二次函数y=ax2+bx+c的图象和性质3

合集下载

二次函数y=ax2+bx+c的图象和性质

二次函数y=ax2+bx+c的图象和性质
33
课堂练习
完成课本P12练习 (1)(3)用公式法 (2)(4)用配方法
反思
求抛物线y=ax2+bx+c的顶点坐标和对称轴有两 种方法:
1.配方法
2.公式法
顶点:
(
b
4ac b2
,
)
2a 4a
对称轴: x b 2a
总结小结
顶点坐标
对称轴
y=ax2 y=ax2+c y=a(x-h)2
(0,0)
(0,c) (h,0)
y轴
y轴 直线x=h
y=a(x-h)2+k (h,k) 直线x=h
y=ax2+bx+c
(
b
4ac b2
,2a
最值
0 c 0
k
4ac b2 4a
能力训练
1.二次函数y=-2x2-x+1的顶点位于第 象限 2.已知二次函数y=2x2-8x+1,当x= ,函数有最 小值为 3.若函数y=-0.5x2+2x+m有最大值为5,则m___ 4.将抛物线y=2x2-4x+5向左平移2个单位长度,再 向下平移3个单位长度得
x=h时,y最小=k
x=h时,y最大=k
抛物线y=a(x-h)2+k可以看作是由抛物线y=ax2经过平移 得到的。 x:左加右减
y:上加下减
课前练习
顶点坐标 对称轴
y=-2x2 y=-2x2-5
(0,0) y轴 (0,-5) y轴
y=-2(x+2)2 (-2,0) 直线x=-2
y=-2(x+2)2-4 (-2,-4) 直线x=-2
a( x b )2 4ac b2

九年级数学下册 5.6 二次函数y=ax2+bx+c的图象和性质(3)课件 青岛版

九年级数学下册 5.6 二次函数y=ax2+bx+c的图象和性质(3)课件 青岛版
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
增减性 最值
当x=h时,最小值为k.
当x=h时,最大值为k.

1.指出下列函数图象的开口方向对称轴和顶点坐标及最值:
1 .y = 2 x + 3
y ax bx c
2
在同一坐标系中作出二次函数y=3x2和 y=3(x-1)2的图象.
观察图象,回答问题
y 3x
2
y 3 x 1
2
(1)函数y=3(x-1)2 的 图 象 与 y=3x2 的 图 象有什么关系?它 是轴对称图形吗? 它的对称轴和顶点 坐标分别是什么?
2 2
顶点分别是 (-1,2)和(-1,-2)..
y 3x
2
y 3 x 1 2
2
二次函数y=-3(x+1)2+2与 y=-3(x+1)2-2的图象可 以看作是抛物线y=-3x2 先沿着x轴向左平移1个 单位,再沿直线x=-1向上 (或向下)平移2个单位后 得到的.
x=1 开口向下, 当x=-1时y有 对称轴仍是平行于y轴的直线 最大值:且 (x=-1);增减性与y= -3x2类似. 最大值= 2 (或最大值= - 2).
在同一坐标系中作出二次函数 y=-3(x-1)2+2,y=-3(x-1)2-2,y=-3x² 和 y=-3(x-1)2的图象
二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=-3x² ,y=-3(x1)2的图象有什么关系?它们是轴对称图形吗?它的开口 方向、对称轴和顶点坐标分别是什么?当x取哪些值时, y的值随x值的增大而增大?当x取哪些值时,y的值随x 值的增大而减小?

二次函数y=ax2+bx+c的图像与性质

二次函数y=ax2+bx+c的图像与性质

◆本节课内容一、二次函数y=ax2+bx+c1、二次函数y=ax2+bx+c可以用配方法转化为y=a(x-h)2+k的形式:2、二次函数y=ax2+bx+c的图像的作法:二次函数y=ax2+bx+c的图像是一条对称轴平行于y轴的抛物线。

它的图像常见作法有两种:五点法和平移法。

方法一:五点法先用配方法将y=ax2+bx+c(a≠0)化为y=a(x-h)2+k(a≠0)的形式,确定抛物线的顶点、开口方向、再以顶点为中心,在对称轴的两侧对称地各取两对值进行列表,最后描点画图。

方法二:平移法利用平移法作二次函数y=ax2+bx+c的图像的一般步骤如下:(1)利用配方法将二次函数y=ax2+bx+c化为y=a(x-h)2+k的形式,确定其顶点为(h,k);(2)作出二次函数y=ax2的图像;(3)将函数y=ax2的图像平移,使其顶点(0,0)平移到(h,k),平移后的图像即是二次函数y=ax2+bx+c的图像。

3、二次函数y=ax2+bx+c的图像及性质如下表:二、二次函数y=ax2+bx+c(a≠0)的图像特征与系数a,b,c的符号关系注意:(1)b的符号由a的符号和对称轴的位置来决定(2)a+b+c(或a-b+c)可以看成是x=1(或x=-1)时的函数值。

三、二次函数解析式的求法求二次函数的解析式y=ax2+bx+c,需求出a,b,c的值。

由已知条件(如二次函数图像上三点的坐标)列出关于a,b,c的方程组,求出a,b,c的值,就可以写出二次函数的解析式。

◆课堂练习题型一利用公式法直接求抛物线的顶点、对称轴及最值1、求二次函数y=(x+5)(x-1)的对称轴、顶点及最值。

题型二、由抛物线的顶点、对称轴及最值求字母或代数式的取值范围2、二次函数y=ax2+bx+1(a≠0)的图像的顶点在第一象限,且过点(-1,0)。

设t=a+b+1,则t 的取值范围是()A、0<t<1B、0<t<2C、1<t<2D、-1<t<1题型三、二次函数图像平移规律的直接应用3、抛物线y=-2x2-4x-5经过平移得到抛物线y=-2x2,平移的方法是()A、向左平移1个单位,再向下平移3个单位B、向左平移1个单位,再向上平移3个单位C、向右平移1个单位,再向下平移3个单位D、向右平移1个单位,再向上平移3个单位题型四、根据抛物线的平移求字母的值4、已知抛物线y=x2+4x+1向上平移m(m>0)个单位得到的新抛物线过点(1,8),求m的值1题型五、利用二次函数y=ax2+bx+c的图像判断各项系数的符号5、二次函数y=ax2+bx+c的图像如图,那么abc,2a+b,a+b+c这3个代数式中,值为正数的有( c )A、3个B、2个C、1个D、0个题型六、利用二次函数的性质比较函数值得大小6、若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图像上的三点,则y1,y 2,y3的大小关系是()题型七、利用二次函数的增减性求字母的取值范围7、已知二次函数y=x2-(m+1)x+1,当x≥1时,y随x的增大而增大,求m的取值范围。

抛物线y=ax2 bx c图像与性质

抛物线y=ax2 bx c图像与性质

抛物线 顶点坐标 对称 轴
y ax2 c(0,c)y轴
开口方向
增减性
最点,最值
a>0时,向上
a>0时, x<0,y随着x 的增大而减小. x>0,
y随着x的增大而增大.
a>0时, x<0,y随着x
a<0时,向下 的增大而增大. x>0, y随着x的增大而减小.
a>0时,x=0时 y最小值=c. a<0时,x=0时

①②
2
1
二次函数① y 3x2 、② y 3(x 1)2与
③ y 3(x 1)2 2 图象的关系
x -1

-2
y


y=3(x-1)2+2 h=1,k=2
y=-3(x+1)2-2
h=-1,k=-2
-1
-2
1
抛物线 顶点坐标
对称轴 位置
开口方向
增减性
最点,最值
y=a(x-h)2+k(a>0)
y最大值=c.
说出的函数
① y 3x2
② y 3x 12
③ y 3x 12
图象及性质
说出的函数
① y 3x2
② y 3(x 1)2
③ y 3(x 1)2
图象及性质
y=3(x+1)2
h=-1,h<0,向 左平移(左加)
y=3x2
y=3(x-1)2
抛物线 顶点坐标
对称轴
y=a(x-h)2 (a>0) (h,0) 直线x=h
(h,k)
直线x=h
由h和k的符号确定
向上
当x<h,y随着x的增大而减小. 当x>h, y随着x的增大而增大.

二次函数y=ax2bxc的图像和性质

二次函数y=ax2bxc的图像和性质

二次函数y=ax2+bx+c(a≠0)的图象和性质一、教材分析二次函数y=ax2+bx+c的图象和性质是高中学习函数的重要基础。

本课时的学习是学生在以往学习经验的基础上,进一步经历探索二次函数图象特征和性质的过程。

教学时应注意引导学生找出二次函数y=ax2(a≠0)的图象和二次函数y=a(x+h)2+k(a≠0)的图像的联系,然后通过观察图像,结合解析式特点,思考和归纳函数图像的特征及其性质,从简单到复杂、从特殊到一般,去理解二次函数顶点式中a,h,k对函数图象的影响;并能正确判断出函数的开口方向、对称轴、顶点坐标,让学生对二次函数y=a(x-h)2+k有一个形象和直观的认识。

二、学生情况分析目前的学生课堂学习不够专注,缺乏数学思维,因而导致他们的数学基础较差、学习信心不足、兴趣不大,有的学生感到学习数学很困难。

三、教学目标分析知识目标:1能够正确作出二次函数y=a(x+h)2+k(a≠0)的图象;2理解二次函数关系式中系数a,h,k对函数图象的影响;3能够正确指出y=a(x-h)2+k的开口方向、对称轴和顶点坐标。

能力目标:1、在精心设计的问题引领下,通过学生自己动手列表、描点、连线,提高学生的作图能力;2、通过观察图象,发现函数的有关性质,训练学生的概括、总结能力;3、通过小组合作,进一步培养学生的数学探究能力。

情感价值观目标:让学生积极参与到数学学习活动中,增强他们对数学学习的自信心,感受数学的美,从而激发学生的学习兴趣。

教学重难点:能够正确作出y=a(x-h)2+k的图象,并抽象出它的图象特征和性质。

四、教法学法分析采用“问题引领,小组学习”的教学模式实施教学。

让学生在正确作出二次函数图象之后,抽象出二次函数y=a(x-h)2+k中系数与图象之间的关系。

先鼓励学生在问题引领下,独立思考,解决问题;然后把出现的问题带到小组学习中去,经过学习小组或全班集中展示交流,师生合作点评,推导出结论并达成共识。

二次函数y=ax2+bx+c的图像和性质

二次函数y=ax2+bx+c的图像和性质

二次函数y=ax2+bx+c的图像和性质
二次函数,又称之为平方函数,它是最基本的解析函数之一。

它的标准形式是y=ax2+bx+c,其中a,b, c是实数,a≠0。

二次函数的图像是根据函数表达式的特性来推断的,只要我们把函数上的点代入进函数的表达式,并确定函数的拐点,就可以找出图形的形状。

一般来说,当a>0时,二次函数的图像是一条“U”形(有可能是拱状或者凹状),当a<0时,二次函数的图像是一条蛇形抛物线(有可能是凸状或者凹状),沿X轴的对称轴是当x=-b/2a时,它的最高点或者最低点是(-b/2a,f (-b/2a))。

二次函数不仅表示物理现象,也可以表示天文现象,甚至于在经济学中也有运用。

从数学上来讲,它具有众多的特性和性质,如:
A、二次函数有且只有两个极值,可能是极大值或极小值;
B、当a > 0时,函数有一个唯一的最小值点,沿X轴的对称轴也就是当x=-b/2a时的单位;
C、当a < 0时,函数有一个唯一的最大值点,同样沿X轴的对称轴也就是当x=-b/2a时的单位;
D、当x→±∞时,函数值→±∞,即它是一个可以到达正负无穷远处的无限延伸曲线。

以上就是二次函数的图像与性质,只要我们掌握了它的一般形式与特性,就可以很容易的根据题设的条件把它画出来,用它来描述和解决各种实际问题,它是一种有效的数学工具。

二次函数y=ax2+bx+c的图象和性质

二次函数y=ax2+bx+c的图象和性质

-5
顶点坐标:(2,1)
1.抛物线y=x2-4x+3与y轴的交点坐标是 ,
与x轴的交点坐标是
(。1,0)或(3,0)
抛物线与y轴的交 点有什么特征?
(0,3)
抛物线与x轴的交 点有什么特征?
写出下列抛物线的开口方向、对称轴和顶点:
(1) y 3x2 2x (2) y x2 2x
(3) y 2x2 8x 8
开口方向:向上。
对称轴:x
b 2a
2
2
1 2
2
y
4ac b2 4a
4
1 2
3
(
2
)2
4
1 2
1
顶点坐标:(2,1)
y
1 2
x2
-
2
x
3
(1) y 2x2 - 12x13
解:a
1 2
0
开口方向:向上。
对称轴:x
b 2a
2
2
1 2
2
y
4ac b2 4a
4
1 2
3
(
2
)2
4
1 2
1
顶点坐标:(2,1)
当x<h时,
y随着x的增大而减小。 y随着x的增大而增大。
当x>h时,
当x>h时,
y随着x的增大而增大。 y随着x的增大而减小。
x=h时,y最小值=k
x=h时,y最大值=k
抛物线y=a(x-h)2+k(a≠0)的图象可由y=ax2的图象通 过上下和左右平移得到.
我们已经知道二次函数y=a(x-h)2+k
的图象和性质,能否利用这些知识
来讨论二次函数 y 1 x2 6x 21图象和

二次函数y=ax2+bx+c的图象和性质(3)

二次函数y=ax2+bx+c的图象和性质(3)

2.4二次函数y =ax 2+bx+c 的图象和性质(3)课型 新授学习目标:1、体会建立二次函数对称轴和顶点坐标公式的必要性.2、能够利用二次函数的对称轴和顶点坐标公式解决问题.3、通过学生合作交流来解决问题,培养学生的合作交流能力.学习重点:运用二次函数的对称轴和顶点坐标公式解决实际问题.学习难点:把数学问题与实际问题相联系的过程.学习过程:一、学前准备(学生独立完成)1、抛物线y =21(x +3)2的顶点坐标是______.2、将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.3、抛物线y =-41x 2+1,y =-41(x +1)2与抛物线y =-41(x 2+1)的___相同,__不同.二、探究活动 (一)独立思考并合作探究探索二次函数y=ax 2+bx+c 的对称轴和顶点坐标例:求二次函数y =ax 2+bx+c 的对称轴和顶点坐标.1、二次函数y =a(x-h)2+k 的对称轴和顶点坐标分别是什么?2、交流怎样求二次函数y =ax 2+bx+c 的对称轴和顶点坐标.点拨:用配方法将ax 2+bx+c 转化成a(x-h)2+k 的形式即可。

3、学生独立完成后交流答案,并找一人板演展示。

解:把y =ax 2+bx+c 的右边配方,得y =ax 2+bx+c=a(x 2+ac x a b +) =a[x 2+2·a b 2x+(a b 2)2+2)2(ab ac -]=a(x+a b 2)2+a b ac 442-.对称轴为x=-a b 2,顶点燃坐标为(-a b 2,ab ac 442-) 巩固练习:P60随堂(二)实际应用:P58做一做,有关桥梁问题学生独立思考后教师点拨,分析:因为两条钢缆都是抛物线形状,且开口向上.要求钢缆的最低点到桥面的距离就是要求抛物线的最小值.又因为左右两条抛物线关于y 轴对称,所以它们的顶点也关于y 轴对称,两条钢缆最低点之间的距离就是两条抛物线顶点的横坐标绝对值之和或其中一条抛物线顶点横坐标绝对值的2倍.已知二次函数的形式是一般形式,所以应先进行配方化为y =a(x-h)2+k 的形式,即顶点式.解:y=0.0225x 2+0.9x+10=0.0225(x 2+40x+94000) 二0.0225(x 2+40x+400-400+94000) =0.0225(x+20)2+1.∴对称轴为x=-20.顶点坐标为(-20,1).(1)钢缆的最低点到桥面的距离是1米.(2)两条钢缆最低点之间的距离是2×20=40米.三.学习体会1.本节课你有哪些收获?你还有哪些疑问?2.你认为老师上课过程中还有哪些须改进的地方?四.自我测试1、 确定下列二次函数图象的开口方向、对称轴和顶点坐标。

5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数

5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数
=-(x2+4x+4-4)-5 =-(x+2)2-1. 二次项系数-1<0,函数图像开口向下,顶点坐标为(-2,-1),对称轴 是过点(-2,-1)且平行于y轴的直线.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
二次函数y=-x2-4x-5 的图像如图所示.
由图像可知, 当x=-2时, y的值最大, 最大值是-1.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
y=
1 2
x2-6x+21
y=
1 2
(x2-12x)+21
你知道是怎样配方的吗? 1. “提”:提出二次项系数;
1 y= 2 (x2-12x+36-36)+21
y= 1 (x-6) 2+21-18 2
2.“配”:括号内配成完全平方式;
a<0时,抛物线开口向下,函数有最大值;
4ac - b2
函数在顶点处取得有最大(小)值 4a
.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
练一练:用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式 为( B ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
例1 画出二次函数y=-x2-4x-5的图像,并指出它的开口方向、顶点坐 标、对称轴、最大值或最小值. 【分析】要画出二次函数y=-x2-4x-5的图像,可先将函数表达式变

二次函数y=ax2+bx+c的图象和性质

二次函数y=ax2+bx+c的图象和性质
c 3,
0,
解得 b
3 4
,
c 3,
∴抛物线的解析式为y=- 3 x2+
8
3 x+3.
4
解法二:设抛物线的解析式为y=a(x+2)(x-4),把C(0,3)代入得-8a=3,即a=
知识点三 待定系数法求二次函数解析式
6.(2018黑龙江大庆龙凤期中)已知一个二次函数,当x=1时,y有最大值8, 其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的表达 式是 ( ) A.y=-2x2-x+3 B.y=-2x2+4 C.y=-2x2+4x+8 D.y=-2x2+4x+6 答案 D ∵二次函数的图象的形状、开口方向与抛物线y=-2x2相同, 故设该二次函数的解析式为y=-2(x-h)2+k,∵当x=1时,y有最大值8,∴该二 次函数的顶点为(1,8),∴h=1,k=8,∴该二次函数的解析式为y=-2(x-1)2+8, 即y=-2x2+4x+6.
图22-1-4-1
解析 二次函数y=x2-2x-3=(x-1)2-4的图象的顶点坐标为(1,-4),对称轴为 直线x=1, ∵a=1>0,∴函数有最小值-4.其图象如图.
知识点二 抛物线y=ax2+bx+c与系数的关系 4.(2017北京昌平期中)二次函数y=ax2+bx+c(a≠0)的图象如图22-1-4-2所 示,则下列关系式不正确的是 ( )
题型二 利用二次函数y=ax2+bx+c(a≠0)的性质比较函数值的大小
例2 (2017河南商丘柘城模拟)已知二次函数y=-x2+2x+c的图象上三个 点的坐标分别为A(-2,y1),B(-1,y2),C(2,y3),则y1,y2,y3的大小关系为 ( ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2 解析 ∵y=-x2+2x+c, ∴函数y=-x2+2x+c的对称轴为直线x=1,开口向下, 当x<1时,y随x的增大而增大. ∵C(2,y3)关于x=1的对称点为(0,y3), 又∵0>-1>-2, ∴y3>y2>y1.

二次函数y=ax^2+bx+c的图像与性质

二次函数y=ax^2+bx+c的图像与性质

二次函数的性质
1 单调性和极值
二次函数在开口方向内是单调增或者单调减 的,它的极值就是顶点的y轴坐标。
2 范围和值域
二次函数的范围和值域取决于开口方向,范 围表示y值的取值范围,值域表示y值可能的 取值范围。
3 系数a的影响
系数a决定了二次函数的图像形态,a的正负 和绝对值大小都会影响函数的特性。
利用一元二次方程求根公 式可以直接求得二次函数 的零点。
2 完全平方公式
对二次函数进行平方,然 后进行合并和配凑,得到 二次函数的零点。
3 因式分解法
将二次函数进行因式分解, 找出能将二次函数化简为 两个一次函数相乘的因式, 得到二次函数的零点。
二次函数与其他函数的关系
线性函数和指数函数的对比
与线性函数相比,二次函数呈现出曲线状,而与指 数函数相比,二次函数的增长速度较为平缓。
二次函数y=ax^2+bx+c的 图像与性质
二次函数是由幂函数进一步演化而来的函数,表达式为y=ax^2+bx+c。其图像 呈现特定的形状和性质。
二次函数的定义和基本形式
定义
二次函数是一个含有二次项的多项式函数。
基本形式
二次函数的标准形式为y=ax^2+bx+c, 其中a、b和 c是实数常量,且a ≠ 0。
二次函数与多项式
二次函数是多项式函数的一种特殊形式,它是次数 为2的多项式。
二次函数的图像特点
开口方向和开口大小
二次函数的开口方向由a的正负 号决定,正系数表示开口向上, 负系数表示开口向下;a的绝对 值越大,开口越大。
对称轴和顶点
二次函数的对称轴是通过顶点 垂直于x轴的直线,顶点的坐标 为(-b/2a, c-b^2/4a)。

知识卡片-二次函数y=ax^2+bx+c(a≠0)的图象和性质

知识卡片-二次函数y=ax^2+bx+c(a≠0)的图象和性质

二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质能量储备二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质了解二次函数y=ax2+bx+c的图象与性质,一般方法是现将一般式y=ax2+bx+c通过配方化为顶点式y=a(x--h)2+k,然后找出顶点坐标、对称轴,画出图象并观察图象得到它的增a>0a<0通关宝典★ 基础方法点方法点1:利用抛物线的对称性解题如果抛物线上两点(x 1,m ),(x 2,m )的纵坐标相等,那么这两点关于抛物线的对称轴直线x =x 1+x 22对称;反过来,如果两点(x 1,y 1),(x 2,y 2)是抛物线上的对称点,那么这两点的纵坐标相等,即y 1=y 2.例:如图所示,已知抛物线y =x 2+bx +c 的对称轴为直线x =2,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A .(2,3) B .(3,2) C .(3,3) D .(4,3)解析:∵ 点A ,B 均在抛物线上,且AB 与x 轴平行,∴ 点A 与点B 关于对称轴x =2对称.又∵ A (0,3),∴ AB =4,y B =y A =3,∴ 点B 的坐标为(4,3),故选D . 答案:D方法点2:比较两个二次函数值大小的方法 (1)把自变量直接代入解析式求值.(2)当点在对称轴同侧时,根据函数的增减性判断.(3)当点在对称轴的两侧时,找某点关于对称轴的对称点,均转化到同侧求解,或利用抛物线上的点到对称轴的距离比较大小:当抛物线开口向上时,点到对称轴的距离越大,相应的函数值越大;当抛物线的开口向下时,点到对称轴的距离越大,相应的函数值越小. 例: 若A (413,y 1),B (-1,y 2),C (53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3解析:把y =-x 2-4x +5配方,得y =-(x +2)2+9,因为a =-1<0,所以当x >-2时,y 随x 的增大而减小.由抛物线的对称性知,y 1的值等于函数在x =-34处的函数值.又53>-34>-1>-2,所以y 3<y 1<y 2.答案:C★★易混易误点易混易误点1: 用配方法求抛物线的顶点坐标时出错例:用配方法求y =2x 2-8x +6的顶点坐标.分析:在二次函数y =2x 2-8x +6中a =2,为了便于配方,需逆用乘法分配律,将原解析式变形为y=2(x2-4x+3),然后再把括号内的多项式进行配方.解:原二次函数变形为y=2(x2-4x+3),∴y=2(x2-4x+4-4+3)=2[(x-2)2-1]=2(x-2)2-2.∴顶点坐标为(2,-2).常见错因:在解决本题中容易犯的错误是只在解析式的右边除以2,把二次项系数变为1,这不符合等式的基本性质,从而会造成错解.蓄势待发考前攻略考查二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的顶点坐标、开口方向、对称轴及函数的增减性等,注重数形结合思想的运用,中考中既有考查基础知识的选择题、填空题,又有考查能力的综合题.完胜关卡。

二次函数y=ax^2+bx+c(a≠0)的图象与性质(3种题型)九年级知识点(浙教版)(解析版)

二次函数y=ax^2+bx+c(a≠0)的图象与性质(3种题型)九年级知识点(浙教版)(解析版)

二次函数y=ax^2+bx+c(a ≠0)的图象与性质【知识梳理】一、二次函数与之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:加以记忆和运用.2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 二、二次函数的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.2(0)y ax bx c a =++≠=−+≠2()(0)y a x h k a 2()y a x h k =−+2()y a x h k =−+2()y a x h k =−+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++−+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a −⎛⎫=++⎪⎝⎭2()y a x h k =−+2b h a =−244ac b k a−=2y ax bx c =++2b x a =−24,24b ac b aa ⎛⎫−− ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,三、二次函数的图象与性质 1.二次函数图象与性质向上 向下直线 直线2y ax bx c =++2(0)y ax bx c a =++≠20()y ax bx c a =++≠2b x a=−b x =−2.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当值的情况.20()y ax bx c a =++≠2(0)y ax bx c a =++≠2bx a=−244ac b y a−=最值222y ax bx c =++最大值211y ax bx c =++最小值【考点剖析】题型一、二次函数的图象与性质例1.求抛物线的对称轴和顶点坐标. 【答案与解析】解法1(配方法):. ∴ 顶点坐标为,对称轴为直线. 解法2(公式法):∵,,,∴ 11122()2bx a=−=−=⨯−,.∴ 顶点坐标为,对称轴为直线. 解法3(代入法):∵,,,∴.将代入解析式中得,.2(0)y ax bx c a =++≠2142y x x =−+−2221114(2)4(211)4222y x x x x x x =−+−=−−−=−−+−−211(1)422x =−−+−217(1)22x =−−−71,2⎛⎫− ⎪⎝⎭1x =12a =−1b =4c =−2214(4)147214242ac b a ⎛⎫⨯−⨯−− ⎪−⎝⎭==−⎛⎫⨯− ⎪⎝⎭71,2⎛⎫− ⎪⎝⎭1x =12a =−1b =4c =−111222b x a=−=−=⎛⎫⨯− ⎪⎝⎭1x =21711422y =−⨯+−=−∴ 顶点坐标为,对称轴为直线. 【总结升华】所给二次函数关系是一般式,求此类抛物线的顶点有三种方法:(1)利用配方法将一般式化成顶点式;(2)用顶点公式直接代入求解;(3)利用公式先求顶点的横坐标,然后代入解析式求出纵坐标.这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标. 【答案】(1)向下;x=2;D (2,2).(2)C (0,-6);A (1,0);B (3,0).例2.二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .【思路点拨】由y=ax2+bx+c 的图象判断出a >0,b >0,于是得到一次函数y=ax+b 的图象经过一,二,四象限,即可得到结论. 【答案】A .71,2⎛⎫− ⎪⎝⎭1x =24,24b ac b a a ⎛⎫−− ⎪⎝⎭2286y x x =−+−【解析】解:∵y=ax2+bx+c 的图象的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0,∴一次函数y=ax+b 的图象经过一,二,三象限. 故选A .【总结升华】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可 以判断a 、b 的取值范围.例3. 抛物线与y 轴交于(0,3)点: (1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小? 【答案与解析】(1)由抛物线与y 轴交于(0,3)可得m =3.∴ 抛物线解析式为,如图所示.(2)由得,.∴ 抛物线与x 轴的交点为(-1,0)、(3,0).∵,∴ 抛物线的顶点坐标为(1,4).(3)由图象可知:当-1<x <3时,抛物线在x 轴上方. (4)由图象可知:当x ≥1时,y 的值随x 值的增大而减小.2(1)y x m x m =−+−+2(1)y x m x m =−+−+223y x x =−++2230x x −++=11x =−23x =2223(1)4y x x x =−++=−−+【总结升华】研究函数问题一般都应与图象结合起来,借助于图象的直观性求解更形象与简洁. (1)将点(0,3)代入解析式中便可求出m 的值,然后用描点法或五点作图法画抛物线; (2)令y =0可求抛物线与x 轴的交点,利用配方法或公式法可求抛物线顶点的坐标; (3)、(4)均可利用图象回答,注意形数结合的思想,【变式】某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -5 【答案】D.提示:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上, 把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1 x=2时y=﹣11,故选:D .题型二、二次函数的最值例4.求二次函数的最小值.【答案与解析】解法1(配方法):∵,∴ 当x =-3时,.解法2(公式法):∵,b =3,2(0)y ax bx c a =++≠211322y x x =++2221111(6)(639)2222y x x x x =++=++−+21(3)42x =+−4y =−最小102a =>12c =∴ 当时,.解法3(判别式法):∵,∴ .∵ x 是实数,∴ △=62-4(1-2y)≥0,∴ y ≥-4. ∴ y 有最小值-4,此时,即x =-3.【总结升华】在求二次函数最值时,可以从配方法、公式法、判别式法三个角度考虑,根据个人熟练程度 灵活去选择.【变式】用总长60m 的篱笆围成矩形场地.矩形面积S 随矩形一边长L 的变化而变化.当L 是多少时,矩形场地的面积S 最大?【答案】(0<L <30).(m )时,场地的面积S 最大,为225m 2.例5. 分别在下列范围内求函数的最大值或最小值. (1)0<x <2; (2)2≤x ≤3. 【答案与解析】∵ , ∴ 顶点坐标为(1,-4).(1)∵ x =1在0<x <2范围内,且a =1>0, ∴ 当x =1时y 有最小值,.∵ x =1是0<x <2范围的中点,在x =1两侧图象左右对称,端点处取不到,不存在最大值.331222b x a =−=−=−⨯22114341922414242ac b y a ⨯⨯−−−====−⨯最小211322y x x =++26(12)0x x y ++−=2690x x ++=(30)S L L =−2(30)L L =−−2(15)225L =−−+15L ∴=223y x x =−−2223(1)4y x x x =−−=−−4y =−最小值(2)∵ x =1不在2≤x ≤3范围内(如图所示),又因为函数(2≤x ≤3)的图象是 抛物线的一部分,且当2≤x ≤3时,y 随x 的增大而增大,∴ 当x =3时,;当x =2时,.【总结升华】先求出抛物线的顶点坐标,然后看顶点的横坐标是否在所规定的自变量的取 值范围内,根据不同情况求解,也可画出图象,借助于图象的直观性求解,如图所示,2≤x ≤3为图中实线 部分,易看出x =3时,;x =2时,.题型三、二次函数性质的综合应用例6.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值. 【答案与解析】(1)∵ 的图象过点P(2,1),∴ 1=4+2b+c+1,∴ c=-2b-4.(2).∴ 当时,bc 有最大值.最大值为2.【总结升华】(1)将点P(2,1)代入函数关系式,建立b 、c 的关系即可.(2)利用(1)中b 与c 的关系,用b 表示bc ,利用函数性质求解.【变式】如图是二次函数y=ax 2+bx+c 的图象,下列结论: ①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c<0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1; ④使y≤3成立的x 的取值范围是x≥0.223y x x =−−223y x x =−−232330y =−⨯−=最大值222233y =−⨯−=−最小值223y x x =−−0y =最大值3y =−最小值2(0)y ax bx c a =++≠21y x bx c =+++24c b =−−21y x bx c =+++22(24)2(2)2(1)2bc b b b b b =−−=−+=−++1b =−其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B.提示:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.例7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【思路点拨】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【答案】D.【解析】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,,∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a >;故④正确 ⑤∵a >0,∴b ﹣c >0,即b >c ;故⑤正确; 故选:D .【总结升华】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用. 例8. 一条抛物线经过A (2,0)和B (6,0),最高点C 的纵坐标是1.(1)求这条抛物线的解析式,并用描点法画出抛物线;(2)设抛物线的对称轴与轴的交点为D ,抛物线与y 轴的交点为E ,请你在抛物线上另找一点P(除点A 、B 、C 、E 外),先求点C 、A 、E 、P 分别到点D 的距离,再求这些点分别到直线的距离;(3)观察(2)的计算结果,你发现这条抛物线上的点具有何种规律?请用文字写出这个规律. 【答案与解析】(1)由已知可得抛物线的对称轴是. ∴ 最高点C 的坐标为(4,1).则 解得∴ 所求抛物线的解析式为. 列表:描点、连线,如图所示:2y ax bx c =++x 2y =4x =420,3660,164 1.a b c b c a b c ++=⎧⎪++=⎨⎪++=⎩1,42,3.a b c ⎧=−⎪⎪=⎨⎪=−⎪⎩21234y x x =−+−(2)取点(-2,-8)为所要找的点P ,如图所示,运用勾股定理求得ED =5,PD =10,观察图象知AD =2,CD =1,点E 、P 、A 、C 到直线y =2的距离分别是5、10、2、1. (3)抛物线上任一点到点D 的距离等于该点到直线y =2的距离.【总结升华】(1)描点画图时,应先确定抛物线的对称轴,然后以对称轴为参照,左右对称取点. (2)计算两点之间的距离应构造两直角边分别平行于两坐标轴的直角三角形,然后运用勾股定理求得. 【变式】已知二次函数(其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个 在y 轴的右侧.以上说法正确的个数为( )A .0B .1C .2D .3 【答案】C.【过关检测】一、单选题1.(2023·浙江温州·统考二模)将二次函数282y ax ax =−+的图象向左平移m 个单位后过点()5,2,则m 的值为( ) A .2 B .3 C .4 D .5【答案】B【分析】根据函数图象平移规则“左加右减,上加下减”得到平移后的函数解析式,再代入坐标求解即可. 【详解】解:将二次函数()22824216y ax ax a x a=−+=−+−的图象向左平移m 个单位后的函数解析式为()24216y a x m a=−++−,∵平移后的图象经过点()5,2,0a ≠,0m >,∴()2542162am a −++−=,解得3m =或5m =−(舍去),故选:B .2y ax bx c =++【点睛】本题考查二次函数的图象平移,解一元二次方程,熟练掌握图象平移规则是解答的关键. 2.(2023春·浙江·九年级阶段练习)在同一坐标系中,一次函数2y ax b =+与二次函数2y x a =−的图象可能是( )A. B .C .D .【答案】C【分析】对a b 、的符号分类讨论即可确定正确的选项.【详解】当0a >时,一次函数2y ax b =+经过一、二、三象限,二次函数2y x a =−开口向上,顶点在y 轴的负半轴,B 不符合,C 符合要求;当a<0时,一次函数2y ax b =+经过一、二、四象限,二次函数2y x a =−开口向上,顶点在y 轴的正半轴,A 、D 选项均不符合; 故选:C .【点睛】本题考查了二次函数的图象及一次函数的图象的知识,解题的关键是能够对系数的符号进行分类讨论,难度较小.3.(2023·浙江温州·统考二模)若把二次函数2y ax bx c =++(0a ≠)的图象向左平移4个单位或向右平移1个单位后都会经过原点,此二次函数图象的对称轴是( ) A .直线 2.5x =− B .直线 2.5x = C .直线 1.5x =− D .直线 1.5x =【答案】D【分析】先将一般式化成顶点式222424b ac b y ax bx c a x a a −⎛⎫=++=++⎪⎝⎭,然后分别求出平移后的函数解析式为224424b ac b y a x a a −⎛⎫=+++ ⎪⎝⎭,224124b ac by a x a a −⎛⎫=+−+⎪⎝⎭,将()00,代入整理得1640a b c ++=①,0a b c −+=②,−①②得1550a b +=,解得3b a =−,进而可得对称轴.【详解】解:222424b ac b y ax bx c a x a a −⎛⎫=++=++⎪⎝⎭, 向左平移4个单位的函数解析式为224424b ac by a x a a −⎛⎫=+++⎪⎝⎭,将()00,代入整理得1640a b c ++=①,向右平移1个单位的函数解析式为224124b ac by a x a a −⎛⎫=+−+⎪⎝⎭, 将()00,代入整理得0a b c −+=②,−①②得1550a b +=,解得3b a =−,∴ 1.52ba −=, ∴二次函数图象的对称轴为直线 1.5x =, 故选:D .【点睛】本题考查了二次函数图象的平移,二次函数的对称轴.解题的关键在于写出二次函数图象平移后的函数解析式.【答案】C【分析】根据二次函数的性质即可得到正确的选项.【详解】解:∵抛物线2y ax bx c =++(a b c ,,是常数,且0a ≠),当1x ≥时,则6y m ≤−,当1x <时,则y m ≤,∴当1x <时,y 随x 的增大而增大;当1x ≥时,y 随x 的增大而减小, ∴0a <,∵当1x <时,则y m ≤, ∴二次函数的最大值为:m ,∵抛物线2y ax bx c =++(a b c ,,是常数,且0a ≠)过点(2,)P m −,∴抛物线的解析式为:()22y a x m=++,∵当1x ≥时,则6y m ≤−,∴抛物线2y ax bx c =++(a b c ,,是常数,且0a ≠)过点()16m −,,∴69m a m −=+, ∴23a =−,故选C .【点睛】本题考查了二次函数图像与系数的关系,二次函数图像上点的坐标特征,明确题意是解题的关键. 5.(2023·浙江·九年级专题练习)已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc >;②b a c >+;③420a b c ++>;④23c b >;⑤()a b m am b +>+ (1m ≠的实数)其中正确结论有( )个A .2B .3C .4D .5【答案】B【分析】根据图象的开口方向,对称轴,与y 轴的交点位置判断①;根据图象判断=1x −时,函数值的符号,判断②;根据对称性,判断2x =时,函数值的符号,判断③;结合对称轴和特殊点判断④;根据二次函数图像的顶点判断⑤,进而得出结论.【详解】解:∵抛物线的开口向下,对称轴为直线1x =,与y 轴交于正半轴,∴a<0,12ba −=,0c >,∴20b a =−>, ∴<0abc ;故①错误;由图象可知:当=1x −时,对应的函数值小于0,即:<0a b c −+, ∴a c b +<;故②正确; ∵抛物线的对称轴为直线1x =,∴2x =和0x =的函数值相同,即:42a b c c ++=, ∵0c >,∴420a b c ++>;故③正确; ∵2b a =−,<0a b c −+, ∴102b b c −−+<,∴32c b<,即:23c b <;故④错误; ∵抛物线开口向下,对称轴为直线1x =, ∴当1x =时,函数取得最大值为a b c ++, ∴()21a b c am bm c m ++>++≠,∴()()1a b m am b m +>+≠;故⑤正确;综上:正确的有3个; 故选B .【点睛】本题考查二次函数图象与二次函数解析式的系数之间的关系.熟练掌握二次函数的性质,利用数形【答案】A【分析】求出当1m =−时,二次函数图象的顶点坐标即可判断①;当m≠0时,二次函数()2211y m x x x =−−+−,当2210x x −−=时,y 的值与m 无关,求出x 的值,即可得到定点,即可判断②;求出1211313122222x x m m ⎛⎫−=−−−=+> ⎪⎝⎭,函数图象在x 轴上截得的线段的长度大于32;即可判断③;当0m <时,抛物线的对称轴为104m x m −=>,则抛物线开口向下,当14x >时,只有当对称轴在14x =右侧时,y 才随x 的增大而减小,即21210y y x x −<−成立,即可判断④.【详解】解:当1m =−时,二次函数221122222y x x x ⎛⎫=−+=−−+ ⎪⎝⎭,此时函数图象的顶点坐标为12,12⎛⎫ ⎪⎝⎭,故①正确;当m≠0时,二次函数()()22221121211y mx m x m mx x mx m m x x x =+−−−=+−−−=−−+−,当2210x x −−=时,y 的值与m 无关,此时,1211,2x x ==−,当11x =时,0y =,当212x =−时,32y =−, ∴函数图象总过定点()1,0,13,22⎛⎫−− ⎪⎝⎭:故②正确;当0y =时,()22110mxm x m +−−−=,∵0m >, ∵()()()222Δ1421961310m m m m m m =−−⨯−−=++=+>,∴12131131111,4422m m m m x x m m m −++−−−====−−,∴当0m >时,∴1211313122222x x m m ⎛⎫−=−−−=+> ⎪⎝⎭, ∴函数图象在x 轴上截得的线段的长度大于32;故③正确;函数图象上任取不同的两点()111,P x y 、()222,P x y ,则当0m <时,抛物线()2211y mx m x m=+−−−的对称轴为11044m m x m m −−=−=>,∴抛物线开口向下,当14x >时,只有当对称轴在14x =右侧时,y 才随x 的增大而减小,即21210y y x x −<−成立,故④错误,综上可知,正确的是①②③, 故选:A【点睛】此题考查了抛物线与x 轴的交点,主要考查了函数图象上的点的坐标特征,要求非常熟悉函数与坐标轴的交点、顶点等坐标的求法及这些点代表的意义及函数特征.二、填空题7.(2022秋·浙江绍兴·九年级校考期中)在同一坐标系中画出函数242y x x =−+−和24y x x =−+的图象,试写出这两个函数的图象都具有的一个性质______. 【答案】对称轴都为2x =(答案不唯一)【分析】首先画出两个函数的图象,然后根据图象求解即可. 【详解】如图所示,由图象可得,两个函数的图象的对称轴都为2x =, 故答案为:对称轴都为2x =(答案不唯一).【点睛】此题考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的图象和性质.8.(2019秋·浙江·九年级统考阶段练习)抛物线的图象如图,当x____________时,y ≤0.【答案】1x 3≤≤【分析】由图观察得出y=0时所对的x 的值,再根据开口方向,从而确定y ≤0时,x 的取值范围. 【详解】由图观察得出y=0时,x=1或x=3,又知开口向上,则 y ≤0时,1x 3≤≤.【点睛】本题是对二次函数图像的考查,准确找到而从函数零点位置是解决本题的关键,难度较小. 9.(2023秋·浙江湖州·九年级统考期末)若将二次函数2(2)1y x =+−的图象向左平移h 个单位,再向下平移k 个单位,所得图象的函数表达式为2(3)4y x =+−,则h=______;k=______. 【答案】 1 3【分析】根据函数图象的平移规则:左加右减、上加下减,即可得到答案.【详解】解:二次函数2(2)1y x =+−的图象向左平移h 个单位,再向下平移k 个单位,所得图象的函数表达式为2(3)4y x =+−,13h k ∴==,,故答案为:1,3.【点睛】本题考查了二次函数图象的平移,熟练掌握二次函数图象的平移规则:左加右减、上加下减是解题的关键.10.(2023秋·浙江·九年级期末)二次函数221y x x =−+−,当x 满足2m x m ≤≤+时,函数的最大值为4−,则m 的值为__________.【答案】3−或3【分析】分x 在对称轴右侧和左侧两种情况,分别求解即可.【详解】由二次函数221y x x =−+−得:0a <,∴抛物线开口向下,对称轴是1x =,如下图所示,当4y =−时,有2214x x −+−=−,解得=1x −或3,∴当1x <时,y 随x 的增大而增大,21x m ∴=+=−时,y 有最大值4−,3m ∴=−,当1x >时,y 随x 的增大而减小,3x m ==时,y 有最大值4−,3m ∴=−或3m =.故答案为3−或3.【点睛】本题考查了二次函数的图像及性质,数形结合,分类讨论函数在给定范围内的最大值是解题关键.【答案】41x −≤≤【分析】根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】解:∵抛物线2y ax c =+与直线y kx m =+交于()()1241A y B y −,,,,∴不等式2ax c kx m +≥+的解集是41x −≤≤.故答案为41x −≤≤.【点睛】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图像的理解,谁大谁的图象在上面. 12.(2022秋·浙江温州·九年级校考阶段练习)已知二次函数241y x x =−+,当14x −<<时,y 的取值范围是_______. 【答案】36y −≤<【分析】将二次函数解析式化为顶点式,根据抛物线开口方向及顶点坐标求解.【详解】解:2241(2)3y x x x =−+=−−,∴抛物线开口向上,对称轴为直线2x =,顶点坐标为(2,3)−,将=1x −代入241y x x =−+得1416y =++=,∴当14x −<<时,y 的取值范围是36y −≤<,故答案为:36y −≤<.【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.掌握二次函数与不等式的关系.【答案】 5 1【分析】先把解析式配成顶点式得到()221y x =++,由于30x −≤≤,根据二次函数的性质得0x =时,y 的值最大;当2x =−时,y 有最小值,然后分别计算对应的函数值.【详解】解:()224521y x x x =++=++,当2x =−时,y 有最小值1,∵30x −≤≤,∴0x =时,y 的值最大,最大值为5;当2x =−时,y 有最小值1,故答案为:5;1.【点睛】本题主要考查了二次函数的性质,解题的关键是熟练掌握二次函数的增减性,根据顶点式求出最小值. 14.(2022秋·浙江宁波·九年级统考期中)如图, 抛物线2y ax bx c =++与x 轴交于点()20A −,, 顶点坐标为()2n ,, 与y 轴的交点在()()0304,,,之间 (包含端点), 则a 的取值范围为___________.【答案】1134a −≤≤−/1143a −≥≥− 【分析】首先把顶点坐标代入函数解析式得到12ca =−,利用c 的取值范围可以求得a 的取值范围.【详解】∵抛物线2y ax bx c =++与x 轴交于点()20A −,,对称轴2x =,∴抛物线与x 轴的另一个交点坐标分别是()60,,∴2612−⨯−=,∴12c a =−,则12c a =−. ∵y 轴的交点在()()0304,,,之间 (包含端点),∴34c ≤≤, ∴113124c −≤−≤−,即1134a −≤≤−. 故答案为:1134a −≤≤−. 【点睛】本题考查了二次函数图象与x 轴交点坐标与系数的关系.二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是解题的关键.三、解答题15.(2022秋·浙江宁波·九年级校联考期中)抛物线()21y x m x m =−+−+与y 轴交点坐标是()0,3.(1)求出m 的值并画出这条抛物线;(2)求抛物线与x 轴的交点和抛物线顶点的坐标;(3)当x 取什么值时,y 的值随x 值的增大而减小?【答案】(1)3m =,见解析(2)抛物线与x 轴的交点为()()1,03,0−,,顶点坐标为()1,4(3)当1x >时,y 的值随x 值的增大而减小【分析】(1)把()0,3代入解析式,可求出m 的值,再画出抛物线解析式,即可求解;(2(3)直接观察抛物线图象,即可求解.【详解】(1)解:∵()21y x m x m =−+−+与y 轴交点坐标是()0,3,∴3m =,∴抛物线的解析式为223y x x =−++. 列表如下:函数图象如图∶(2)解:由函数图象得,抛物线与x 轴的交点为()()1,03,0−,,顶点坐标为()1,4;(3)解:由函数图象可知,当1x >时,y 的值随x 值的增大而减小.【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键. 16.(2023·浙江温州·统考二模)已知抛物线2y x bx c =++经过点(1)2−,,(213)−,. (1)求抛物线解析式及对称轴.(2)关于该函数在0x m ≤<的取值范围内,有最小值3−,有最大值1,求m 的取值范围.【答案】(1)抛物线解析式为241y x x =−+,对称轴为2x =;(2)24m <≤【分析】(1)把点(1)2−,,(213)−,,代入解析式,待定系数法求解析式即可求解; (2)根据题意画出图象,结合图象即可求解.【详解】(1)解:将点(1)2−,,(213)−,代入抛物线2y x bx c =++,得 211342b c b c −=++⎧⎨=−+⎩,得41b c =−⎧⎨=⎩,∴抛物线解析式为241y x x =−+, 对称轴为:4222b x a −=−=−=;(2)解:如图,由抛物线的对称性可画出草图,由图象可知:当24m <≤时,y 的最小值为3−,最小值为1,∴当0x m ≤<时,对应的函数的的最小值为3−,最小值为1,m 的取值范围为24m <≤.【点睛】本题考查了二次函数图象的性质,待定系数法求解析式,掌握二次函数图象的性质是解题的关键. (1)用配方法将此函数化为2()y a x h =−+(2)画出此函数的图象,并结合图象直接写出【答案】(1)()2222y x =−−,顶点坐标为()22−,(2)图象见解析,13x <<【分析】(1)根据题意,化为顶点式即可求解;(2)根据顶点以及,x y 轴的交点,利用函数对称性画出函数图象,结合函数图象即可求解.【详解】(1)解:2286y x x =−+()2222x =−−即()2222y x =−−∴顶点坐标为()22−, (2)令0y =,22860x x −+=,解得:121,3x x ==令0x =,解得:6y =如图所示,根据函数图象可知,当13x <<时,0y <.【点睛】本题考查了画二次函数图象,顶点式,根据图象求不等式的解集,掌握二次函数的性质是解题的关键.【答案】(1)23y x x =−+; (2)3n =或2n =;(3)54m >.【分析】(1)利用待定系数法即可求解;(2)利用平移的性质得到平移后的函数解析式为2111124y x n ⎛⎫=−++− ⎪⎝⎭,再代入()22B −,,解方程即可求解; (3)把点154P a ⎛⎫ ⎪⎝⎭,代入,求得a 的值,利用二次函数的性质即可求解.【详解】(1)解:∵二次函数23y x bx =++的图象经过点()13A ,, ∴313b =++,解得1b =-,∴该函数解析式为23y x x =−+;(2)解:22111324y x x x ⎛⎫=−+=−+ ⎪⎝⎭, 将函数图象向下平移1个单位,再向左平移n 个单位后, 函数解析式为2111124y x n ⎛⎫=−++− ⎪⎝⎭,把点()22B −,代入得211122124n ⎛⎫=−−++− ⎪⎝⎭, 整理得25124n ⎛⎫−= ⎪⎝⎭, 解得3n =或2n =;(3)解:对于211124y x ⎛⎫=−+ ⎪⎝⎭,对称轴为12x =,当12x =时,函数的最小值为114, ∵点154P a ⎛⎫ ⎪⎝⎭,在该函数图象上, ∴211115244a ⎛⎫−+= ⎪⎝⎭,解得32a =或12a =−, 当32a =,即32x ≤时,函数的最小值为114, 此时1144m −<,解得54m >; 当12a =−,即12x ≤−时,函数的最小值为21111152244⎛⎫−−+= ⎪⎝⎭, 此时1544m −<,解得14m >; 综上,54m >. 【点睛】本题考查了二次函数的图象和性质,平移变换,待定系数法求函数解析式,能结合题意确定m 的取值范围是解题的关键.【答案】(1)2a b =−(2)①4b >;②见解析【分析】(1)将()1,1−−,()0,1两点代入抛物线2(0)y ax bx c a =++≠中,进而得出答案;(2)①根据2x =−时,1y >,可得4211a b −+>,结合(1)中的结论可得答案;②表示二次函数的对称轴,然后根据二次函数的增减性进行解答即可.【详解】(1)解:将()1,1−−和()0,1代入2y ax bx c =++,得1c b a −=−+①,1c =②,将②代入①得,2a b =−;(2)①解:∵2x =−,1y >,∴4211a b −+>,∵2a b =−,∴()42211b b −−+>,解得,4b >;②证明:∵2y ax bx c =++, ∴抛物线的对称轴142242b b x a b b =−=−=−−,∵4b >, ∴401b <<, ∴111422b −<<−−,∵20a b =−>,∴抛物线开口向上,在对称轴的右侧y 随x 的增大而增大, ∵12n m >≥−,∴Q 点在P 点的右侧,∴21y y >.【点睛】二次函数的性质等知识点,熟练掌握二次函数的基本性质是解本题的关键. 20.(2023·浙江绍兴·统考一模)如图,二次函数2y x ax b =++的图像与直线3y x =−+的图像交于A ,B 两点,点A 的坐标为()4,7−,点B 的坐标为()1,2.(1)求二次函数2y x ax b =++的表达式.(2)点M 是线段AB 上的动点,将点M 向下平移()0h h >个单位得到点N .①若点N 在二次函数的图像上,求h 的最大值.②若4h =,线段MN 与二次函数的图像有公共点,请求出点M 的横坐标m 的取值范围.【答案】(1)221y x x =+−; (2)①max 254=h ,②43m −≤≤−或01m ≤≤【分析】(1)待定系数法计算即可.(2)①设点M 的坐标为()(),341−+−<<m m m ,则点N 的坐标为(),3−+−m m h ,把(),3−+−m m h 代入221y x x =+−构造h 为函数的二次函数计算即可. ②当4h =,点N 的坐标为(),1m m −−代入解析式,确定m 的值,结合图像计算即可. 【详解】(1)把()4,7−,()1,2代入2y x ax b =++得:491a b a b −+=−⎧⎨+=⎩,解得2a =,1b =-,∴221y x x =+−. (2)①设点M 的坐标为()(),341−+−<<m m m ,则点N 的坐标为(),3−+−m m h .把(),3−+−m m h 代入221y x x =+−,得: 234=−−+h m m , 232524⎛⎫=−++ ⎪⎝⎭h m , ∵10a =−<,当32m =−时,且满足41m −<<,∴max 254=h . ②设点M 的坐标为()(),341−+−<<m m m ,则点N 的坐标为(),3−+−m m h .当4h =,点N 的坐标为(),1m m −−,把(),1m m −−代入得:230m m +=, ∴0m =或3m =−.∴43m −≤≤−或01m ≤≤.【点睛】本题考查了抛物线的解析式,最值,点的平移,熟练掌握抛物线的性质是解题的关键.。

二次函数yax2bxc的图像与性质

二次函数yax2bxc的图像与性质

方法归纳
1
配方法
2
公式法
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
2
91 22
1 2
x
32
5
∴ 对称轴是直线x=-3,当 x>-3时,y
随x的增大而减小。
解法二:
Q a 1 0 ,∴抛物线开口向下,
2
Q b 3 3 2a 212
∴ 对称轴是直线x=-3,当 x>-3时,y 随x的增大而减小。
例已知二次函数
y m 1 x 2 2 m x 3 m 2 m 1
4 2
所以当x=2时,y最小值=-7 。
总结:求二次函数最值,有两个方法. (1)用配方法;(2)用公式法.
例已知函数 y1x2 3x1,当x为何值时,
2
2
函数值y随自变量的值的增大而减小。
解法一:Q a 1 0 ,∴抛物线开口向下,
2
又y1x2 3x1 1 x26x991
2
22
2
1x32
二次函数y=ax2+bx+c 图象和性质
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减

二次函数y=ax2+bx+c的图象与性质

二次函数y=ax2+bx+c的图象与性质

y
x=6
当x<6时,y随x的增大而减小; 10
当x>6时,y随x的增大而增大.
5
试一试
O
5
10 x
你能用上面的方法讨论二次函数y=-2x2-4x+1的图象和性质吗?
二 将一般式y=ax2+bx+c化成顶点式y=a(x-h)2+k
我们如何用配方法将一般式y=ax2+bx+c(a≠0)化成 顶点式y=a(x-h)2+k?
增大而减小,则实数b的取值范围是( D )
A.b≥-1
B.b≤-1
C.b≥1
D.b≤1
解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴
右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的
值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直 线x=1的左侧而抛物线y=-x2+2bx+c的对称轴 x b b ,
? ?
y轴 y轴 直线x=-2 直线x=-2 直线x=4
? ?
最值 0 -5 0 -4 3 ? ?
讲授新课
一 二次函数y=ax2+bx+c的图象和性质
探究归纳
我们已经知道y=a(x-h)2+k的图象和性质,能否利用这些知识来讨

y 1 x2 6x 21 2
的图象和性质?
问题1 怎样将 y 1 x2 6x 21 化成y=a(x-h)2+k的形式? 2
x

b 2a
2

4ac b2 4a
归纳总结
二次函数y=ax2+bx+c的图象和性质
1.一般地,二次函数y=ax2+bx+c的可以通过配方化成y=a(x-h)2+k

二次函数y=ax2+bx+c的图像与性质

二次函数y=ax2+bx+c的图像与性质

例题解析
❖ 例3 在直角坐标系中,
画出二次函数
y1x2 6x21
2
❖ 的图象
例4:
❖ 讨论抛物线y=ax2+bx+c的性质
yaxb24acb2. 2a 4a
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我们可以利用配方法
推导出它的对称轴和顶点坐标.
yax2bxc
配方:
顶点坐标是:2ba
,
4acb2 4a
一般地,因为抛物线y ax2 bx c
的顶点是最低(高)点,所以
当x b 时,二次函数y ax2 bx c 2a
有最小(大)值4ac b2 4a
求出下列抛物线对称轴及顶点坐标,并说出它的开口 方向及最值,并判别其增减性?
(1)y=3x2+2x (2)y=-x2-2x
b
2
和0.
2a
3.联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整
体 左左平移(右)),再平沿移对| 称 轴2b|a个整单体位上(当(下)平 移2b>a 0|时,4向ac |右个b2 平单移位;当(当
<b 0时,向 4a2ca>b 20时
向上平移;当
4
ac 4
a<b 20时,向下平移)得到的.4
几分钟时,学生的接受能力最强?
此课件下载可自行编辑修改,供参考 感谢您的支持,我们努力做得更好!
(3)y=-2x2+8x-8
4y1x24x3
2
?
小结 拓展 回味无穷 驶向胜利
二次函数y=ax2+bx+c(a≠0)与=ax²的关的彼系岸

22.1.4二次函数y=ax2+bx+c的图象和性质(第三课时)

22.1.4二次函数y=ax2+bx+c的图象和性质(第三课时)

解得k≤1,
即k的取值范围是k≤1
(3)解:设方程的两个根分别是x1,x2,
根据题意,得(x1 -3)(x2 -3)< 0, 即 x1 x2 -3(x1 + x2 )+9 < 0, ∵ x1 + x2 = 5-k, x1 x2 =1-k ∴ 1-k-3(5-k)+9<0 解得k< ,
则k的最大整数值为2.
16.(2017•荆州调考)已知关于x的方程 (m-1)x2+(m-2)x-1=0. (1)求证:无论m为何实数,方程总有实数根; (2)m为何整数时,方程有两个不相等的整数根; (3)m 取不同的实数(m ≠1),就对应不同的抛物线 y=(m-1)x2+(m-2)x-1,请证明当m(m ≠1) 变化时,所有这些不同的抛物线 y=(m-1)x2+(m-2)x-1有公共点,并求出它们 的公共点. (1)证明:当m=1时,方程为-x-1=0有唯一实数根x=1 当m ≠1时 △=(m﹣2)2+4(m﹣2) =m2 ≥0 ∴无论m为何实数,方程总有实数根.
y
O A x
y O B
y
y x O x
-1 0
x
x
O
C
D
7. 小明从左边的二次函数y=ax2+bx+c的图象观察得出 下面的五条信息:① a<0;② c=0;③ 函数的最小 值为-3; ④当x<0时,y>0; ⑤当0<x1<x2<2时, y1>y2 你认为其中正确的个数有( C ) A.2 B .3 C.4 D.5 y y
看作是抛物线y=-
x2+bx+c的一部分,其中出球点B离地面O
点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物 线的解析式是 ( B ) A. C. B. D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.8二次函数y=ax ²+bx+c 的图象和性质(第三课时)
学习目标
1、经历用描点法画形如y=a(x-h)²+k 二次函数的图像的过程;
2、掌握形如y=a(x-h)²+k 二次的函数的性质。

3、能根据二次函数图像的对称性迅速的画出二次函数的图像。

学习重点:
会画形如
的二次函数的图像,并能指出图像的开口方向、
对称轴及顶点坐标。

学习难点:
确定形如
的二次函数的顶点坐标和对称轴。

第一模块:自学设计
自学任务:
(一)思考:
二次函数112
12
-+-=)(x y 的图象是什么形状?你能说出它有哪些性质吗
(二)自学课本,完成下列问题
1、在同一坐标系,分别作出二次函数221x y -= 12
1
2--=x y
11212
-+-=)(x y 的图像
(2)描点 (3)连线
填写下表
例 求二次函数
5
12-+-=x x y 的顶点坐标和对称轴,并作出函数图像
解:2
5212-+-=x x y
=
所以它的顶点坐标是 ,对称轴是 。

根据函数的对称性列表
第二模块:训练设计
巩固练习:
课本P86随堂练习及习题3.8第1题中的(1)(3)(5)
达标测试(10分)
1、抛物线y=(x—l)2 +2的对称轴是()
A.直线x=-1 B.直线x=1 C.直线x=2 D.直线x=2 2、、已知抛物线的解析式为y=-(x—2)2+l,则抛物线的顶点坐标是()
A.(-2,1)B.(2,l)C.(2,-1)D.(1,2)
3、将抛物线y=-2(x-1)2+3向左平移1个单位,再向下平移3个单位,则所得抛物线解析式为___ ___.
4、要从抛物线y=-2x2的图象得到y=-2x2-1的图象,则抛物线y=-2x2必须 [ ]
A .向上平移1个单位;
B .向下平移1个单位;
C .向左平移1个单位;
D .向右平移1个单位.
5、将抛物线y=-3x 2的图象向右平移1个单位,再向下平移两个单位后,则所得抛物线解析式为 [ ]
A .y=-3(x-1)2-2;
B .y=-3(x-1)2+2;
C .y=-3(x+1)2-2;
D .y=-3(x+1)2+2.
6、要从抛物线y=2x 2得到y=2(x-1)2+3的图象,则抛物线y=2x 2必须 [ ] A .向左平移1个单位,再向下平移3个单位; B .向左平移1个单位,再向上平移3个单位; C .向右平移1个单位,再向下平移3个单位 D .向右平移1个单位,再向上平移3个单位.
7、抛物线23
2y x =-向左平移1个单位得到抛物线( )
A .2312y x =--B.2312y x =-+C.23
(1)2
y x =-+D.
8、把二次函数2x y -=的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象所表示的二次函数的解析式是 ( ) A. ()522
+--=x y B. ()522
++-=x y
C. ()522
---=x y D. ()522
-+-=x y。

相关文档
最新文档