,αβ都在区间[]0,1上. …6分令()2g x x x b =--, ()g x 的对称轴为[]10,12x =∈, 则()()00,10,140.g b g b b =-≥⎧⎪=-≥⎨⎪∆=+>⎩解得104b -<≤.∴实数b 的取值范围为1,04⎛⎤- ⎥⎝⎦. …8分说明:6分至8分的得分点也可以用下面的方法.∵11,22αβ=≤=≥且函数()f x 在区间[],αβ上是单调的,∴[]1,,13αβ⎡⎤⊆-⎢⎥⎣⎦.由1,31,140.b αβ⎧≥-⎪⎪≤⎨⎪∆=+>⎪⎩即1,31,140.b ≥-≤⎪+>⎪⎪⎪⎩…6分 解得104b -<≤. ∴实数b 的取值范围为1,04⎛⎤-⎥⎝⎦. …8分 (2)证明:由(1)可知函数()f x 在区间[],αβ上单调递减, ∴函数()f x 在区间[],αβ上的最大值为()f α, 最小值为()f β.∵[]12,,x x αβ∈,∴()()()()12f x f x f f αβ-≤- ()()3232b b αααβββ=--+---+()()()3322αβαβαβ=-----()()()21αβαβαβαβ⎡⎤=-+--+-⎣⎦()1b =-()1b =-. …10分令t =则()2114b t =-()1b -()3154t t =-. 设()()3154h t t t =-, 则()()'21534h t t =-.∵104b -<≤,∴01t <≤.∴()()'21534h t t =-0>. ∴函数()()3154h t t t =-在(]0,1上单调递增. …12分∴()()11h t h ≤=.∴ ()()121f x f x -≤. …14分 21. (本小题满分14分)(本小题主要考查导数及其应用、数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵对任意n ∈N *都有1n n a b +=,121n n n na ba a +=-, ∴12211111n n n n n n na b a a a a a +-===--+. ∴1111n na a +=+,即1111n n a a +-=. …2分∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公差为1的等差数列.∵11a b =, 且111a b +=,∴11a b =12=. ∴()1211nn n a =+-=+. …4分∴ 11n a n =+, 11n n n b a n =-=+. …6分 (2)证明: ∵11n a n =+, 1n n b n =+, ∴1n n a b n=. ∴所证不等式()31324122341123ln 1n n n na a aa a a a a nb b b b b b b b ++++++<+<++++ , 即()1111111ln 11234123n n n++++<+<+++++ . ① 先证右边不等式: ()111ln 1123n n +<++++ .令()()ln 1f x x x =+-, 则()'1111x f x x x=-=-++. 当0x >时, ()'0f x <,所以函数()f x 在[)0,+∞上单调递减.∴当0x >时,()()00f x f <=, 即()ln 1x x +<. …8分 分别取1111,,,,23x n= . 得()111111ln 11ln 1ln 1ln 112323n n ⎛⎫⎛⎫⎛⎫++++++++<++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 即()111111ln 1111112323n n ⎡⎤⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 也即341111ln 212323n n n+⎛⎫⨯⨯⨯⨯<++++ ⎪⎝⎭ . 即()111ln 1123n n +<++++ . …10分 ② 再证左边不等式: ()1111ln 12341n n ++++<++ . 令()()ln 11x f x x x =+-+, 则()()()'2211111xf x x x x =-=+++. 当0x >时, ()'0f x >,所以函数()f x 在[)0,+∞上单调递增.∴当0x >时,()()00f x f >=, 即()ln 11xx x+>+. …12分 分别取1111,,,,23x n= . 得()111111ln 11ln 1ln 1ln 123231n n ⎛⎫⎛⎫⎛⎫++++++++>+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭. 即()111ln 1111123n ⎡⎤⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111231n >++++ . 也即341111ln 223231n n n+⎛⎫⨯⨯⨯⨯>+++ ⎪+⎝⎭ . 即()111ln 1231n n +>++++ . ∴()31324122341123ln 1n n n na a aa a a a a nb b b b b b b b ++++++<+<++++ . …14分。
2010年广州市高二数学学业水平测试答案
2010学年度广州市高中二年级学生学业水平测试数学试题参考答案及评分标准分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 11.()22225x y ++=(或224210x y y ++-=)12.913.()0,+∞(或[)0,+∞) 14.122⎡⎤⎢⎥⎣⎦, 三、解答题15.本小题主要考查解三角形、三角恒等变换等基础知识,考查运算求解能力.满分12分. 解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+.解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭4=.方法2:因为A ,B 是△ABC 的内角,且()sin 2A B +=, 所以4A B π+=或34A B π+=.由(1)知3B π=,所以34A B π+=,即512A π=.以下同方法1.方法3:由(1)知3B π=,所以sin 32A π⎛⎫+= ⎪⎝⎭.即sin coscos sin33A A ππ+=.即1sin cos 222A A +=.sin A A =.即223cos 2sin A A A =-+. 因为22cos 1sin A A =-,所以()2231sin 2sin A A A -=-+.即24sin 10A A --=.解得sin A = 因为角A 是△ABC 的内角,所以sin 0A >.故sin 4A =. 16.本小题主要考查统计与概率等基础知识,考查数据处理能力.满分12分. 解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.17.本小题主要考查直线与平面的位置关系、体积等基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分14分.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点.因为点E 是PD 的中点,所以EO 是△DPB 的中位线. 所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 3111262123x x x x ===. 解得2x =.故AB 的长为2.18.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力和推理论证能力.满分14分. 解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-, 当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ① 即 111357232122481622n n n n n T ---=++++++, ②①-②,得2111112111224822n n nn T --=++++++- 2332nn +=-,所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 19.本小题主要考查直线与圆、基本不等式等基础知识,考查运算求解能力.满分14分.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =,所以21AB x x =-= 所以12S AB b =22422b b +-=≤.当且仅当b=,即b =时,S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d =因为圆的半径为2R =,所以2AB ===.于是241121k S AB d k =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+,2,2-+2-.20.本小题主要考查二次函数、函数的零点等基础知识,考查运算求解能力,以及分类讨论的数学思想方法.满分14分. 解法1:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,函数()f x 在区间[]1,1-上有零点分为三种情况: ①方程()0f x =在区间[]1,1-上有重根, 令()14130a a ∆=--+=,解得16a =-或12a =. 当16a =-时,令()0f x =,得3x =,不是区间[]1,1-上的零点. 当12a =时,令()0f x =,得1x =-,是区间[]1,1-上的零点. ②若函数()y f x =在区间[]1,1-上只有一个零点,但不是()0f x =的重根,令()()()114420f f a a -=-≤,解得102a <≤. ③若函数()y f x =在区间[]1,1-上有两个零点,则()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥<-<->++-=∆>.01-,01,1211,01412,02f f a a a a 或()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤<-<->++-=∆<.01-,01,1211,01412,02f f a a a a 解得a ∈∅.综上可知,实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.解法2:当0a =时,()1f x x =-,令()0f x =,得1x =,是区间[]1,1-上的零点.当0a ≠时,()213f x ax x a =+-+在区间[]1,1-上有零点⇔()231x a x +=-在区间[]1,1-上有解⇔213xa x -=+在区间[]1,1-上有解.问题转化为求函数213xy x -=+在区间[]1,1-上的值域. 设1t x =-,由[]1,1x ∈-,得[]0,2t ∈.且()2013ty t =≥-+.而()214132ty t t t==-++-. 设()4g t t t=+,可以证明当(]0,2t ∈时,()g t 单调递减. 事实上,设1202t t <<≤, 则()()()()121212121212444t t t t g t g t t t t t t t --⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭, 由1202t t <<≤,得120t t -<,1204t t <<,即()()120g t g t ->. 所以()g t 在(]0,2t ∈上单调递减. 故()()24g t g ≥=. 所以()1122y g t =≤-.故实数a 的取值范围为10,2⎡⎤⎢⎥⎣⎦.。
广东省广州市高考数学二模(理科)试题及参考答案
试卷类型:A广州市普通高中毕业班综合测试(二)数学(理科)20xx.4 本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足 i 2z =,其中i 为虚数单位,则z 的虚部为A .2-B .2C .2-iD .2i 2.若函数()y f x =是函数3xy =的反函数,则12f ⎛⎫⎪⎝⎭的值为A .2log 3-B .3log 2-C .19D 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤4. 将函数()2cos2(f x x x x =+∈R )的图象向左平移6π个单位长度后得到函数 ()y g x =,则函数()y g x =A .是奇函数B .是偶函数图1俯视图侧视图正视图 C .既是奇函数又是偶函数 D .既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3, 将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是 A .16 B .13 C .12 D .386.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为A .16 B .13CD7.一个几何体的三视图如图1,则该几何体的体积为A .6π4+B .12π4+C .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253 表1 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则A E A F ⋅的值 为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值D CB A a 图3重量/克0.0320.02452515O 为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦, 当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且 12A E EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则 △AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,BD =. (1) 求cos A 的值; (2)求sin C 的值. 图2 17.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45, 由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内的小球个数为ξ,求ξ的分布列和数学期望.FE D CBA18.(本小题满分14分) 如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD ,1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值. 图4 19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E .(1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个 定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值; (2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+.广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分(2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A ==. ……………6分 ∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分解得BC =……………10分 由正弦定理得,sin sin BC ABA C=, ……………11分∴1sin sin 33AB AC BC⋅===. ……………12分17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭. ……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分 ∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =,M OH FED C B A ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt △BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =,∴EF ∥OH ,且EF OH =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1E O F H == .……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EOBD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分 在Rt △AOE中,tan AOAEO EO∠== ……………13分 ∴直线AE 与平面BDE. ……………14分证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH , 则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH ==. ……………7分 由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,ABBC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -.∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,n AE⋅=n AE nAE3=. ……………11分∴cos θ==,sin tan cos θθθ== ……………13分 ∴直线AE 与平面BDE. ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分 当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=.……………13分 ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx-++++=()()12111n n nx n x x +-++-. ………12分令4x =,得()()0122114243414431419n n nn n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分 解法2:设点M 的坐标为(),x y ,依题意,得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440xkx --=,解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224ABx y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分 令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x k k k +-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. ……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=,即()()12420x x k --+=,解得2x =或142x k =-. ……………4分 ∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分 同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分 得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分 整理得,()224410x x y k+-++=. ……………11分 令0x =,得()214y +=,解得1y =或3y =-. ……………12分 ∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=. 当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=. ……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增, 故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2x f x x =-. 当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分 令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-.方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<, 故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<.故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分 (ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<. 故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<, 得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >, 从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得,11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分 111121n n =+--+ ……………13分 223222n n n n--=+. ……………14分。
2010广东高考数学(理科)试卷及详细解答
绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x <1},B=A={x|0<x <2},则集合A ∩B= ( D )A.{x|-1<x <1}B.{x|-2<x <1}C.{x|-2<x <2}D.{x|0<x <1}2.若复数z 1=1+i,z 2=3-i,则=⋅21z z ( A )A.4+2iB.2+iC.2+2iD.3+i3.若函数f(x)=3x+3x -与g(x)=33x x--的定义域均为R ,则 ( D )A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数,g(x)为奇函数4.已知数列{n a }为等比数列,n S 是它的前n 项和,若1322a a a =⋅,且4a 与27a 的等差中项为54,则5S =( C ) A .35 B .33 C .3l D .29 5.“14m <”是“一元二次方程20x x m ++=有实数解”的 ( A ) A.充分非必要条件 B.充分必要条件 C.必要非充分条件 D.非充分非必要条件6.如图1,ABC 为正三角形,'''////AA BB CC ,''''3CC BB CC AB ⊥===平面ABC 且3AA则多面体'''ABC A B C -的正视图(也称主视图)是 ( D )7.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= ( B ) A.0.1588 B.0.1587 C.0.1586 D.0.15858.为了迎接2010年广州亚运会,某大楼安装了5个彩灯,他们闪亮的顺序不固定,每个彩灯只能闪亮红橙 黄绿蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒,如果要实现所有不同的闪烁,那么需要的时间至少是 ( C )A.1205秒B.1200秒C.1195秒D.1190秒二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分 (一)必做题(9~13题)9.函数,f (x )=lg (x -2)的定义域是 (2,)+∞ .10.若向量a =(1,1,x),b =(1,2,1),c =(1,1,1)满足条件(c —a )·2b =-2,则x= 2 . 11.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若 a =1, b =3,A +C =2B ,则sin C = 1 .12.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x+y=0 相切,则圆O 的方程是 2)2(22=++y x .13.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民 某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,n x (单位:吨).根据图2所示的程序框图, 若n=2且1x ,2x 分别为1,2,则输出的结果s 为 41 .(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,AB,CD 是半径为a 的圆O 的两条弦, 他们相交于AB 的中点P ,32a PD =,∠OAP=30°则CP= a 89 .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线1cos sin 2-==θρθρ与的极坐标为 )43,2(π.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分l4分)()()()sin 3(0,0412212sin .3125f x A x A x x f f f πϕϕππαα=+∈-∞+∞=已知函数>,,<<),在时取得最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年广州市普通高中毕业班综合测试(二)数 学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知i 为虚数单位,若复数()()11a a -++i 为实数,则实数a 的值为 A .1- B .0 C .1 D .不确定 2. 已知全集U =A B 中有m 个元素,()()U UA B 痧中有n 个元素.若A B I 非空, 则A B I 的元素个数为A.mn B .m n +C .m n -D . n m - 3. 已知向量a ()sin ,cos x x =,向量b (=,则+a b 的最大值为 A. 13 D.9 4. 若,m n 是互不相同的空间直线,α是平面, 则下列命题中正确的是A. 若//,m n n α⊂,则//m αB. 若//,//m n n α,则//m αC. 若//,m n n α⊥,则m α⊥D. 若,m n n ⊥5. 在如图1所示的算法流程图, 若()()32,xf xg x x ==,则()2h 的值为(注:框图中的赋值符号“=”也可以写成“←” 或“:= A. 9 B. 8 C. 6D. 46. 已知点(),P x y 的坐标满足10,30,2.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩O 为坐标原点, 则PO 的最小值为A.2 B. 2图1 7. 已知函数()sin f x x x =, 若12,,22x x ππ⎡⎤∈-⎢⎥⎣⎦且()()12f x f x <, 则下列不等式中正确的是 A. 12x x > B. 12x x < C. 120x x +< D. 2212x x <图38. 一个人以6米/秒的匀速度去追赶停在交通灯前的汽车, 当他离汽车25米时交通灯由红变绿, 汽车开始作变速直线行驶 (汽车与人的前进方向相同), 汽车在时刻t 的速度为()v t t =米/秒, 那么, 此人 A. 可在7秒内追上汽车 B. 可在9秒内追上汽车C. 不能追上汽车, 但其间最近距离为14米D. 不能追上汽车, 但其间最近距离为7米二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.若函数()()()cos cos 02f x x x π⎛⎫=ω-ωω>⎪⎝⎭的最小正周期为π,则ω的值为 . 10. 已知椭圆C 的离心率e =, 且它的焦点与双曲线2224x y -=的焦点重合, 则椭圆C 的方 程为 .11.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是 . 12.图2是一个有n 层()2n ≥的六边形点阵.它的中心是一个点, 算作第一层, 第2层每边有2个点,第3层每边有3个点 ,…, 第n 层每边有n 个点, 则这个点阵的点数共有 个.13. 已知2nx ⎫⎪⎭的展开式中第5项的系数与第3项的系数比为56 则该展开式中2x 的系数为 . 图2 (二)选做题(14~ 15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知直线l 的参数方程为1,42.x t y t =+⎧⎨=-⎩(参数t ∈R ), 圆C 的参数方程为2cos 2,2sin .x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈), 则直线l 被圆C 所截得的弦长为 . 15.(几何证明选讲选做题)如图3, 半径为5的圆O 的两条弦 AD 和BC 相 交于点P , ,OD BC P ⊥为AD 的中点, 6BC =, 则弦AD 的长度为 .DB CAEPBCA三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤, 16. (本小题满分12分) 已知1tan 2,tan 42παβ⎛⎫+==⎪⎝⎭.(1) 求tan α的值; (2) 求()()sin 2sin cos 2sin sin cos αβαβαβαβ+-++的值.17. (本小题满分12分)如图4, 在直角梯形ABCD 中, 90,30,1,ABC DAB CAB BC AD CD ︒︒∠=∠=∠===, 把△DAC 沿对角线AC 折起后如图5所示(点D 记为点P ), 点P 在平面ABC 上的正投影 E 落在线段AB 上, 连接PB .(1) 求直线PC 与平面PAB 所成的角的大小; (2) 求二面角P AC B --的大小的余弦值.图4 图5 18.(本小题满分14分)一射击运动员进行飞碟射击训练, 每一次射击命中飞碟的概率p 与运动员离飞碟的距离s (米)成反比, 每一个飞碟飞出后离运动员的距离s (米)与飞行时间t (秒)满足()()15104s t t =+≤≤, 每个飞碟允许该运动员射击两次(若第一次射击命中,则不再进行第二次射击).该运动员在每一个飞碟飞出0.5秒时进行第一次射击, 命中的概率为45, 当第一次射击没有命中飞碟, 则在第一次射击后 0.5秒进行第二次射击,子弹的飞行时间忽略不计.(1) 在第一个飞碟的射击训练时, 若该运动员第一次射击没有命中, 求他第二次射击命中飞碟 的概率;(2) 求第一个飞碟被该运动员命中的概率;(3) 若该运动员进行三个飞碟的射击训练(每个飞碟是否被命中互不影响), 求他至少命中两个飞碟的概率.19. (本小题满分14分) 已知抛物线C :22x py=()0p >的焦点为F ,A 、B 是抛物线C 上异于坐标原点O 的不同两点,抛物线C 在点A 、B 处的切线分别为1l 、2l ,且12l l ⊥,1l 与2l 相交于点D . (1) 求点D 的纵坐标;(2) 证明:A 、B 、F 三点共线; (3) 假设点D 的坐标为3,12⎛⎫-⎪⎝⎭,问是否存在经过A 、B 两点且与1l 、2l 都相切的圆, 若存在,求出该圆的方程;若不存在,请说明理由.20. (本小题满分14分)已知函数()32f x x x ax b =-++(a,b ∈R )的一个极值点为1x =.方程20ax x b ++=的两个实根为,αβ()αβ<, 函数()f x 在区间[],αβ上是单调的. (1) 求a 的值和b 的取值范围;(2) 若[]12,,x x αβ∈, 证明:()()121f x f x -≤.21. (本小题满分14分)已知数列{}n a 和{}n b 满足11a b =,且对任意n ∈N *都有1n n a b +=,121n n n na ba a +=-. (1) 求数列{}n a 和{}nb 的通项公式; (2) 证明:()31324122341123ln 1n n n na a aa a a a a nb b b b b b b b ++++++<+<++++ .2010年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1 10. 22182x y += 11. 乙 12. 2331n n -+ 13. 18014.515. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和与差的三角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1)解法1:∵tan 24πα⎛⎫+=⎪⎝⎭, ∴tantan 421tantan 4+=-παπα. …2分 ∴1tan 21tan αα+=-.解得1tan 3α=. …4分解法2:∵tan 24πα⎛⎫+=⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦tan tan441tan tan44ππαππα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭…2分 21121-=+⨯13=. …4分DBCA(2)解:()()sin 2sin cos 2sin sin cos αβαβαβαβ+-++sin cos cos sin 2sin cos 2sin sin cos cos sin sin αβαβαβαβαβαβ+-=+- …6分cos sin sin cos cos cos sin sin αβαβαβαβ-=+()()sin cos βαβα-=- …8分()tan βα=- tan tan 1tan tan -=+βαβα…10分112311123-=+⨯17=. …12分17. (本小题满分12分)(本小题主要考查空间线面关系、空间角等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 方法一:(1) 解:在图4中,∵90,30,1,ABC DAB CAB BC ︒︒∠=∠=∠==∴tan 30BC AB ︒===, 121sin 302BC AC ︒===, 60DAC ︒∠=. ∵AD CD =,∴△DAC 为等边三角形. ∴2AD CD AC ===. …2分 在图5中,∵点E 为点P 在平面ABC 上的正投影,∴PE ⊥平面ABC . ∵BC ⊂平面ABC , ∴PE ⊥BC .∵90CBA ︒∠=, 图4图 5FEPBCA∴BC AB ⊥.∵,PE AB E PE =⊂ 平面PAB , AB ⊂平面PAB , ∴BC ⊥平面PAB .(数学驿站 ) ∴CPB ∠为直线PC 与平面PAB 所成的角. …4分 在Rt △CBP 中, 1,2BC PC DC ===, ∴1sin 2BC CPB PC ∠==. ∵090CPB ︒︒<∠<, ∴30CPB ︒∠=.∴直线PC 与平面PAB 所成的角为30︒. …6分 (2) 解:取AC 的中点F , 连接PF ,EF .∵ =PA PC , ∴ ⊥PF AC .∵PE ⊥平面ABC ,AC ⊂平面ABC , ∴PE AC ⊥.∵,=⊂ PF PE P PF 平面PEF , PE ⊂平面PEF , ∴AC ⊥平面PEF . ∵⊂EF 平面PEF , ∴⊥EF AC .∴PFE ∠为二面角P AC B --的平面角. …8分 在R t △EFA 中,11302︒==∠=AF AC ,FAE , ∴=EF AF tan 30︒⋅===AE . 在R t △PFA 中,===PF 在R t △PEF中,1cos 3∠===EF PFE PF . ∴二面角P AC B --的大小的余弦值为13. …12分 方法二:DBCA图5CA解:在图4中,∵90,30,1,ABC DAB CAB BC ︒︒∠=∠=∠==∴tan 30BC AB ︒===, 121sin 302BC AC ︒===, 60DAC ︒∠=. ∵AD CD =,∴△DAC 为等边三角形. ∴2AD CD AC ===. …2分 在图5中,∵点E 为点P 在平面ABC 上的射影,∴PE ⊥平面ABC . ∵BC ⊂平面ABC , ∴PE ⊥BC .∵90CBA ︒∠=, 图4 ∴BC AB ⊥.∵,PE AB E PE =⊂ 平面PAB , AB ⊂平面PAB ,∴BC ⊥平面PAB . …4连接EC ,在R t △PEA 和R t △PEC 中,2,PA PC PE PE ===, ∴R t △PEA ≅R t △PEC . ∴EA EC =.∴30ECA EAC ︒∠=∠=.∴60CEB ︒∠=.在R t △CBE中,tan 603BC EB ︒===.∴AE AB EB =-=. 在R t △PEA中,PE ==3. …6分以点E 为原点,EB 所在直线为x 轴,与BC 平行的直线为y 轴,EP 所在直线为z 轴,建立空 间直角坐标系E xyz -,则()0,0,0E,A ⎛⎫ ⎪ ⎪⎝⎭,B ⎫⎪⎪⎝⎭,C ⎫⎪⎪⎝⎭, P ⎛ ⎝⎭. ∴()0,1,0BC =,EP ⎛= ⎝⎭,)AC =,PC =⎝⎭ . (1)∵cos ,BC PCBC PC BC PC ==12,∴,30BC PC ︒= .∴ 直线PC 与平面PAB 所成的角为30︒. …9分 (2) 设平面PAC 的法向量为n (),,x y z =,由0,0.⎧=⎪⎨=⎪⎩ n AC n PC得0,0y y z +=+-=. 令1x =,得y =2=-z . ∴n 1,2⎛=- ⎝⎭为平面PAC 的一个法向量.∵EP ⎛= ⎝⎭ 为平面ABC 的一个法向量, ∴cos ,= n EPn EPn EP13=-.∵二面角P AC B --的平面角为锐角, ∴二面角P AC B --的平面角的余弦值为13. …12分 18. (本小题满分14分)(本小题主要考查古典概型、二项分布等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意设(kp k s=为常数),由于()()15104s t t =+≤≤,∴ ()()04151kp t t =≤≤+. …2分当0.5t =时, 145p =, 则()45150.51k =⨯+,解得18k =.∴()()()1860415151p t t t ==≤≤++. …4分当1t =时, 263525p ==⨯. ∴该运动员第二次射击命中飞碟的概率为35. …6分 (2) 解:设“该运动员第一次射击命中飞碟”为事件A ,“该运动员第二次射击命中飞碟”为事 件B ,则“第一个飞碟被该运动员命中”为事件:A AB +. …7分 ∵()()43,55P A P B ==, ∴()()()()P A AB P A P A P B +=+44323155525⎛⎫=+-⨯=⎪⎝⎭. ∴第一个飞碟被该运动员命中的概率为2325. …10分 (3) 解:设该运动员进行三个飞碟的射击训练时命中飞碟的个数为ξ, 则23325B ,ξ⎛⎫ ⎪⎝⎭. ∴至少命中两个飞碟的概率为()()23P P P ξξ==+= …12分 =C ()2231pp -+ C 333p 23232233252525⎛⎫⎛⎫=⨯⨯+ ⎪⎪⎝⎭⎝⎭=1534115625. …14分19. (本小题满分14分)(本小题主要考查直线、圆、抛物线、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1) 解:设点A 、B 的坐标分别为()11,x y 、()22,x y , ∵ 1l 、2l 分别是抛物线C 在点A 、B 处的切线,∴直线1l 的斜率1'11x x x k yp===,直线2l 的斜率2'22x x x k y p===. ∵ 12l l ⊥,(数学驿站 )∴ 121k k =-, 得212x x p =-. ① …2分 ∵A 、B 是抛物线C 上的点,∴ 221212,.22x x y y p p== ∴ 直线1l 的方程为()21112x x y x x p p -=-,直线2l 的方程为()22222x x y x x p p-=-. 由()()21112222,2,2x x y x x p p x x y x x p p ⎧-=-⎪⎪⎨⎪-=-⎪⎩解得12,2.2x x x p y +⎧=⎪⎪⎨⎪=-⎪⎩∴点D 的纵坐标为2p-. …4分(2) 证法1:∵ F 为抛物线C 的焦点, ∴ 0,2p F ⎛⎫ ⎪⎝⎭. ∴ 直线AF 的斜率为21221111122202AFx p p y x p p k x x px ---===-,直线BF 的斜率为22222222222202BFx p p y x p p k x x px ---===-.∵ 2222121222AF BFx p x p k k px px ---=- …6分()()22222112122x x p x x p px x ---=()()2121212122x x x x p x x px x -+-=()()221212122p x x p x x px x --+-=0=.∴AF BF k k =.∴A 、B 、F 三点共线. …8分 证法2:∵ F 为抛物线C 的焦点, ∴ 0,2p F ⎛⎫ ⎪⎝⎭. ∴2221111,,222x p x p AF x x p p ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,2222222,,222x p x p BF x x p p ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭. ∵ 22122211211222222212222p x p x x x x x pp x p x x x x p----===----, …6分 ∴ //AF BF .∴A 、B 、F 三点共线. 证法3:设线段AB 的中点为E , 则E 抛物线C 的准线为:2pl y =-. 作11,AA l BB l ⊥⊥, 垂足分别为11,A B . ∵ 由(1)知点D 的坐标为12,22x x p +⎛⎫- ⎪⎝⎭∴DE l ⊥.∴DE 是直角梯形11AA B B 的中位线. ∴()1112DE AA BB =+. …6分 根据抛物线的定义得:11,AA AF BB BF ==, ∴()()111122DE AA BB AF BF =+=+. ∵AD DB ⊥,E 为线段AB 的中点,∴12DE AB =. ∴()1122AB AF BF =+,即AB AF BF =+.∴A 、B 、F 三点共线. …8分 (3)解: 不存在. 证明如下:假设存在符合题意的圆,设该圆的圆心为M , 依题意得,MA AD MB BD ⊥⊥,且MA MB =, 由12l l ⊥,得AD BD ⊥. ∴ 四边形MADB 是正方形.∴ AD BD =. …10分∵点D 的坐标为3,12⎛⎫- ⎪⎝⎭, ∴12-=-p,得2p =. 把点D 3,12⎛⎫- ⎪⎝⎭的坐标代入直线1l , 得211131422x x x ⎛⎫--=⨯- ⎪⎝⎭ 解得14x =或11x =-, ∴点A 的坐标为()4,4或11,4⎛⎫- ⎪⎝⎭. 同理可求得点B 的坐标为()4,4或11,4⎛⎫- ⎪⎝⎭. 由于A 、B 是抛物线C 上的不同两点,不妨令11,4A ⎛⎫- ⎪⎝⎭,()4,4B .∴AD == BD ==…13分∴AD BD ≠, 这与AD BD =矛盾.∴经过A 、B 两点且与1l 、2l 都相切的圆不存在. …14分 20. (本小题满分14分)(本小题主要考查函数和方程、函数导数、不等式等知识, 考查函数与方程、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力) (1) 解:∵()32f x x x ax b =-++,∴()'232fx x x a =-+.∵()32f x x x ax b =-++的一个极值点为1x =,∴()'2131210f a =⨯-⨯+=.∴ 1a =-. …2分 ∴()()()'2321311fx x x x x =--=+-,当13x <-时, ()'0f x >;当113x -<<时, ()'0f x <;当1x >时, ()'0f x >; ∴函数()f x 在1,3⎛⎤-∞- ⎥⎝⎦上单调递增, 在1,13⎡⎤-⎢⎥⎣⎦上单调递减,在[)1,+∞上单调递增.∵方程20ax x b ++=的两个实根为,αβ, 即20x x b --=的两根为,αβ()αβ<,∴11,22αβ+==. ∴1,b αβαβ+==-,αβ-=…4分 ∵ 函数()f x 在区间[],αβ上是单调的,∴区间[],αβ只能是区间1,3⎛⎤-∞- ⎥⎝⎦,1,13⎡⎤-⎢⎥⎣⎦,[)1,+∞之一的子区间.由于1,αβ+=αβ<,故[]1,,13αβ⎡⎤⊆-⎢⎥⎣⎦. 若0α<,则1αβ+<,与1αβ+=矛盾. ∴[][],0,1αβ⊆.∴方程20x x b --=的两根,αβ都在区间[]0,1上. …6分令()2g x x x b =--, ()g x 的对称轴为[]10,12x =∈, 则()()00,10,140.g b g b b =-≥⎧⎪=-≥⎨⎪∆=+>⎩解得104b -<≤.∴实数b 的取值范围为1,04⎛⎤-⎥⎝⎦. …8分 说明:6分至8分的得分点也可以用下面的方法.∵11,22αβ=≤=≥且函数()f x 在区间[],αβ上是单调的,∴ []1,,13αβ⎡⎤⊆-⎢⎥⎣⎦.由1,31,140.b αβ⎧≥-⎪⎪≤⎨⎪∆=+>⎪⎩即11,231,140.b ⎧-≥-⎪≤⎪+>⎪⎪⎪⎩…6分解得104b -<≤. ∴实数b 的取值范围为1,04⎛⎤-⎥⎝⎦. …8分 (2)证明:由(1)可知函数()f x 在区间[],αβ上单调递减,∴函数()f x 在区间[],αβ上的最大值为()f α, 最小值为()f β. ∵[]12,,x x αβ∈,∴()()()()12f x f x f f αβ-≤- ()()3232b b αααβββ=--+---+ ()()()3322αβαβαβ=-----()()()21αβαβαβαβ⎡⎤=-+--+-⎣⎦()1b =-()1b =-. …10分令t =则()2114b t =-()1b -()3154t t =-. 设()()3154h t t t =-, 则()()'21534h t t =-.∵104b -<≤,∴01t <≤.∴()()'21534h t t =-0>. ∴函数()()3154h t t t =-在(]0,1上单调递增. …12分∴()()11h t h ≤=.∴ ()()121f x f x -≤. …14分 21. (本小题满分14分)(本小题主要考查导数及其应用、数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵对任意n ∈N *都有1n n a b +=,121n n n na ba a +=-, ∴12211111n n n n n n na b a a a a a +-===--+. ∴1111n na a +=+,即1111n n a a +-=. …2分 ∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公差为1的等差数列. ∵11a b =, 且111a b +=, ∴11a b =12=. ∴()1211nn n a =+-=+. …4分 ∴ 11n a n =+, 11n n n b a n =-=+. …6分 (2)证明: ∵11n a n =+, 1n nb n =+, ∴1n n a b n =.∴所证不等式()31324122341123ln 1n n n na a aa a a a a nb b b b b b b b ++++++<+<++++ , 即()1111111ln 11234123n n n++++<+<+++++ . ① 先证右边不等式: ()111ln 1123n n +<++++ .令()()ln 1f x x x =+-, 则()'1111x f x x x=-=-++. 当0x >时, ()'0fx <,所以函数()f x 在[)0,+∞上单调递减.∴当0x >时,()()00f x f <=, 即()ln 1x x +<. …8分分别取1111,,,,23x n= . 得()111111ln 11ln 1ln 1ln 112323n n ⎛⎫⎛⎫⎛⎫++++++++<++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 即()111111ln 1111112323n n ⎡⎤⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 也即341111ln 212323n n n+⎛⎫⨯⨯⨯⨯<++++ ⎪⎝⎭ . 即()111ln 1123n n +<++++ . …10分 ② 再证左边不等式: ()1111ln 12341n n ++++<++ .令()()ln 11x f x x x =+-+, 则()()()'2211111x f x x x x =-=+++. 当0x >时, ()'0fx >,所以函数()f x 在[)0,+∞上单调递增.∴当0x >时,()()00f x f >=, 即()ln 11xx x+>+. …12分 分别取1111,,,,23x n= . 得()111111ln 11ln 1ln 1ln 123231n n ⎛⎫⎛⎫⎛⎫++++++++>+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭. 即()111ln 1111123n ⎡⎤⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 111231n >++++ . 也即341111ln 223231n n n +⎛⎫⨯⨯⨯⨯>+++ ⎪+⎝⎭ . 即()111ln 1231n n+>++++ . ∴()31324122341123ln 1n n n na a aa a a a a nb b b b b b b b ++++++<+<++++ . …14分。