人教版七年级上册数学期末试卷
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题 1.12022的相反数是( ) A .2022 B .-2022 C .12022D .12022-2.单项式325x y π-的系数与次数分别是( )A .15-,5B .5π-,4C .15-,6D .5π-,5 3.据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×1010 4.若A 和B 都是4次多项式,则A+B 一定是( ) A .8次多项式 B .4次多项式C .次数不高于4次的整式D .次数不低于4次的整式 5.下列说法正确的是( )A .互为相反数的两个数的绝对值相等B .有理数的绝对值一定比0大C .若两个数的绝对值相等,则这两个数相等D .有理数的相反数一定比0小 6.下列式子计算正确的个数有( )①224a a a +=;①22321xy xy -=;①32ab ab ab -=;①322()17(3)---=-. A .1个B .2个C .3个D .0个7.实数a ,b ,c 在数轴上的对应点的位置如图所示,若a 与c 互为相反数,则a ,b ,c 中绝对值最大的数是( )A .aB .bC .cD .无法确定8.若2x 9=,y 2=,且x y <,则x y -的值为( ) A .5±B .±1C .5-或1-D . 5或19.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程为( ) A .8374x x +=- B .8374x x -=+ C .3487x x -+= D .3487x x +-= 10.有一列数123,,,,na a a a ⋅⋅⋅⋅⋅⋅满足1211113,1132a a a ====---,之后每一个数都是前一个数的差倒数,即111n na a +=-,20202018a a -=( )A .72-B .73C .76- D .72二、填空题11.小薇的体重是45.85kg ,用四舍五入法将45.85精确到0.1的近似值为______. 12.如图,把一张长方形纸片沿AB 折叠后,若①1=50°,则①2的度数为______.13.一个角的余角比它的补角的13还少20°,则这个角是_____________.14.若a 是最大的负整数, 2000200120022003a a a a +++的值=______.15.若多项式()28158(xm xy y xy m ++-+-是常数)中不含xy 项,则m 的值为_______.16.若1312m a b -与312na b -是同类项,则mn=________. 17.比较大小:-47_________-57 (选填“<”“=”或“>”).18.已知一组数为:92-,166,2512-,3620...按此规律则第7个数为__________.三、解答题 19.计算题:(1)1532132114742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭;(2)()201825(1)5|0.81|3⎛⎫-÷-⨯-+- ⎪⎝⎭;20.解方程: (1)4x +1=3x ﹣5 (2)x +12x -=2﹣213x +21.先化简,再求值:,xy xy y x xy xy y x -+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---2222323223其中.313-==y x ,22.已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求2+-+--b amn x m n的值.23.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-3,+14,-11,+10,-12. (1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车耗油共多少升?24.现用190张铁皮做盒子,每张铁皮能做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个盒子,那么需要多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?25.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:①按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用; (2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?26.已知点C 是线段AB 上一点,13AC AB =.(1)若60AB =,求BC 的长;(2)若AB a ,D 是AC 的中点,E 是BC 的中点,请用含a 的代数式表示DE 的长,并说明理由.27.在某次作业中有这样的一道题:“如果代数式53a b +的值为4-,那么代数式2()4(2)a b a b +++的值是多少?”小明是这样来解的:原式2284106a b a b a b =+++=+,把式子534a b +=-两边同乘以2,得1068a b +=-,仿照小明的解题方法,完成下面的问题:(1)如果20a a +=,则22018a a ++= ; (2)已知2a b -=-,求3()556a b a b --++的值;(3)已知223a ab +=,24ab b -=-,求223122a ab b ++的值.28.如图所示.(1)已知①AOB=90°,①BOC=30°,OM 平分①AOC ,ON 平分①BOC ,求①MON 的度数; (2)①AOB=α,①BOC=β,OM 平分①AOC ,ON 平分①BOC ,求①MON 的大小.参考答案1.D【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:12022的相反数是12022-故选D【点睛】本题考查了相反数,掌握相反数的定义是解题的关键.2.D【分析】根据系数与次数的定义解答即可.【详解】单项式325x yπ-的系数与次数分别是5π-,5.故选D.【点睛】本题考查了单项式的概念,不含有加减运算的整式叫做单项式,单独的一个数或一个字母也是单项式;单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.3.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【分析】两个式子均为四次多项式,两个四次多项式相加,最高次项必不超过4,据此可解此题.【详解】A,B分别代表四次多项式,则A+B是次数不高于四次的整式.故选:C.5.A【分析】根据绝对值和相反数的定义逐项判断即可.【详解】解:A、互为相反数的两个数的绝对值相等,正确,符合题意;B 、因为有理数0的绝对值等于0,所以有理数的绝对值一定比0大错误,不符合题意;C 、若两个数的绝对值相等,则这两个数相等或互为相反数,所以此选项说法错误,不符合题意;D 、因为小于0的有理数的相反数大于0,所以此选项说法错误,不符合题意, 故选:A .【点睛】本题考查相反数和绝对值,属于基础题型,注意对基础概念的理解是解此类题的关键. 6.B【分析】根据合并同类项的法则和有理数的混合运算进行计算即可. 【详解】解:①2222a a a +=,故①错误; ①22232xy xy xy -=,故①错误; ①32ab ab ab -=,故①正确; ①322()17(3)---=-,故①正确, 计算正确的有2个, 故选:B .【点睛】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键. 7.B【分析】直接利用相反数的定义得出原点位置,进而结合绝对值的几何意义得出答案. 【详解】解:①a 与c 互为相反数, ①原点在a ,c 的中间, ①b 距离原点最远,①a ,b ,c 三个数中绝对值最大的数是b . 故选:B .【点睛】此题主要考查了数轴,绝对值,相反数,正确得出原点位置是解题关键. 8.C【分析】首先根据绝对值和乘方的定义确定出x 、y 的值,再找出x <y 的情况,然后代入计算即可.【详解】解:①x 2=9,|y|=2, ①x=±3,y=±2,①x <y , ①x=-3,y=±2, ①x -y=-5或-1, 故选C .【点睛】此题主要考查了乘方、绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x 、y 的值. 9.D【分析】设这个物品的价格是x 元,根据人数不变列方程即可. 【详解】解:设这个物品的价格是x 元,由题意得 3487x x +-=, 故选D .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程. 10.D【详解】解:①a 1=3,①211111132a a ===---,a 3=111()2--=23,a 4=1213-=3,a 5=113-=−12, …,所以这列数每3个为一个循环组依次循环,①2020÷3=673…1,2018÷3=672…2, ①a 2020=3,a 2018=−12, ①a 2020−a 2018=3−(−12)=72.故选:D .【点睛】本题考查了数字的变化规律,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键. 11.45.9【分析】把百分位上的数字5进行四舍五入即可. 【详解】解:45.85精确到0.1的近似值为45.9. 故答案为45.9.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字. 12.65︒【分析】如图,由题意得①1+2①2=180°,根据①1=50°,即可解决问题. 【详解】解:由题意知: ①1+2①2=180°,而①1=50°, 180502652︒-︒∴∠==︒ 故答案为:65︒.【点睛】该题考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,准确找出图形中隐含的等量关系,灵活运用有关定理来解答. 13.75°【详解】设这个角为x,则这个角的余角是90x ︒-,这个角的补角是180,x ︒-根据题意可得:9020x ︒+︒-=()11803x ︒-,解得x=75°,故答案为: 75°. 14.0【分析】先判断出a 的值,再根据有理数的乘方的定义代入求值. 【详解】解:①a 是最大的负整数, ①a=-1把a=-1代入2000200120022003a a a a +++得,原式()()()()()()2000200120022003111111110=-+-+-+-=+-++-=故答案为:0.【点睛】此题考查了正数和负数,有理数的概念及正负数的相关计算. 15.-2【分析】先合并同类项,再使含xy 项的系数为0求解即可.【详解】解:()28158x m xy y xy ++-+-()28258x m xy y =++--,①该多项式中不含xy 项, ①m+2=0, 解得:m=-2, 故答案为:-2.【点睛】本题考查整式加减中的无关型问题、解一元一次方程,能正确得出关于m 的方程是解答的关键. 16.12【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m 和n 的值,再求mn 的值. 【详解】解:由1312m a b -与312na b -是同类项可知: 133m n -=⎧⎨=⎩ 解之得:43m n =⎧⎨=⎩, 故12mn =, 故答案为:12【点睛】同类项定义中的两个“相同”: (1)所含字母相同; (2)相同字母的指数相同. 17.>【分析】根据两个负数比较大小的方法:绝对值大的反而小解答即可. 【详解】解:4577< 4577∴->-,故答案为:>.【点睛】本题考查了有理数的大小比较,属于基本题目,熟练掌握比较两个负数大小的方法是解本题的关键.18.8156-【分析】观察数据,根据分母分别为:212623=⨯=⨯,,1234=⨯,2045=⨯...得出第n个数的分母为()1n n +,分子是从3开始的连续自然数的平方,而各数的符号为奇负偶正,结合以上信息进一步求解即可.【详解】观察可得,各数分母分别为:212623=⨯=⨯,,1234=⨯,2045=⨯...①第n 个数的分母为()1n n +,而其分子是由从3开始的连续自然数的平方, ①第n 个数的分子为()22n +, 而各数的符号为奇负偶正,①第7个数为:()()2728177156+-=-⨯+,故答案为:8156-. 【点睛】本题主要考查了数字的规律探索,准确找出相关的规律是解题关键. 19.(1)-1;(2)415. 【分析】(1)先把除法转化为乘法,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)1532132114742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭=1532321147⎛⎫-+- ⎪⎝⎭×(﹣42) =﹣14+10+(﹣9)+12 =﹣1;(2)()201825(1)5|0.81|3⎛⎫-÷-⨯-+- ⎪⎝⎭=1÷(﹣25)×(﹣53)+15=1×125×53+15=115+15=115+315 =415. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(1)x =﹣6(2)x =1【分析】(1)直接移项、合并同类项,即可求出答案;.(2)先去分母,然后移项合并,系数化为1,即可求出答案(1)解:4x +1=3x ﹣5,移项合并得:x =﹣6;(2)解:x +12x -=2﹣213x +, 去分母得:6x+3x ﹣3=12﹣4x ﹣2,移项合并得:13x =13,解得:x =1.【点睛】本题考查了解一元一次方程,解题的关键是掌握解方程的步骤进行解题.21.2xy +xy ;23-. 【分析】根据整式的加减,先去小括号、再去中括号,再合并同类项进行化简.【详解】原式=222232233x y xy xy x y xy xy ⎡⎤--++-⎣⎦=222232233x y xy xy x y xy xy -+-+-=2xy +xy 把133x y ==-,代入,原式=313⨯-()2+133⨯-()=12133-=-. 【点睛】此题主要考察整式的加减运算.22.原式的值为0或-4.【分析】根据相反数的性质、互为倒数的性质、绝对值的性质可知a+b=0,mn=1,x=±2,分两种情形代入计算即可.【详解】解:根据题意知a+b=0、mn=1,x=2或x=-2,当x=2时,原式=-2+0-2=-4;当x=-2时,原式=-2+0+2=0.综上,原式的值为0或-4.【点睛】本题考查了求代数式的值,相反数的性质、绝对值的性质、互为倒数的性质等知识,属于基础题.23.(1)13千米;(2)65a升【分析】(1)将小石这天下午所有行车里程相加,再根据正负数的实际意义解答;(2)将小石这天下午所有行车里程的绝对值相加,所得结果再乘以a即可.【详解】解:(1)+15+(﹣3)+14+(﹣11)+10+(﹣12)=13(千米);答:将最后一名乘客送达目的地时,小石距下午出发地点的距离是13千米.(2)(15+3+14+11+10+12)×a=65a(升).答:这天下午汽车耗油共65a升.【点睛】本题考查了有理数加法和正负数在实际中的应用以及列出实际问题中的代数式,属于常考题型,正确理解题意、熟练掌握基本知识是解题的关键.24.需要110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.【详解】分析:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据每张铁皮做8个盒身或做22个盒底且一个盒身与两个盒底配成一个盒子即可得出关于x的一元一次方程,解方程即可.详解:设需要x张铁皮做盒身,(190-x)张铁皮做盒底.根据题意,得8x×2=22(190-x).解这个方程,得x=110.所以190-x=80.答:需要110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.点睛:本题考查了一元一次方程的应用,解题的关键是根据数量关系列出关于x的一元一次方程.25.(1)第①种方案应付的费用为640元,第①种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案①比较合算.【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案①比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第①种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第①种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案①比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.26.(1)40;(2)12a ,见解析 【分析】(1)根据题目中的已知求出AC 的长,再求BC 的长即可.(2)根据中点的定义可得CD=12AC ,CE= 12BC ,利用线段的加减可得DE 与AB 的关系,即可求解.【详解】(1)①60AB =,13AC AB =, ①1203AC AB == ①602040BC AB AC =-=-=(2)①D 是AC 的中点,E 是BC 的中点,①12DC AC =,12CE BC =, ①()1111122222DE DC CE AC BC AC BC AB a =+=+=+== 【点睛】本题考查的是线段的加减,掌握线段中点的定义并能根据图形找到数量关系是关键.27.(1)2018;(2)10;(3)5.【分析】(1)将a 2+a =0整体代入原式即可求出答案.(2)将(a ﹣b )作为一个整体进行化简即可求出答案(3)将原式进行适当的变形后将a 2+2ab =3,ab ﹣b 2=﹣4分别代入即可求出答案【详解】解:(1)①a 2+a =0,①原式=0+2018=2018(2)①a ﹣b =﹣2,①原式=3(a ﹣b )﹣5(a ﹣b )+6=﹣2(a ﹣b )+6=4+6=10(3)①a 2+2ab =3,ab ﹣b 2=﹣4,①原式=(a 2+2ab )﹣12(ab ﹣b 2) =3+2=5【点睛】本题考查学生的阅读能力,解题的关键是熟练运用整体思想,本题属于中等题型. 28.(1)45°;(2)12α【详解】试题分析:(1)先求得①AOC 的度数,然后再依据角平分线的定义求得①COM 和①NOC 的度数,最后,再依据①MON=①MOC ﹣①CON 求解即可;(2)按照(1)中的方法和思路求解即可.试题解析:解:(1)①①AOB=90°,①BOC=30°,①①AOC=①AOB+①BOC=90°+30°=120°. ①OM 平分①AOC ,ON 平分①BOC ,①①MOC=12①AOC=60°,①CON=12①BOC=15°,①①MON=①MOC ﹣①CON=60°﹣15°=45°.(2)同理可得,①MOC=12(α+β),①CON=12β.则①MON=①MOC﹣①CON=12(α+β)﹣12β=12α.点睛:本题主要考查的是角平分线的定义、角的和差,熟练掌握相关知识是解题的关键.。
人教版七年级上册数学期末测试卷【含答案】
人教版七年级上册数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少厘米?A. 20厘米B. 32厘米C. 44厘米D. 52厘米4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1075. 如果一个正方形的边长是6厘米,那么这个正方形的面积是多少平方厘米?A. 24平方厘米B. 36平方厘米C. 48平方厘米D. 60平方厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个三角形的两边之和一定大于第三边。
()3. 等腰三角形的两腰相等。
()4. 两个奇数的积一定是奇数。
()5. 一个正方形的对角线长度等于边长的平方根。
()三、填空题(每题1分,共5分)1. 24是4和6的______数。
2. 一个等腰三角形的两腰相等,这个三角形一定是______三角形。
3. 如果一个数的因数只有1和它本身,那么这个数是______。
4. 一个正方形的周长是______,边长是a。
5. 如果一个数的平方根是b,那么这个数是______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述等腰三角形的性质。
3. 请简述偶数和奇数的性质。
4. 请简述正方形的性质。
5. 请简述因数和倍数的性质。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
2. 一个正方形的边长是8厘米,求这个正方形的面积。
3. 求24的所有因数。
4. 求25的平方根。
5. 判断101是否是质数。
六、分析题(每题5分,共10分)1. 如果一个数的因数只有1和它本身,那么这个数是什么数?为什么?2. 如果一个三角形的两边之和等于第三边,那么这个三角形是什么三角形?为什么?七、实践操作题(每题5分,共10分)1. 请画出一个等腰三角形,并标出其底边和腰。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.-2的倒数是( )A .-2B .12- C .12 D .22.数据6950000用科学记数法表示为( ) A .469510⨯B .66.9510⨯C .669.510⨯D .70.69510⨯3.如图,点A 位于点O 的( )A .北偏西 65°方向上B .南偏西 65°方向上C .北偏西 35°方向上D .南偏西 35°方向上4.如果向北走50m ,记作+50m ,那么-10m 表示( ) A .向东走10mB .向西走10mC .向南走10mD .向北走10m5.下列运用等式性质进行的变形,其中不正确的为( ) A .如果a b =,那么a c b c +=+ B .如果a b =,那么1122a b -=- C .如果a b =,那么ac bc =D .如果a b =,那么a b c c= 6.如图所示的是三通管的立体图,则这个几何体的俯视图是( )A .B .C .D .7.下午2时30分,钟表中时针与分针的夹角为( ) A .90︒B .105︒C .120︒D .135︒8.已知方程()130mm x ++=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或169.某志愿者团队承担整理校园图书馆一批图书的任务,由一个人做要40h 完成,现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设志愿者的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,下列四个方程中正确的是( ). A .4(2)814040x x++= B .48(2)14040x x ++= C .48(2)14040x x -+= D .4814040x x += 10.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数相等,则a 的值为( )A .2B .5-C .1D .1-二、填空题11.一只蚂蚁由数轴上表示2-的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是________. 12.7--=__________. 13.单项式2335π-x y 的系数是__________. 14.已知∠A=67°,则∠A 的余角等于______度.15.用四舍五入法将3.1416精确到0.01后,得到的近似数是____________ 16.已知2|1|(2)0a b -++=,则2011)a b (+的值是___________. 17.若关于x 的方程2x+a=6的解是x=1,则a 的值等于__________. 18.13.26°=_____°_____′_______″19.若2x 3yn 与﹣5xmy 2的和是单项式,则m+n=________.20.一组按规律排列的式子:25811234,,,,(0)b b b b ab a a a a--≠,其中第7个式子是_______,第n 个式子是_______(n 为正整数). 三、解答题 21.计算(1)713620-+-+(2)22323(2)-⨯+⨯-(3)232(21)x x x ---+(4)180483940︒︒'''-22.解方程 (1)5x+12=2x ﹣9 (2)211236x x +--=23.化简求值:22223y x (2x y)(x 3y )-+--+,其中1,2x y ==.24.如图,已知点 A ,B ,C 不在同一条直线上,根据要求画图.(1)作直线 AB . (2)作射线 CA .(3)作线段 BC ,并延长 BC 到 D ,使 CD =CB .25.一个角的补角比它的余角的5倍少10︒,求这个角的度数.26.如图.OE 平分BOC ∠,OD 平分AOC ∠,20,40BOE AOD ∠=︒∠=︒,求DOE ∠的度数.27.如图,点C 在线段AB 上,AC =8cm ,CB =6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任一点,如果AB=14cm ,求MN 的长.28.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?29.从数轴上看:|a|表示数 a 的点到原点之间的距离,类似地|3|a -表示数 a 的点到表示数3的点之间的距离,|7||(7)|a a +=--表示数 a 的点到表示数–7的点之间的距离.一般地||-a b 表示数 a 的点到表示数 b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数–2 的点之间的距离为 3 个单位长度,则 x =_______. (2)利用数轴,求方程|5||4|9x x ++-=的所有整数解.参考答案1.B【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12, 故选:B . 2.B【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:6950000=6.95×106, 故选:B .【点睛】题目主要考查科学记数法的变换方法,熟练掌握科学记数法的变换方法是解题关键. 3.A【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断. 【详解】解:点A 位于点O 的北偏西65°的方向上. 故选:A .【点睛】本题考查了方位角的定义,正确确定基准点是关键. 4.C【分析】根据正负数的意义判断即可. 【详解】解:∠向北走50m, 记作+50m , ∠向北走为正,则向南走为负, ∠-10m 表示向南走10m , 故选C .【点睛】此题考查的是正负数的意义,掌握正负数表示具有相反意义的量是解决此题的关键. 5.D【分析】由等式的基本性质直接判断各选项的正误,进而可得到答案.【详解】解:由等式的基本性质1:等式左右两边同时加上同一个数或式子,等式不变; 可得选项A 、B 正确,不符合题意.由等式的基本性质2:等式左右两边同时乘以或除以一个不为零的数或式子; 可知选项C 正确,不符合题意,选项D 错误,符合题意. 故选:D .【点睛】本题考查等式的基本性质,熟练掌握等式的基本性质是解题的关键. 6.A【详解】解:俯视图是从上往下看得到的视图,从上往下看是一个矩形,中间有一个与长边相切的圆. 故选A . 7.B【分析】根据钟表上12个数字,每相邻两个数字之间的夹角为30°,数出时针与分针之间的空格进行求解即可得.【详解】解:∠钟表上12个数字,每相邻两个数字之间的夹角为30°,下午2时30分时,时针的分针与时针之间有3.5个空格, ∠所成夹角为30°×3.5=105°, 故选:B .【点睛】题目主要考查钟面角的计算,熟练掌握钟面角的基础知识点是解题关键. 8.B【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】解:∠方程(+1)30+=mm x 是关于x 的一元一次方程,∠1m =,+10≠m , 解得:1m =. 故选:B .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 9.B【分析】由一个人做要40h 完成,即一个人一小时能完成全部工作的140,就是已知工作的速度.本题中存在的相等关系是:先安排的一部分人4h 的工作+增加2人后8h 的工作=全部工作.设安排x 人先做4h ,就可以列出方程. 【详解】解:设安排x 人先做4h ,根据题意可得:48(2)14040x x ++=故选:B.【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键.10.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字相等,求出a.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“1-”是相对面,相对面上的两个数相等,1a∴=-,故选:D.【点睛】本题考查了正方体的表面展开图,熟知正方体的表面展开图中相对的面之间一定相隔一个正方形式解决问题的关键.11.-4【分析】数轴上点的移动规律是“左减右加”,所以此蚂蚁所在的位置表示的数是-2+3-5=-4.【详解】解:蚂蚁所在的位置为:-2+3-5=-4.故答案为:-4.【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.-7【分析】根据题干信息,利用负数的绝对值等于它的相反数进行分析解答.【详解】解:负数的绝对值等于它的相反数,-l-7|=-7.故答案为:-7.【点睛】本题考查绝对值的性质以及相反数的定义,熟练掌握绝对值的性质以及相反数的定义是解题的关键.13.3 5π-【分析】根据单项式中的数字因数叫做单项式的系数,即可得出答案.【详解】解:单项式2335π-x y 的系数是35π-,故答案为35π-. 【点睛】本题是对单项式系数的考查,熟练掌握单项式的系数知识是解决本题的关键,难度较小. 14.23【详解】∠∠A=67°, ∠∠A 的余角=90°﹣67°=23°, 故答案为23. 15.3.14【分析】近似数精确到哪一位,应当看末位数字实际在哪一位. 【详解】3.1416精确到0.01为3.14. 故答案为3.14.【点睛】本题考查了近似数和有效数字,解题的关键是熟练掌握近似数与有效数字的知识点. 16.1-【详解】试题解析:根据题意得,a -1=0,b+2=0, 解得a=1,b=-2,所以,(a+b )2011=(1-2)2011=-1. 17.4【分析】把x=1代入方程计算即可求出a 的值. 【详解】解:把x =1代入方程得: 2+a ﹣6=0, 解得:a =4, 故答案为:4. 18. 13 15 36【分析】根据角度制的转换规律,乘以60即可解题. 【详解】解:0.26︒⨯60=15.6′, 0.6′⨯60=36″, ∠13.26°= 13°15′36″. 故答案为:13、15、3619.5【详解】解:根据题意:和是单项式,可知它们是同类项,因此根据同类项的概念,可得m=3,n=2,代入m+n=5. 故答案为5.20. 207b a - 31(1)n n n b a-- 【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律. 【详解】分子为b ,指数为2,5,8,11,..., ∴分子指数的规律为3n – 1,分母为a ,指数为1,2,3,4,..., ∴分母指数的规律为n ,分数符号为-,+,-,+,…., ∴其规律为()1n-,于是,第7个式子为207b a-,第n 个式子为31(1)n nnb a--, 故答案为:207b a-,31(1)n n nb a --. 21.(1)20 (2)6-(3)253x x -+- (4)1312020'''︒【分析】(1)按照有理数的混合运算法则计算即可; (2)按照有理数的混合运算法则计算即可; (3)按照整式的加减运算法则计算即可; (4)按照角度的运算法则计算即可. (1)解:原式=6620-+ =20, (2)解:原式=9234-⨯+⨯ =1812-+ =6-, (3)解:原式=23221x x x --+- =253x x -+-, (4)解:原式=1795960483940''''''︒-︒ =1312020'''︒. 22.(1)x=-7 (2)x=3【分析】(1)根据移项合并同类项,系数化为1,求出方程的解;(2)根据去分母,去括号,移项合并同类项,系数化为1,求出方程的解. (1)解:5x+12=2x -9, 移项得5x -2x=-9-12, 合并同类项,得3x=-21, 系数化为1,得x=-7; (2) 解:211236x x +--= 去分母,得2(2x+1)-(x -1)=12, 去括号,得4x+2-x+1=12, 移项合并同类项,得3x=9, 系数化为1,得x=3. 23.222x x y -+-;-2【分析】根据整式的加减混合运算法则计算将原式化简,再代值计算即可.【详解】解:原式2222323y x x y x y =-+---222x x y =-+-.当1x =,2y =时,原式221212=-⨯+⨯-2=-.24.(1)见解析(2)见解析(3)见解析【分析】(1)连接AB 并双向延长即可;(2)连接CA 并延长即可得;(3)连接BC 并延长,使用刻度尺测得CD=CB ,即可确定点D 的位置.(1)如图所示:直线AB 即为所作;(2)如图所示:射线CA 即为所作;(3)如图所示:线段BC=CD 即为所作.【点睛】题目主要考查了作直线、射线和线段,熟练掌握这三个基本图形的性质及作法是解题关键.25.这个角的度数为65︒【分析】设这个角为x ︒,根据题意列方程求解即可.【详解】解:设这个角为x ︒,则余角为(90)x -︒,补角为(180)x -︒,由题意得:()18059010-=--x x ,解得:65x =.答:这个角的度数是65︒.【点睛】本题考查了一元一次方程的应用,以及余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角,根据题意列出方程是解题关键.26.60度【分析】根据角平分线定义求出∠COD和∠COE,代入∠DOE=∠COD+∠COE求出即可.【详解】解:∠OE平分∠BOC,∠BOE=20°,∠∠BOE=∠COE=20°,∠OD平分∠AOC,∠AOD=40°,∠∠COD=∠AOD=40°,∠∠DOE=∠COD+∠COE=40°+20°=60°.【点睛】本题考查角平分线的定义,解题关键是角平分线的定义的运用.27.(1)7cm(2)7cm【分析】(1)根据线段中点的性质,可得CM、CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质及线段的和差,可得答案.(1)解:∠点M,N分别是AC,BC的中点,AC=8,CB=6,∠CM=12AC=12×8=4,CN=12BC=12×6=3,∠MN=CM+CN=4+3=7cm;(2)解:∠点M,N分别是AC,BC的中点,AC+CB=AB=14cm,∠CM=12AC,CN=12BC,∠MN=CM+CN=12AC +12BC =12(AC+BC)=7cm.【点睛】本题考查了两点间的距离及线段中点的性质,熟练掌握运用线段中点的性质进行计算是解题关键.28.生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【分析】设生产螺栓的工人有x名,则生产螺母的工人有(28﹣x)名,根据题意等量关系:“螺栓数量×2=螺母数量”列出方程,求出方程的解即可得到结果.【详解】设生产螺栓的工人有x 名,则生产螺母的工人有(28﹣x )名,根据题意得: 12x×2=18(28﹣x )解得:x=12.当x=12时,28﹣x=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【点睛】本题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解答本题的关键.29.(1)1或-5(2)x=-5,-4,-3,-2,-1,0,1,2,3,4.【分析】(1)根据数轴表示数的方法分两种情况进行求解即可;(2)根据54x x ++-所表示的意义,结合数轴表示数的意义求解即可.(1)解:根据题意可得:()23x --=,∠x -(-2)=±3,x=(-2) ±3,解得:x 1=1,x 2=-5,故答案为:1或-5;(2)解:如图所示,设点C 在数轴上所表示的数为x ,当C 在线段AB (含端点A 、B )上时,()55x x CA +=--=,4x CB -=,∠CA+CB=AB=9,即x 是549x x ++-=的解,∠x是整数,∠x=-5,-4,-3,-2,-1,0,1,2,3,4.。
人教版七年级上册数学期末考试试卷及答案
人教版七年级上册数学期末考试试题一、单选题1.用科学记数法表示2022000,正确的是( )A .2022×103B .2.022×105C .2.022×106D .0.2022×107 2.下列计算正确的是( )A .220--=B .4228a 6a 2a -=C .()3b 2a 3b 2a -=-D .239-=-3.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 4.若﹣5am +1b 2与13a 3bn ﹣1是同类项,则m ﹣n 的值为( )A .1B .2C .﹣1D .﹣25.买一个足球需m 元,买一个篮球需n 元,则买4个足球和7个篮球共需( )元. A .11mnB .28mnC .74m n +D .47m n +6.下列说法正确的是( ) A .一个平角就是一条直线;B .连接两点间的线段,叫做这两点的距离;C .两条射线组成的图形叫做角;D .两点之间线段最短.7.某土建工程共需动用30台挖运机械,每台机械每分钟能挖土3m 3,或者运土2m 3,为了使挖土和运土工作同时结束,安排了x 台机械挖土,这里的x 应满足的方程是( ) A .302x 3x -= B .3x 2x 30-= C .()2x 330x =- D .()3x 230x =- 8.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=-,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A .4B .3C .2D .19.如图,数轴上A 、B 、C 三点所表示的数分别是a 、6、c .已知AB =8,a +c =0,且c 是关于x 的方程(m -4)x +16=0的一个解,则m 的值为( )A .-4B .2C .4D .6 10.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4 B .4 C .﹣8 D .8 二、填空题11.物体向右运动4m 记作+4m ,那么物体向左运动8m ,应记作____m 12.比较大小:-|-8|_____-6(填“>”或“<号”) 13.已知一个角为31°40′,则这个角的补角为____.14.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.15.如果x =3时,式子px 3+qx +1的值为2020,则当x =﹣3时,式子px 3+qx ﹣2的值是____.16.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.17.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,那么a +b ﹣2c =____.三、解答题18.计算 ()()2211113223⎡⎤⎛⎫-+-⨯÷-+ ⎪⎢⎥⎝⎭⎣⎦19.解方程3157146x x ---=20.先化简,再求值:22222(3)2(2)a b ab a b ab a b -+---,其中 1,2a b =-=-21.在数轴上表示a 、0、1、b 四个数的点如图所示,已知OA =OB ,求|a +b|+|ab|+|a +1|+a 的值.22.如图,一块正方形的铁皮,边长为x cm (x >4),如果一边截去宽4 cm 的一块,相邻一边截去宽3 cm 的一块.(1)求剩余部分(阴影)的面积; (2)若x =8,则阴影部分的面积是多少?23.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且()215290a b -+-=,求a ,b 的值; (2)在(1)的条件下,求线段CD 的长.24.某超市的平时购物与国庆购物对顾客实行优惠规定如下:例如:某人在平时一次性购物600元,则实际付款为:200+(600-200)×0.9=560(元)(1)若王阿姨在国庆期间一次性购物600元,他实际付款______元. (2)若王阿姨在国庆期间实际付款380元.那么王阿姨一次性购物____元;(3)王阿姨在平时和国庆先后两次购买了相同价格的货物,两次一共付款1314元,求王阿姨这两次每次购买的货物的原价多少元?25.如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a = ,b = ; (2)先化简,再求值:22(25)3()a b a b ---.26.已知150AOB ∠=︒,射线OP 从OB 出发,绕O 逆时针以1°/秒的速度旋转,射线OQ 从OA 出发,绕O 顺时针以3°/秒的速度旋转,两射线同时出发,运动时间为t 秒()060t <≤(1)当12t =秒时,求POQ ∠; (2)当OP OQ ⊥,求t 的值;(3)射线OP ,OQ ,OB ,其中一条射线是其他两条射线所形成的角的平分线,求t 的值.参考答案1.C 2.D 3.A 4.C 5.D 6.D 7.D 8.B 9.A 10.B 11.-8【详解】解:物体向右运动4m 记作+4m ,那么物体向左运动8m ,应记作-8 m 故答案为:-8.【点睛】本题考查了具有相反意义的量,解题的关键是理解具有相反意义的量. 12.<【分析】先化简绝对值,进而根据两个负数,绝对值大的其值反而小,进行判断即可. 【详解】解:∵-|-8|=-8,88,66,86-=-=> ∵-|-8|<-6 故答案为:< 13.148∵ 20′【分析】根据补角的概念求解即可. 【详解】解:一个角为31°40′, 则它的补角为:180311824004'=︒︒-'︒. 故答案为:148∵ 20′. 14.两点确定一条直线.【分析】依据两点确定一条直线来解答即可.【详解】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的是直线的性质,掌握直线的性质是解题关键. 15.-2021【分析】把x=3代入31px qx ++可得27p+3q+1=2020,整理得:27p+3q=2019,再将x=-3代入,变形可得结果. 【详解】解:当x=3时,代入31px qx ++可得27p+3q+1=2020,整理得:27p+3q=2019当x=-3时,代入32px qx +-得-27p-3q-2=-(27p+3q )-2=-2019-2=-2021故答案为:-2021.【点睛】本题考查了代数式的求值,解题的关键是运用整体思想代入求值. 16.10【详解】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时, ∵水流的速度为:(2824)22-÷=(千米/时),∵水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时). 故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,∵顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;∵水面上漂浮物顺水漂流的速度等于水流速度. 17.38【分析】由已知条件相对两个面上所写的两个数之和相等得到:8425a b c +=+=+,进一步得到a c -,b c -的值,整体代入()()2a b c a c b c +-=-+-求值即可. 【详解】解:由题意8425a b c +=+=+21b c ∴-=,17a c -=,()()2a b c a c b c ∴+-=-+-172138=+=.故答案为:38.【点睛】本题考查灵活运用正方体的相对面解答问题,解题的关键是得到a c - ,b c -的值后用这些式子表示出要求的原式. 18.16-【分析】先算中括号内的乘方、乘法、然后计算加减法,最后计算中括号外的除法. 【详解】解:原式11711167676⎛⎫⎛⎫⎛⎫=+⨯-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则. 19.x =﹣1【分析】首先去分母,然后移项合并系数,即可解得x .【详解】方程两边同时乘以12得:3(3x ﹣1)﹣2(5x ﹣7)=12, 去括号得:9 x ﹣3﹣10x+14=12, 移项得:9x ﹣10x =12﹣14+3, 合并同类项得:﹣x =1, 系数化为1得:x =﹣1.【点睛】本题主要考查解一元一次方程的知识点,解题时要注意,移项时要变号,本题比较基础. 20.2ab - ; 4【分析】先化简代数式,再将a 和b 的值代入化简后的式子计算即可得出答案. 【详解】解:原式=2222234+2a b ab a b ab a b -+-- =2-ab将1,2a b =-=-代入原式=2(1)(2)4--⨯-=【点睛】本题考查的是整式的化简求值,记住先化简再求值. 21.0【分析】由已知条件和数轴可知:101b a >>>->,再由这个确定所求绝对值中的正负值就可求出此题.【详解】解:由已知条件和数轴可知:101b a >>>->,OA OB =∴10110aa b a a a a b+++++=+--+=, 1aa b a a b∴+++++的值为0. 【点睛】本题主要考查了数轴和绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0,数轴左边的为负数,右边的为正数,解题的关键是根据数轴判断a ,b 的大小. 22.(1)x 2-7x+12 (2)20【分析】(1)根据图形分别求得阴影部分的长和宽,进而即可求得面积; (2)根据(1)的结论,将x =8,代入求解即可 (1)解:阴影部分的长为()3x -cm ,宽为()4x -cm , 则面积为()3x -⨯()4x -= x 2-7x+12 (2) x=8时阴影的面积=(8-3)×(8-4)=20【点睛】本题考查了列代数式,多项式的乘法,代数式求值,理解题意是解题的关键. 23.(1)a=15,b=4.5;(2)1.5.【分析】(1)由()215290a b -+-=,根据非负数的性质即可推出a 、b 的值; (2)根据(1)所推出的结论,即可推出AB 和CE 的长度,根据C 为线段AB 的中点AC=7.5,然后由AE=AC+CE ,即可推出AE 的长度,由D 为AE 的中点,即可推出DE 的长度,再根据线段的和差关系可求出CD 的长度. 【详解】(1)∵()215290a b -+-=, ∵()215a -=0,29b -=0, ∵a 、b 均为非负数, ∵a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15, ∵17.52AC AB ==,∵CE=4.5, ∵AE=AC+CE=12, ∵点D 为线段AE 的中点, ∵DE=12AE=6,∵CD=DE−CE=6−4.5=1.5.【点睛】本题考查非负数的性质:绝对值,非负数的性质:平方和线段的和差.能通过非负数的性质求出a ,b 的值是解决(1)的关键;(2)能利用线段的和差,用已知线段去表示所求线段是解决此题的关键. 24.(1)550 (2)400 (3)720元【分析】(1)根据题意和表格中的数据,可以计算出王阿姨实际付款多少;(2)根据题意,可以先判断购买的货物是否超过,然后列出相应的方程,再求解即可; (3)根据题意,利用分类讨论的方法列出相应的方程,然后求解即可. (1)解:()()2005002000.96005000.8550+-⨯+-⨯=; (2)解:设王阿姨一次购物x 元,若500x =时,王阿姨实际付款应为:()2005002000.8440+-⨯=(元), 440380200>>,200500x ∴<<,∴列方程:()2002000.9380x +-⨯=,解得:400x =;∴王阿姨这两次每次购买的货物的原价400元;(3)解:设这两次每次购物的货物原价为x 元, ∵当200x ≤时,2400x ≤,不符合题意; ∵当200500x <≤时,可列方程为:()()2002000.92000.91314x x +-⨯+-⨯=,解得:73709x =, 73705009>,不符合题意; ∵当500800x <≤时,可列方程()()()2002000.92005002000.95000.81314x x +-⨯++-⨯+-⨯=,解得:720x =,500720800<<,符合题意;∵当800x >时,可列方程()()()()2008002000.98000.82005002000.95000.8x x +-⨯+-⨯++-⨯+-⨯1314=,解得:715x =,715800<,不符合题意,综上述720x =.答:王阿姨这两次每次购买的货物的原价720元.【点睛】本题主要考查一元一次方程的应用,解题的关键是明确题意,找出等量关系,列出相应的方程.25.(1)a=-1,b=3 ;(2)-a 2-2b ,-7【分析】(1)观察图中要求的a 、b 与那些数字所在的面相邻,则剩下的为它的对面,再求相反数.(2)化简代数式后代入求值.【详解】解:(1)∵纸盒中相对两个面上的数互为相反数,a 的对面是1, ∵a=-1∵b 的对面是-3, ∵b=3 故答案为:-1; 3.(2)解:原式=2a 2-5b -3a 2+3b =-a 2-2b 当a=-1,b=3时原式=-(-1)²-2×3=-1-6=-7.【点睛】本题考查了长方体相对两个面上的文字,整式的加减,依据长方体对面的特点确定出a 、b 的值是解题的关键.26.(1)102POQ ∠=︒;(2)当15t =或60时,OP OQ ⊥;(3)当30t =或3007时,OP 、OQ 、OB 其中一条射线是其他两条射线所形成的角的平分线 【分析】(1)分别算出12t =秒时,OP OQ 转过的角度,用150AOB ∠=︒减去转过的角度即可;(2)分两种情况进行讨论:相遇前OP OQ ⊥以及相遇后OP OQ ⊥,分别计算即可; (3)分三种情况进行讨论:当OP 平分QOB ∠时;当OQ 平分POB ∠时;当OB 平分POQ ∠时;分别进行计算即可.【详解】(1)当12t =时,12336AOQ ∠=⨯︒=︒,12112POB ∠=⨯︒=︒∵1503612102POQ AOB AOQ POB ∠=∠-∠-∠=︒-︒-︒=︒.(2)3AOP t ∠=,POB t ∠=,OQ 与OP 相遇前,当037.5t ≤≤时,1501504POQ AOQ POB t ∠=-∠-∠=-∵OP OQ ⊥,∵150490t ︒-=︒,15t =,OQ 与OP 相遇后,37.550t <≤时,()150415050POQ POB AOQ t ∠=∠--∠=-≤︒,∵OP 不垂直OQ ,当5060t <≤时,()1504150POQ POB AOQ t ∠=∠+∠-=-,∵OP OQ ⊥,,∵415090t -=︒,60t =,综上所述,当15t =或60时,OP OQ ⊥.(3)当OP 平分QOB ∠时,12POQ POB QOB ∠=∠=∠, ∵1504t t -=,30t =,当OQ 平分POB ∠时,12POQ QOB POB ∠=∠=∠,115032t t =-,7300t =,3007t =,当OB 平分POQ ∠时,POB QOB ∠=∠,3150t t =-,75t =(不合题意),综上所述,当30t =或3007时,OP 、OQ 、OB 其中一条射线是其他两条射线所形成的角的平分线.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
人教版七年级上册数学期末考试试卷及答案
人教版七年级上册数学期末考试试题一、单选题1.15-的倒数是( )A .﹣5B .5C .15- D .152.单项式2a 的系数是( )A .2B .2aC .1D .a 3.一元一次方程4x+1=0的解是( ) A .x 14=B .x 14=- C .x =4 D .x =﹣4 4.若一个角为45°,则它的补角的度数为( )A .55°B .45°C .135°D .125° 5.下列图形中,是圆锥的侧面展开图的是( )A .B .C .D .6.已知关于x 的方程3x 2a 2+=的解是a 1-,则a 的值是( ) A .1 B .35 C .15D .1-7.把2.36°用度、分、秒表示,正确的是( )A .2°18′36″B .2°21′36″C .2°30′60″D .2°3′6″8.将方程3x+6=2x ﹣8移项后,四位同学的结果分别是(1)3x+2x =6﹣8;(2)3x ﹣2x =﹣8+6;(3)3x ﹣2x =8﹣6;(4)3x ﹣2x =﹣6﹣8,其中正确的有( ) A .0个 B .1个 C .2个 D .3个9.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A.10cm B.8cm C.8cm或10cm D.2cm或4cm10.代数式2ax+5b的值会随x的取值不同而不同,下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=4的解是()A.12B.4C.-2D.0二、填空题11.计算:6﹣(3﹣5)=_____.12.一个多项式减去﹣x2+x﹣2得x2﹣1,则此多项式应为_______.13.如图,OA表示南偏东32°,OB表示北偏东57°,那么∠AOB=_____°.14.今年妈妈26岁,儿子2岁,_______年后,妈妈的年龄是儿子年龄的5倍.15.将一副三角板和一个直尺按如图所示的位置摆放,则1∠的度数为____________度.16.下列四个数中:∠0;∠12020-;∠5;∠﹣1.最小的数是_______.17.若关于x,y的单项式xm﹣1y2n与单项式13x2yn+1是同类项,则这两个单项式的和为_______.18.如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒1个单位长度,B点运动速度为每秒3个单位长度,当运动_____秒时,点O恰好为线段AB中点.三、解答题19.计算:6×(﹣14)﹣(﹣14)+(﹣1)2022.20.解方程:4x﹣3(20﹣x)=6x﹣7(9﹣x).21.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.AB.再反向延长AC至点D,使得22.已知线段AB=2cm,延长AB至C,使BC=12AD=AC.(1)准确画出图形,并标出相应字母.(2)求出线段BD的长度.23.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?24.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,(1)说明射线OP是∠COB的平分线;(2)写出图中与∠COD互为余角的角.25.老师写出一个整式(ax2+bx﹣1)﹣(4x2+3x)(其中a,b为常数),然后让同学们给a,b 赋予不同的数值进行化简.(1)甲同学给出了a=5,b=﹣1,请按照甲同学给出的数值化简整式;(2)乙同学给出了一组数据,最后化简的结果为2x2﹣3x﹣1,求a,b的值.26.已知关于x的方程2(x+1)﹣m=﹣22m的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.27.如图,将两个直角三角板的顶点叠放在一起进行探究.(1)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CE恰好是∠ACB的平分线,请你猜想此时CB是不是∠ECD的平分线,并简述理由;(2)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CB始终在∠DCE的内部,请猜想∠ACE与∠DCB是否相等,并简述理由;(3)如图∠,若将两个同样的三角板中60°锐角的顶点A叠放在一起,请你猜想∠DAB与∠CAE有何关系,并说明理由.参考答案1.A【分析】根据乘积为1的两个数互为倒数,求解即可.【详解】解:∠(15-)×(-5)=1,∠15-的倒数是-5.故选:A.【点睛】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.A【详解】试题分析:对于一个单项式而言,它的系数是指字母前面的常数,本题中2a 的系数为2.考点:单项式的系数.3.B【分析】先移项,再把系数化为1,即可求解.【详解】解:4x+1=0,移项得:41x=-,解得:14x=-.故选:B【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的基本步骤是解题的关键.4.C【分析】根据补角的性质,即可求解.【详解】解:∠一个角为45°,︒-︒=︒.∠它的补角的度数为18045135故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.5.A【分析】根据圆锥的侧面展开图的特点作答.【详解】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.观察四个选项,只有A符合;故选A.【点睛】考查了几何体的展开图,解题关键是掌握圆锥的侧面展开图是扇形.6.A【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【详解】根据题意得:3(a-1)+2a=2,解得a=1故选A.【点睛】考查了方程解的定义,已知a-1是方程的解实际就是得到了一个关于a的方程.7.B【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″,故选:B.【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制.8.B【分析】根据移项要变号,进行判断即可.【详解】∠3x+2x=6﹣8没有变号,∠(1)错误;∠3x﹣2x=﹣8+6,6没有变号,∠(2)错误;∠3x﹣2x=8﹣6;-8没有移项,却变号,∠(3)错误;∠(4)3x﹣2x=﹣6﹣8,,∠(4)正确;故选B.【点睛】本题考查了移项,注意移项必须改变符号是解题的关键.9.C【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∠点C是线段AB的中点,∠AC=BC=12AB=6cm当AD=23AC=4cm时,CD=AC-AD=2cm∠BD=BC+CD=6+2=8cm;当AD=13AC=2cm时,CD=AC-AD=4cm∠BD=BC+CD=6+4=10cm;故选C.【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.10.C【分析】根据表格中的数据确定出a与b的值,代入方程计算即可求出解.【详解】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b=4-5,代入方程得:-4x-4=4,解得:x=-2,故选:C.11.8【详解】【分析】先计算括号内的,然后再利用有理数的减法法则进行计算即可得出答案.【详解】6﹣(3﹣5)=6﹣(﹣2)=8,故答案为8.12.x-3 【分析】根据被减数=差+减数列式求解.【详解】解:由题意得x2﹣1+(﹣x2+x﹣2)= x2﹣1﹣x2+x﹣2=x ﹣3,故答案为:x-3.13.91【分析】根据方位角的定义求解即可.【详解】∠OA 表示南偏东32°,OB 表示北偏东57°, ∠∠AOB =(90°﹣32°)+(90°﹣57°)=58°+33°=91°, 故答案为91.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角.14.4【分析】设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意列出方程,即可求解. 【详解】解:设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意得:()2652x x +=+ ,解得:4x =答:4年后,妈妈的年龄是儿子年龄的5倍. 故答案为:415.75【分析】首先计算4∠的度数,再根据平行线的性质可得14∠=∠,进而可得答案. 【详解】解:∠260∠=︒,345∠=︒, ∠4180604575∠=︒-︒-︒=︒, ∠//a b , ∠1475∠=∠=︒, 故答案为:75.【点睛】此题主要考查了平行线的性质,掌握平行线的性质并能灵活应用是解题关键. 16.-1【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:1120202020-=,11-=, ∠112020<, ∠12020->-1, ∠-1<12020-<0<5, 故答案为:-1.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键. 17.2243x y 【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)求出,m n 的值,再计算合并同类项即可得.【详解】解:由题意得:12,21m n n -==+, 解得3,1m n ==,则这两个单项式的和为2222221433x y x y x y +=, 故答案为:2243x y . 【点睛】本题考查了同类项、合并同类项、一元一次方程的应用,熟记同类项的定义是解题关键.18.1【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒,点A ,B 表示的数为﹣2﹣t ,6﹣3t ,根据题意可知﹣2﹣t <0,6﹣3t >0,化简|﹣2﹣t|=|6﹣3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点.根据题意可得:经过t 秒,点A 表示的数为﹣2﹣t ,AO 的长度为|﹣2﹣t|,点B 表示的数为6﹣3t ,BO 的长度为|6﹣3t|.因为点B 不能超过点O ,所以0<t <2,则|﹣2﹣t|=|6﹣3t|. 因为﹣2﹣t <0,6﹣3t >0, 所以﹣(﹣2﹣t )=6﹣3t , 解得:t=1. 故答案为:1.【点睛】本题考查了绝对值的意义以及解一元一次方程,根据题意列出等式应用绝对值的意义化简是解答本题的关键.19.-69【详解】解:原式=(-14)×(6-1)+1 =-70+1 =-69.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算律改变运算的顺序.20.x=12【分析】方程去括号,移项、合并同类项,把x 系数化为1,即可求出解.【详解】解:去括号得:4x−60+3x =6x−63+7x , 移项,得4x +3x−6x−7x =60−63, 合并同类项,得:−6x =−3, 系数化为1,得x=12.【点睛】本题考查解一元一次方程.解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,注意移项要变号.21.130°.【分析】根据角平分线的定义可知,∠AOC=2∠AOD ,∠BOC=2∠BOE ,根据角的和差可知,∠AOB=∠AOC+∠BOC ,计算得出∠AOB 的度数.【详解】因为OD 、OE 分别是∠AOC 和∠BOC 的平分线,∠AOD =40°,∠BOE =25°, 所以∠AOC=2∠AOD=40°×2=80°,∠BOC=2∠BOE=25°×2=50°, 因为∠AOB=∠AOC+∠BOC , 所以∠AOB=80°+50°=130°.22.(1)见解析;(2)5cm 【分析】(1)根据题意,做出图形,并且标出相应字母即可; (2)先计算出BC 的长度,然后求出AD 的长度,用AD+AB 可求得BD 的长度. 【详解】解:(1)如图:;(2)∠12BC AB = ∠1BC cm =∠213AC AB BC cm =+=+=∠AD =AC∠3AD cm =∠BD AB AD =+∠()235BD cm =+=【点睛】关于线段的延长,要注意分清方向,关于线段的长度的计算,搞清楚是哪些线段的和差即可进行计算23.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是13.9秒.【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%. 答:这个小组男生百米测试的达标率是62.5%;(2) 1.20.7010.30.20.30.58-++--+++=﹣0.1(秒), 14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键. 24.(1)见解析;(2)∠BOC 和∠AOE .【分析】(1)根据题意可得∠COD =∠AOB ,根据角平分线的定义及角的和差关系可得∠POB =∠POC ,进而得出射线OP 是∠COB 的平分线;(2)根据互余的两角之和为90°求解即可.【详解】解:(1)∠∠AOC =∠BOD =90°,∠∠AOD ﹣∠AOC =∠AOD ﹣90°=∠AOD ﹣∠BOD ,∠∠COD =∠AOB ,∠射线OP 是∠AOD 的平分线;∠∠POA =∠POD ,∠∠POA ﹣∠AOB =∠POD ﹣∠COD ,∠∠POB =∠POC ,∠射线OP 是∠COB 的平分线;(2)∠∠COD =∠AOB ,∠AOC =∠BOD =90°,∠∠AOE =∠BOC ,∠∠COD+∠BOC =90°,∠图中与∠COD 互为余角的角有∠BOC 和∠AOE .【点睛】本题考查了余角和补角以及角平分线,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.25.(1)x 2-4x-1(2)6,0a b ==【分析】(1)先将原式化简,再将a =5,b =﹣1代入,即可求解;(2)先将原式化简,可得42,33a b -=-=-,即可求解.(1)解:原式=ax 2+bx-1-4x 2-3x=(a-4)x 2+(b-3)x-1,当a=5,b=-1时原式=x 2-4x-1(2)根据题意得:(a-4)x 2+(b-3)x-1=2x 2-3x-1得42,33a b -=-=-,解得:6,0a b == .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.26.(1)x=3;(2)m=22.【分析】(1)按去括号、移项、合并同类项的步骤进行求解即可;(2)根据(1)中求得的x 的值,由题意可得关于x 的方程2(x+1)﹣m=﹣m 22-的解,然后代入可得关于m 的方程,通过解该方程求得m 值即可.【详解】(1)5(x ﹣1)﹣1=4(x ﹣1)+1,5x ﹣5﹣1=4x ﹣4+1,5x ﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣m22-的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣m22-,得:2×(5+1)﹣m=﹣m22-,12﹣m=﹣m22-,解得:m=22.【点睛】本题考查了一元一次方程的解、解一元一次方程.熟练掌握解解一元一次方程的一般步骤是解题的关键.27.(1)CB是∠ECD的平分线,理由见解析(2)∠ACE=∠DCB,理由见解析(3)∠DAB+∠EAC=120°,理由见解析【分析】(1)根据角平分线的定义求得∠ECB=45°,进而求得∠BCD=45°,证得∠ECB=∠DCB即可解答;(2)根据等角的余角相等解答即可;(3)根据角的运算求解即可.(1)解:CB是∠ECD的平分线.理由:∠∠ACB=90°,CE恰好是∠ACB的平分线,∠∠ECB=45°,∠∠DCE=90°,∠∠DCB=90°-45°=45°,∠∠ECB=∠DCB,∠CB是∠ECD的平分线;(2)解:∠ACE=∠DCB.理由:∠∠ACB=∠DCB=90°,∠∠ACE+∠ECB=90°,∠DCB+∠ECB=90°,∠∠ACE=∠DCB;(3)解:∠DAB+∠EAC=120°.理由:∠∠BAE=∠CAD=60°,∠∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∠∠DAE+∠EAC+∠EAC+∠CAB=120°,∠∠DAE+∠EAC+∠CAB=∠DAB,∠∠DAB+∠CAE=120°.【点睛】本题考查三角板中角的运算、等角的余角相等、角平分线的定义,熟练掌握图形中的角的运算是解答的关键.。
2024人教版七年级数学上册期末考试试卷
2023-2024 学年第一学期期末试卷初一数学2024.01考生须知1.本试卷共6页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上正确填写学校名称、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答.一、选择题:(共16分,每小题2分)第1--8题均有四个选项,符合题意的选项只有一个.1.下列4个几何体中,是圆锥的为2.在《九章算术》中有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫作正数与负数.若向东走5米记为+5米,则向西走3米记为(A )+5米(B )-5米(C )+3米(D )-3米3.据报道,我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到每秒338600000亿次.将338600000用科学记数法表示为(A )3.386×108(B )0.3386×109(C )33.86×107(D )3.386×1094.下列4个算式中,结果正确的是(A )3a +2b =5ab(B )3a -(-2a )=5a (C )(3-a )-(2-a )=1-2a (D )3a 2-2a =a5.下列4个式子中结果为负数的是(A )-(-4)(B )-|-4|(C )(-4)2(D )|-4|(A )(B )(C )(D )6.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是(A)点A(B)点B(C)点C(D)点D7.如图,∠BDC=90°,点A在线段DC上,点B到直线AC的距离是(A)线段DA的长(B)线段BA的长(C)线段DC的长(D)线段BD的长8.下列说法:①单项式ab2的系数是1;②单项式ab2的次数是2;③多项式a+b2的次数是3.正确的是(A)①(B)②(C)③(D)①②③二、填空题(共16分,每小题2分)9.-4的相反数是.10.写出一个大于-5的负整数是.11.比较大小:-3-2(填“>”,“<”或“=”).12.如果x=3是关于x的方程2x+3a=18的解,那么a的值是.13.如果单项式3x2m y6与5x4y n+3是同类项,那么n m的值是.14.计算:90°-50°30′=.15.我国明代著名数学家程大位的《算法统宗》一书中记载了一个“百羊问题”:甲赶群羊逐草茂,乙拽肥羊一只随其后;戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透.题目的意思是:甲赶了一群羊在草地上往前走,乙牵了一只肥羊紧跟在甲的后面.乙问甲:“你这群羊有一百只吗?”甲说:“如果再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只.”请问甲赶的羊一共有多少只?如果设甲赶的羊一共有x只,那么可列方程...为.16.下面的框图是解方程1255241345--=-++y y y 的流程:在上述五个步骤中,依据是“等式的基本性质2”的步骤有.(只填序号)三、解答题(17-18题,每小题8分;19-26题,每小题5分;27-28题,每小题6分)17.计算:(1)(-5)+9-(-6)-20;(2)10÷(-2)+(-7)×(-3)-(-4).18.计算:(1)251()(18)362-+⨯-;(2)22115(3)4⎡⎤--⨯--⎣⎦.19.解方程:2x -3=x +1.20.解方程:12323x x +-=.21.先化简,再求值:已知:222(24)2()x x y x y --+-,其中1x =-,12y =.22.已知:点C 是线段AB 的中点,点D 在直线AB 上,且BC =5,BD =3.(1)求线段AB 的长;(2)直接写出线段AD 的长.23.按要求画图:如图,点A ,B ,C ,D 是同一平面内的四个点.(1)画线段AB 和直线AC ;(2)在线段AB 的反向延长线上取一点E ,使EA =AB ;(3)过点D 作DF ⊥AB 于点F ;(4)在直线AC 上找一点P ,使得EP +PD 最小.24.如图,∠CAB +∠ABC =90°,AD 平分∠CAB ,交BC 边于点D ,BE 平分∠ABC ,交AC 边于点E .(1)依题意补全图形;(2)①∠DAB +∠EBA =°;②补全证明过程.证明:∵AD 平分∠CAB ,BE 平分∠ABC ,∴∠DAB =21∠CAB ,∠EBA =.(理由:)∵∠CAB +∠ABC =90°,∴∠DAB +∠EBA =21(∠CAB +∠ABC )=_____ .25.本学期学习了一元一次方程的解法,下面是小明同学的解题过程:上述小明的解题过程从第步开始出现错误,错误的原因是________________________________________________.请你写出正确的解题过程.26.列方程解应用题:延庆区张山营镇是著名的“苹果之乡”,出产的苹果色泽鲜艳、品种优良,红富士苹果获得“中华名果”的称号.秋收季节,某公司打算到张山营果园基地购买一批苹的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己运回.已知该公司租车从基地到公司的运输费为5000元.(1)公司购买多少千克苹果时,选择两种购买方案所需的费用相同?(2)如果公司打算购买3000千克苹果,选择哪种方案省钱?为什么?27.阅读材料:对于任意有理数a,b,规定一种特别的运算“⊕”:a⊕b=a-b+ab.例如,2⊕5=2-5+2×5=7.(1)求3⊕(-1)的值;(2)若(-4)⊕x=6,求x的值;(3)试探究这种特别的运算“⊕”是否具有交换律?28.对于数轴上三个不同的点A,B,C,给出如下定义:在线段AB,BC,CA中,若其中有两条线段相等,则称A,B,C三点是“均衡点”.(1)点A表示的数是-2,点B表示的数是1,点C表示的数是3,①A,B,C三点______(填“是”或“不是”)“均衡点”;②点M表示的数是m,且B,C,M三点是“均衡点”,则m=;(2)点D表示的数是x,点E表示的数是n,线段EF=a(a为正整数),线段DE=b,若D,E,F三点是“均衡点”,且关于x的一元一次方程ax+x=4b的解为整数,求n的最小值.。
2023-2024学年人教版七年级数学上册期末测试试卷及答案
2023-2024学年人教版七年级数学上册期末测试一、选择题(本大题共10小题,每小题3分,共30分)1.在四个数-2,-1,0,1中,最小的数是( )A . 1B . 0C . -1D . -22.已知x 2y n 与x n y 是同类项,则m +n 的值为( )A . 1B . 2C . 3D . 43.苹果的单价为a 元/kg ,香蕉的单价为b 元/kg ,买2kg 的苹果和3kg 香蕉共需( )元A . a +bB . 3a +2bC . 2a +3bD . 5(a +b ) 4.关于x 的方程2x +a -5=0的解是x =2,则a 的值为( )A . 1B . -1C . 9D . -95.如图,O 是直线AB 上的一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD ,则图中∠COE 的大小是( )A . 30°B . 45°C . 60°D . 75°6.下列两个生产中的现象:①植树时,只要定出两棵树位置,就能确定同一行树所在的直线;②把弯曲的公路改直,就能缩短路程;其中可用公理“两点之间线段最短”来解释和现象中( )A . 只有①B . 只有②C . ①②D . 无 7.如图是正方形的一个表面展开图,则原正方形表面上与“周”相对的面上的字是( )A . 七B . 十C . 华D . 诞8.某学校学生种植一批树苗,如果每人种10棵,则剩下6棵树苗未种,如果每人种12棵,则缺6棵树苗,若设参与种树的有x 人,则可列方程为( )A . 10x -6=12x +6B . 10x -6=12x -6C . 10x +6=12x +6D . 10x -6=12x -69.某市出租车起步价是8元,(3公里及3公里以内为起步价),以后每公里收费1.6元不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为14.4元,则此出租车行驶的路程可能为( )A . 5.5公里B . 6.9公里C . 7.7公里D . 8.1公里10.如图,线段CD 在线段AB 上,且CD =3,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之各可能是是( )A . 28B . 29C . 30D . 31EDCOBA诞华年周十七二、填空题(本大题共6小题,每小题3分,共18分)11.数-2020的绝对值是 . 12.计算3a -(b -3a )的结果是 .13.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛在它北偏东60°的方向上,观测到小岛B 在它南偏东40°的方向上,则∠AOB 的度数大小是 .14.一个角的补角比它的余角的4倍少15°,则这个角的度数大小是 .15.在我国明代数学家吴敬所著的《九章自述比类大全》中, 有一首数学名诗叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问顶层几盏灯?”大致意思是有一座七层高塔,从底层开始,每层安装的灯的数目都是上一层的2倍,请你算出塔的顶层有 盏灯. 16.将相同的长方形卡片按如图方式摆放在一个直角上,每个长方形卡片长为2,宽为1,依此类推,摆放2019个时,实线部分长为 .三、解答题(共8题,共72分)17.(本题8分)计算:(1)12-(-18)+(-7)+(-15); (2)(-1)7×2+(-3)2÷918.(本题8分)解方程:(1)5(x -5)+2x =-4 ; (2)3x +22-1=2x -1419.(本题8分)先化简再求值:5x 2-[2xy -3(13xy -5)+6x 2],其中x =-2,y =12 南东西北BAO 摆放1个时,实线部分长为3摆放2个时,实线部分长为5摆放3个时,实线部分长为820.(本题8分)下面表格是某次篮球联赛部分球队不完整的积分表:(1)求出a 的值;(2)请直接写出m = ,n = .21.(本题8分)如图1是连长为20cm 的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为x (cm )折成的长方体盒子的容积为V (cm 2),直接写出用只含字母的式子表示这个盒子的高为 cm ,底面积为 cm 2,盒子的容积V 为 cm 3; (2)为探究盒子的体积与剪去的小正方形的边长x 之间的关系,小明列表分析:= ;= .②由表格中的数据观察可知当x 的值逐渐增大时,V 的值 。
人教版七年级上学期数学《期末考试卷》及答案
期末测 试 卷
学校________班级________姓名________成绩________
满分100分时间90分钟
一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个备选答案中,只有一个是正确的,请你将正确答案涂在答题纸上指定位置,答到试卷上不得分.)
[答案]
[解析]
8.如图,把矩形 沿 对折后使两部分重合,若 则 ()
A. B. C. D.
[答案]B
[解析]
[分析]
根据翻折的性质可得∠2=∠3,再由平角的定义求出∠3.
[详解]解:如图
∵矩形 沿 对折后两部分重合, ,
∴∠3=∠2= =65°,.
故选:B.
[点睛]本题考查了矩形中翻折的性质,平角的定义,掌握翻折的性质是解题的关键.
[详解]解:由一元一次方程的特点得a−2=0,
解得:a=2;
故原方程可化为2x+1=0,
解得:x= .
故答案为: .
[点睛]本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件,高于一次的项系数是0.
18.已知如图,直线 、 相交于点 , 平分 ,若 ,则 的度数是______.
[详解]解:由题意可知A、B两点表示的数互为相反数,
设A表示的数为a,则B表示的数为-a,
则 .
解得 ,
所以 、 对应的数分别是3,-3或-3,3.
故答案为:3,-3或-3,3.
[点睛]本题考查数轴上两点之间的距离,绝对值方程.能通过A、B两点关于原点对称得出A、B两点表示的数互为相反数是解题关键.
1.下列四个数中,其相反数是正整数的是()
人教版七年级上学期数学《期末检测试卷》附答案解析
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 的倒数是[]
A. B. C. D.
2.x=-2是方程2a+3x=-16的解,则a的值是()
A.5B.-5C.-11D.11
3.有理数a,b,c在数轴上 位置如图所示,下列关系正确的是()
A.|a|>|b|B.a>﹣bC.b<﹣aD. ﹣a=b
4.下列说法错误的是()
A. 是二次三项式B. 不是单项式
C. 的系数是 D. 的次数是6
5.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):
城市
悉尼
纽约
时差/时
当北京6月15日23时,悉尼、纽约的时间分别是()
(3)点A. B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB−mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
答案与解析
一、选择题
1. 的倒数是[]
A. B. C. D.
[答案]C
[解析]
先化为假分数,再根据乘积是1的两个数互为倒数解答:
A.4个B.3个C.2个D.1个
[答案]B
[解析]
[分析]
根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.
[详解]解:∵∠A和∠B互补,
∴∠A+∠B=180°,
①∵∠B+(90°-∠B)=90°,
∴90°-∠B是∠B的余角,
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
人教版七年级数学上册上册试题 期末测试卷(含答案)
期末测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算的结果等于( )A.3B.C.D.﹣32.单项式与单项式2a x b3是同类项,则x+y的值是( )A.3B.5C.7D.83.长江是我国第一大河,它的全长约为6300千米,6300这个数用科学记数法表示为( )A.63×102B.6.3×102C.6.3×103D.6.3×1044.若a、b为有理数,它们在数轴上的位置如图所示,那么a、b、﹣a、﹣b的大小关系是( )A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a5.下列说法:①延长射线AB;②射线OA与射线AO是同一条射线;③若(a﹣6)x3﹣2x2﹣8x ﹣1是关于x的二次多项式,则a=6;④已知A,B,C三个点,过其中任意两点作一条直线,可作出1或3条直线,其中正确的个数有( )A.1个B.2个C.3个D.4个6.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“祝”字一面的相对面上的字是( )A.考B.试C.成D.功7.解方程,去分母正确的是( )A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)8.如图,点C,D在线段AB上.则下列表述或结论错误的是( )A.若AC=BD,则AD=BC B.AC=AD+DB﹣BCC.AD=AB+CD﹣BC D.图中共有线段12条9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有( )A.4个B.3个C.2个D.0个10.a是不为2的有理数,我们把称为a的“哈利数”.例如:3的“哈利数”是,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2024=( )A.3B.﹣2C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.下列有四个生活、生产现象:其中可用基本事实“两点之间,线段最短”来解释的现象有 (填序号).①有两个钉子就可以把木条固定在墙上;②A从地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要定出两棵树的位置,就能确定同一行所在的直线;④把弯曲的公路改直,就能缩短路程,12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角式子中,①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β),正确的有 .13.已知整式x2﹣2x+6的值为,则﹣2x2+4x﹣12的值为 .14.点C在直线AB上,AB=5,BC=2,点C为BD中点,则AD的长为 .15.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了3h.已知水流的速度是3km/h,则船在静水中的平均速度为 km/h.16.规定一种新运算:a⊗b=a2﹣2b,若2⊗[3⊗(﹣x)]=6,则x的值为 .三、解答题(本大题共7小题,共72分.)17.(1)计算:;(2)化简:﹣m3﹣6n+11﹣m3+10n﹣6;(3)先化简,再求值:,其中x=﹣2,.18.解下列方程.(1)5(x﹣2)﹣1=﹣2(2x+1);(2).19.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)在图①中,画线段AC、BD交于E点;(2)在图①中作射线BC;(3)在图②中取一点P,使点P既在直线AB上又在直线CD上.20.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?21.如图,已知,∠AOB=120°,在∠AOB内画射线OC,∠AOC=40°.(1)如图1,求∠BOC的度数;(2)如图2,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.22.综合与探究如图,已知线段AD上有两个定点B,C.(1)图中共有几条线段?(2)若在线段CD上增加一点,则增加了几条线段?(3)现有一列往返于A,B两地的火车,中途停靠五个站.问:①有多少种票价?②要准备多少种车票?(4)已知A,B两地之间相距140km,在A,B所在的公路(AB看成直线)上有一处C,且B与C之间的距离为40km,M在A,C两地的正中间,求M与A地之间的距离.23.在七年级数学学习中,常用到分类讨论的数学方法,以化简|x|为例.当x>0时,|x|=x;当x=0时,|x|=0;当x<0时,|x|=﹣x.求解下列问题:(1)当x=3时,值为 ,当x=﹣3时,的值为 ,当x为不等于0的有理数时,的值为 ;(2)已知x+y+z=0,xyz>0,求的值;(3)已知:x1,x2,…,x2021,x2022,这2022个数都是不等于0的有理数,若这2022个数中有n个正数,,则m的值为 (请用含n 的式子表示).答案一、选择题C.B.C.C.B.D.C.D.B.D.二、填空题11.②④.12.①②④.13.﹣.14.1或9.15.15.16.﹣5.三、解答题17.解:(1)原式=﹣1××+=﹣+=0;(2)原式=(﹣m3﹣m3)+(﹣6n+10n)+11﹣6=﹣2m3+4n+5;(3)原式==,当x=﹣2,时,原式=﹣×(﹣2)2×+2×(﹣2)×()2=﹣×4×﹣4×=﹣﹣=﹣1.18.(1)解:去括号,得5x﹣10﹣1=﹣4x﹣2,移项,得5x+4x=﹣2+10+1,合并同类项,得9x=9,把系数化为1,得x=1;(2)解:去分母,得4(2y﹣1)﹣12=﹣3(y+2),去括号,得8y﹣4﹣12=﹣3y﹣6,移项,得8y+3y=﹣6+4+12,合并同类项,得11y=10,把系数化为1,得.19.解:(1)如图所示:;(2)如图所示,(3)如图所示,.20.解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.21.解:(1)∵∠AOB=120°,∠AOC=40°,∴∠BOC=∠AOB﹣∠AOC=120°﹣40°=80°;(2)∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC;∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=×120°=60°.22.解:(1)图中有6条线段,线段AB、AC、AD、BC、BD、CD.(2)增加一个点后共有10条线段所以会增加4条线段.(3)当直线m上有2个点时,线段的总条数为1,直线m上有3个点时,线段的总条数为1+2=3,直线m上有4个点时,线段的总条数为1+2+3=6,…由此得出当直线m上有n个点时,线段的总条数为1+2+3+…+(n﹣1)=,①现有一列往返于A,B两地的火车,中途停靠五个站,所以直线上共有7个点,共有线段=21(条),所以共有21种票价.②因车票需要考虑方向性,故需要准备车票的种类是票价的2倍,所以21×2=42(种),所以共有42种票价.(4)当点C在线段AB上时,如图:∵AB=140km,CB=40km,∴AC=AB+BC=140﹣40=100km,∵M是AC的中点,∴AM=AC=50km;当点C在线段AB的延长线上时,如图:∵AB=140km,CB=40km,∴AC=AB+BC=140+40=180km,∵M是AC的中点,∴AM=AC=90km;综上,AM=50或90km.23.解:(1)=1,=﹣1,=±1,故答案为:1,﹣1,±1.(2),∵x+y+z=0,xyz>0,∴x,y,z的正负性可能为:①当x为正数,y,z为负数时:原式=﹣1+1﹣1=﹣1;②当y为正数,x,z为负数时,原式=1﹣1﹣1=﹣1;③当z为正数,x,y为负数时,原式=1+1+1=3,∴原式=﹣1或3.(3)n个正数,负数的个数为2022﹣n,=1×n+(﹣1)+(2022﹣n)=2n﹣2022.故答案为:2n﹣2022.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.4的倒数是( )A .4-B .4C .14- D .142.单项式23x y -的系数是( )A .3-B .1C .2D .33.下列各式中结果为负数的是( )A .()3--B .3-C .()23-D .23-4.如图,这个几何体是由哪个图形绕虚线旋转一周形成的( )A .B .C .D .5.已知关于x 的方程290x a +-=的解是3x =,则a 的值为( )A .2B .3C .4D .56.下列计算正确的是( )A .277x x x +=B .532y y -=C .437x y xy +=D .22232x y x y x y -=7.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( ) A . B .C .D .8.若()123m m x --=是关于x 的一元一次方程,则m 的值是( )A .2-B .1C .2D .2±9.如图,点A 在点O 的北偏西60°方向,射线OB 与射线OA 所成的角是108°,则射线OB 的方向是( )A .北偏西42°B .北偏西48°C .北偏东42°D .北偏东48° 10.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x 天后,共同完成任务,则可列方程为( )A .11108x x +-=B .11108x x ++= C .11108x x --= D .11108x x -+= 11.将图①中的正方形剪开得到图①,图①中共有4个正方形;将图①中一个正方形剪开得到图①,图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形……如此下法,则第2022个图中共有正方形的个数为( )A .2022B .6062C .6063D .606412.如图,点O 为直线AB 上一点,COD ∠为直角,OE 平分AOC ∠,OF 平分COB ∠,OG 平分BOD ∠.下列结论:①45FOG =︒∠;①90AOE FOB ∠+∠=︒;①130EOG ∠=︒;①90AOC BOD ∠-∠=︒.正确的有( )A .4个B .3个C .2个D .1个二、填空题13.数轴上表示2-和3+两个点之间的距离是______.14.300000-用科学记数法表示为______.15.若一个角是25°38′,则它的余角为______.16.若x 的相反数是3,y 的绝对值是7,则x y +的值为______.17.如图,点B 、C 在线段AD 上,CD=5,BD=9,B 是AC 的中点,则AC 的长为______.18.已知x+2y ﹣5=0,则代数式2x+4y ﹣7的值是_____.19.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“民”字一面的相对面上的字是_______.三、解答题20.解方程:127x -﹣1=33+x .21.已知213a b x y -与23x y -是同类项.(1)请直接写出:a =______,b =______;(2)在(1)的条件下,求()()2222523425a b ab b a+--+的值.22.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分①BOF ,OE 平分①COB .(1)求①BOE的度数;(2)写出图中①BOE的补角,并说明理由.23.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.24.用尺规作图按下列语句画图:(1)画射线BC,连接AC,AB;(2)反向延长线段AB至点D,使得DA=AB.25.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?26.如图,OD平分①BOC,OE平分①AOC.若①BOC=70°,①AOC=50°.(1)求出①AOB及其补角的度数;(2)请求出①DOC和①AOE的度数,并判断①DOE与①AOB是否互补,并说明理由.参考答案1.D2.A3.D4.A5.B6.D7.C8.A9.D10.B11.D12.B13.5.【分析】数轴上两点之间的距离,即数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【详解】解:数轴上表示-2和+3的两个点之间的距离是3-(-2)=5.故答案是:5.【点睛】本题考查了数轴的定义.解答该题时,也可以利用借助数轴用几何方法求两点之间的距离.14.-3×105【分析】根据科学记数法的定义计算求值即可;-= -3×105,【详解】解:300000故答案为:-3×105【点睛】本题考查了科学记数法:把一个绝对值大于1的数表示成a×10n的形式(a大于或等于1且小于10,n是正整数);n的值为小数点向左移动的位数.15.64°22′【分析】根据余角的定义可知这个角的余角=90°-25°38′,然后将90°化为89°60′计算即可.【详解】解:它的余角=90°-25°38′=89°60′-25°38′=64°22′.故答案为:64°22′.【点睛】本题主要考查的是度分秒的换算、余角的定义,将90°转化为89°60′是解题的关键.16.4或10-或4-##10【分析】根据相反数的定义和绝对值的性质,先求出x、y的值,再代值求解.【详解】解:由题意,得:x=-3,y=±7;当x=-3,y=7时,x+y=-3+7=4;当x=-3,y=-7时,x+y=-3-7=-10.故答案为:4或10-.【点睛】此题主要考查绝对值的性质以及相反数的定义.有理数的加法运算,代数式的值,需注意的是互为相反数的两个数绝对值相等,不要漏解.17.8【分析】根据线段中点的定义和线段的和差即可得到结论.【详解】解:①CD=5,BD=9,①BC=BD-CD=4,①B是AC的中点,①AB=BC=4,①AC=AB+BC=8,故答案为:8.【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义是解题的关键.18.3.【分析】直接利用已知得出x+2y=5,再将原式变形进而得出答案.【详解】①x+2y﹣5=0,①x+2y=5,①2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.19.化【详解】选择“民”这一面作为底面将正方体还原可得:“弘”与“族”是相对面,“扬”与“文”是相对面,“民”与“化”是相对面,故答案为:化.【点睛】本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.20.原方程的解是x=﹣3.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x ﹣7x =21﹣3+21,合并,得﹣13x =39,系数化1,得x =﹣3,则原方程的解是x =﹣3.21.(1)1,−2(2)32【分析】(1)两个单项式为同类项,则字母相同,对应字母的指数也相同,据此可求得a 、b 的值;(2)先去括号再合并同类项,最后代入求值.(1)解:①213a b x y -与23x y -是同类项,①2a=2,1−b=3,①a=1,b=−2;故答案为:1,−2;(2)解:()()2222523425a b ab b a +--+=5a 2+6b 2-8ab-2b 2-5a 2=4b 2-8ab ,当a=1,b=−2时,原式=4×(−2) 2-8×1×(−2)=16-(-16)=32.【点睛】本题考查整式的化简求值,同类项,解题的关键是掌握同类项的定义,整式的加减运算法则.22.(1)30°;(2)①BOE 的补角有①AOE 和①DOE .【分析】(1)根据OC 平分①BOF ,OE 平分①COB .可得①BOE =①EOC =12①BOC ,①BOC =①COF ,进而得出,①EOF =3①BOE =90°,求出①BOE ;(2)根据平角和互补的意义,通过图形中可得①BOE+①AOE =180°,再根据等量代换得出①BOE+①DOE =180°,进而得出①BOE 的补角.【详解】解:(1)①OC 平分①BOF ,OE 平分①COB .①①BOE =①EOC =12①BOC ,①BOC =①COF , ①①COF =2①BOE ,①①EOF =3①BOE =90°,①①BOE =30°,(2)①①BOE+①AOE =180°①①BOE 的补角为①AOE ;①①EOC+①DOE =180°,①BOE =①EOC ,①①BOE+①DOE=180°,①①BOE的补角为①DOE;答:①BOE的补角有①AOE和①DOE;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.23.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)①点C为原点,BC=1,①B所对应的数为﹣1,①AB=2BC,①AB=2,①点A所对应的数为﹣3,①m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)①点B为原点,AC=6,AB=2BC,AB+BC=AC,①AB=4,BC=2,①点A所对应的数为﹣4,点C所对应的数为2,①m=﹣4+2+0=﹣2;(3)①原点O到点C的距离为8,①点C所对应的数为±8,①OC=AB,①AB=8,当点C对应的数为8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为4,点A所对应的数为﹣4,①m=4﹣4+8=8;当点C所对应的数为﹣8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为﹣12,点A所对应的数为﹣20,①m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.24.(1)见详解;(2)见详解.【分析】(1)根据尺规作图过程画射线BC,连接AC,AB即可;(2)根据尺规作图过程反向延长线段AB至点D,使得DA=AB即可.【详解】解:如图所示:(1)(1)射线BC,连接AC,AB即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.25.(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.26.(1)120°,60°;(2)①DOE与①AOB互补,理由见解析.【分析】(1)①AOB的度数等于已知两角的和,再根据补角的定义求解;(2)根据角平分线把角分成两个相等的角,求出度数后即可判断.【详解】解:(1)①AOB=①BOC+①AOC=70°+50°=120°,其补角为180°-①AOB=180°-120°=60°.(2)①DOC=①BOC=×70°=35°,①AOE=①AOC=×50°=25°.①DOE与①AOB互补.理由如下:①①DOC=35°,①AOE=25°,①①DOE=①DOC+①COE =①DOC+①AOE=60°.①①DOE+①AOB=60°+120°=180°,①①DOE与①AOB互补.11。
人教版七年级上学期数学《期末考试卷》含答案解析
(1)5(2﹣x)=﹣(2x﹣7);
(2)
[答案](1)x=1;(2)x=
[解析]
[分析]
(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
[详解](1)去括号得:10﹣5x=7﹣2x,
移项得:﹣5x+2x=7﹣10,
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-2020的相反数是()
A.-2020B.2020C. D.
13.计算:3+2×(﹣4)=_____.
14.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.
15.方程x+5= (x+3)的解是________.
16.若x、y为有理数,且|x+2|+(y﹣2)2=0,则( )2019的值为_____.
17.若代数式x2+3x﹣5 值为2,则代数式2x2+6x﹣3的值为_____.
A.1个B.2个C.3个D.4个
9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
(2)(﹣34)× +(﹣16)
人教版七年级数学上册期末测试卷含答案
人教版七年级数学上册期末测试卷含答案七年级(上)期末数学试卷1(总分:100分时间:90分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作( ) A.-2 B.-4 C.-2m D.-4m2.下列式子计算正确的个数有( )①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.A.1个 B.2个 C.3个 D.0个3.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥 B.四棱柱C.三棱锥 D.三棱柱4.已知2016x n+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( ) A.16 B.4048 C.-4048 D.55.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元 B.160元 C.192元 D.200元6.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设C(碳原子)的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示( )A.C n H2n+2 B.C n H2nC.C n H2n-2D.C n H n+3二、填空题(本大题共6小题,每小题3分,共18分)7.-12的倒数是________.8.如图,已知∠AOB =90°,若∠1=35°,则∠2的度数是________.9.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a =2,化简结果为_________.10.若方程6x +3=0与关于y 的方程3y +m =15的解互为相反数,则m =________. 11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排25名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.12.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2.若P 0P 3=1,则CP 0的长度为________.三、(本大题共5小题,每小题6分,共30分) 13.(1)计算:13.1+1.6-(-1.9)+(-6.6);(2)化简:5xy -x 2-xy +3x 2-2x 2.14.计算:(1)(-1)2×5+(-2)3÷4;(2)⎝ ⎛⎭⎪⎫58-23×24+14÷⎝ ⎛⎭⎪⎫-123+|-22|.15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2. 16.解方程:(1)x-12(3x-2)=2(5-x);(2)x+24-1=2x-36.17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.我区期末考试一次数学阅卷中,阅B卷第22题(简称B22)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍.在阅卷过程中,由于情况变化,需要从阅B22的教师中调12人阅A18,调动后阅B22剩下的人数比原先阅A18人数的一半还多3人,求阅B22和阅A18原有教师人数各是多少.19.化简关于x 的代数式(2x 2+x )-[kx 2-(3x 2-x +1)],当k 为何值时,代数式的值是常数?20.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a .如:1⊕3=1×32+2×1×3+1=16. (1)求(-2) ⊕3的值;(2)若312a +⎛⎫⊕ ⎪⎝⎭⊕⎝ ⎛⎭⎪⎫-12=8,求a 的值.五、(本大题共2小题,每小题9分,共18分) 21.如图,点A 、B 都在数轴上,O 为原点.(1)点B 表示的数是________;(2)若点B 以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B 表示的数是________;(3)若点A 、B 都以每秒2个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.22.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?六、(本大题共12分)23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.期末数学试卷1 答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C 2.B 3.A4.A 【解答】由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.5.B 6.A二、填空题(本大题共6小题,每小题3分,共18分)7.-2 8.55°9.2 -x2-7y210.27211.2512.5或6 【解答】设CP0的长度为x,则CP1=CP0=x,AP2=AP1=9-x,BP3=BP2=8-(9-x)=x-1,BP0=10-x.∵P0P3=1,∴|10-x-(x-1)|=1,11-2x=±1,解得x=5或6.三、(本大题共5小题,每小题6分,共30分)13.【解答】(1)原式=13.1+1.9+1.6-6.6=10.(3分)(2)原式=5xy-xy=4xy.(6分)14.【解答】(1)原式=3.(3分)(2)原式=19.(6分)15.【解答】原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)16.【解答】(1)x=6.(3分)(2)x=0.(6分)17.【解答】设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)四、(本大题共3小题,每小题8分,共24分)18.【解答】设阅A18原有教师x人,则阅B22原有教师3x人,(2分)依题意得3x-12=12x+3,解得x=6.所以3x=18.(7分)答:阅A18原有教师6人,阅B22原有教师18人.(8分)19.【解答】(2x2+x)-[kx2-(3x2-x+1)]=2x2+x-kx2+(3x2-x+1)=2x2+x-kx 2+3x 2-x +1=(5-k )x 2+1.(5分)若代数式的值是常数,则5-k =0,解得k =5.(7分)则当k =5时,代数式的值是常数.(8分)20.【解答】(1)根据题中定义的新运算得(-2)⊕3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.(3分)(2)根据题中定义的新运算得a +12⊕3=a +12×32+2×a +12×3+a +12=8(a+1),(5分)8(a +1)⊕⎝ ⎛⎭⎪⎫-12=8(a +1)×⎝ ⎛⎭⎪⎫-122+2×8(a +1)×⎝ ⎛⎭⎪⎫-12+8(a +1)=2(a +1),(7分)所以2(a +1)=8,解得a =3.(8分) 五、(本大题共2小题,每小题9分,共18分) 21.【解答】(1)-4(2分)(2)0(4分)(3)由题意可知有两种情况:①O 为BA 的中点时,(-4+2t )+(2+2t )=0,解得t =12;(6分)②B 为OA 的中点时,2+2t =2(-4+2t ),解得t =5.(8分)综上所述,t =12或5.(9分)22.【解答】(1)顾客在甲超市购物所付的费用为300+0.8(x -300)=(0.8x +60)元;在乙超市购物所付的费用为200+0.85(x -200)=(0.85x +30)元.(3分)(2)他应该去乙超市,(4分)理由如下:当x =500时,0.8x +60=0.8×500+60=460(元),0.85x +30=0.85×500+30=455(元).∵460>455,∴他去乙超市划算.(6分)(3)根据题意得0.8x +60=0.85x +30,解得x =600.(8分)答:李明购买600元的商品时,到两家超市购物所付的费用一样.(9分) 六、(本大题共12分)23.【解答】(1)由题意得∠BOC =180°-∠AOC =150°,又∵∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -∠COE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF =2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)七年级(上)期末数学试卷2(总分:120分时间:90分钟)一、选择题(本题包括12小题,每小题3分,共36分。
人教版数学七年级上学期《期末考试卷》带答案
A.49B.40C.16D.9
二、填空题(每小题3分,共18分)
13.已知 与 是同类项,则 =____________.
14.为创建国家文明城市,近两年全市投入“创文”资金约为8650万元,这个数用科学记数法表示为_______________元.
17.已知当 =2时, ,则当 时, __________.
18.如图,第(1)个图案中有4个等边三角形,第(2)个图案中有7个等边三角形,第(3)个图案中有10个等边三角形,……,以此规律,第n个图案中有____________个等边三角形(用含n的代数式表示).
三、解答题
19.计算
(1) (2)
故选C.
11. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()
A. 调查全体女生B. 调查全体男生
C. 调查九年级全体学生D. 调查七,八,九年级各100名学生
[答案]D
[解析]
[详解]在抽样调查中,样本的选取应注意广泛性和代表性,而本题中A、B、C三个选项都不符合条件,选择的样本有局限性.
4.今年,我校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a人,女同学比男同学的 少24人,则参加“经典诵读”比赛的学生一共有( )
A. 人B. (a-24)人C. (a+24)人D. 人
[答案]D
[解析]
男同学有 人,女同学比男同学的 少24人,则女同学有: 人,
所以参加比赛的学生一共有:a+ =( - 24)人,
故选D.
8.如图所示,已知∠AOB=162°,∠AOC=∠BOD=90°,则∠COD的度数是()
A.72°B.36°C.18°D.9°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(人教版)七年级上册数学期末试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)(2011•门头沟区一模)﹣6的绝对值等于()A.6B.C.﹣D.﹣62.(3分)根据北京市公安交通管理局网站的数据显示,截止到2012年2月16日,北京市机动车保有量比十年前增加了3439000辆,将3439000用科学记数法表示应为()A.0.3439×107B.3.439×106C.3.439×107D.34.39×1053.(3分)下列关于多项式5ab2﹣2a2bc﹣1的说法中,正确的是()A.它是三次三项式B.它是四次两项式C.它的最高次项是﹣2a2bc D.它的常数项是14.(3分)已知关于x的方程7﹣kx=x+2k的解是x=2,则k的值为()A.﹣3 B.C.1D.5.(3分)下列说法中,正确的是()A.任何数都不等于它的相反数B.互为相反数的两个数的立方相等C.如果a大于b,那么a的倒数一定大于b的倒数D.a与b两数和的平方一定是非负数6.(3分)将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.7.(3分)下列关于几何画图的语句正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a ﹣b8.(3分)将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是()A .B .C .D .9.(3分)已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,a+b <0,有以下结论: ①b <0;②b ﹣a >0;③|﹣a|>﹣b ;④.则所有正确的结论是( )A . ①,④ B . ①,③C . ②,③D . ②,④ 10.(3分)如图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体应是( )A .B .C .D .二、填空题(本题共20分,11~14题每小题2分,15~18题每小题2分) 11.(2分)用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是 _________ . 12.(2分)计算:135°45′﹣91°16′= _________ . 13.(2分)一件童装每件的进价为a 元(a >0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为 _________ 元. 14.(2分)将长方形纸片ABCD 折叠并压平,如图所示,点C ,点D 的对应点分别为点C′,点D′,折痕分别交AD ,BC 边于点E ,点F .若∠BFC′=30°,则∠CFE= _________ °.15.(3分)对于有理数a ,b ,我们规定a ⊗b=a×b+b . (1)(﹣3)⊗4= _________ ;(2)若有理数x 满足(x ﹣4)⊗3=6,则x 的值为 _________ .16.(3分)如图,数轴上A,B两点表示的数分别为﹣2和6,数轴上的点C满足AC=BC,点D在线段AC的延长线上,若,则BD=_________,点D表示的数为_________.17.(3分)右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等.(1)这个相等的和等于_________;(2)在图中将所有的□填完整.18.(3分)如图,正方形ABCD和正方形DEFG的边长都是3cm,点P从点D出发,先到点A,然后沿箭头所指方向运动(经过点D时不拐弯),那么从出发开始连续运动2012cm时,它离点_________最近,此时它距该点_________cm.三、计算题(本题共12分,每小题4分)19.(4分).20.(4分).21.(4分).四、先化简,再求值(本题5分)22.(5分)5(3a2b﹣ab2)﹣(ab2+3a2b)+2ab2,其中,b=3.五、解下列方程(组)(本题共10分,每小题5分)23.(5分).24.(5分).六、解答题(本题4分)25.(4分)问题:如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若DE=4,求线段AC的长.请补全以下解答过程.解:∵D,B,E三点依次在线段AC上,∴DE=_________+BE.∵AD=BE,∴DE=DB+_________=AB.∵DE=4,∴AB=4.∵_________,∴AC=2AB=_________.七、列方程(或方程组)解应用题(本题共6分)26.(6分)有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人.八、解答题(本题共13分,第27题6分,第27题7分)27.(6分)已知当x=﹣1时,代数式2mx3﹣3nx+6的值为17.(1)若关于y的方程2my+n=4﹣ny﹣m的解为y=2,求m n的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求的值.28.(7分)如图,∠DOE=50°,OD平分∠AOC,∠AOC=60°,OE平分∠BOC.(1)用直尺、量角器画出射线OA,OB,OC的准确位置;(2)求∠BOC的度数,要求写出计算过程;(3)当∠DOE=α,∠AOC=2β时(其中0°<β<α,0°<α+β<90°),用α,β的代数式表示∠BOC的度数.(直接写出结果即可)参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)(2011•门头沟区一模)﹣6的绝对值等于()A.6B.C.﹣D.﹣6考点:绝对值.专题:计算题.分析:根据绝对值的性质解答即可.解答:解:根据绝对值的性质,|﹣6|=6,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.(3分)根据北京市公安交通管理局网站的数据显示,截止到2012年2月16日,北京市机动车保有量比十年前增加了3439000辆,将3439000用科学记数法表示应为()A.0.3439×107B.3.439×106C.3.439×107D.34.39×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:3 439 000=3.439×106,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列关于多项式5ab2﹣2a2bc﹣1的说法中,正确的是()A.它是三次三项式B.它是四次两项式C.它的最高次项是﹣2a2bc D.它的常数项是1考点:多项式.分析:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.据此作答即可.解答:解:多项式5ab2﹣2a2bc﹣1的次数是4,有3项,是四次三项式,故A、B错误;它的最高次项是﹣2a2bc,故C正确;它常数项是﹣1,故D错误.故选C.点评:本题考查了多项式,解题的关键是掌握多项式的有关概念,并注意符号的处理.4.(3分)已知关于x的方程7﹣kx=x+2k的解是x=2,则k的值为()A.﹣3 B.C.1D.考点:一元一次方程的解.分析:将x=2代入已知方程,列出关于k的方程,解方程即可求得k的值.解答:解:∵关于x的方程7﹣kx=x+2k的解是x=2,∴7﹣2k=2+2k,解得k=.故选D.点评:本题考查的是一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.即用这个数代替未知数所得式子仍然成立.5.(3分)下列说法中,正确的是()A.任何数都不等于它的相反数B.互为相反数的两个数的立方相等C.如果a大于b,那么a的倒数一定大于b的倒数D.a与b两数和的平方一定是非负数考点:相反数;倒数;非负数的性质:偶次方.分析:根据0的相反数为0对A进行判断;根据互为相反数的两个数的立方也互为相反数对B进行判断;举特例a=2和b=1可对C进行判断;根据非负数的性质对D进行判断.解答:解:A、0的相反数为0,所以A选项错误;B、互为相反数的两个数的立方也互为相反数,所以B选项错误;C、2大于1,而2的倒数小于1的倒数1,所以C选项错误;D、a与b两数和的平方一定是非负数,所以D选项正确.故选D.点评:本题考查了相反数:a的相反数为﹣a.也考查了倒数与非负数的性质.6.(3分)将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.考点:角的计算;余角和补角;平行线的性质.专题:计算题.分析:A、由图形可得两角互余,不合题意;B、由图形得出两角的关系,即可做出判断;C、根据图形可得出两角都为45°的邻补角,可得出两角相等;D、由图形得出两角的关系,即可做出判断.解答:解:A、由图形得:α+β=90°,不合题意;B、由图形得:β+γ=90°,α+γ=60°,可得β﹣α=30°,不合题意;C、由图形可得:α=β=180°﹣45°=135°,符合题意;D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.故选C.点评:此题考查了角的计算,弄清图形中角的关系是解本题的关键.7.(3分)下列关于几何画图的语句正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a ﹣b考点:作图—尺规作图的定义.分析:根据射线、直线、以及角的定义可判断出正确答案.解答:解:A、延长射线AB到点C,使BC=2AB,说法错误,不能延长射线;B、点P在线段AB上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D、已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a﹣b,说法错误,AC也可能为2a+b;故选:C.点评:此题主要考查了尺规作图,关键是掌握射线是向一方无限延长的,直线是向两方无限延伸的.8.(3分)将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是()A .B .C .D .考点: 展开图折叠成几何体. 分析: 根据三棱柱的特点可得:侧面展开图是三个长方形,上下两个底面是两个全等的三角形.解答: 解:根据三棱柱的展开图特点可得C 答案可以围成三棱柱,故选:C . 点评: 此题主要考查了展开图折叠成几何体,关键是掌握几何体的展开图的特特点. 9.(3分)已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,a+b <0,有以下结论:①b <0;②b ﹣a >0;③|﹣a|>﹣b ;④.则所有正确的结论是( )A . ①,④B . ①,③C . ②,③D . ②,④考点: 有理数大小比较;数轴;绝对值.分析: 根据a+b <0,a 在坐标轴的位置,结合各项结论进行判断即可. 解答: 解:①∵a >0,a+b <0,∴b <0,故①正确; ②∵a >0,b <0,∴b ﹣a <0,故②错误; ③∵a+b <0,a >0,b <0, ∴|﹣a|<﹣b ,故③错误;④<﹣1,故④正确.综上可得①④正确.故选A . 点评: 本题考查了有理数的大小比较,数轴及绝对值的知识,关键是结合数轴得出a 、b 的大小关系. 10.(3分)如图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体应是( )A .B .C .D .考点: 简单组合体的三视图. 分析: 观察长方体,可知第一部分所对应的几何体在长方体中,上面有二个正方体,下面有二个正方体,再在BC选项中根据图形作出判断.解答:解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选B.点评:本题考查了认识立体图形,找到长方体中,第一部分所对应的几何体的形状是解题的关键.二、填空题(本题共20分,11~14题每小题2分,15~18题每小题2分)11.(2分)用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是 1.894.考点:近似数和有效数字.分析:精确到哪一位,即对下一位的数字进行四舍五入.解答:解:用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是1.894.故答案为1.894.点评:本题主要考查了近似数与精确度,近似数最后一位在哪一位,就精确到哪一位.12.(2分)计算:135°45′﹣91°16′=44°29′.考点:度分秒的换算.分析:根据度分秒的计算,度与度相减,分与分相减,进行计算即可得解.解答:解:135°45′﹣91°16′=44°29′.故答案为:44°29′.点评:本题考查了度、分、秒的减法计算,相对比较简单,注意以60为进制即可.13.(2分)一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为0.8a元.考点:列代数式.分析:先表示出用每件童装的实际售价,然后减去进价就是利润的表达式.解答:解:实际售价为:3a×0.6=1.8a,所以,每件童装所得的利润为:1.8a﹣a=0.8a.故答案为:0.8a.点评:本题考查了列代数式,解题的关键在于读懂题意,明白打六折的含义.14.(2分)将长方形纸片ABCD折叠并压平,如图所示,点C,点D的对应点分别为点C′,点D′,折痕分别交AD,BC边于点E,点F.若∠BFC′=30°,则∠CFE=75°.考点:平行线的性质;翻折变换(折叠问题).分析:根据平角定义求出∠CFC′,再根据翻折的定义可得∠CFE=∠CFC′,计算即可得解.解答:解:∵∠BFC′=30°,∴∠CFC′=180°﹣∠BFC′=180°﹣30°=150°,根据翻折前后两个角相等,∠CFE=∠CFC′=×150°=75°.故答案为:75.点评:本题主要考查了翻折的性质,熟记翻折前后两个角相等是解题的关键.15.(3分)对于有理数a,b,我们规定a⊗b=a×b+b.(1)(﹣3)⊗4=﹣8;(2)若有理数x满足(x﹣4)⊗3=6,则x的值为5.考点:解一元一次方程;有理数的混合运算.专题:新定义.分析:(1)根据新定义运算法则列出算式,并计算;(2)根据新定义运算法则列出关于x的方程,通过解方程求得x的值.解答:解:(1)根据题意知,(﹣3)⊗4=(﹣3)×4+4=﹣8;故答案是:﹣8;(2)根据题意,知(x﹣4)⊗3=3(x﹣4)+3=6,即x﹣3=2,解得,x=5.故答案是:5.点评:本题考查了解一元一次方程、有理数的混合运算.解题的关键是理解新定义运算的法则.16.(3分)如图,数轴上A,B两点表示的数分别为﹣2和6,数轴上的点C满足AC=BC,点D在线段AC的延长线上,若,则BD=2,点D表示的数为4.考点:两点间的距离;数轴.分析:根据点A、B表示的数求出AB的长,再根据中点的定义求出AC=BC,再求出AD的长,然后求出OD的长,再求出BD,即可得解.解答:解:∵A,B两点表示的数分别为﹣2和6,∴AB=6﹣(﹣2)=8,∵AC=BC=AB=×8=4,∵AD=AC=×4=6,∴OD=AD﹣AC=6﹣2=4,∴BD=6﹣4=2,点D表示的数是4.故答案为:2;4.点评:本题考查了两点间的距离,数轴,主要利用了线段中点的定义,数轴上两点间距离的求法.17.(3分)右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等.(1)这个相等的和等于14;(2)在图中将所有的□填完整.考点:有理数的加法.专题:图表型.分析:(1)观察图形可知,1,2,3,4,5,6,在三个圆中各用到2次,先求出它们的和的2倍,再除以3即为所求;(2)让每个圆的相对的2个数字的和为7,进行填写.解答:解:(1)(1+2+3+4+5+6)×2÷3=21×2÷3=14;(2)如图所示:故答案为:14.点评:考查了有理数的加法,本题难点是得到相等的和.18.(3分)如图,正方形ABCD和正方形DEFG的边长都是3cm,点P从点D出发,先到点A,然后沿箭头所指方向运动(经过点D时不拐弯),那么从出发开始连续运动2012cm时,它离点G最近,此时它距该点1cm.考点:规律型:图形的变化类.专题:规律型.分析:根据题目信息,P点从D点出发,经过8条边又回到D点,即P点运动的周期为8条边,据此求出P点连续运动2012厘米,转过的正方形的边数,从而求出P点到达的位置,做出判断.解答:解:P点从D点出发,经过8条边又回到D点,即P点运动的周期为8条边,连续运动2012厘米,共运动的正方形的边数为:2012÷3=670(条)…2(厘米),也就是运动了670条边后,又往前运动了2厘米;670÷8=83(个周期)…6(条边),P点这时运动到D点后,又向前运动了6条边,到达F点;∵P点运动了670条边后,又往前运动了2厘米,∴应超过F点2厘米,应在距离G点3﹣2=1厘米处.综上,P点离G点最近.故答案为:G,1.点评:本题是对图形变化规律的考查,观察出运动一个周期为8条边是解题的关键.三、计算题(本题共12分,每小题4分)19.(4分).考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的.解答:解:=42×(﹣)×﹣3=﹣8﹣3=﹣11.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.20.(4分).考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘方后乘除,有括号的先算括号里面的.解答:解:=﹣27××(﹣)=1.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.21.(4分).考点:有理数的混合运算.专题:计算题.分析:原式第一项利用乘法分配律计算,第二项先计算乘方运算,再计算除法运算,计算即可得到结果.解答:解:原式=﹣12×﹣12×﹣(50﹣)×=﹣2﹣﹣2+=﹣4.点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.四、先化简,再求值(本题5分)22.(5分)5(3a2b﹣ab2)﹣(ab2+3a2b)+2ab2,其中,b=3.考点:整式的加减—化简求值.专题:计算题.分析:原式利用去括号法则去括号后,合并同类项得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式=15a2b﹣5ab2﹣ab2﹣3a2b+2ab2=12a2b﹣4ab2,当a=,b=3时,原式=12××3﹣4××9=9﹣18=﹣9.点评:此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.五、解下列方程(组)(本题共10分,每小题5分)23.(5分).考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:去分母得,3(x﹣3)+2(2x﹣1)=6x﹣6,去括号得,3x﹣9+4x﹣2=6x﹣6,移项得,3x+4x﹣6x=﹣6+9+2,合并同类项得,x=5.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.24.(5分).考点:解二元一次方程组.专题:计算题.分析:把第一个方程乘以2,然后利用加减消元法求解即可.解答:解:,①×2得,4x+6y=28③,③﹣②得,11y=22,解得y=2,把y=2代入①得,2x+3×2=14,解得x=4,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.六、解答题(本题4分)25.(4分)问题:如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD=BE,若DE=4,求线段AC的长.请补全以下解答过程.解:∵D,B,E三点依次在线段AC上,∴DE=DB+BE.∵AD=BE,∴DE=DB+AD=AB.∵DE=4,∴AB=4.∵点B为线段AC的中点,∴AC=2AB=8.考点:两点间的距离.专题:推理填空题.分析:先根据AD=BE求出AB=DE,再根据线段中点的定义解答即可.解答:解:∵D,B,E三点依次在线段AC上,∴DE=DB+BE.∵AD=BE,∴DE=DB+AD=AB.∵DE=4,∴AB=4.∵点B为线段AC的中点,∴AC=2AB=8.故答案为:DB;AD;点B为线段AC的中点;8.点评:本题考查了两点间的距离,主要利用了线段中点的定义并着重训练同学们的逻辑推理能力.七、列方程(或方程组)解应用题(本题共6分)26.(6分)有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人.考点:二元一次方程组的应用.分析:首先设甲班原有x人,乙班原有y人,由题意可得等量关系:①甲班人数=乙班人数+4;②甲班人数?+17=(乙班人数﹣17)×3+2,根据等量关系列出方程组即可.解答:解:设甲班原有x人,乙班原有y人,由题意得:,解得:,答:甲班原有39人,乙班原有35人.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,找出等量关系列出方程.八、解答题(本题共13分,第27题6分,第27题7分)27.(6分)已知当x=﹣1时,代数式2mx3﹣3nx+6的值为17.(1)若关于y的方程2my+n=4﹣ny﹣m的解为y=2,求m n的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求的值.考点:一元一次方程的解;代数式求值.专题:新定义.分析:(1)把x=﹣1代入2mx3﹣3nx+6=17得到一个关于m,n的方程,把y=2代入方程2my+n=4﹣ny﹣m得到一个关于m,n的方程,即可得到一个方程组,解方程组即可求得m,n的值,代入代数式即可求解;(2)把m,n的值代入代数式求值,根据[a]表示的意义即可求解.解答:解:(1)把x=﹣1代入2mx3﹣3nx+6,根据题意得:﹣2m+3n+6=17,则2m﹣3n=﹣11.把y=2代入方程得:4m+n=4﹣2n﹣m,即5m+3n=4,根据题意得:,解得:,则m n=﹣1;(2)m﹣=﹣1﹣=﹣5.5,则[﹣5.5]=﹣6.点评:本题考查了方程的解的定义,以及解方程组,正确求得m,n的值是关键.28.(7分)如图,∠DOE=50°,OD平分∠AOC,∠AOC=60°,OE平分∠BOC.(1)用直尺、量角器画出射线OA,OB,OC的准确位置;(2)求∠BOC的度数,要求写出计算过程;(3)当∠DOE=α,∠AOC=2β时(其中0°<β<α,0°<α+β<90°),用α,β的代数式表示∠BOC的度数.(直接写出结果即可)考点:作图—基本作图;角平分线的定义;角的计算.分析:(1)根据角平分线的定义求出∠COD=30°,再求出∠COE=20°,再次利用角平分线的定义求出∠BOE=20°,然后作出相应的射线即可;(2)根据(1)的分析求解即可;(3)根据角平分线的定义求出∠COD,再求出∠COE,再次利用角平分线的定义可得∠BOC=2∠COE.解答:解:(1)①∵OD平分∠AOC,∠AOC=60°,∴∠COD=∠AOC=×60°=30°,∵∠DOE=50°,∴∠COE=∠DOE﹣∠COD=50°﹣30°=20°,∵OE平分∠BOC,∴∠BOE=∠COE=20°,所以,作∠AOD=∠COD=30°,∠BOE=20°,作出射线OA、OB、OC即可;(2)①∵OD平分∠AOC,∠AOC=60°,∴∠COD=∠AOC=×60°=30°,∵∠DOE=50°,∴∠COE=∠DOE﹣∠COD=50°﹣30°=20°,∵OE平分∠BOC,∴∠BOC=2∠COE=2×20°=40°;②∵OD平分∠AOC,∠AOC=60°,∴∠COD=∠AOC=×60°=30°,∵∠DOE=50°,∴∠COE=∠DOE﹣∠COD=50°+30°=80°,∵OE平分∠BOC,∴∠BOC=2∠COE=2×80°=160°;(3))∵OD平分∠AOC,∠AOC=2β,∴∠COD=∠AOC=×2β=β,∵∠DOE=α,∴∠COE=∠DOE﹣∠COD=α﹣β,∵OE平分∠BOC,∴∠BOC=2∠COE=2(α﹣β).点评:本题考查了基本作图,角度的计算,主要利用了角平分线的定义,先确定出∠COD 的度数是解题的关键.======*以上是由明师教育编辑整理======。