高二数学第一次月考

合集下载

2023-2024学年山西省高二下册第一次月考数学试题(含解析)

2023-2024学年山西省高二下册第一次月考数学试题(含解析)

2023-2024学年山西省高二下册第一次月考数学试题一、单选题1.已知1()2P BA =∣,3()8P AB =,则()P A 等于()A .316B .1316C .34D .14【正确答案】C根据条件概率公式计算.【详解】由()()()P AB P BA P A =∣,可得()3()()4P AB P A P B A ==∣.故选:C.2.已知012233C 2C 2C 2C 2C 81n n n n n n n ++++⋅⋅⋅+=,则123C C C C nn n n n +++⋅⋅⋅+等于()A .15B .16C .7D .8【正确答案】A【分析】根据二项式定理展开式的逆运算即可求得n 的值,再由由二项式系数和即得.【详解】逆用二项式定理得()01223322221281nn n nn n n n C C C C C ++++⋅⋅⋅+=+=,即433n =,所以n =4,所以12342115n n n n n C C C C +++⋅⋅⋅+=-=.故选:A.3.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .80【正确答案】C【详解】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.4.若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中常数项是()A .180B .120C .90D .45【正确答案】A【分析】已知条件中只有第六项的二项式系数最大,n 应为偶数,可确定n 值,进而利用展开式即可求得常数项.【详解】如果n 为奇数,那么是中间两项的二项式系数最大;如果n 为偶数,那么是中间一项的二项式系数最大;只有第六项的二项式系数最大10n ∴=,1022x ⎫∴⎪⎭展开式的通项为:10521102r r r r T C x -+=⨯⨯令10502r-=,解得:2r =∴展开式中常数项是.22102180C ⨯=故选:A.5.有8位学生春游,其中小学生2名、初中生3名、高中生3名.现将他们排成一列,要求2名小学生相邻、3名初中生相邻,3名高中生中任意两名都不相邻,则不同的排法种数有()A .288种B .144种C .72种D .36种【正确答案】B【分析】利用捆绑法和插空法可求得结果.【详解】第一步,先将2名小学生看成一个人,3名初中生看成一个人,然后排成一排有22A 种不同排法;第二步,将3名高中生插在这两个整体形成的3个空档中,有33A 种不同排法;第三步,排2名小学生有22A 种不同排法,排3名初中生有33A 种不同排法.根据分步计数原理,共有23232323144A A A A =种不同排法.故选:B方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.6.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为().A .122B .112C .102D .92【正确答案】D【详解】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.二项式系数,二项式系数和.7.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【正确答案】D【分析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D8.设5nx⎛⎝的展开式的各项系数和为M ,二项式系数和为N ,若240M N -=,则展开式中有理项共有()A . 1项B .2项C .3项D . 4项【正确答案】C【分析】根据二项式系数和公式,结合赋值法、二项式的通项公式进行求解即可.【详解】二项式系数和为2n N =,在5nx⎛ ⎝中,令1x =,得4nM =,由()()24042240021521602164n n n n nM N n -=⇒--=⇒+-=⇒=⇒=,二项式45x⎛ ⎝的通项公式为()()34442144C 5C 51rr r r r r r r T x x ---+⎛=⋅⋅=⋅⋅-⋅ ⎝,令0,2,4r =,则344,1,22r-=-,所以展开式中有理项共有3项,故选:C9.设双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,以2F 为圆心的圆恰好与双曲线C 的两渐近线相切,且该圆恰好经过线段2OF 的中点,则双曲线C 的离心率是()AB C .3D 【正确答案】A【分析】先由焦点到渐近线的距离求出半径,再利用该圆过线段2OF 的中点得到2c b =,即可求出离心率,【详解】由题意知:渐近线方程为by x a=±,由焦点2(,0)F c ,222c a b =+,以2F 为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r等于圆心到切线的距离,即r b ==,又该圆过线段2OF 的中点,故2cr b ==,所以离心率为ca=故答案为.310.数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数学通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选3门,大一到大三三学年必须将四门选修课程选完,则每位同学的不同选修方式有()A .60种B .78种C .84种D .144种【正确答案】B【分析】先分类,再每一类中用分步乘法原理即可.【详解】由题意可知三年修完四门课程,则每位同学每年所修课程数为1,1,2或0,1,3或0,2,2若是1,1,2,则先将4门学科分成三组共11243222C C C A 种不同方式.再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有112343232236C C C A A ⋅=种,若是0,1,3,则先将4门学科分成三组共1343C C 种不同方式,再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有13343324C C A ⋅=种,若是0,2,2,则先将门学科分成三组共224222C CA 种不同方式,再分配到三个学年共有33A 种不同分配方式,由乘法原理可得共有2234232218C C A A ⋅=种所以每位同学的不同选修方式有36241878++=种,故选:B.二、多选题11.若()102100121021,R x a a x a x a x x -=++++∈ ,则()A .2180a =B .10012103a a a a +++= C .100210132a a a -+++=D .31012231012222a a a a ++++=- 【正确答案】ABD【分析】根据二项式展开式的系数特点,结合通项公式,采用赋值法,一一求解各个选项,即得答案.【详解】由题意1021001210(21)x a a x a x a x -=++++ ,所以8282310C (2)(1)180T x x =-=,所以2180a =,故A 正确.令=1x -,则1021001210(21)x a a x a x a x -=++++ ,即为1021001210(21)||||||||x a a x a x a x +=++++ ,令1x =,得1001210||||||||3a a a a ++++= ,故B 正确;对于1021001210(21)x a a x a x a x -=++++ ,令1x =,得012101a a a a ++++= ,令=1x -,得:10012103a a a a -+-+= ,两式相加再除以2可得100210132a a a ++++= ,故C 错误.对于1021001210(21)x a a x a x a x -=++++ ,令0x =,得01a =,令12x =,得310120231002222a a a aa +++++= ,故31012231012222a a a a ++++=- ,故D 正确,故选:ABD12.为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是()A .()35P A =B .()310P AB =C .()12P B A =D .()12P B A =【正确答案】ABC【分析】根据古典概型概率的求法及条件概率,互斥事件概率求法,可以分别求得各选项.【详解】()131535C C P A ==,故A 正确;()11321154310C C P AB C C ==,故B 正确;()()()0351231P AB P P A B A ===,故C 正确;()121525C C P A ==,()11231154103C C C C P AB ==,()()()3310245P AB P B A P A ===,故D 错误.故选:ABC三、填空题13.已知事件A 和B 是互斥事件,()16P C =,()118P B C ⋂=,()()89P A B C ⋃=,则()P A C =______.【正确答案】59【分析】根据条件概率的定义以及运算性质,可得答案.【详解】解:由题意知,()()()()89P A B C P A C P B C ⋃=+=,()()()1118136P B C P B C P C ⋂===,则()()()()815939P A C P A B C P B C =⋃-=-=.故59.14.5555除以8,所得余数为_______.【正确答案】7【分析】由55561=-,运用二项式定理,结合整除的性质,即可求解.【详解】依题意,()()()()()()5512545555055154253541550555555555555561C 561C 561C 561C 561C 561=-=-+-+-++-+- 因为56能被8整除,所以5555除以8,所得的余数为.187-+=故7.15.已知()()()420122111x a a x a x -=+-+-()()343411a x a x +-+-,则3a =____.【正确答案】32对多项式进行变形得()44444112122122x x x ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,再研究441212x ⎛⎫+- ⎪⎝⎭展开式中的()31x -项,即可得答案.【详解】对多项式进行变形得()44444112122122x x x ⎛⎫⎛⎫-=-=+- ⎪ ⎪⎝⎭⎝⎭,∴44142((,0,1,,411)2r r rr T C r x -+-=⋅= ,当3r =时,4343342(3212a C -=⋅=.故答案为.32本题考查二项式定理求展开式指定项的系数,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.16.有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,则他们所得的球数的不同情况有__________种.【正确答案】15【分析】依题意,首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,再来分配这4个球,按照分类加法计数原理计算可得;【详解】解:有10个相同的小球,现全部分给甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,故首先分给甲1个球,乙2个球,丙3个球,还剩下4个球,①4个球分给一人,有3种分法;②4个球分给两个人,又有两种情况,一人3个一人1个有236A =种分法;两人都是2个有3种分法;③4个球分给3个人,只有1、1、2这种情况,有3种分法,按照分类加法计数原理可得一共有363315+++=种;故15本题考查分类加法计数原理的应用,属于基础题.四、解答题17.已知{}n a 为等差数列,前n 项和为()*N n S n ∈,{}n b 是首项为2的等比数列,公比大于0,且2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和()*N n ∈.【正确答案】(1)32n a n =-,2nn b =(2)前n 项和110(35)2n n T n +=+-⋅【分析】(1)根据等比数列的通项公式可计算得到公比q 的值,再根据等差数列的通项公式和求和公式可列出方程组,解出首项1a 和公差d 的值,即可求得{}n a 和{}n b 的通项公式;(2)先根据第(1)题的结论得到数列{}n n a b ×的通项公式,然后运用错位相减法求出前n 项和n T .【详解】(1)由题意,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则0q >.故22212q q +=,解得2q =,12b = ,则2231228b b q ==⨯=,33412216b b q ==⨯=,由题意,得11132811101111162a d a a d +-=⎧⎪⎨⨯+=⨯⎪⎩,解得113a d =⎧⎨=⎩.13(1)32n a n n ∴=+-=-;1222n n n b -=⨯=.(2)由(1)知,(32)2n n n a b n ⋅=-⋅.设其前n 项和为n T ,211221242(32)2n n n n T a b a b a b n ∴=++⋯+=⨯+⨯+⋯+-⋅,①23121242(35)2(32)2n n n T n n +=⨯+⨯+⋯+-⋅+-⋅,②①-②,得23112323232(32)2n n n T n +-=⨯+⨯+⨯+⋯+⋅--⋅21212(122)(32)2n n n -+=+⨯++⋯+--⋅1112212(32)212n n n -+-=+⨯--⋅-()153210n n +=-⋅-.()110352n n T n +∴=+-⋅.18.在平面直角坐标系xOy 中,抛物线方程为()220x py p =>,其顶点到焦点的距离为2.(1)求抛物线的方程;(2)若点()0,4P -,设直线():0l y kx t t =+≠与抛物线交于A 、B 两点,且直线PA 、PB 的斜率之和为0,证明:直线l 必过定点,并求出该定点.【正确答案】(1)28x y =;(2)详见解析;【分析】(1)根据题意求出抛物线的焦点坐标,可求得p 的值,进而可求得抛物线的方程;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,根据直线PA 、PB 的斜率之和为0求得实数t 的值,即可求得直线l 所过定点的坐标.【详解】(1)0p > ,且抛物线22x py =的顶点到焦点的距离为2,则该抛物线的焦点坐标为()0,2,22p∴=,解得4p =,因此,该抛物线的方程为28x y =;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立28y kx tx y=+⎧⎨=⎩,消去y 并整理得2880x kx t --=,由韦达定理得128x x k +=,128x x t =-.直线PA 的斜率为2111111144488x y x k x x x ++===,同理直线PB 的斜率为22248x k x =+,由题意得()1212121212124448324108888x x x x x x k k k k k x x x x t t +++⎛⎫+=++=+=+=-= ⎪-⎝⎭,上式对任意的非零实数k 都成立,则410t -=,解得4t =,所以,直线l 的方程为4y kx =+,该直线过定点()0,4.设而不求,联立方程,利用韦达定理解题是本类题目常用思路.本题中表示出()12121212121244441088x x x x x x k k k x x x x t +++⎛⎫+=++=+=-= ⎪⎝⎭是解题关键,也是计算难点.19.已知函数()2()24ln f x x ax x =-,a R ∈.(1)当0a =时,求函数()f x 的单调区间;(2)令2()()g x f x x =+,若[1,)x ∀∈+∞,函数()g x 有两个零点,求实数a 的取值范围.【正确答案】(1)函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭(2))+∞【分析】(1)当0a =时,()22ln f x x x =,求出()f x ¢,可得函数()f x 的单调区间;(2)依题意得,()()2224ln g x x ax x x =-+,然后求导,得()()()()44ln 2424ln 1g x x a x x a x x a x =-+-+=-+',然后,分情况讨论即可求出实数a 的取值范围【详解】(1)函数()f x 的定义域为()0,+¥当0a =时,()22ln f x x x =()()4ln 222ln 1f x x x x x x =+=+'令()'0f x >得2ln 10x +>,解得12x e ->,令()'0f x <得2ln 10x +<,解得120x e -<<,所以函数()f x 的单调递减区间为120,e -⎛⎫ ⎪⎝⎭,单调递增区间为12e ,-⎛⎫+∞ ⎪⎝⎭(2)()()2224ln g x x ax x x =-+,()()()()44ln 2424ln 1g x x a x x a x x a x =-+-+=-+'由[)1,x ∈+∞得ln 10x +>①当1a ≤时,()'0g x ≥,函数()g x 在[)1,+∞上单调递增,所以()()1g x g ≥,即()1g x ≥,函数()g x 在[)1,+∞上没有零点.②当1a >时,()1,x a ∈时,()'0g x <,(),∈+∞x a 时,()'0g x >所以函数()g x 在()1,a 上单调递减,在(),+∞a 上单调递增因为()110g =>,()2240g a a =>所以函数()g x 在[)1,+∞有两个零点只需()()()2min 12ln 0g x g a a a ==-<解得a >综上所述,实数a 的取值范围为)+∞本题考查利用导数求单调性和单调区间的问题,解题的关键在于分情况讨论时注意数形结合,属于难题。

四川省内江市2023-2024学年高二上学期第一次月考数学试题含解析

四川省内江市2023-2024学年高二上学期第一次月考数学试题含解析

内江2022-2023学年(上)高25届第一次月考数学试题(答案在最后)考试时间:120分钟满分:150分第Ⅰ卷选择题(满分60分)一、单选题(每题5分,共40分)1.直线x =)A.0B.30C.60D.90【答案】D 【解析】【分析】根据直线斜率和倾斜角关系可直接求得结果.【详解】 直线x =∴直线x =90 .故选:D.2.下列说法错误的是()A.球体是旋转体B.圆柱的母线平行于轴C.斜棱柱的侧面中没有矩形D.用平行于正棱锥底面的平面截正棱锥所得的棱台叫做正棱台【答案】C 【解析】【分析】利用球体的定义判断A ;利用圆柱的结构特征判断B ;举例说明判断C ;利用正棱台的定义判断D .【详解】因球体是半圆面绕其直径所在的直线旋转一周所得几何体,即球体是旋转体,A 正确;由圆柱的结构特征知,圆柱的母线平行于轴,B 正确;如图,斜平行六面体1111ABCD A B C D -中,若AD ⊥平面11ABB A,因1AA ⊂平面11ABB A ,则1AD AA ⊥,侧面四边形11ADD A 是矩形,C 不正确;由正棱台的定义知,D 正确.故选:C3.如图,ABC 的斜二测直观图为等腰Rt A B C ''' ,其中2A B ''=,则原ABC 的面积为()A.2B.4C.22D.42【答案】D 【解析】【分析】首先算出直观图面积,再根据平面图形与直观图面积比为22求解即可.【详解】因为等腰Rt A B C ''' 是一平面图形的直观图,直角边2A B ''=,所以直角三角形的面积是12222⨯⨯=.又因为平面图形与直观图面积比为22:1,所以原平面图形的面积是2222⨯=.故选:D4.若m n ,表示两条不同的直线,αβ,表示两个不同的平面,则下列命题正确的是()A.若m n αα⊥⊂,,则m n ⊥B.若//,//m n αα,则//m nC.若m αββ⊥⊥,,则//m αD.若//,//,,m n m n ααββ⊂⊂,则//αβ【解析】【分析】根据线面垂直的性质可判断A 正确;由//,//m n αα可得m 与n 平行、相交或异面,可判断B ;由m αββ⊥⊥,可得//m α或m α⊂,可判断C ;由//m n 时α与β不一定平行可判断D.【详解】对于A ,根据线面垂直的性质可得若m n αα⊥⊂,,则m n ⊥,故A 正确;对于B ,若//,//m n αα,则m 与n 平行、相交或异面,故B 错误;对于C ,若m αββ⊥⊥,,则//m α或m α⊂,故C 正确;对于D ,若//,//,,m n m n ααββ⊂⊂,如果m 与n 相交,则//αβ,若//m n ,则α与β不一定平行,故D 错误.故选:A.5.已知直线210kx y k -+-=恒过定点A ,点A 也在直线20mx ny ++=上,其中m ,n 均为正数,则12m n+的最小值为()A.2 B.4C.8D.6【答案】B 【解析】【分析】先将直线方程变形得到定点A 的坐标,根据点A 在直线20mx ny ++=上确定出,m n 所满足的关系,最后根据“1”的妙用求解出12m n+的最小值.【详解】已知直线210kx y k -+-=整理得:()12y k x +=+,直线恒过定点A ,即()2,1A --.点A 也在直线20mx ny ++=上,所以22m n +=,整理得:12nm +=,由于m ,n均为正数,则12122112422n n m m m n m n m n ⎛⎫⎛⎫+=++=+++≥+ ⎪⎪⎝⎭⎝⎭,取等号时212n m nm =⎧⎪⎨+=⎪⎩,即121m n ⎧=⎪⎨⎪=⎩,【点睛】方法点睛:已知()1,,,0xa yb x y a b +=>,求(),0m nm n a b+>的最小值的方法:将m n a b +变形为()m n xa yb a b ⎛⎫++ ⎪⎝⎭,将其展开可得a b xm yn xn ym b a ++⋅+⋅,然后利用基本不等式可求最小值,即a b xm yn xn ym xm yn xm yn b a ++⋅+⋅≥++=++221xa yb xna ymb +=⎧⎨=⎩.6.正四棱台上、下底面边长分别为2cm ,4cm ,侧棱长2cm ,则棱台的侧面积为()A.26cmB.224cmC.2D.2【答案】D 【解析】【分析】由棱台的性质和勾股定理求得棱台的斜高,再由棱台的侧面积公式,计算可得所求值.【详解】解:设2a cm =,4b cm =,2=l cm ,可得正四棱台的斜高为)h cm '===,所以棱台的侧面积为21(44)2(24))2S a b h cm '=+=⨯+=.故选:D .7.已知各顶点都在球面上的正四棱锥的高度为3,锥体体积为6,则该球的表面积为()A.32πB.16πC.24πD.20π【答案】B 【解析】【分析】先求得正四棱锥的高,然后利用勾股定理求得球的半径,进而求得球的表面积.【详解】设正四棱锥底面边长为()0a a >,则2136,3a a ⨯⨯==,底面正方形的对角线长为设球的半径为r ,则()22232r r ⎛⎫-+= ⎪ ⎪⎝⎭,解得2r =,则球的表面积为24π16πr =.故选:B8.如图,在正方体1111ABCD A B C D -中,,,P Q M 分别是11,,DD AB BB 的中点,则异面直线1A M 与PQ 所成角的余弦值为()A.5B.10C.6D.3【答案】B 【解析】【分析】连接PC 、QC 、1A P 、MC ,即可得到1//A M PC ,从而得到QPC ∠或其补角为异面直线1A M 与PQ 所成的角,利用余弦定理求出cos QPC ∠,即可得解.【详解】令2AB =,连接PC 、QC 、1A P 、MC ,因为M 、P 为1BB 、1DD 的中点,易知1A P CM =且1//A P CM ,所以四边形1A PCM 为平行四边形,所以1//A M PC ,所以QPC ∠或其补角为异面直线1A M 与PQ 所成的角,在PQC △中,PC ==QC ==PQ =,所以30cos10QPC ∠==,所以异面直线1A M 与PQ 所成角的余弦值为10.故选:B二、多选题(每题5分,共20分)9.已知直线12:210,:(1)10l mx y l x m y ++=+++=,则下列结论正确的是()A.若12l l ∥,则2m =- B.若12l l ∥,则1m =或2m =-C.若12l l ⊥,则23m =- D.若12l l ⊥,则23m =【答案】AC 【解析】【分析】根据两直线平行列出方程,求出1m =或2m =-,经检验,1m =不合要求;再根据两直线垂直列出方程,求出23m =-.【详解】令(1)20m m +-=,解得:1m =或2m =-.当1m =时,1l 与2l 重合;当2m =-时,12l l ∥.A 正确,B 错误.若12l l ⊥,则2(1)0m m ++=,解得23m =-,C 正确,D 错误.故选:AC10.等腰直角三角形直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为()A.B.(1π+ C.D.(2π+【答案】AB 【解析】【分析】分2种情况,一种是绕直角边,一种是绕斜边,分别求形成几何体的表面积.【详解】如果是绕直角边旋转,形成圆锥,圆锥底面半径为1,高为1,所以所形成的几何体的表面积是)22111S rl r πππππ=+=⨯⨯⨯=.如果绕斜边旋转,形成的是上下两个圆锥,圆锥的半径是直角三角形斜边的高2,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以写成的几何体的表面积2212S rl ππ=⨯=⨯⨯⨯=.综上可知形成几何体的表面积是)1π+.故选:AB【点睛】本题考查旋转体的表面积,意在考查空间想象能力和计算能力,属于基础题型.11.如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,点M 是AD 上的动点.将,AED DCF △△分别沿,DE DF 折起,使,A C 两点重合于P ,连接,DF PB .下列说法正确的是()A.PD EF⊥B.若把EBF △沿着EF 继续折起,B 与P 恰好重合C.无论M 在哪里,PB 不可能与平面EFM 平行D.三棱锥P DEF -的外接球表面积为6π【答案】ABD 【解析】【分析】A 选项,线面垂直得到线线垂直;B 选项,利用边长相等,得到B 与P 恰好重合;C 选项,找到M 点使得PB ∥平面EFM ,D 选项,求出外接球半径,进而得到三棱锥的外接球表面积.【详解】连接BD ,与EF 相交于G ,连接PG ,因为正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,所以BE =BF ,△ADE ≌△CDF ,故DE =DF ,所以BD 是EF 的垂直平分线,所以G 是EF 的中点,因为PE =PF ,所以PG ⊥EF ,因为PG BG G = ,所以EF ⊥平面PBG ,因为PD ⊂平面PBG ,所以PD EF ⊥,A 正确;因为BE BF PF PE ===,故把EBF △沿着EF 继续折起,B 与P 恰好重合;B 正确;连接AC 交BD 于点O ,则BO =DO ,因为E 是AB 的中点,点F 是BC 的中点,所以EF ∥AC ,且BG GO =,当M 位于靠近P 的三等分点时,23MD DG PD DB ==,可得:MG ∥PB ,因为PB ⊄平面MEF ,MG ⊂平面MEF ,可得:PB ∥平面EFM ,故C 错误;由5DE DF =,2EF =2224cos 25255ED DF EF EDF ED DF +-∠==⋅⋅,所以23sin 1cos 5EDF EDF ∠=-∠=,设△DEF 的外接圆半径为R ,由正弦定理得:25223sin 35EF R EDF ===∠,如图,26QD R ==,过点P 作PH ⊥BD 于点H ,则PH ⊥平面DEF ,又因为PE =PF =1,EF 2,所以PE ⊥PF ,且PG =22,设HG =m ,则HD =322m -,由勾股定理得:2222PG HG PD HD -=-,即2222232222m m ⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:26=m ,所以21142189PH =-=,所以23PH =,设球心为I ,则IQ ⊥底面BFDE ,过I 作IN ⊥PH 于点N ,连接ID ,则2522362IN HQ HD QD ==-=-=,设IQ HN h ==,则23PN PH HN h =-=-,设外接球半径为r ,则ID =IP =r ,即22225222632h h ⎛⎫⎛⎛⎫+=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:13h =-,所以221526362r ⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,三棱锥P DEF -的外接球表面积为234π4π6π2r =⨯=,D 选项正确.故选:ABD【点睛】三棱锥外接球题目,要先找到球心在其中一个平面三角形的投影,然后利用正弦定理或其他知识求出这个三角形的外接圆半径,找到顶点在次三角形上的投影,利用勾股定理列出方程,求出外接球半径,进而求出外接球的表面积或体积.12.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,PA AB =,E 、F 分别为线段PB 、CD 的中点,G 为线段PC 上的动点(不含端点P ),则下列说法正确的是()A.对任意点G ,则有B 、E 、G 、F 四点共面B.存在点G ,使得A 、E 、G 、F 四点共面C.对任意点G ,则有AG ⊥平面PBDD.存在点G ,使得//EG 平面PAF 【答案】BD 【解析】【分析】以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2PA AB ==,利用空间向量法可判断各选项的正误.【详解】因为PA ⊥底面ABCD ,四边形ABCD 为正方形,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设2PA AB ==,则()0,0,0A 、()2,0,0B 、()2,2,0C 、()0,2,0D 、()002P ,,、()1,0,1E 、()1,2,0F ,设()2,2,2PG PC λλλλ==- ,其中01λ<≤,则()2,2,22AG AP PG λλλ=+=-,()1,0,1AE =uu u r,()1,2,0AF = ,设(),2,AG mAE nAF m n n m =+=+ ,则22222m n n m λλλ+=⎧⎪=⎨⎪=-⎩,解得23m n λ===,故存在点G ,使得A 、E 、G 、F 四点共面,B 对;()1,0,1BE =-,()1,2,0BF =- ,()22,2,22BG BP PG λλλ=+=-- ,设(),2,BG aBE bBF a b b a =+=-- ,所以,222222a b b a λλλ--=-⎧⎪=⎨⎪=-⎩,解得200a b λ=⎧⎪=⎨⎪=⎩,不合乎题意,A 错;()2,2,22AG λλλ=- ,()2,0,2BP =-,若AG ⊥平面PBD ,BP ⊂平面PBD ,则444480AG BP λλλ⋅=-+-=-=,解得12λ=,C 错;设平面PAF 的法向量为(),,n x y z = ,()0,0,2AP = ,()1,2,0AF =,则2020n AP z n AF x y ⎧⋅==⎨⋅=+=⎩ ,取2x =,则()2,1,0n =- ,()()()1,0,12,2,221,2,12EG EP PG λλλλλλ=+=-+-=--,若//EG 平面PAF ,则422220EG n λλλ⋅=--=-=,解得1λ=,故当点G 与点C 重合时,//EG 平面PAF ,D 对.故选:BD.第Ⅱ卷非选择题(满分90分)三、填空题(每题5分,共20分)13.经过(,2),(3,4)A x B -两点的直线的一个方向向量为(1,3),则x =__________.【答案】5【解析】【分析】根据直线方向向量即可计算.【详解】由条件可知,4233x--=-,解得5x =.故答案为:5.14.如图所示,平面//α平面β,2PA =,6AB =,12BD =,则AC =__________.【答案】3【解析】【分析】利用平面//α平面β,得到//BD AC ,从而得到线段长的比例,即可得解.【详解】平面PBD AC α= ,平面PBD BDβ= 由平面//α平面β,可得//BDAC 由平面几何知识知,PA PC AC PB PD BD==又2PA =,6AB =,12BD =,所以22+612AC =,解得3AC =故答案为:3【点睛】本题考查了面面平行的性质定理,在运用面面平行的性质定理时,一定要先找到与两平行平面都相交的第三个平面,进而得到两交线平行,考查学生的逻辑推理与运算能力,属于基础题.15.经过点A(1,1)且在两条坐标轴上的截距相等的直线方程是________.【答案】0x y -=或20x y +-=【解析】【分析】在坐标轴上截距相同可设直线截距式方程,将点A(1,1)代入直线方程即可.【详解】(1)当直线的截距不为0时即不经过原点,设直线方程是:1x y a a+=因为直线过点A(1,1)所以111a a+=解得a=2即直线方程是20x y +-=(2)当直线经过原点时方程为:0x y -=综上所述直线方程为:0x y -=或20x y +-=【点睛】本题考查利用直线截距式方程求解直线问题,利用直线截距式方程求解的关键是:截距式方程没有把平面内的所有制直线都包含在内,将经过原点的直线和平行于坐标轴的直线遗漏了,因此需要将这两类直线单独计算,以防遗漏.16.如图,在棱长为a 的正方体1111ABCD A B C D -中,P 为11A D 的中点,Q 为11A B 上任意一点,,E F 为CD 上任意两点,且EF 的长为定值,则以下四个值中为定值的编号是_________.①点P 到平面QEF 的距离;②三棱锥P QEF -的体积;③直线PQ 与平面PEF 所成的角;④二面角P EF Q --的大小.【答案】①②④【解析】【分析】由Q 为11A B 上任意一点,知平面QEF 是确定,从而判断①,由棱锥体积公式和三角形面积公式可判断②,利用线面角的概念结合条件可判断③,由题可知两个半平面是确定的可判断④.【详解】①中,∵平面QEF 就是平面11A B CD ,是确定的平面,因此点P 到平面QEF 的距离为定值;②中,∵QEF △的面积是定值(∵EF 定长,Q 到EF 的距离就是Q 到CD 的距离也为定长,即底和高都是定值),又P 到平面QEF 的距离也是定值,∴三棱锥的高也是定值,于是体积固定,∴三棱锥P QEF -的体积是定值;③中,平面PEF 即平面PCD ,而Q 在直线11A B 上,11//A B CD ,因此11A B 与平面PCD 平行,Q 到平面PEF 的距离为定值,但Q 运动时,PQ 的长度在变化,因此直线PQ 与平面PEF 所成的角也在变化,即直线PQ 与平面PEF 所成的角不是定值;④中,平面QEF 也就是平面11A B CD ,又 平面PEF 即为平面PCD ,∴二面角P EF Q --的大小为定值.故答案为:①②④.四、解答题(共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.已知直线1l 经过点()2,3B ,倾斜角是45 ,直线2:210l y x -+=.求:(1)直线1l 的一般式方程.(2)直线1l 与直线2l 的交点坐标.【答案】(1)10x y -+=(2)()2,3【解析】【分析】(1)由倾斜角得到直线斜率,先求出直线点斜式方程,再化为一般式方程.(2)两直线方程联立方程组,求交点坐标.【小问1详解】由题意得:直线1l 的斜率1tan451k ==,又直线1l 经过点()2,3B ,所以直线1l 的方程为32y x -=-,化为一般式方程为:10x y -+=;【小问2详解】由题意,两直线联立方程组10210x y x y -+=⎧⎨-++=⎩,解得23x y =⎧⎨=⎩,所以直线1l 与直线2l 的交点坐标为()2,318.如图,在直三棱柱111ABC A B C -中,2AC =,BC =,AC BC ⊥,D 是线段AB 上的动点.(1)当D 是AB 的中点时,证明:1//AC 平面1B CD ;(2)若CD AB ⊥,证明:平面11ABB A ⊥平面1B CD .【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接1BC ,交1B C 于E ,连接DE ,根据线面平行的判定定理,即可证明结论成立;(2)先由线面垂直的判定定理,证明CD ⊥平面11ABB A ,进而可得面面垂直.【详解】(1)证明:如图,连接1BC ,交1B C 于E ,连接DE ,则E 是1BC 的中点,∵D 是AB 的中点,∴1//DE AC ,又DE ⊂平面1B CD ,1AC ⊄平面1B CD ,∴1//AC 平面1B CD .(2)证明:∵1AA ⊥平面ABC ,CD ⊂平面ABC ,∴1AA CD ⊥,又CD AB ⊥,1AA AB A = ,1,AB AA ⊂平面11ABB A ,∴CD ⊥平面11ABB A ,又CD ⊂平面1B CD ,∴平面11ABB A ⊥平面1B CD .【点睛】本题主要考查证明线面平行,证明面面垂直,熟记判定定理即可,属于常考题型.19.已知直线l 经过点(2,1)P -,且与直线x +y =0垂直.(1)求直线l 的方程;(2)若直线m 与直线l 平行且点P 到直线m ,求直线m 的方程.【答案】(1)30x y -+=(2)50x y -+=或10x y -+=.【解析】【分析】(1)根据直线垂直的性质设出直线l 的方程为0x y n -+=,将点(2,1)P -代入即可求解;(2)设直线m 的方程为0x y t -+=,利用点到直线的距离公式即可求解.【小问1详解】设直线l 的方程为0x y n -+=,因为直线l 经过点(2,1)P -,所以210n --+=,解得:3n =,所以直线l 的方程为30x y -+=.【小问2详解】结合(1)设直线m 的方程为0x y t -+=,因为点(2,1)P -到直线m ,由点到直线的距离公式可得:d ==,解得:5t =或1t =,直线m 的方程为:50x y -+=或10x y -+=.故答案为:50x y -+=或10x y -+=.20.长方体1111ABCD A B C D -中,4AB =,12BC AA ==.(1)求证:平面11AB D ∥平面1BC D ;(2)求点C 到平面1BC D 的距离.【答案】(1)证明见解析;(2)43.【解析】【分析】(1)先证明1BC ∥平面11AB D ,BD ∥平面11AB D ,进而通过面面平行的判定定理证明问题;(2)利用“等体积法”即可求得答案.【小问1详解】因为11AB D C ∥,11AB D C =,所以四边形11ABC D 为平行四边形,所以11AD BC ∥.因为1AD ⊂平面11AB D ,1BC ⊄平面11AB D ,所以1BC ∥平面11AB D .连接11B D ,因为11BB DD ∥,11=BB DD ,所以四边形11BB D D 为平行四边形,所以11BD B D ∥,因为11B D ⊂平面11AB D ,BD ⊄平面11AB D ,所以BD ∥平面11AB D .又因为BD ⊂平面1BC D ,1BC ⊂平面1BC D ,1BD BC B = ,所以平面1BC D ∥平面11AB D .【小问2详解】因为1CC ⊥平面BCD ,4AB =,12BC CC ==,15BD C D ==,所以1118224323C BCD V -=⨯⨯⨯⨯=,又112262BC D S =⨯=△,因为11C BCD C BC D V V --=,所以C 到平面1BC D 的距离118334363C BCDBC D V d S -⨯===△,即C 到平面1BC D 的距离为43.21.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于,A B的一动点.(1)证明:PBC 是直角三角形;(2)若PA AB ==,求直线AB 与平面PBC 所成角的正弦值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由圆的性质可得BC AC ⊥,再由PA ⊥平面ABC ,则PA BC ⊥,然后由面面垂直的判定可得BC ⊥平面PAC ,从而可得BC PC ⊥,进而可证得结论;(2)过A 作AH PC ⊥于H ,可证得ABH ∠是直线AB 与平面PBC 所成的角,在Rt ABH △中求解即可.【小问1详解】证明:∵AB 是⊙O 的直径,C 是圆周上不同于,A B 的一动点,∴BC AC ⊥,∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴PA BC ⊥.又PA AC A = ,,PA AC ⊂平面PAC ,∴BC ⊥平面PAC ,又PC ⊂平面PAC ,∴BC PC ⊥,∴PBC 是直角三角形.【小问2详解】解:过A 作AH PC ⊥于H ,∵BC ⊥平面PAC ,AH ⊂平面PAC ,∴BC AH ⊥,又PC BC C ⋂=,,PC BC ⊂平面PBC ,∴AH ⊥平面PBC ,∴ABH ∠是直线AB 与平面PBC 所成的角,在Rt PAC △中,2263AH AC PA AC ==+,在Rt ABH △中,633sin 32AC AH ABH AB AC∠===,故直线AB 与平面PBC 所成角的正弦值为33.22.如图,在直角梯形ABCD 中,AB DC ∥,90ABC ∠=︒,22AB DC BC ==,E 为AB 的中点,沿DE 将ADE V 折起,使得点A 到点P 的位置,且PE EB ⊥,M 为PB 的中点,N 是BC 上的动点(与点B ,C 不重合).(1)证明:平面EMN ⊥平面PBC ;(2)是否存在点N ,使得二面角B EN M --5N 点位置;若不存在,请说明理由.【答案】(1)见解析(2)存在,N 为BC 的中点,【解析】【分析】(1)由已知可得PE ⊥平面EBCD ,则PE BC ⊥,则有BC ⊥平面PEB ,所以BC EM ⊥,而EM PB ⊥,所以EM ⊥平面PBC ,再由面面垂直的判定定理可证得结论,(2)假设存在点N 满足题意,过M 作MQ EB ⊥于Q ,过Q 作QR EN ⊥于R ,连接MR ,可证得MRQ ∠为二面角B EN M --的平面角,不妨设2PE EB BC ===,则1MQ =,则由Rt EBN ∽Rt ERQ △,可得RQ =tan MQ MRQ RQ x∠===可求出x 的值,从而可确定出点N 的位置【小问1详解】证明:因为,,PE ED PE EB EB ED E ⊥⊥= ,所以PE ⊥平面EBCD ,因为BC ⊂平面EBCD ,所以PE BC ⊥,因为,BC EB E E B P E ⊥= ,所以BC ⊥平面PEB ,因为EM ⊂平面PEB ,所以BC EM ⊥,因为,PE EB PM MB ==,所以EM PB ⊥,因为BC PB B = ,所以EM ⊥平面PBC ,因为EM ⊂平面EMN ,所以平面EMN ⊥平面PBC ,【小问2详解】假设存在点N 满足题意,如图,过M 作MQ EB ⊥于Q ,因为PE EB ⊥,所以PE ∥MQ ,由(1)知PE ⊥平面EBCD ,所以MQ ⊥平面EBCD ,因为EN ⊂平面EBCD ,所以MQ EN ⊥,过Q 作QR EN ⊥于R ,连接MR ,因为MQ QR Q ⋂=,所以EN ⊥平面MQR ,因为MR ⊂平面MQR ,所以EN MR ⊥,所以MRQ ∠为二面角B EN M --的平面角,不妨设2PE EB BC ===,则1MQ =,在Rt EBN 中,设(02)BN x x =<<,因为Rt EBN ∽Rt ERQ △,所以BN EN RQ EQ=,所以1x RQ =,得RQ =所以tan MQ MRQ RQx∠===,解得1(0,2)x =∈,即此时N 为BC 的中点,综上,存在点N ,使得二面角B EN M --N 为BC 的中点,【点睛】关键点点睛:此题考查面面垂直的判定,考查二面角的求法,解题的关键是通过过M 作MQ EB ⊥于Q ,过Q 作QR EN ⊥于R ,连接MR ,结合已知条件证明出MRQ ∠为二面角B EN M --的平面角,再根据题意求解,考查数形结合的思想,属于较难题。

高二数学上学期第一次月考试题含解析

高二数学上学期第一次月考试题含解析

智才艺州攀枝花市创界学校第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕一、选择题〔本大题一一共13小题,每一小题4分,一共52分.题1—10为单项选择题,题11-13为多项选择题,多项选择题错选得0分,漏选得2分.〕 1.椭圆229225x ky +=的一个焦点是()4,0,那么k =〔〕A.5B.25C.-5D.-25【答案】B 【解析】 【分析】将椭圆方程化为HY 方程,根据焦点坐标求得c ,由此列方程求得k 的值.【详解】椭圆的HY方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =.所以2225254k=+,解得25k =. 应选:B【点睛】本小题主要考察根据椭圆的焦点坐标求参数的值,属于根底题. 2.双曲线22412mx y -=的一条渐近线的方程为20y -=,那么m =〔〕A.3C.4D.16【答案】A 【解析】 【分析】写出双曲线的HY 方程,根据渐近线方程即可得解. 【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y x =, 所以124,3m m==. 应选:A【点睛】此题考察根据双曲线的渐近线方程求双曲线HY 方程,关键在于准确掌握双曲线的概念,找准其中的a ,b .3.“x R ∃∈,2440x x -+≤〞的否认是〔〕A.x R ∀∈,2440x x -+>B.x R ∀∈,2440x x -+≥C.x R ∃∈,2440x x -+>D.x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】 .【详解】A 选项正确. 应选:A 【点睛】. 4.〕 A.2230x x -->,B.π不是无限不循环小数C.直线与平面相交D.在线段AB 上任取一点【答案】B 【解析】【分析】 ACDB.【详解】ACD 均不能判断真假,B. 应选:B 【点睛】.5.平面内,一个动点P ,两个定点1F ,2F ,假设12PF PF -为大于零的常数,那么动点P 的轨迹为〔〕A.双曲线B.射线C.线段D.双曲线的一支或者射线 【答案】D 【解析】【分析】根据双曲线的定义,对动点P 的轨迹进展判断,由此确定正确选项. 【详解】两个定点的间隔为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线;不存在1212PF PF F F ->的情况.综上所述,P 的轨迹为双曲线的一支或者射线. 应选:D【点睛】本小题主要考察双曲线定义的辨析,属于根底题. 6.〕A.x R ∀∈,2210x x -+>B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <C.a ∀∈R ,in s (s in )a a π-=D.x R ∀∈,12x x+≥ 【答案】C 【解析】 【分析】 .【详解】A.x R ∀∈,2210x x -+>,当21,210x x x =-+=B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <,当,tan 14x x π== C.a ∀∈R ,in s (s in )a a π-=,满足题意; D.x R ∀∈,12x x +≥,当10,2x x x<+≤-. 应选:C 【点睛】.7.假设方程22216x y a a +=-表示双曲线,那么实数a 的取值范围是〔〕A.6a <B.6a <且0a≠ C.2a > D.2a >或者3a <-【答案】B 【解析】 【分析】根据双曲线方程形式得2060a a ⎧≠⎨-<⎩,即可得解.【详解】方程22216x y a a +=-表示双曲线,那么2060a a ⎧≠⎨-<⎩,解得:6a <且0a ≠.应选:B【点睛】此题考察双曲线概念辨析,根据方程表示双曲线求解参数的取值范围,关键在于纯熟掌握双曲线方程的形式.8.1F ,2F 是椭圆(222:13x y C a a+=>的两个焦点,P 是C 上一点.假设1260F PF ∠=︒,那么12F PF △的面积为〔〕B. D.与a 有关【答案】A 【解析】 【分析】根据椭圆的几何性质结合余弦定理求得124F P PF ⋅=,利用三角形面积公式即可得解.【详解】根据椭圆几何性质可得:122F P PF a +=,12F PF △中,由余弦定理:222121212F F F P PF F P PF =+-⋅,即()221212123F F F P PF F P PF =+-⋅()22124343a a F P PF -=-⋅,解得:124F P PF ⋅=12F PF △的面积为121sin 602F P PF ⋅⋅︒=. 应选:A【点睛】此题考察椭圆的几何性质的应用,结合余弦定理和面积公式求三角形面积,关键在于纯熟掌握椭圆根本性质和三角形相关定理公式.9.1F ,2F 是椭圆()222210x y a b a b+=>>的左,右焦点,直线23b y =与该椭圆交于B ,C ,假设2BF C △是直角三角形,那么该椭圆的离心率为〔〕B.【答案】D 【解析】 【分析】联立直线和椭圆求出交点坐标22,,,3333b b B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,分别讨论直角情况即可得解.【详解】联立直线和椭圆方程:2222123x y a b b y ⎧=⎪⎪⎨+=⎪⎪⎩ 所以直线23b y =与椭圆()222210x y a b a b+=>>的交点坐标22,33b b B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭, 因为椭圆焦点在x 轴,所以角B 不可能为直角,当角Cc =,即e =;当角2F 为直角时,220F B F C ⋅=,即22,,03333b b c c ⎛⎫⎛⎫--⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22254099a b c -+=,2222544099a a c c --+=225c a =,5e =.应选:D【点睛】此题考察根据直线与椭圆位置关系,结合三角形形状求解离心率,关键在于准确求出直线与椭圆的交点坐标,根据垂直关系建立等量关系求椭圆离心率.10.双曲线221916x y -=的左,右焦点分别为1F ,2F ,P 为右支上一点,且1245cos F PF ∠=,那么12F PF △内切圆的面积为〔〕A.211πB.83π C.649π D.176121π【答案】C 【解析】 【分析】 根据1245cos F PF ∠=求出三角形的边长和面积,利用等面积法求出内切圆的半径,即可得到面积. 【详解】由题:1245cos F PF ∠=,那么123sin 5F PF ∠=,P 为右支上一点, 12F PF △中由余弦定理:()()22212111146265F F F P F P F P F P =++-⋅+⨯解得110F P =,12F PF △的面积121310164825F PF S =⨯⨯⨯=△,设其内切圆半径为r ,()101016482r ++=,解得:83r = 那么12F PF △内切圆的面积为286439ππ⎛⎫⨯=⎪⎝⎭【点睛】此题考察根据双曲线的几何性质求解焦点三角形的面积和内切圆的半径,根据等面积法求解半径得到圆的面积. 11.〕A.假设a ba c ⋅=⋅,那么bc =B.正数,a b ,假设2a b+≠a bC.0x N +∃∈,使200x x ≤D.正数,x y ,那么1xy =是lg lg 0x y +=的充要条件【答案】BCD 【解析】 【分析】 考虑0a=可断定A.【详解】A 选项:假设0a =,任意向量,b c ,0a b a c ⋅=⋅=,不能推出b c =B ,a b ,假设ab =,那么2a b+= C 选项:当01x =D 选项:正数,x y ,lg lg 0x y +=等价于lg 0xy =,等价于1xy =,那么1xy =是lg lg 0x y +=的充要条件应选:BCD 【点睛】.12.〔多项选择题〕双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,那么双曲线1C 的离心率可能为〔〕C.2D.3【答案】CD 【解析】 【分析】根据渐近线的平分关系求出斜率,根据斜率为b a =b a =.【详解】双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,根据双曲线对称性可得:双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第一象限三等分,所以第一象限的两条渐近线的倾斜角为30°和60°,其斜率为b a =b a =,所以其离心率为2或者3. 应选:CD【点睛】此题考察根据双曲线的渐近线关系求离心率,关键在于对题目所给条件进展等价转化,利用双曲线根本量之间的关系求解.13.〔多项选择题〕以下说法正确的选项是〔〕 A.方程2xxy x +=表示两条直线B.椭圆221102x y m m +=--的焦距为4,那么4m =C.曲线22259x y xy +=关于坐标原点对称D.双曲线2222x y a b λ-=的渐近线方程为b y x a=±【答案】ACD 【解析】 【分析】B 选项漏掉考虑焦点在y 轴的情况,ACD 说法正确. 【详解】方程2xxy x +=即()10x x y +-=,表示0x =,10x y +-=两条直线,所以A 正确;椭圆221102x ym m+=--的焦距为4,那么()1024m m---=或者()2104m m---=,解得4m=或者8m=,所以B选项错误;曲线22259x yxy+=上任意点(),P x y,满足22259x yxy+=,(),P x y关于坐标原点对称点(),P x y'--也满足()()()()22259x yx y--+=--,即(),P x y'--在22259x yxy+=上,所以曲线22259x yxy+=关于坐标原点对称,所以C选项正确;双曲线2222x ya bλ-=即0λ≠,其渐近线方程为by xa=±正确,所以D选项正确.应选:ACD【点睛】此题考察曲线方程及简单性质辨析,涉及认识曲线方程,研究对称性,根据椭圆性质求参数的取值,求双曲线的渐近线.二、填空题〔本大题一一共4小题,每一小题4分,一共16分.〕14.方程22157x ya a+=--表示椭圆,那么实数a的取值范围是_______.【答案】()()5,66,7【解析】【分析】根据方程表示椭圆,列不等式组可得507057aaa a->⎧⎪->⎨⎪-≠-⎩,即可求解.【详解】由题方程22157x ya a+=--表示椭圆,那么507057aaa a->⎧⎪->⎨⎪-≠-⎩,解得()()5,66,7a ∈故答案为:()()5,66,7【点睛】此题考察根据曲线方程表示椭圆求参数的取值范围,关键在于纯熟掌握椭圆的HY方程特征,此题容易漏掉考虑a =6的情况不合题意.15.假设“0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <〞m 的取值范围是________. 【答案】0m >【解析】【分析】 根据0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,实数m 的取值范围,即()min tan x m <. 【详解】0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,即()min tan x m <, tan y x =在0,4x π⎡⎤∈⎢⎥⎣⎦单调递增,()min tan 0x = 即0m >.故答案为:0m >【点睛】.16.2F 是椭圆2211612x y +=的右焦点,P 是椭圆上的动点,(A 为定点,那么1PA PF +的最小值为_______.【答案】6【解析】【分析】 将问题进展转化12288PA PF PA PF PA PF +=+-=+-,根据动点到两个定点间隔之差的最值求解. 【详解】()22,0F 是椭圆2211612x y +=的右焦点,()12,0F -是椭圆2211612x y +=的左焦点,128PF PF +=(A 在椭圆内部,1222888826PA PF PA PF PA PF AF +=+-=+-≥-=-=,当P 为2F A 的延长线与椭圆交点时获得最小值.故答案为:6【点睛】此题考察椭圆上的点到椭圆内一点和焦点的间隔之和最值问题,关键在于利用椭圆的几何性质进展等价转化,结合平面几何知识求解.17.点A ,B 分别是射线()1:0l y x x =≥,2(:0)l y x x =-≤上的动点,O 为坐标原点,且AOB 的面积为定值4.那么线段AB 中点M 的轨迹方程为_________. 【答案】22144-=y x ,0y > 【解析】【分析】设出中点坐标,根据面积关系建立等量关系化简即可得到轨迹方程.【详解】由题:()1:0l y x x =≥,2(:0)l y x x =-≤互相垂直,()()112212,,,,0,0A x x B x x x x -><,设线段AB 中点(),M x y , AOB 的面积为定值4,即)12142x -=,即124x x =- 121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,两式平方得:222121222212122424x x x x x x x x x y ⎧++=⎪⎪⎨+-⎪=⎪⎩, 两式相减得:22124x y x x -==- 即22144-=y x ,0y >故答案为:22144-=y x ,0y > 【点睛】此题考察求轨迹方程,关键在于根据给定的条件建立等量关系,此类题目容易漏掉考虑取值范围的限制.三、解答题〔本大题一一共6小题,总分值是82分.解容许写出文字说明,证明过程或者演算步骤〕18.集合{}2(3)0A x x a x a =+-+=,{}0B x x =>.假设A B =∅.务实数a 的取值范围.【答案】(](),19,a ∈-∞+∞【解析】【分析】 将问题转化考虑A B =∅a 的取值范围,即可得到假设A B =∅a 的取值范围. 【详解】考虑A B =∅2(3)0x a x a +-+=没有正根, ①()2340a a ∆=--<得()1,9a ∈; ②()2340a a ∆=--=得1a =,或者9a =, 当9a =时{}{}26903A x x x =++==-符合题意,当1a =时{}{}22101A x x x =-+==,不合题意,所以9a =; ③()23403020a a a a ⎧∆=-->⎪-⎪<⎨⎪>⎪⎩无解; 综受骗A B =∅(]1,9a ∈,所以假设A B =∅(](),19,a ∈-∞+∞【点睛】.19.对称中心在坐标原点的椭圆关于坐标轴对称,该椭圆过1212,55⎛⎫ ⎪⎝⎭,且长轴长与短轴长之比为4:3.求该椭圆的HY 方程. 【答案】221169x y +=或者221169y x += 【解析】【分析】根据椭圆的长轴短轴长度之比设椭圆的HY 方程,根据椭圆经过的点求解参数即可得解.【详解】由题:对称中心在坐标原点的椭圆关于坐标轴对称,长轴长与短轴长之比为4:3,当焦点在x 轴上,设椭圆的HY 方程为221169x y m m+=,m >0,椭圆过1212,55⎛⎫ ⎪⎝⎭, 14414412516259m m+=⨯⨯,解得:m =1, 所以椭圆的HY 方程为221169x y += 同理可得当焦点在y 轴上,椭圆的HY 方程为221169y x +=, 所以椭圆的HY 方程为221169x y +=或者221169y x += 【点睛】此题考察求椭圆的HY 方程,关键在于根据长轴短轴长度关系设方程,根据椭圆上的点的坐标求解,易错点在于漏掉考虑焦点所在位置.20.“[]0,2x ∃∈,使方程251020x x m -+-=有解〞.〔1〕务实数m 的取值集合A ;〔2〕设不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件,务实数a 的取值范围.【答案】〔1〕{}32A m m =-≤≤;〔2〕()(),23,a ∈-∞-+∞【解析】【分析】〔1〕将问题转化为()225102513m x x x =-+=--在[]0,2x ∈有解,即可求解;〔2〕分类讨论求解A B ⊆即可得到参数的取值范围.【详解】〔1“[]0,2x ∃∈,使方程251020x x m -+-=有解〞是.即()225102513m x x x =-+=--在[]0,2x ∈有解,所以[]3,2m ∈- 即{}32A m m =-≤≤;〔2〕不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件, 当23a =不合题意; 当23<a 时,112a a -<-,()1,12B a a =--,13122a a -<-⎧⎨->⎩,得2a <-; 当23a >时,112a a ->-,()12,1B a a =--,12123a a ->⎧⎨-<-⎩,得3a >; 所以()(),23,a ∈-∞-+∞【点睛】此题考察根据方程有解求参数的取值范围,根据充分条件和必要条件关系求解参数的取值范围,关键在于弄清充分条件和必要条件关系,利用分类讨论求解.21.设1F ,2F 分别是椭圆222:14x y E b+=的左,右焦点,假设P 是该椭圆上的一个动点,12PF PF ⋅的最大值为1.求椭圆E 的方程. 【答案】2214x y += 【解析】【分析】设出焦点坐标,表示出12PF PF ⋅利用函数关系求出最大值,即可得到21b =.【详解】由题:()1F ,)2F 分别是椭圆222:14x y E b +=的左,右焦点,设(),P x y 施椭圆上的动点,即[]222221,0,4,44x y x b b+=∈<, ()22222221124444x b x b x b b ⎛⎫⎛⎫=-+-=-+- ⎪ ⎪⎝⎭⎝⎭-,当2x =4时,获得最大值, 即21b =, 所以椭圆的方程为2214x y +=. 【点睛】此题考察求椭圆的HY 方程,关键在于根据椭圆上的点的坐HY 确计算,结合取值范围求解最值.22.平面直角坐标系中两个不同的定点()1,0F a -,()2,0,0F a a >,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠,求动点P 的轨迹方程,并说明此轨迹是何种曲线.【答案】见解析.【解析】【分析】 根据斜率关系化简得22221x y a ma-=,分类讨论得解. 【详解】设(),P x y ,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠, 即y y m x a x a ,222y mx ma =-,22221x y a ma-=, 当1m =-轨迹是圆,不含点()1,0F a -,()2,0,0F a a >;当0m >,轨迹是以()1,0F a -,()2,0F a 为顶点的双曲线,不含顶点()1,0F a -,()2,0F a ; 当10m -<<,轨迹是以()1,0F a -,()2,0F a 为长轴顶点的椭圆,不含()1,0F a -,()2,0F a ; 当1m <-,轨迹是以()1,0F a -,()2,0F a 为短轴顶点的椭圆,不含()1,0F a -,()2,0F a .【点睛】此题考察曲线轨迹的辨析,关键在于根据题意建立等量关系,根据曲线轨迹方程分类讨论得解.23.椭圆221:1169x y C +=和双曲线222:1169x y C -=,点A ,B 为椭圆的左,右顶点,点P 在双曲线2C 上,直线OP 与椭圆1C 交于点Q 〔不与点A ,B 重合〕,设直线AP ,BP ,AQ ,BQ 的斜率分别为1k ,2k ,3k ,4k .〔1〕求证:12916k k ⋅=; 〔2〕求证:1234k k k k +++的值是定值.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】【分析】〔1〕设(),P x y ,表示出斜率即可求得斜率之积;〔2〕设直线:OP y kx =,0k≠,依次求解P ,Q 坐标,表示出斜率之和化简即可得解. 【详解】〔1〕由题:()()()4,0,4,0,,A B P x y -满足221169x y -=,229116x y ⎛⎫=- ⎪⎝⎭ 21229441616y y y k k x x x ⋅=⋅==+--; 〔2〕根据曲线的对称性不妨设直线:OP y kx =,0k ≠, 联立221169y kx x y =⎧⎪⎨+=⎪⎩得2221169x k x +=,22144916x k =+,不妨取Q ⎛⎫,同理可得:P ⎛⎫ 所以1234k k k k +++的值是定值.【点睛】此题考察椭圆与双曲线对称性辨析,求解直线与曲线交点坐标,根据坐标表示斜率求解斜率之积和斜率之和证明结论.。

高二数学月考卷1

高二数学月考卷1

高二数学月考卷1一、选择题(每题1分,共5分)1. 函数f(x) = (x² 1)/(x 1)的定义域是()A. RB. {x | x ≠ 1}C. {x | x ≠ 0}D. {x | x ≠ 1}2. 若向量a = (2, 3),向量b = (1, 2),则2a 3b = ()A. (8, 1)B. (8, 1)C. (8, 1)D. (8, 1)3. 二项式展开式(x + y)⁵中x²y³的系数是()A. 5B. 10C. 20D. 304. 已知等差数列{an}中,a1 = 3,a3 = 9,则公差d为()A. 2B. 3C. 4D. 65. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. y = x上D. y = x上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 若矩阵A的行列式为0,则A不可逆。

()3. 两条平行线上的任意一对对应线段比例相等。

()4. 双曲线的渐近线一定经过原点。

()5. 若函数f(x)在区间[a, b]上单调递增,则f'(x) > 0。

()三、填空题(每题1分,共5分)1. 若log₂x = 3,则x = ______。

2. 若等差数列{an}中,a4 = 8,a7 = 19,则a10 = ______。

3. 圆的标准方程(x h)² + (y k)² = r²中,(h, k)表示圆的______。

4. 若sinθ = 1/2,且θ是第二象限的角,则cosθ = ______。

5. 矩阵A = [[1, 2], [3, 4]]的行列式|A| = ______。

四、简答题(每题2分,共10分)1. 简述矩阵乘法的定义。

2. 请解释什么是反函数。

3. 简述等差数列的通项公式。

4. 请说明直线的斜率的意义。

5. 简述三角函数的周期性。

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。

重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题

重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题

重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.在某次学科期末检测后,从全部考生中选取100名考生的成绩(百分制,均为整数)分成[50,60),[)[)60,70,70,80,[80,90),[90,100)五组后,得到频率分布直方图(如右图),则下列说法正确的是()据学校共有的人数,得到关于高一人数的方程,解方程得到高一人数,用人数乘以抽取的比例,得到结果.本题考查分层抽样,在分层抽样之前有一个小型的运算,是一个基础题,运算量不大,可以作为选择和填空出现.分层抽样主要用于个体数量较多,且个体间具有明显差异的,这时采用分层抽样合适.4.D【分析】分甲得2个和甲得1个磁力片两种情况分类求解,再由分类加法计数原理得解.【详解】若甲分得两个磁力片,共有1232C A 6=种分法,若甲只分得一个磁力片,共有2232C A 6=种分法,由分类加法计数原理,可得共有6612+=种分法.故选:D 5.A【分析】根据递推关系式可知数列{}n a 是以6为周期的周期数列,根据周期性和对数运算法则可求得结果.【详解】由题意知:0n a >,31n n a a +=Q ,361n n a a ++\=,6n n a a +\=,即数列{}n a 是以6为周期的周期数列;()()()1234561425361a a a a a a a a a a a a ==Q ,()()()33712202412202412345612ln ln ln ln ln ln a a a a a a a a a a a a a a \++×××+=×××××=+ln1ln 2ln 2=+=.故选:A.6.C【分析】根据题意找出相应的规律,第37个数为第21行第3个数,从而可求解.【详解】由题意可得每行有2个数且从第3行开始计数,所以第37项为“杨辉三角”中第21行第3个数,所以20n =,3r =,所以3122020C C 190-==.故C 正确.故选:C.=。

高二数学第一次月考试题

高二数学第一次月考试题

高二数学第一次月考试题高二数学第一次月考试题第一部分:选择题(每小题5分,共计50分)1.设函数f(x) = 2x + 3,g(x) = x^2 - 4x + 1,则f(g(2))的值为() A.-3 B. 3 C. 7 D. 112.已知函数f(x) = x^2 - 2x - 3,则方程f(x) = 0的根为() A. 1和-3B. 3和-1C. 1和3D. -1和33.若两个正整数x和y满足x^2 - y^2 = 48,则x - y的值为() A. 4 B.6 C. 8 D. 124.已知函数f(x) = 2x + 5,g(x) = 3x - 1,则f(g(x))的值为() A. 6x+ 14 B. 6x - 4 C. 6x + 4 D. 6x - 145.若函数f(x) = x^2 + kx + 8与函数g(x) = 2x^2 - 3x - 4相等,则k的值为() A. -4 B. -2 C. 2 D. 46.若两个正整数x和y满足x + y = 7,x - y = 3,则x的值为() A. 5B. 4C. 3D. 27.已知函数f(x) = x^2 - 2x - 3,g(x) = x + 1,则f(g(2))的值为() A.6 B. 3 C. 0 D. -38.若函数f(x) = x^2 - 5x + 6与函数g(x) = x - 2相等,则x的值为()A. 6B. 4C. 2D. 19.若两个正整数x和y满足x^2 + y^2 = 34,x - y = 2,则x + y的值为() A. 8 B. 9 C. 10 D. 1110.设函数f(x) = 2x + 3,g(x) = x^2 - 2x + 1,则f(g(1))的值为() A.-1 B. 1 C. 3 D. 5第二部分:填空题(每小题5分,共计50分)1.函数f(x) = x^2 - 4x - 3的图像开口向上,顶点的坐标为()。

高二数学第一次月考模拟(基础卷)(学生版)

高二数学第一次月考模拟(基础卷)(学生版)

2024-2025学年高二上学期第一次月考模拟(基础卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(23-24高二上·重庆·月考)已知A 1,2,-3 ,则点A 关于xOy 平面的对称点的坐标是()A.-1,2,-3B.-1,-2,3C.-1,2,3D.1,2,32.(23-24高二上·河南·月考)若直线经过A 1,0 ,B 2,3 两点,则直线AB 的倾斜角为()A.30°B.45°C.60°D.135°3.(23-24高二上·广东湛江·月考)已知a =1,2,-y ,b =x ,1,2 ,且a +2b ∥2a -b ,则()A.x =13,y =1 B.x =2,y =14C.x =12,y =-4 D.x =1,y =-14.(23-24高二上·福建福州·期中)两条平行直线2x -y +3=0和ax -3y +6=0间的距离为d ,则a ,d 的值分别为()A.a =6,d =63B.a =-6,d =63C.a =-6,d =55D.a =6,d =555.(23-24高二上·黑龙江哈尔滨·期中)如图,空间四边形OABC 中,OA =a ,OB =b ,OC =c,点M在OA 上,且OM =23OA ,点N 为BC 中点,则MN等于()A.12a +12b -12c B.-23a +12b +12cC.-23a +23b -12cD.23a +23b -12c6.(23-24高二上·山东·月考)过点P 0,-1 作直线l ,若直线l 与连接A -2,1 ,B 23,1 两点的线段总有公共点,则直线l 的倾斜角范围为()A.π4,π6B.π6,3π4C.0,π6 ∪3π4,π D.π6,π2 ∪3π4,π 7.(23-24高二上·天津河西·月考)以下各组向量中的三个向量,不能构成空间基底的是()A.a =1,0,0 ,b =0,2,0 ,c =12,-2,0B.a =1,0,0 ,b =0,1,0 ,c=0,0,2C.a =1,0,1 ,b =0,1,1 ,c=2,1,2D.a =1,1,1 ,b =0,1,0 ,c=1,0,28.(23-24高二上·江苏南京·月考)点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大时,其最大值以及此时的直线方程分别为()A.13;3x +2y -5=0B.11;3x +2y -5=0C.13;2x -3y +1=0D.11;2x -3y +1=0二、多选选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二上·浙江嘉兴·月考)已知AB =(-2,1,4),AC =(4,2,0),AP =(1,-2,1),AQ=(0,4,4),则下列说法正确的是()A.AP是平面ABC 的一个法向量B.A ,B ,C ,Q 四点共面C.PQ ∥BCD.BC =5310.(23-24高二上·河北保定·月考)已知直线l 1:x +a -1 y +1=0,直线l 2:ax +2y +2=0,则下列结论正确的是()A.l 1在x 轴上的截距为-1B.l 2过定点0,-1C.若l 1⎳l 2,则a =-1或a =2D.若l 1⊥l 2,则a =2311.(24-25高二上·湖南邵阳·开学考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是正方体的上底面A 1B 1C 1D 1内(不含边界)的动点,点Q 是棱BC 的中点,则以下命题正确的是()A.三棱锥Q -PCD 的体积是定值B.存在点P ,使得PQ 与AA 1所成的角为60°C.直线PQ 与平面A 1ADD 1所成角的正弦值的取值范围为0,22D.若PD 1=PQ ,则P 的轨迹的长度为354三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·山东德州·月考)已知a =-2,1,3 ,b =-1,2,1 ,则a与b 夹角的余弦值为.13.(23-24高二下·江苏扬州·月考)在空间直角坐标系中,点M 0,0,1 为平面ABC 外一点,其中A 1,0,0 、B 0,2,1 ,若平面ABC 的一个法向量为1,y 0,-1 ,则点M 到平面ABC 的距离为.14.(23-24高二上·四川达州·月考)直线l 1:x +m +1 y -2m -2=0与直线l 2:m +1 x -y -2m -2=0相交于点P ,对任意实数m ,直线l 1,l 2分别恒过定点A ,B ,则P A +PB 的最大值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(23-24高二上·广东湛江·月考)已知点P -2,0,2 ,Q -1,1,2 ,R -3,0,4 ,设a =PQ ,b =PR ,c=QR .(1)若实数k 使ka +b 与c垂直,求k 值.(2)求a 在b上的投影向量.16.(23-24高二上·江苏南京·月考)已知△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 .(1)求AC 边上的高BD 所在直线的方程;(2)求BC 边上的中线AE 所在直线的方程.17.(23-24高二上·安徽安庆·月考)已知平行六面体ABCD -A 1B 1C 1D 1,底面是正方形,AD =AB =2,AA 1=1,∠A 1AB =∠DAA 1=60°,A 1C 1 =3NC 1 ,D 1B =2MB ,设AB =a ,AD =b ,AA 1 =c.(1)试用a ,b ,c表示AN ;(2)求MN 的长度.18.(23-24高二上·湖北武汉·月考)已知直线l 过点P 4,1 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,(1)求三角形OAB 面积取最小值时直线l 的方程;(2)求OA +OB 取最小值时直线l 的方程.19.(24-25高二上·安徽阜阳·开学考试)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=1,CD=3,PD=2,∠PDA=60°,∠P AD=30°,且平面P AD⊥平面ABCD,在平面ABCD内过B作BO⊥AD,交AD于O,连PO.(1)求证:PO⊥平面ABCD;(2)求二面角A-PB-C的正弦值;(3)在线段P A上存在一点M,使直线BM与平面P AD所成的角的正弦值为277,求PM的长.。

重庆市第八中学2024-2025学年高二上学期第一次月考数学试题

重庆市第八中学2024-2025学年高二上学期第一次月考数学试题

重庆市第八中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.复数z 满足()2i 34i z -=+(i 为虚数单位),则z 的值为( )A.1B C D .2.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是( ) A .若//αβ,l α⊂,m β⊂,则//l m B .若αβ⊥,l α⊂,则l β⊥ C .若l α⊥,αβ⊥,则//l βD .若l α∥,m α⊥,则l m ⊥3.“直线()680ax a y -++=与350x ay a -+-=平行”是“6a =”的( )条件 A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要4.已知两个单位向量1e u r ,2e uu r 的夹角为120o ,则()()12212e e e e +⋅-=u r u u r u u r u r ( )A .32B .3C .52D .55.圆222460x y mx my ++++=关于直线30mx y ++=对称,则实数m =( ) A .1B .-3C .1或-3D .-1或36.直线:0l x 与圆22:(2)(1)2C x y ++-=交于A ,B 两点,则直线AC 与直线BC 的倾斜角之和为( ) A .120o B .145oC .165oD .210o7.已知4tan23θ=,π0,4θ⎛⎫∈ ⎪⎝⎭,若ππcos cos 44m ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭θθ,则实数m 的值为( ) A .13-B .12-C .13D .128.已知圆22:(2)(1)5C x y -++=及直线()():2180l m x m y m ++---=,下列说法正确的是( )A .圆C 被x 轴截得的弦长为2B .直线l 过定点()3,2C .直线l 被圆C 截得的弦长存在最大值,此时直线l 的方程为10x y +-=D .直线l 被圆C 截得的弦长存在最小值,此时直线l 的方程为50x y --=二、多选题9.在边长为2的正方形ABCD 中,,E F 分别为BC ,CD 的中点,则( )A .2AB AD EF -=u u u r u u u r u u u rB .4AE AF ⋅=u u u r u u u rC .()32AE AF AB AD +=+u u u r u u u r u u u r u u u rD .AE u u u r 在AD u u u r上的投影向量为12AE u u u r10.如图,直三棱柱111ABC A B C -所有棱长均为4,D ,E ,F ,G 分别在棱1111,,A B AC AB ,AC 上,(不与端点重合)且11A D A E BF CG ===,H ,P 分别为BC ,1A H 中点,则( )A .11//BC 平面PFGB .过D ,F ,G 三点的平面截三棱柱所得截面一定为等腰梯形C .M 在111A B C △内部(含边界),1π6A AM ∠=,则M 到棱11B C D .若M ,N 分别是平面11A ABB 和11A ACC 内的动点,则MNP △周长的最小值为3 11.已知圆221:1C x y +=和圆222:()(2)4C x m y m -+-=,0m ≥.点Q 是圆2C 上的动点,过点Q 作圆1C 的两条切线,切点分别为G ,H ,则下列说法正确的是( )A .当m ⎡∈⎢⎣⎭时,圆1C 和圆2C 没有公切线 B .当圆1C 和圆2C 有三条公切线时,其公切线的倾斜角的和为定值C .圆1C 与x 轴交于M ,N ,若圆2C 上存在点P ,使得π2MPN >∠,则m ∈⎝⎭D .圆1C 和2C 外离时,若存在点Q ,使四边形1QGC H 面积为m ∈⎝三、填空题12.将函数πcos 46y x ⎛⎫=- ⎪⎝⎭的图象向右平移π 02φφ⎛⎫<< ⎪⎝⎭个单位长度后,所得函数为奇函数,则 φ=.13.已知点()3,0P 在直线l 上,且点P 恰好是直线l 夹在两条直线1:220--=l x y 与2:30l x y ++=之间线段的一个三等分点,则直线l 的方程为.(写出一条即可)14.台风“摩羯”于2024年9月1日晚在菲律宾以东洋面上生成.据监测,“摩羯”台风中心位于某海滨城市O (如图)的东偏南1cos 7θθ⎛⎫= ⎪⎝⎭方向350km 的海面P 处,并以20km /h 的速度向西偏北60o 方向移动,台风侵袭的范围为圆形区域,当前半径为130km ,并以10km/h 的速度不断增大,小时后,该海滨城市开始受到台风侵袭.四、解答题15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4a =,2π3C =,D 为AB 边上一点.(1)若D 为AB 的中点,且CD =c ;(2)若CD 平分ACB ∠,且ABC V 的面积为CD 的长.16.如图,在正三棱柱111ABC A B C -中,6CA =,E 为棱AC 的中点,P 为BC 边上靠近B 的三等分点,且11PB BC ⊥.(1)证明:1//CB 平面1EBA ;(2)求平面11ABB A 与平面1BEC 夹角的余弦值.17.圆心为C 的圆经过A 0,3 ,B 2,1 两点,且圆心C 在直线:320l x y -=上. (1)求圆C 的标准方程;(2)过点()1,2M 作圆C 的相互重直的两条弦DF ,EG ,求四边形DEFG 的面积的最大值与最小值.18.如图、三棱锥P ABC -中,PA ⊥平面ABC ,O 为AB 的中点,AC BC ⊥,1OC =,4PA =.(1)证明:面ACP ⊥面BCP ;(2)若点A 到面BCP 的距离为43,证明:OC AB ⊥;(3)求OP 与面PBC 所成角的正弦值的取值范围.19.在平面直角坐标系xOy 中,已知圆C :222120x y x +---=,1M ,2M 是圆C 上的动点,且12M M =12M M 的中点为M . (1)求点M 的轨迹方程;(2)设点A 是直线0l y -+=上的动点,AP ,AQ 是M 的轨迹的两条切线,P ,Q 为切点,求四边形APCQ 面积的最小值;(3)若垂直于y 轴的直线1l 过点C 且与M 的轨迹交于点D ,E ,点N 为直线3x =-上的动点,直线ND ,NE 与M 的轨迹的另一个交点分别为F ,(G FG 与DE 不重合),求证:直线FG 过定点.。

河北省石家庄二中2023-2024学年高二上学期第一次月考(10月)数学试题

河北省石家庄二中2023-2024学年高二上学期第一次月考(10月)数学试题

B.若
l
=
1 2
,
m
=
1 4
,则
C1P
^
平面
EFD1
C.平面 EFD1 截正方体 ABCD - A1B1C1D1 所得的截面的周长为 5 + 4 2 + 3 5 D.若 l = 1, m = 0 ,则四面体 PEFD1 外接球的表面积为 344π
9
三、填空题
( ) 13.已知圆 C : ( x -1)2 + y2 = 1与圆 E : x2 + y - 3 2 = 1 ,则圆 C 和圆 E 的一条公切线的
理由.
六、解答题 21.在平面直角坐标系 xOy 中,点 A(-2,-3) ,直线 l : y = x - 5 ,设圆 C 的半径为 1 且关于直
线 l 对称.
(1)若圆心 C 在直线 y = 2x - 6 上,过点 A 作圆 C 的切线,求切线的方程;
(2)点 A
关于点
P(-
3 2
,
-1)
的对称点为
CD = 13 .求弦长 AB 的最大值.
试卷第71 页,共33 页
1.C
参考答案:
【分析】根据直线平行、充分、必要条件的知识求得正确答案.
【详解】依题意, l1 : 2x - ay +1 = 0 , l2 : (a -1) x - y + a = 0 ,
若两直线平行,则 2´ (-1) = (-a) ´(a -1) ,
C 的中心记为点 C,求VCPQ 面积的最大值,并求此时直线 l 的方程. 19.如图 1,在 VABC 中, D 、 E 分别为 AB 、 AC 的中点, O 为 DE 的中点,
AB = AC = 2 5 , BC = 4 .将VADE 沿 DE 折起到△A1DE 的位置,使得平面 A1DE ^

高二上学期数学第一次月考试题

高二上学期数学第一次月考试题

高二上学期数学第一次月考试题高二上学期数学第一次月考试题一、选择题(共30题,每题2分,共60分)1. 设函数f(x) = 2x^2 + 3x - 1,那么f(-1)的值为()A. -2B. 0C. 2D. 42. 若函数y = x^2 - 4ax + 4a^2 - 1的图象与x轴相切,则a的值为()A. 0B. 1C. 2D. 43. 已知函数y = ax^2 + bx + c的图象经过点(1, 1)和(2, 4),则a, b, c 的值分别为()A. 1, 1, -1B. 1, 2, -1C. 1, -1, 1D. 1, 1, 14. 已知函数y = ax^2 + bx + c的图象与x轴相切,且切点的横坐标为2,纵坐标为0,那么a, b, c的值分别为()A. 1, 2, -2B. 2, -4, 4C. -1, 4, -4D. -2, 4, -45. 在△ABC中,已知∠C = 90°,AC = 5,AB = 12,那么BC的值为()A. 5B. 13C. 17D. 256. 已知∠A = 60°,BC = 3,AC = 4,那么AB的值为()A. 3B. 4C. 5D. 67. 已知∠A = 30°,∠B = 60°,那么∠C的值为()A. 30°B. 60°C. 90°D. 120°8. 在△ABC中,∠A = 40°,∠B = 70°,那么∠C的值为()A. 50°B. 70°C. 80°D. 90°9. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的值为()A. 45°B. 60°C. 75°D. 90°10. 在△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么∠ADC的值为()A. 45°B. 60°C. 75°D. 90°11. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD与BC的比值为()A. 1:√3B. 1:2C. √3:2D. 2:√312. 线段AB的中点为M,线段AC的中点为N,若AM = 4,AN = 3,那么BC 的值为()A. 2B. 3C. 4D. 613. 在△ABC中,∠A = 30°,∠B = 60°,D为BC上的点,且AD ⊥ BC,那么BD:DC的值为()A. 1:2B. 1:√3C. 2:1D. √3:114. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD:DB:DC的值为()A. 1:√3:2B. 1:2:√3C. 1:√3:1D. 1:1:115. 若点A(x, y)到点B(3, 2)的距离为√10,且点A在直线x - y = 1上,则点A的坐标为()A. (2, 1)B. (1, 2)C. (1, 3)D. (2, 2)二、填空题(共5小题,每题4分,共20分)16. 若a + b = 3,ab = 2,那么a^2 + b^2的值为________。

高二数学第一次月考试题

高二数学第一次月考试题

开始 i =1 s =0i =i +1s =s+i i ≤5? 输出s 结束① ② a是否 7 9 8 4 4 4 6 7 9 3 高二数学第一次月考试题一、选择题:1. 高二年级有14个班,每个班的同学从1到50排学号,为了交流学习经验,要求每班学号为14的同学留下来进行交流,这里运用的是( ) A .分层抽样 B .抽签抽样 C .随机抽样 D .系统抽样 2. 五进制数(5)444转化为八进制数是( )A 。

(8)194B.(8)233 C 。

(8)471D.(8)1743. 计算机执行下面的程序,输出的结果是( )a =1b =3 a =a +bb =b a PRINT a ,b ENDA 、1,3B 、4,9C 、4,12D 、4,8 4. 甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是 ( )A 。

31B 。

41C 。

21 D 。

无法确定 5. 如下四个游戏盘,现在投镖,投中阴影部分概率最大的是 ( )6. 下图是2008年我校举办“激扬青春,勇担责任"演讲比赛大赛上, 七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为 ( )A.85;87 B 。

84; 86 C 。

84;85 D.85;867. 如左图的程序框图(未完成).设当箭头a 指向①时,输出的结果 s =m ,当箭头a 指向②时,输出的结果s =n ,则m +n = ( )A 。

30 B.20 C 。

15 D 。

5 8. 10个正数的平方和是370,方差是33,那么平均数为( )A .1B .2C .3D .49. 读程序甲:INPUT i =1 乙:INPUT i =1000 S =0 S =0 WHILE i <=1000 DOS =S +i S =S +i i =i +l i =i 一1 WEND LOOP UNTIL i <1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同10. 已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是( )A 。

高二第一次月考数学试卷

高二第一次月考数学试卷

1、一个数的三分之一加上5等于16,这个数是多少?A. 36B. 33C. 45D. 30(答案:A)2、如果一个矩形的长度是8厘米,宽度是3厘米,则它的周长是多少?A. 30厘米B. 22厘米C. 24厘米D. 20厘米(答案:B)3、在一个等边三角形中,每个角的度数是多少?A. 45度B. 60度C. 75度D. 90度(答案:B)4、某班有40名学生,男生占三分之二,男生有多少人?A. 20人B. 25人C. 30人D. 28人(答案:C)5、一辆车以每小时60公里的速度行驶,3小时能行驶多远?A. 180公里B. 150公里C. 200公里D. 180米(答案:A)6、一个立方体的边长是4厘米,则它的体积是多少立方厘米?A. 16B. 32C. 48D. 64(答案:D)7、在一个排列中,数字1到5的排列组合中,有多少种不同的排列方式?A. 60B. 120C. 100D. 80(答案:B)8、如果一个圆的半径是7厘米,那么它的面积大约是多少平方厘米?(取π为3.14)A. 150.86B. 140.00C. 120.56D. 120.88(答案:A)9、一个角的补角是30度,这个角是多少度?A. 60度B. 90度C. 120度D. 150度(答案:A)10、在一次班级测验中,平均分数为75分,如果全部学生人数是20人,那么总分数是多少?A. 1500B. 1600C. 1700D. 1800(答案:A)。

广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷

广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷

2024—2025学年高二上学期第一次月考联考高二数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =−=− ,若()a a b λ⊥− ,则实数λ的值为( )A .2−B .143−C .73D .22.P 是被长为1的正方体1111ABCD A B C D −的底面1111D C B A 上一点,则1PA PC ⋅ 的取值范围是( )A .11,4 −−B .1,02 −C .1,04 −D .11,42 −−3.已知向量()4,3,2a =− ,()2,1,1b = ,则a 在向量b 上的投影向量为( ) A .333,,22 B .333,,244 C .333,,422 D .()4,2,24.在棱长为2的正方体1111ABCD A B C D −中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为( )AB C D 5.已知四棱锥P ABCD −,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为( )A .1132a b c ++B .1162a b c −++ C .1132a b c −+ D .1162a b c −−+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC 共面,则λ=( ) A .12 B .13 C .512 D .7127.已知向量()()1,21,0,2,,a t t b t t =−−= ,则b a − 的最小值为( ) AB C D 8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC −中,PAPB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为( ).A B C D 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D −中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是( )A .13DB =B .向量AE 与1AC C .平面AEF 的一个法向量是()4,1,2−D .点D 到平面AEF 10.在正三棱柱111ABC A B C −中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λµλµ=+∈∈ ,则下列说法正确的是( )A .当1λ=时,点P 在棱1BB 上B .当1µ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上 D .当11,2λµ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .122CG AB AA =+B .直线CQ 与平面1111DC B A 所成角的正弦值为23C .点1C 到直线CQD .异面直线CQ 与BD 三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C −的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为 时,使1⊥MN AB .13.四棱锥P ABCD −中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC 的重心,则PG 与平面PAD 所成角θ的正弦值为 .14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为,则该五面体的所有棱长之和为 .四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)如图,在长方体1111ABCD A B C D −中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.(本小题15分)如图所示,直三棱柱11ABC A B C −中,11,92,0,,CA CB BCA AA M N °==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .17.(本小题15分)如图,在四棱维P ABCD −中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 18.(本小题17分) 如图1,在边长为4的菱形ABCD 中,60DAB ∠=°,点M ,N 分别是边BC ,CD 的中点,1AC BD O ∩=,AC MN G ∩=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2 所示的五棱锥P ABMND −.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为Q 的位置;若不存在,请说明理由. 19.(本小题17分)如图,四棱锥P ABCD −中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM ⊥于点H ,求线段CH 长的最小值.。

高二数学第一次月考试卷

高二数学第一次月考试卷

高二数学第一次月考试卷一、选择题(每题5分,共60分)1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是().A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°3.关于直线m,n与平面 α,β,有下列四个命题:①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.其中真命题的序号是().A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.下列说法正确的是()A.若直线21,ll的斜率相等,则直线21,ll一定平行;B.若直线21,ll平行,则直线21,ll斜率一定相等;C.若直线21,ll中,一个斜率不存在,另一斜率存在,则直线21,ll一定相交;D.若直线21,ll斜率都不存在,则直线21,ll一定平行。

高二上学期数学第一次月考试卷与答案解析

高二上学期数学第一次月考试卷与答案解析

高二上学期数学第一次月考卷(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版2019选择性必修第一册第1.1~2.1章(直线与圆+椭圆)。

5.难度系数:0.68。

第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.点()1,1到直线3420x y +−=的距离是( ) A .1 B .2 CD .32.已知方程2212x y m m +=−表示椭圆,则实数m 的取值范围是( )A .(0,2)B .(0,1)C .(2,)+∞D .(0,1)(1,2)3.圆()2249x y −+=和圆()2234x y +−=的公切线有( ) A .1条 B .2条 C .3条 D .4条4.已知实数x ,y 满足方程y yx的最大值为( ) A .0B .1CD .25.某同学数星星的时候,突然想到了哈雷彗星:信息技术老师给他找了一幅哈雷彗星图片和轨道图片,地理老师告诉他哈雷彗星近日点距离太阳约0.6A.U.,将于2023年12月9日出现的远日点距离太阳约35A.U.(A.U.是天文单位,天文学中计量天体之间距离的一种单位,其数值取地球和太阳之间的平均距离,1A.U.149597870=千米).物理老师告诉他该彗星的周期约76年,质量约1510kg.化学老师说:彗核的成分以水冰为主,占70%,它只是个很松散的大雪堆而已,数学老师问:哈雷彗星的轨迹可以近似看成椭圆,那么该椭圆的离心率约是( )试卷第2页,共4页A .0.03B .0.97C .0.83D .0.776.已知直线l :10x my m −+−=,则下列说法不正确的是( ) A .直线l 恒过点()1,1B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 的斜率可以等于0D .若直线l 在两坐标轴上的截距相等,则1m =或1m =−7.若圆222610x y x y +−−+=上恰有三点到直线y kx =的距离为2,则k 的值为( )A .12B .34C .43D .28.已知椭圆2214x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,当12F PF 的面积为1时,12PF PF ⋅ 等于( ) A .0B .1C .2D .12二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +−=,下列结论正确的是( ) A .若12//l l ,则6a = B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交10.过点()2,1P 作圆O :221x y +=的切线l ,则切线l 的方程为( )A .1y =B .2x =C .3450x y −−=D .4350x y −−=11.已知椭圆2221(03)9x y b b +=<<的左、右焦点分别为12,F F ,过点1F 的直线l 交椭圆于,A B 两点,若AB 的最小值为4,则( ) AB .22AF BF +的最大值为8C D .椭圆上不存在点P ,使得1290F PF ∠=第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分。

吉林省2024-2025学年高二上学期第一次月考数学试卷含答案

吉林省2024-2025学年高二上学期第一次月考数学试卷含答案

2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。

高二数学上学期第一次月考试题含解析 试题

高二数学上学期第一次月考试题含解析 试题

智才艺州攀枝花市创界学校潜山第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕第I 卷〔选择题,一共60分〕一、选择题:〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕A ={x |x >1},B ={x |x 2-2x <0},那么A ∪B 等于()A.{x |x >0}B.{x |x >1}C.{x |1<x <2}D.{x |0<x <2}【答案】A 【解析】 【分析】先解出集合B ,再由并集的定义即可求出. 【详解】因为集合{}02B x x =<<,A ={x |x >1},所以{}0A B x x ⋃=>.应选:A .【点睛】此题主要考察集合的并集运算,属于根底题.x 的终边上一点的坐标为(sin56π,cos 56π),那么角x 的最小正值为() A.56πB.53π C.116π D.23π 【答案】B【解析】 【分析】先根据角x 终边上点的坐标判断出角x 的终边所在象限,然后根据三角函数的定义即可求出角x 的最小正值.【详解】因为5sin06π>,5cos 06π<,所以角x 的终边在第四象限,根据三角函数的定义,可知 53sin cos 62x π==-,故角x 的最小正值为5233x πππ=-=.应选:B .【点睛】此题主要考察利用角的终边上一点求角,意在考察学生对三角函数定义的理解以及终边一样的角的表示,属于根底题.3.数列{a n }是等差数列,a 1+a 7=-8,a 2=2,那么数列{a n }的公差d 等于〔〕 A.-1 B.-2C.-3D.-4【答案】C 【解析】试题分析:由等差数列的性质知,,所以,又,解得:,应选C .考点:1、等差数列的性质;2、等差数列的通项公式.a >0,b >0,且ln (a +b )=0,那么11a b+的最小值是() A.14B.1C.4D.8【答案】C 【解析】 【分析】先将对数式化指数式,再根据根本不等式即可求出. 【详解】由()ln0a b +=得1a b +=,所以()11112224b aa b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当12ab ==时取等号,故11a b+的最小值是4. 应选:C .【点睛】此题主要考察对数的性质以及根本不等式中“1的代换〞的应用,属于根底题. 5.m ,n 表示两条不同直线,α表示平面.以下说法正确的选项是() A.假设m ∥α,n ∥α,那么m ∥n B .假设m ⊥α,n ⊂α,那么m ⊥nC.假设m ⊥α,m ⊥n ,那么n ∥αD.假设m ∥α,m ⊥n ,那么n ⊥α 【答案】B 【解析】 【分析】根据线线、线面关系的定义、性质、结论和断定定理对各项逐个判断即可. 【详解】对于A ,假设,mn αα,那么m 与n 可能平行,可能相交,可能异面,所以A 错误;对于B ,根据线面垂直的定义可知,正确; 对于C ,假设,m m n α⊥⊥,那么n α或者n ⊂α,所以C 错误;对于D ,假设,m m n α⊥,那么n 可能垂直于α,也可能n⊂α,也可能n α,所以D 错误.应选:B .【点睛】此题主要考察空间线线、线面关系的判断,意在考察学生的直观想象和逻辑推理才能,属于中档题. 〔1,1〕在圆()()224x a y a -++=的内部,那么a 的取值范围是〔〕A.11a -<<B.01a <<C.1a <-或者1a >D.1a =±【答案】A 【解析】因为点〔1,1〕在圆内部,所以22(1)(1)4a a -++<,解之得11a -<<.x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,那么a 的范围是()A.a <-2或者a >23B.-23<a <2C.-2<a <0D.-2<a <23【答案】D 【解析】 【分析】先把圆的一般方程化为圆的HY 方程,由此可求得a 的范围. 【详解】由题意可得圆的HY 方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<,选D.【点睛】圆的一般方程220x y Dx Ey F ++++=,化HY 方程为22224()()224D E D E F x y +-+++=〔其中2240D E F +->〕,圆心为(,)22D E--,半径2r =.8.点P 〔2,﹣1〕为圆〔x ﹣1〕2+y 2=25的弦AB 的中点,那么直线AB 的方程为〔〕 A.x+y ﹣1=0B.2x+y ﹣3=0C.x ﹣y ﹣3=0D.2x ﹣y ﹣5=0【答案】C【解析】试题分析:由垂径定理,得AB中点与圆心C的连线与AB互相垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.解:∵AB是圆〔x﹣1〕2+y2=25的弦,圆心为C〔1,0〕∴设AB的中点是P〔2,﹣1〕满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0应选C考点:直线与圆相交的性质.9.一个算法:(1)m=a.(2)假设b<m,那么m=b,输出m;否那么执行第(3)步.(3)假设c<m,那么m=c,输出m.假设a=3,b=6,c=2,那么执行这个算法的结果是()A.3B.6C.2D.m【答案】C【解析】【分析】根据算法的功能可知,输出三个数中的最小值,即可求解.【详解】根据算法的功能可知,输出三个数中的最小值,故执行这个算法的结果是2.应选:C.【点睛】此题主要考察对算法语句以及算法功能的理解.C 的方程为22(2)(1)9x y -++=,直线l 的方程为320x y -+=,那么曲线C 上到直线l 的间隔为10的点的个数为〔〕A.1B.2C.3D.4【答案】B 【解析】试题分析:由22(2)(1)9x y -++=,可得圆心坐标为(2,1)C -,半径为3r =,那么圆心到直线的间隔为d ===,所以此时对应的点位于过圆心C 的直径上,所以满足条件的点有两个,应选B . 考点:直线与圆的位置关系.【方法点晴】此题主要考察了直线与圆的位置关系的应用,其中解答中涉及到点到直线的据公式和直线与圆位置关系的断定与应用,试题思维量和运算量较大,属于中档试题,着重考察了学生分析问题和解答问题的才能,以及数形结合思想的应用,此类问题平时需要注意方法的积累和总结.11.两点A 〔-2,0〕,B 〔0,2〕,点C 是圆x 2+y 2-2x =0上任意一点,那么△ABC 面积的最小值是〔〕A.3B.3C.3 【答案】A 【解析】 试题分析:圆C的HY 方程为22(1)1x y -+=,圆心为(1,0)D ,半径为1,直线AB 方程为122x y+=-,即20x y -+=,D 到直线AB 的间隔为2d ==,点C 到AB 的间隔的最小值为1-,AB =,所以ABC∆面积最小值为11)32S =⨯=.应选A . 考点:点到直线的间隔.(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两局部,使得这两局部的面积之差最大,那么该直线的方程为 A.20x y +-= B.10y -=C.0x y -=D.340x y +-=【答案】A 【解析】要使直线将圆形区域分成两局部的面积之差最大,通过观察图形,显然只需该直线与直线OP 垂直即可,又P(1,1),那么所求直线的斜率为-1,又该直线过点P(1,1),易求得该直线的方程为x +y -2=0.应选A.第II 卷〔非选择题,一共90分〕二、填空题(本大题一一共4小题,每一小题5分,一共20分.)13.函数的定义域为___________________________.【答案】()1,1- 【解析】 【分析】根据函数表达式得到使得函数有意义只需要210340x x x +>⎧⎨--+>⎩,解这个不等式获得交集即可. 【详解】由210340x x x +>⎧⎨--+>⎩得-1<x<1. 故答案为()1,1-.【点睛】求函数定义域的类型及求法:(1)函数解析式:构造使解析式有意义的不等式(组)求解;(2)抽象函数:①假设函数f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出;②假设函数f [g (x )]的定义域为[a ,b ],那么f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,那么C 的方程为__________.【答案】22(2)10x y -+=.【解析】 【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程. 【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】此题主要考察圆的性质和圆的方程的求解,意在考察对根底知识的掌握与应用,属于根底题. 15.执行如图的程序框图,假设输入的ε的值是0.25,那么输入的n 的值_____.【答案】3. 【解析】根据运行顺序计算出11F 的值,当11F ≤ε时输出n 的值,完毕程序.由程序框图可知:第一次运行:F 1=1+2=3,F 0=3-1=2,n =1+1=2,11F =13>ε,不满足要求,继续运行; 第二次运行:F 1=2+3=5,F 0=5-2=3,n =2+1=3,11F =15=0.2<ε,满足条件. 完毕运行,输出n =3.【此处有视频,请去附件查看】,a b 夹角为45︒,且1,210a a b =-=,那么b =__________.【答案】32【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤) 17.如下列图,底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开场由左至右挪动(与梯形ABCD 有公一共点)时,直线l 把梯形分成两局部,令BF =x (0≤x ≤7),左边局部的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.【答案】221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【解析】 【分析】根据直线l 将梯形分割的左边局部的形状进展分类讨论,求出函数关系式,即可根据条件构造画出程序框图,并写出程序.【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x =; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩. 程序框图如下:程序:INPUT “x =〞;xIFx >=0ANDx <=2THENy =0.5*x ^2ELSEIFx <=5THENy =2*x -2ELSEy =-0.5*(x -7)^2+10ENDIFENDIFPRINTyEND【点睛】此题主要考察分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考察学生分类讨论思想和算法语句的理解和书写.xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,那么圆C 的方程为.【答案】22(3)(1)0.x y -+-= 【解析】【详解】试题分析:根据题意令y=0,可知23610,y x x x =-+==±∴同时令x=0,得到函数与y 轴的交点坐标为〔0,1〕,那么利用圆的性质可知,与x 轴的两个根的中点坐标即为圆心的横坐标为3,设圆心为:(3,)t ,那么229(1)8t t +-=+,解得1t = 因此可知圆的方程为22(3)(1)0.x y -+-=,故答案为22(3)(1)0.x y -+-=.考点:本试题考察了抛物线与坐标轴的交点问题.点评:解决该试题的关键是确定出交点的坐标,然后结合交点坐标,得到圆心坐标和圆的半径,进而秋季诶圆的方程,属于根底题.19.如图,在四棱锥P ﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC ,E 是PC 的中点.〔1〕求PB 和平面PAD 所成的角的大小;〔2〕证明AE⊥平面PCD .【答案】〔1〕45°;〔2〕见解析【解析】试题分析:〔1〕先找出PB 和平面PAD 所成的角,再进展求解即可;〔2〕可以利用线面垂直根据二面角的定义作角,再证明线面垂直.〔1〕解:在四棱锥P ﹣ABCD 中,因PA⊥底面ABCD ,AB ⊂平面ABCD ,故PA⊥AB.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD ,故PB 在平面PAD 内的射影为PA ,从而∠APB 为PB 和平面PAD 所成的角.在Rt△PAB 中,AB=PA ,故∠APB=45°.所以PB 和平面PAD 所成的角的大小为45°.〔2〕证明:在四棱锥P ﹣ABCD 中,因为PA⊥底面ABCD ,CD ⊂平面ABCD ,所以CD⊥PA.因为CD⊥AC,PA∩AC=A,所以CD⊥平面PAC .又AE ⊂平面PAC ,所以AE⊥CD.由PA=AB=BC ,∠ABC=60°,可得AC=PA .因为E 是PC 的中点,所以AE⊥PC.又PC∩CD=C,所以AE⊥平面PCD .考点:直线与平面所成的角;直线与平面垂直的断定.()f x 是(),-∞+∞上的奇函数,()()2f x f x +=-,当01x ≤≤时,()f x x =.〔1〕求()f π的值;〔2〕当44x -≤≤时,求()f x 的图象与x 轴所围成图形的面积.【答案】〔1〕4π-〔2〕4 【解析】【分析】〔1〕由()()2f x f x +=-可推出函数()f x 是以4为周期的周期函数,再利用函数的周期性及奇偶性可得()()()()1444f f f f ππππ=-⨯+=-=--, 再利用函数在[]0,1上的解析式即可得解,〔2〕由函数的周期性、奇偶性及函数在[]0,1上的解析式,作出函数在[]4,4-的图像,再求()f x 的图象与x 轴所围成图形的面积即可.【详解】解:〔1〕由()()2f x f x +=-得,()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦,所以()f x 是以4为周期的周期函数, 所以()()()()1444f f f f ππππ=-⨯+=-=--()44ππ=--=-.〔2〕由()f x 是奇函数且()()2f x f x +=-, 得()()()1211f x f x f x -+=--=--⎡⎤⎡⎤⎣⎦⎣⎦, 即()()11f x f x +=-.故知函数()y f x =的图象关于直线1x =对称.又当01x ≤≤时,()f x x =,且()f x 的图象关于原点成中心对称,那么()f x 44x -≤≤时,()f x 的图象与x 轴围成的图形面积为S ,那么1442142OAB S S ∆⎛⎫==⨯⨯⨯= ⎪⎝⎭. 【点睛】此题考察了函数的周期性、奇偶性及函数的图像,主要考察了函数性质的应用,重点考察了作图才能,属中档题.()2cos sin 34f x x x x π⎛⎫=⋅++ ⎪⎝⎭,x R ∈.〔Ⅰ〕求()f x 的最小正周期;〔Ⅱ〕求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值和最大值. 【答案】〔Ⅰ〕π;〔Ⅱ〕最小值12-和最大值14. 【解析】 试题分析:〔1〕由利用两角和与差的三角函数公式及倍角公式将()f x 的解析式化为一个复合角的三角函数式,再利用正弦型函数()sin y A x B ωϕ=++的最小正周期计算公式2T πω=,即可求得函数()f x 的最小正周期;〔2〕由〔1〕得函数,分析它在闭区间上的单调性,可知函数()f x 在区间上是减函数,在区间上是增函数,由此即可求得函数()f x 在闭区间上的最大值和最小值.也可以利用整体思想求函数()f x 在闭区间上的最大值和最小值.由,有 ()f x 的最小正周期. 〔2〕∵()f x 在区间上是减函数,在区间上是增函数,,,∴函数()f x 在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.22.设数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2.(1)设b n =a n +1−2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.【答案】(1)见解析;(2)a n=(3n−1)·2n−2.【解析】(1)由a1=1及S n+1=4a n+2,得a1+a2=S2=4a1+2.∴a2=5,∴b1=a2−2a1=3.又①−②,得a n+1=4a n−4a n−1,∴a n+1−2a n=2(a n−2a n−1).∵b n=a n+1−2a n,∴b n=2b n−1,故{b n}是首项b1=3,公比为2的等比数列. (2)由(1)知b n=a n+1−2a n=3·2n−1,∴−=,故是首项为,公差为的等差数列.∴=+(n−1)·=,故a n=(3n−1)·2n−2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高唐一中2017-2018学年上学期第一次月考
高 二 数 学 试 题(理科实验班)
时间100分钟,满分120分 命题人:赵莉莉 审题人:丁金星
一.选择题(每小题4分,满分48分)
1.,的一个通项公式是( )
A. n a =n a =n a = D. n a =2.在△ABC 中,a =2,b =3,c =1,则最小角为( )
A ..π12
B .π6
C .π4
D .π3
3.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项 的和为234,则它的第 7项等于( )
A 22
B 21
C 19
D 18
4.△ABC 的两边长分别为2,3,其夹角的余弦值为13
,则其外接圆的半径为( ) A.922 B.924 C.928
D .9 2 5.若数列{a n }满足a n +1=1+1a n ,a 8=3421
,则a 5=( ) A .32 B .53 C.138 D.85
6.某公司要测量一水塔CD 的高度,测量人员在该水塔所在的东西方向水平直线上选择A ,B 两个观测点,在A 处测得该水塔顶端D 的仰角为α,在B 处测得该水塔
顶端D 的仰角为β.已知A ,B 在水塔的同一侧,AB =a ,0<β<α<π2
,则水塔CD 的高度为( )
A .
a sin (α-β)sin αsin α B .a sin αsin βsin (α-β) C .a sin (α-β)sin βsin α D .a sin αsin (α-β)sin β
7.已知△ABC 的周长为9,且sin A ∶sin B ∶sin C =3∶2∶4,则cos C 的值为( )
A .-14
B .14
C .-23
D .23
8.已知等比数列{a n }的前n 项和为S n ,a 4-a 1=78,S 3=39,设b n =log 3a n ,那么 数列{b n }的前10项和为( )
A .log 371
B .692
C .50
D .55 9. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则5
5b a 等于( ) A.32 B. 149 C. 3120 D. 17
11 10.已知{}n a 为等差数列,若1110
1a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n= ( )
A. 11
B.17
C.19
D.21
11.在△ABC 中,如果sin Asin B +sin Acos B +cos Asin B +cos Acos B =2,则△ABC 是( )
A .等边三角形
B .钝角三角形
C .等腰直角三角形
D .直角三角形
12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若b 2+c 2-a 2
=3bc , 且b =3a ,则下列关系一定不成立的是( )
A .a =c
B .b =c
C .2a =c
D .a 2+b 2=c 2
第Ⅱ卷 (非选择题 共72分)
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)
13.如果数列{}n a 的前n 项和n n 3s a 3,2
=-那么这个数列的通项公式是 ______. 14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A ,B ,C 成等差数列,a ,b , c 成等比数列,则sin A ·sin C =________.
15.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底 要加长________km .
16.在数列{a n }中,若a 1=2,a n +1=a n +ln(1+1n
),则a n 等于________. 三、解答题(本大题共5小题,共56分.解答应写出文字说明,证明过程或演算步骤)
17.(10分)已知等差数列{a n }中,公差d ≠0,a 1=2,且a 1,a 3,a 9成等比数列.
(1)求数列{a n }的通项公式;
(2)求数列{2a n -1}的前n 项和S n .
18.(10分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35
. (1)若b =4,求sin A 的值;
(2)若△ABC 的面积S △ABC =4,求b ,c 的值.
19.(12分)S n 为数列{}a n 的前n 项和,已知a n >0,a 2
n +2a n =4S n +3. (1)求{}a n 的通项公式;
(2)设b n =
1a n a n +1,求数列{}b n 的前n 项和.
20.(12分)设ABC ∆的内角,,A B C 所对的边分别是a,b,c, 且
76,2,cos 9
a c
b B +===
. (1)求a,c 的值; (2)求sin()A B -的值。

21.(12分)已知点(1,2)是函数f (x )=a x
(a >0且a ≠1)的图像上一点,数列{a n }的前n 项和S n =f (n )-1.
(1)求数列{a n }的通项公式;
(2)若b n =log a a n +1,求数列{a n b n }的前n 项和T n .。

相关文档
最新文档