五年级奥数第3讲(假设) (4)
小学初级奥数第3讲-等量代换
典型例题
例七
1头大象的重量等于4头牛的重量,1头牛的重量等于3匹马的重量, 则1头大象的重量等于多少匹马的重量?
练习
1个西瓜的重量等于2个哈密瓜的重量,1个哈密瓜的重量等于8个苹果的重量, 2个苹果的重量等于3个柿子的重量,那么1个西瓜的重量等于几个柿子的重量?
典型例题
例八
学校第一次买了3个水瓶和20个水杯,共用去134元;第二次又买了同样的 3个水瓶和16个茶杯,共用去118元。问水瓶和茶杯的单价各是多少元?
典型例题
例九
2只兔子的重量等于6只小鸡的重量,3只袋鼠的重量相当于4只兔子的重量, 那么1只袋鼠的重量相当于多少只小鸡的重量?
课后作业
<作业1> 3只小花猫的重量等于1只狗的重量,1只小花猫等于3只鸭子的重量, 1只狗重9千克,1只猫与1只鸭子各重多少千克?
课后作业
<作业2> 1个苹果和1个香蕉的重量是7个小铁块的重量,而1个苹果的重量是4个小铁块的重量, 那么1个香蕉的重量是多少个小铁块的重量?
小朋友有没有听过“曹冲称象”的故事呢?
聪明的小曹冲是利用了等量代换的数学原理:
两个相等的量,可以互பைடு நூலகம்代换。
典型例题 例一 请看下图,右边要站几只小鸟跷跷板才能平衡呢?
练习 请看下图,右边要站几只小鸟跷跷板才能平衡呢? ( )只
典型例题 例二
练习
典型例题 例三 下面的花朵各表示什么数?
练习 有一天,小狗老师要在动物学校挑选队员参加数学竞赛,小松鼠很高兴也跑来了。 小狗老师说:“那我就来考考你!你把下面的题做对了就可以参加了。”
小松鼠看了半天说:“老师,你写的这是什么?”小狗老师说:“哈哈!看来你 要好好学一学图文算式了,欢迎你下次再来。”小朋友们,上面的题你会吗?
五年级 奥数(第三讲)
五年级 奥数第三讲 最大公约数一、概念:1.公约数:几个数共有的约数(或因数)。
2.最大公约数:公约数中最大的一个。
二、记法:自然数a 、b 的最大公约数记为:(a 、b )。
若(a 、b )=1,则a 和b 互质。
三、区别:1.互质&质数2.1不是质数,但1是约数。
四、求最大公约数的方法:1.短除法;2.列举因数法;3.辗转相除法例1:一张长方形纸,长7分5厘米,宽6分米,现将其截成一块块正方形,且正方形边长为整厘米数,有几种截法?若要使截得的正方形面积最大,可截多少块?长为75㎝,宽为60㎝,由于截成的正方形边长必须能同时整除75和60,所以边长应该是75和60的公约数。
75=3×5×5 75的约数:1、3、5、15、25、7560=2×2×3×5 60的约数:1、2、3、4、5、6、10、12、15、20、30、60 所以,公约数为:1、3、5、15 有四种截法。
若要使截得的正方形面积最大,则:5 75 603 15 12 (75、60)=155 4可截得:(75÷15)×(60÷15)=5×4=20块 或15156075⨯⨯习题操练:1.把1米3分5厘米长,1米5厘米宽的长方形纸,截成同样大小的正方形,至少能截多少块?2.一块长45㎝,宽30㎝的长方形木板,将其锯成若干块正方形且无剩余,所锯成的正方形边长最长是多少㎝?例2:一个数除200余4,除300余6,除500余10。
求这个数最大是多少?即(200-4)=196可被这个数整除,同理,294和490分别可被这个数整除。
即求(196、294、490)=98或:除 200 余 4除 300 余 6 除100余2 98除 500 余 10习题操练:1.一个数除150余6,除250余10,除350余14,这个数最大是多少?(48)2.若将110块糖平均分给某班同学,多5块;若将210块平均分,则正好分完;若将240块糖平均分,则少5块。
四年级升五年级奥数综合讲义第3讲-差倍问题
第三讲差倍问题一、专题简析:已知两个数的差与它们之间的倍数关系,求这两个数各是多少的问题,叫做差倍问题。
二、典型例题例1:仓库里存放大米和面粉两种粮食,面粉比大米多3900千克,面粉的千克数比大米的2倍还多100千克。
仓库有大米和面粉各多少千克?练一练:1、三年级学生参加课外活动,做游戏的人数比打球人数的3倍多2人,已知做游戏的比打球的多38人,打球和做游戏的各有多少人?2、学校今年参加科技兴趣小组的人数比去年多41人,今年的人数比去年的3倍少35人。
今年有多少人参加?例2:有大小两个书架,大书架上书的本数是小书架上的4倍。
如果从大书架上取出140本放在小书架上,那么大书架上的书还比小书架上的书多20本。
大、小书架原来各有多少本书?1、现有两筐橘子,甲筐橘子是乙筐的5倍,如果从甲筐中取出18千克倒入乙筐,那么甲筐橘子还比乙筐多4千克。
那么两筐橘子原来各有多少千克?2、老猫和小猫去钓鱼,老猫钓的鱼是小猫的3倍。
如果老猫给小猫3条后,小猫还比老猫少2条。
两只猫各钓了多少条?例3:育红小学买了一些足球、排球和篮球,已知足球比排球多7只,排球比篮球多11只,足球的只数是篮球的3倍。
足球、排球和篮球各买了多少只?练一练:1、某服装厂第三季度比第二季度多生产2800套西服,第一季度比第二季度少生产1200套。
第三季度生产的是第一季度的3倍。
求每季度各生产多少套西服?2、三个小朋友们折纸飞机,小晶比小亮多折12架,小强比小亮少折8架,小晶折的是小强的3倍。
三个人各折纸飞机多少架?例4 :有甲乙两桶色拉油,如果向甲桶中倒入8千克,则两桶色拉油就一样重,如果向乙桶中倒入12千克,乙桶的色拉油就是甲桶的5倍,求甲乙两桶原来各有色拉油多少千克?1、有甲乙两桶水, 如果向甲桶倒入10千克的水, 则两桶水的重量相等; 如果向乙桶中倒入4千克水, 那么乙桶水的重量是甲桶的3倍. 原来甲乙桶各有水多少千克?2、小敏和小文每人都有一些玻璃珠,如果小敏给小文3粒,两人的玻璃珠就一样多;如果小文给小敏1粒,小敏的玻璃珠就是小文的5倍。
五年级奥数讲义题
第3讲巧用运算定律一、复习巩固(比一比,练一练):25×125×32 2.5×1.25×3.2二、例题:29.5×47.5+62.1×52.2+47.8×32.6三、(举一反三):12.5×4.8×3.2 45×2.8 35×5.6 19.6×36+19.6×46+9.8×38 85×3.4+16×3.45.8×6.9+0.58×32-5.8×0.1 6.5×38-2.5×38+4×62消去问题在有些应用题中,给出了两个或两个以上的未知数量间的关系,要求出这些未知的数量,先把题中的条件按对应关系一一排列出来,思考时可以通过比较条件,分析对应的未知量的变化情况,设法消去一个或一些未知量,从而把一道数量关系较复杂的题目,变成比较简单的题目解答出来,这种方法叫做消去法。
例:小红在商店里买了4块橡皮和3把小刀,共付0.59元。
小黄买同样的2块橡皮和3把小刀,共付0.43元。
问:一块橡皮和一把小刀的价钱各是多少元?试试看1.买3枝钢笔,2块橡皮共付4.98元。
若买5枝钢笔、2块橡皮要付7.98元。
问一枝钢笔、一块橡皮各值多少元?2. 小卫到百货商店买了2枝圆珠笔和1枝钢笔,用去人民币5.5元。
如果买一枝圆珠笔和2枝钢笔要人民币6.5元,问1枝圆珠笔和1枝钢笔价格各是多少元?3. 2份蛋糕和2杯饮料共用28元,1份蛋糕和3份饮料共用去18元,问一份蛋糕和一杯饮料各需多少元?第2讲正方形队列同学们,还记得国庆时激动人心的阅兵式吗?陆海空三军仪仗队都是方阵。
方阵可以由各种不同的实物排成,既有实心方阵也有空心方阵。
这一讲,我们就来一起研究这些方阵。
例题1:有一个正文形花圃,四个角各摆了1盆花。
如果每边都摆了5盆花,那么四边一共摆了几盆花?试试看:有一个正方形池塘,四个角各栽了1棵树,如果每边栽8棵树,那么四边一共栽了几棵树?例题2:80个小朋友手拉手围成一个正方形,四个角上各站着1个小朋友,则正方形的每条边上有多少个小朋友?试试看:在正方形围墙四周等距离地装有96盏灯,四个角上各装有1盏,这样每边有多少盏灯?例题3:五年级的部分同学参加运动会队列训练,排成如右图所示的正方形,最外层每边有5人。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数综合问题 第三讲 方阵问题
五年级奥数综合问题 第三讲 方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:1.总人数=最外层每边人数的平方(方阵问题的核心)2.外一层每边人数比内一层每边人数多2相邻两层之间,每层的总数相差8 3.最外层每边人数=(最外层总人数÷4)+1 最外层总人数 = (最外层每边人数-1) ×4 4.去掉一行、一列的总人数=去掉的每边人数×2-1 5. 中空方阵总个数=(每边个数一层数)×层数×4 例1:学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人? 解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列 的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)。
【巩固1】某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?【巩固2】晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?【巩固3】一个正方形的队列横竖各减少一排共27人,求这个正方形队列原来有多少人?【巩固4】小红摆成一个正方形实心方阵用棋子100枚,最外边的一层共多少枚棋子?例2:参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这 个正方形队列减少一行和一列,则要减少33人。
问参加团体操表演的运动员有多少人?解析:从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:去掉一行、一列的总人数=去掉的每边人数×2-1解 :方阵问题的核心是求最外层每边人数。
【四升五】小学数学奥数第3讲:假设法解题(一)-课件
为什么有
鸡蛋有:18×180=3240(个)
差距呢?
小箩有:(3240-2520)÷(180-120)=12(个)
大箩有:18-12=6(个)
答:大箩有6个,小箩有12个。
总结
运用假设法的思路解应用题,先要根据题意 假设未知的两个量是同一种量,或者假设要求的 两个未知量相等;其次要根据所作的假设,注意 到数量关系发生什么变化并作出适当的调整。
2×48=96(吨)
每辆卡车能 装多少吨?
答:这批货物有96吨。
例题四
某玻璃杯厂为商场运送1000个玻璃杯,双方商定每个运费为1 元,如果打碎一个,这个不但不给运费,而且要赔偿3元,结果运 送完结算时,玻璃杯厂共得运费920元。求打碎了几个玻璃杯?
假设1000个玻璃杯完好无损
应得运费:1×1000=1000(元)
小汽车有:(324-252)÷(18-12)=12(辆) 大汽车有:18-12=6(辆) 答:大汽车有6辆,小汽车有12辆。
练习五(选讲)
有鸡蛋18箩,每只大箩容180个,每只小箩容120个,这批 蛋共值302.4元。若将每个鸡蛋便宜2分出售,这些蛋可卖252元。 问:大箩、小箩各有几个?
鸡蛋总个数:(302.4-252)÷0.02=2520(个)
帮帮帮
一共有52人,现在共租用了11只船,每只大船 坐6人,每只小船坐4人,刚好坐满。到底租用了几 只大船和几只小船呢?
假设法解题(一)
例题一
今有鸡、兔居一笼,已知鸡头和兔头有35个,鸡脚与兔脚 共94只,问鸡、兔各多少只?
脚有35×2=70(只)
兔有:(94-70)÷(4-2)=12(只) 鸡就有:35-12=23(只)
剩余4×36=144(吨) 则小车能装:144÷(45-36)=16(吨)
小学奥数专题——第3讲:多人多次相遇追及问题(老师版)
第3讲:多人多次相遇追及问题在之前的课程中,我们已经学过了如何处理两个对象之间的相遇追及问题.本讲我们进一步学习过程更为复杂的三个对象之间的行程问题.本讲中画线段图非常重要,你还记得画行程图要注意什么吗?【例1】有甲、乙、丙三个人,甲每分钟走40米,乙每分钟走60米,丙每分钟走50米.A、B两地相距2700米甲从A地,乙、丙从B 地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?【分析】全程已知,三个人的速度也都已知,那么甲乙的相遇时间、甲丙的相遇时间都是可以计算出来的.【答案】3分钟详解:甲和乙相遇时的路程和是2700米,速度和是100米/分,所以相遇时间是2700÷100=27分钟.甲和丙相遇时的路程和也是2700米,速度和是90米/分,所以相遇时间是2700÷90=30分钟,所以又过了3分钟甲和丙才相遇.【例2】叮叮、咚咚两人各自开车从A地出发,销销则从B地同时出发,相向而行.叮叮的速度为每小时70千米,销销的速度为每小时50千米.出发3小时后,叮叮与销销相遇又过了1小时,咚咚也与销销相遇请问:咚咚的车速是多少?【分析】请在图中把过程补全,并标出相应的数据,例如速度、时间、路程等.然后注意分析,看看哪个过程是可以计算的?【答案】40千米/时详解:首先画出线段图(如下图),有两次相遇,其中还隐藏了一次追及问题.AB全程:(70+50)×3=360千米咚咚和销销相遇时间是4小时,他们速度和是:360÷4=90千米/时,那么咚咚的速度是90-50=40千米/时.1、有冰冰、雪雪、霜霜三个人,冰冰每分钟走4米,雪雪每分钟走5米,霜霜每分钟走6米.A、B两地相距990米雪雪从A地,霜霜、冰冰从B地同时出发相向而行.请问,雪雪与霜霜相遇之后多少分钟又与冰冰相遇?【答案】20分钟简答:雪雪和霜霜相遇时的路程和是990米,速度和是11米/分,所以相遇时间是990÷11=90分钟.雪雪和冰冰相遇时的路程和也是990米,速度和是9米/分,所以相遇时间是990÷9=110分钟,又过了20分钟雪雪和冰冰才相遇.2、小春、小秋两人从A地出发,小夏则从B地同时出发,相向而行小春的速度为每小时60千米,小夏的速度为每小时40千米.出发3小时后,小春与小夏相遇.又过了1小时,小秋也与小夏相遇请问:小秋的速度是多少?【答案】35千米/时简答:有两次相遇,其中还隐藏了一次追及问题.AB全程:(60+40)×3=300千米小秋和小夏相遇时间是4小时,他们速度和是:300÷4=75千米/时,那么小秋的速度是75-40=35千米/时.【例3】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车。
五年级寒假奥数教案第3讲:最值问题
(一)星海遨游1(10分钟)
一把钥匙只能打开一个房间,现有20把钥匙和20个房间,但不知哪把钥匙开哪个房间,如要打开所有的房间,最多要开几次?
师:同学们!我们来看这道题,用钥匙开门我们在家里都看过吧?
生:看过。
师:一把钥匙是不是只能开一个房门?
生:是。
师:这里总共有20把钥匙和20个房间,要把所有房间都打开,我们先看第一扇门,如果运气很好,是不是一拿就能拿到这扇门的钥匙,但我们不可能每次运气都这么好的是不是?
二、太空遨游(30分钟)
(一)太空遨游1(10分钟)
有一架天平,只有5克和30克的砝码各一个,现在要把300克盐分成三等份,问最少需要用天平称多少次?
师:天平同学们还记得吗?
生:记得。
师:天平有什么啊,同学们告诉我?
生:称重的砝码。
师:是的,你们太棒了。今天我们要用天平把这300克等分成3等份,你们告诉我,等分之后,每份多少克?
师:同学们,今天我们来玩个游戏好不好?
生:好。
师:(拿出猪头)你们知道这是什么吗?
生:猪头。
师:你们太聪明了,没错这就是猪头,老师手上还有猪眼睛和鼻子,现在我要请两位小朋友上来,在这里找出猪鼻子和眼睛并贴在相应的位置,谁用的时间最少,谁就赢了。
师:谁想上来试一试?
生:我……(游戏结束,给予奖励)
师:同学们,你们知道吗,在我们平时生活中,会出现很多这种要求最大值或者最小值的问题,这就是我们今天要学的最值问题。【出示课题:最值问题】
板书:
长+宽=36÷2=18(米)
长=宽=18÷2=9(米)
9×9=81(平方米)
答:围成菜园的最大面积是81平方米。
三、火星漫步(5分钟)
五年级奥数假设法解题
假设法解题✿趣味数学“鸡兔同笼”问题是我国古代一类著名的数学趣题,最早出现在大约1500多年前的古代名著《孙子算经》中。
在那时,一个名叫孙子的人。
有一天,他到一位朋友家中做客,看到朋友养了很多的鸡和兔,随口问道:“你家里养了多少只鸡和兔啊?”朋友回答说:“鸡、兔共35只,脚共94只。
请你算一下,鸡、兔各有几只?”你们知道孙子的朋友家养的鸡和兔各多少只吗?✿知识回顾1、笼子里有若干只鸡和兔。
从上面数有10个头,从下面数有32条腿。
鸡和兔各有几只?2、鸡兔同笼,共有45个头,146条腿。
笼中鸡兔各有多少只?3、停车场上停放了39辆三轮车和自行车,两种车共有108个轮子。
三轮车和自行车各有多少辆?✿例题精讲例1、52名师生到颐和园去划船,共租了11条船。
每条大船坐6人,每条小船坐4人,且每条船恰好坐满。
大船、小船各租了多少只?例2、为了迎接“新中国60华诞”,学校组织了“祖国在我心中知识竞赛”。
共20道题,每做对一道题得5分,做错或未答扣2分。
小明本次竞赛得了79分,他做对了多少道题?例3、有5元和10元的人民币共14张,共100元。
问5元币和10元币各多少张?例4、运输公司给某工厂运送2000箱玻璃。
合同规定:完好运到一箱给50元运费;如损坏一箱,不但不给运费,还要赔偿400元成本费。
这批玻璃运到后,运输公司共收到运货款91900元。
运输过程中,损坏了几箱玻璃?例5、有一元、二元、五元的人民币50张,总面值为116元。
已知一元的比二元的多2张,问三种面值的人民币各有几张?✿针对练习:1、鸡兔同笼,共有100个头,320只脚。
鸡兔各有多少只?2、签字笔每支1.9元,圆珠笔每支1.1元。
小红两种笔共买了16支,花了28元。
小红两种笔各买了多少支?3、停车场上停放了24辆汽车和三轮摩托车,其中汽车有4个轮子,三轮摩托车有3个轮子,这些车共有86个轮子。
那么,停车场上有三轮摩托车多少辆?4、六年级同学乘汽车到某地旅游,买车票99张,共花28元。
奥数讲义-第3讲三角形-5龙班学生版
第五讲三角形§5.1 三角形的基本概念性质考试要点剖析每个三角形都有三条边和三个角.它们是互相联系、互相制约的,这体现在以下方面:(1)边与边之间的关系:两边之和大于第三边,或两边之差小于第三边.(2)角与角之间的关系:三个内角的和等于1.三角形构成与内角和定理例1.1)(★★★第37届莫斯科数学奥林匹克题)已知:用长度为a、b、c的线段可以作三角形.试证:用长度为的线段也可以作成三角形.2)(★★ 1997年安徽部分地市联赛题)如图,的度数为__________A.B.C.D.本讲纲要§5.1 三角形的基本概念性质1.三角形构成与内角和定理2.三角形的重要线段3.三角形的面积4.三角形边角关系§5.2 全等三角形1.SAS 边角边公理与应用2.ASA 角边角公理与应用3.SSS 边边边公理与应用4.HL直角三角形的全等与应用5.常用全等三角形证明构造方法1)截长法、补短法构造三角形全等2)旋转法构造三角形全等3)平行线构造三角形全等§5.3 三角形的特殊巧合点1.重心2.外心3.内心4.垂心§5.4 特殊三角形1.等腰三角形2.直角三角形3.等边三角形2.三角形的重要线段三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的中线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.三角形的高从三角形一个顶点向它的对边所在直线画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高.三角形的中位线连结三角形两边中点的线段叫做三角形的中位线.中位线平行于底边且等于底边的一半.三角形的外角平分线三角形一个内角的邻补角的平分线与这个角的对边的延长线相交,这个角的顶点和交点之间的线段叫做三角形的外角平分线.三角形的内角平分线上的点到这个角的两边的距离相等.同一个三角形中,大角的角平分线长短于小角的角平分线长.三角形中任何一边上的中线都把三角形分成面积相等的两部分.同一个三角形中,大边上的中线短于小边上的中线.三角形的任何一边上的高都垂直于该边.三角形的三条高未必都在三角形的内部.三角形的内角平分线、中线和高又有相同之处:在同一个三角形中,无论是三条中线,还是三条高,或者三条内角平分线,它们分别相交于一点.在不混淆的情况下,有时,三角形的角平分线、中线和高也指它们所在的直线.例2.1)(★★ 2003年全国联赛题)如图分别是的平分线.若,则的度数为__________【解】:2)(★★第27届莫斯科奥林匹克题)△ABC的边AB和BC上的高线(分别)不短于边长,试求该三角形的各个角度数.【解】:3)(★★ 1995年四川省竞赛题) 在△ABC中,P、Q分别是边AB和AC上的点,中线AM与PQ交于N.若AB:AP=5:2,AC:AQ=4:3,则AM:AN= __________【解】:3.三角形的面积海伦公式等底等高的两个三角形面积相等;两个等底的三角形的面积比等于底边上对应高的比;两个等高的三角形的面积比等于它们底边的比.例3.1)(★★★ 2001年重庆市竞赛题)如图l—12,在△ABC中,D、E是AC、BC的中点,。
五年级奥数 第3讲 长方形 正方形的周长
五年级奥数第3讲长方形和正方形的周长知识要点同学们都知道,长方形的周长=(长十宽)×2,正方形的周长=边长×4。
长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。
如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。
例1、有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
练习1、下图由8个边长都是2厘米的正方形组成,求这个图形的周长。
2、下图由1个正方形和2个长方形组成,求这个图形的周长。
50cm3、有6块边长是2厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。
例2、一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。
现在这块木板的周长是多少厘米?1、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。
求这个正方形的周长。
2、有两个相同的长方形,长8厘米,宽3厘米,如果按下图所示重叠放在一起,求这个图形的周长。
3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。
求划去的绿化带的面积是多少平方米?例3、(1)求下面图形的周长(单位:厘米)。
练习:1、求下面图形的周长。
(单位:厘米)2、一个长12厘米,宽2厘米的长方形和两个正方形正好拼成下图(1)所示长方形,求所拼长方形的周长。
3、有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长。
例4、如图所示,正方形分成甲、乙两部分,下面哪几句话是正确的?①甲的周长比乙大②甲、乙周长相等③甲的面积比乙大④甲、乙面积相等练习:1、在( )里填上“>”“<”或“=”。
五年级奥数第3讲 和差问题
第3讲和差问题一、专题简析:已知两个数的和与差,求出这两个数各是多少的应用题,叫和差应用题。
解答和差应用题的基本数量关系是:(和-差)÷2=小数小数+差=大数(和-小数=大数)或:(和+差)÷2=大数大数-差=小数(和-大数=小数)解答和差应用题的关键是选择适当的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。
二、精讲精练:例1:五、六年级同学共植树128棵,六年级比五年级多植树20棵,求五、六年级各植树多少棵?练习一1、两堆石子共有600吨,第一堆比第二堆多200吨。
两堆各有多少吨?2、用铁和铝混合制成600千克的合金,铝的重量比铁多400千克。
铁和铝各是多少千克?例2:两筐苹果共有120个,如果从第一筐中拿10个放到第二筐中,那么两筐的苹果个数相等。
两筐原来各有多少个苹果?练习二1、风华小学三(1)班和三(2)班共有学生108人,从三(1)班转3人到三(2)班,则两班人数同样多。
两个班原来各有学生多少人?2、某汽车公司两个车队共有汽车80辆,如果从第一车队调10辆到第二车队,两个车队的汽车辆数就相等。
两个车队原来各有汽车多少辆?例3:今年小明和妈妈两人的年龄和是38岁,3年前,小明比妈妈小26岁。
今年妈妈和小明各多少岁?练习三1、今年小刚和小强俩人的年龄和是21岁,1年前,小刚比小强小3岁。
今年小刚和小强各多少岁?2、黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜将比胡敏大3岁。
黄茜和胡敏今年各多少岁?例4:甲乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋。
两个仓库原来各有多少袋大米?练习四1、甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放到乙箱中,则甲箱比乙箱还多6袋。
两箱原来各有多少袋?2、甲、乙两筐香蕉共重60千克,从甲筐中取5千克放到乙筐,结果甲筐比乙筐还多2千克。
五年级奥数春季班第3讲 带余除法进阶
第三讲带余除法进阶模块一、化除为乘一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,或者a=b×q+r,0≤r<b;当r=0时,我们称a能被b整除;当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商。
在带余除法的算式中,已知三个量,就可以求出第四个量。
特别注意:0≤r<b.例1.完成下列填空:17÷5=……;÷6=13……4;79÷=9……7;113÷=12……;解:17÷5=3……2;82÷6=13……4;79÷8=9……7;113÷9=12……5;例2.两个自然数相除,商是7,余数是5,如果两个数相加,和是69,那么这两个数分别是和。
解:设这两个自然数分别为a、b,且a=7b+5,a+b=69,则7b+5+b=69,解得b=8,a=61.所以这两个数分别是61和8。
模块二、余数的特征余数特征:1.末位法——被4、25、8、125、16、625除的余数特征;2.数位和法——被3、9、99除的余数特征;3.数位差法——被11除的余数特征;4.三位截断法——被7、11、13除的余数特征;例3.34567除以3、4、5、7、9、11、13、99、999的余数分别为;;;;;;;;。
解:34567除以3、4、5、7、9、11、13、99、999的余数分别为1;3;2;1;7;5;0;16;601。
例4.(1)23456789+3456789的结果除以9的余数为;(2)23456789×3456789的结果除以9的余数为;(3)36×37×38+39×40×41的结果除以7的余数为;解:(1)23456789+3456789≡8+6≡5 (mod 9),所以余数是5;(2)23456789+3456789≡8×6≡48≡3(mod 9),所以余数是3;(3)36×37×38+39×40×41≡1×2×3+4×5×6≡126≡0 (mod 7),所以余数是0.模块三、1.a与b的差除以c的余数,等于a、b分别除以c的余数之差(或a的余数加一个除数减b的余数);2.a与b的和除以c的余数,等于a、b分别除以c的余数之和(或这个加除以c的余数);3.a与b的乘积除以c的余数,等于a、b分别除以c的余数之积(或这个积除以c的余数);例5.(1)若已知358除以7的余数是4,那么359除以7的余数是;360除以7的余数是;(2)3、32、33、34、35、36、37、38、39、310除以7的余数分别是;;;;;;;;;。
高斯小学奥数五年级下册含答案第03讲_行程问题综合提高
第三讲行程问题综合提高漫画第一幅图,一个主席台,上面有横幅,写着“高思运动会”左图,100米跑比赛的现场,直线跑道,小高和墨莫在比赛;右图,3000米跑比赛的现场,环形跑道,萱萱和卡莉娅在比赛赛艇比赛的现场,阿呆和阿瓜在比赛在小学数学中,行程问题占了很大的分量.行程问题主要考查学生对于运动三要素:速度、时间和路程的认识.学习行程问题对于学生认识世界,以及以后理科课程的学习都有很大的帮助.行程问题中最基本的内容是相遇和追及.在与相遇追及相关的行程问题中,找出“路程和”与“路程差”是解题的关键.练一练1.东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,那么甲、乙两人的速度分别是多少/千米时?2.甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地.2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地.那么两车相遇的时刻是多少?例题1.甲、乙两人从A、B两地同时出发相向而行,相遇地点距离AB的中点10千米.已知甲每小时走4千米,乙每小时走6千米.则AB两地相距多少千米?练习1.甲、乙两人从A、B两地同时出发相向而行,相遇地点距离AB的中点2千米.已知甲每小时走5千米,乙每小时走4千米.则AB两地相距多少千米?例题2.一列火车于中午12时离开A地驶往B地,另一列火车则于40分钟后离开B地驶往A地.若两列火车以相同的均速在同一路线上行驶,全程各需要3.5小时.则这两列火车在几点几分相遇?练习2.一列火车于下午4点离开A地驶往B地,1个小时后另一列火车离开B地驶往A 地.已知两车速度相同,且下午6点20分时两车相遇.那么火车走完全程需要多长时间?大部分行程问题中,人或车都是在笔直的平路上运动.不过在有些问题中,运动的场所会比较特殊,有时候会在水上,有时候运动的路线会是环形的.练一练1.甲、乙两地相距160千米,一只小船在静水中的速度为每小时24千米.它从乙地逆水航行到甲地用了8小时,在从甲地返回到乙地时,由于涨水,水速变为原来的2倍,则返回时需用多少小时?2.有一个周长是80米的圆形水池.甲沿着水池散步,速度为1/米秒;乙沿着水池跑步,速度为2.2/米秒,并且与甲的方向相反.如果他俩从同一点同时出发,那么当乙第8次遇到甲时,还要跑多少米才能回到出发点?例题3.甲、乙两船分别从距离120千米的A、B两码头同时出发,在A、B之间往返,A 在B的上游.两船在静水中的速度为每小时25千米,水流速度为每小时5千米.那么甲、乙两船第二次相遇的地点距离A多少千米?练习3.甲、乙两船分别从距离120千米的A、B两码头同时出发,在A、B之间往返,A 在B的上游.两船在静水中的速度为每小时16千米,水流速度为每小时4千米.那么甲、乙两船第二次相遇的地点距离A多少千米?例题4.甲乙二人在一个环形跑道的起点同时开始跑步.结果发现:若甲沿顺时针方向,乙沿逆时针方向,从出发到第一次迎面相遇需要2分钟;若甲乙都沿逆时针方向,则从出发到甲第一次追上乙要用9分钟.已知相遇地点与追及地点相距130米,那么整条环形跑道的长度是多少?练习4.甲乙二人在一个环形跑道的起点同时开始跑步.结果发现:若甲沿顺时针方向,乙沿逆时针方向,从出发到第一次迎面相遇需要3分钟;若甲乙都沿逆时针方向,则从出发到甲第一次追上乙要用5分钟.已知相遇地点与追及地点相距100米,那么整条环形跑道的长度是多少?多次往返问题是一类很重要的行程问题.多次往返问题有很强的周期性,解决这类问题时一定要注意.例题5.小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B 两站同时出发,相向而行,第一次迎面相遇后两人继续前进,分别到达B、A后返回并在途中第二次迎面相遇.第二次迎面相遇地点距离A、B两站的中点450米.从两人同时出发到第二次迎面相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次迎面相遇是在几点几分?例题6.甲、乙二人同时从A、B两地相向出发,在AB之间折返而行,甲的速度比乙快.已知两人第一次迎面相遇点距AB中点2千米,第二次迎面相遇点距A地4千米.那么AB之间的距离是多少?长征长征,指中国工农红军主力从长江以南各革命根据地向陕甘革命根据地会合的战略转移.1934年10月,中央红军主力开始长征.同年11月和次年4月,在鄂豫皖革命根据地的红二十五军和川陕革命根据地的红四方面军分别开始长征.1935年11月,在湘鄂西革命根据地的红二、六军团也离开根据地开始长征.1936年6月,第二、六军团组成第二方面军.同年10月,红军第一、二、四方面军在甘肃会宁胜利会合,结束了长征.参加长征的红军有以下四支:第一支是中央红军(后改称红一方面军),于1934年10月10日由江西的瑞金等地出发,1935年10月19日到达陕西的吴起镇(今吴旗县),行程达二万五千里;第二支是红二十五军(后编入红一方面军),于1934年11月16日由河南罗山何家冲出发,1935年9月15日到达陕西延川永坪镇,同陕甘红军会师,合编为红十五军团,行程近万里;第三支是红四方面军,于1935年5月初放弃川陕苏区,由彰明、中坝、青川、平武等地出发,向岷江地区西进,1936年10月9日到达甘肃会宁,与红一方面军会师,行程一万余里;第四支是红二、红六军团(后同红一方面军第三十二军合编为红二方面军),于1935年11月19日由湖南桑植刘家坪等地出发,1936年10月22日到达会宁以东的将台堡,同红一方面军会师,行程两万余里.长征粉碎了国民党反动派扼杀中国工农红军的罪恶计划,它的胜利表明中国共产党和中国工农红军是一支不可战胜的力量.作业1.甲、乙两船分别从A、B两港口出发相向而行,在AB的中点相遇.已知甲船的静水速度是乙船静水速度的2倍,那么甲船静水速度与水速之比是多少?作业2.上午10:20,甲、乙两辆汽车同时分别从A、B两地相对开出,在AB之间折返前进,甲车每小时行42千米,乙车每小时行45千米.下午1:20时两车第二次迎面相遇,那么AB之间的距离是多少千米?作业3.东西两镇相距240千米,一辆客车在上午8点从东镇开往西镇,一辆货车在上午9点从西镇开往东镇.到正午12点,两车正好在两镇间的中点相遇.如果两车上午8点同时分别由两镇出发相向而行,那么上午10点时两车相距多少千米?作业4.甲车的速度是40千米/时,乙车的速度是60千米/时.甲车从A地、乙车从B地同时出发相向而行.两车相遇4.5小时后,甲车到达B地.A、B两地相距多少千米?作业5.甲、乙两人从400米的环形跑道上的同一点同时出发相背而行,8分钟后两人第三次相遇.已知甲每秒钟比乙每秒钟多行0.1米,那么两人第三次相遇的地点与出发点之间的距离是多少?第三讲 行程问题综合提高例题1. 答案:100详解:由“相遇地点距离AB 的中点10千米”可知,乙比甲多走了20千米.两人共走了206410÷-=()小时.A 、B 两地相距4610100+⨯=()千米.例题2. 答案:14点05分详解:3.5小时是210分钟.第一列火车出发40分钟后,即12点40分时,第二列火车出发.可知这时两车间的路程需要走170分钟.因为两车速度相同,可知两车相遇需要85分钟,那么相遇的时刻是14点05分.例题3. 答案:48详解:如图,甲、乙在到达码头后各自返回第二次相遇.乙从B 到A 逆流而行,共用120255)6÷-=(小时.在这6小时中,甲顺流而行120255)4÷+=(小时,逆流而行2小时,行了2(255)40⨯-=千米,甲、乙还相距80千米,880(3020)5÷+=小时后第二次相遇.此时距离A 地830485⨯=千米.例题4. 答案:360详解:可知跑道的周长既是2的倍数,也是9的倍数.那么设周长为36米,两人速度和为18米/分,速度差为4米/分.甲的速度为11米/分,乙的速度是7米/分.相遇时乙沿逆时针方向跑了14米,追及时沿逆时针方向跑了63米,即跑了1圈后又跑了27米.可知相遇地点与追及地点相距13米.所以跑道的长度应该是1301336360÷⨯=米.例题5. 答案:45分钟,2400米,8点15分 详解:第二次相遇时甲共比乙多行了4502900⨯=米,可求出两人共用时()900907045÷-=分钟.又知两人共走了3个全程,A 、B 两站距离为()90704532400+⨯÷=米.第一次相遇用时()2400907015÷+=分钟.因此第一次相遇时是8点15分.例题6. 答案:20千米详解:这道题目分两种情况.第一种,第二次相遇时乙尚未到达A 点.第二次相遇所用时间是第一次相遇所用时间的3倍.第一次相遇时甲比乙多行4千米,那么第二次相遇时甲应比乙多行12千米.对照线段图,发现如果这样的话,第一次相遇时甲走4千米,乙走0千米.甲的速度是无穷大!! 第二种情况,第二次相遇时乙已经到达A 点.同样第二次相遇时甲比乙多行12千米.对照线段图可知全程为20千米.练习1. 答案:36简答:相遇点距离中点2千米,说明相遇时甲比乙多走了4千米.()4544÷-=,()45436⨯+=千米.练习2.答案:200分 简答:5点钟第二列火车出发,到相遇需要80分钟,那么第一列火车走完全程需要60802200+⨯=分钟.练习3. 答案:45简答:甲、乙在到达码头后各自返回第二次相遇.乙从B 到A 逆流而行,共用120164)10÷-=(小时.在这10小时中,甲顺流而行120164)6÷+=(小时,逆流而行4小时,行了4(164)48⨯-=千米,甲、乙还相距72千米,972(20+12)=4÷小时后第二次相遇.此时距离A 地920454⨯=千米.练习4.答案:750 简答:设跑道周长为15米,然后计算出两人的速度即可.作业1. 答案:4:1 简答:可知甲船逆水,乙船顺水.甲逆:乙顺=1:1,甲静:乙静=2:1.因为甲逆与乙顺的和等于甲静与乙静的和,这就是一个比例中的“和不变”问题.甲逆:乙顺=3:3,甲静:乙静=4:2,可求出水速是1份,所以甲静和水速的比是4:1.作业2. 答案:87简答:从出发到两车第二次迎面相遇,两车共行驶了()42453261+⨯=千米,正好是3个全长.所以AB 之间的距离是87千米.作业3. 答案:100简答:客车的速度是30千米/时,货车的速度是40千米/时.如果两车同时出发,到10点时共行140千米,相距100千米.作业4. 答案:300简答:因为两车的速度比是2:3,那么相遇点距A 、B 两地的距离之比也是2:3.那么甲车在这两段路程上所用的时间之比也是2:3.而甲车在后一段路程行驶了 4.5小时,所以甲车一共行驶了234.5=7.53+⨯小时.AB 两地相距300千米. 作业5. 答案:176米简答:8分钟后两人一共走了3圈即1200米,则两人的速度之和是2.5米/秒.又因为甲比乙每秒多行0.1米,可求出甲的速度是1.3米/秒,乙的速度是1.2米/秒.到第三次相遇时,甲走了480 1.3624⨯=米,与出发点的距离是400224176-=米.。
五年级奥数——平均数的应用
年 级
五年级 授课日期 授课主题 第3讲——平均数的应用
教学内容
i.检测定位
求若干个数的平均数,就是将各数的总和除以这些数的个数的商 . 其公式是
平均数=若干个数的总和÷数的个数
或 若干个数的总和=数的个数⨯平均数
解决平均数问题的关键是要注意弄清楚“总和”所对应的“个数”.例如,一辆客车前3个小时每小时行35千米,后两小时共行80千米,问这辆客车全程平均每小时行多少千米?解决这个问题关键是,首先要搞清楚全程有多少千米,其次搞清楚全程用了多少小时.即
全程=前半程+后半程=18580353=+⨯(千米),
全程所用时间=523=+(小时).
所以 全程平均速度=时)(千米/375185=÷
【例1】 王强参加了4次数学测验,平均分是68分,他想在下次测验后,将5次的平均成绩提高到70分以上.那么,下次测验,他至少要得多少分?
分析与解 先求总分:先4次总分=.272
684(分)=⨯ 如果5次的平均分在70分以上,则这5次的总成绩至少要得到350570=⨯分,所以小强第5次至少要得.78272-350(分)=
随堂练习1。
五年级上册数学奥数试题第3讲.行程——用比例解行程问题(含答案解析)人教版
1. 理解行程问题中正比例和反比例关系.2. 用比例和份数思想解行程问题.本讲是在秋季所学的火车过桥和流水行船的行程问题基础上,讲解运用比例性质解多次相遇追及行程问题.体会比例解决问题的优势.距离、速度、时间这三个数量之间的关系,可以用下面的公式来表示:距离=速度⨯时间.显然,知道其中的两个量,就可以求出第三个量,这是我们在小学课堂中经常解决的问题.同时对于三者之间的关系,我们还可以发现:当时间相同时,路程和速度成正比;当速度相同时,路程和时间成正比;当路程相同时,速度和时间成反比.也就是说:设甲、乙两个人,所走的路程分别为S 甲、S 乙;速度分别为V 甲、V 乙;所用时间分别为T 甲、T 乙时,由于S V T =⨯甲甲甲,S V T =⨯乙乙乙,有如下关系: ⑴当时间相同即T T =乙甲时,有::S S V V =乙乙甲甲;⑵当速度相同即V V =乙甲时,::S S T T =乙乙甲甲;⑶当路程相同即S S =乙甲时,::V V T T =乙乙甲甲.【例 1】 甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距___千米.第3讲用比例解行程问题用比例解多次相遇问题乙B【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[铺垫] 甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?[分析] (方法一)10分钟两人共跑了(3+2)⨯60⨯10=3000 米 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,L ,29共15次. (方法二)第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一个相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.[拓展] 老师可以把【例 1】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2-1=5(个全程),甲走了:3⨯5=15(份)在B 点,第四次相遇甲乙共走:4⨯2-1=7(个全程),甲走了:3⨯7=21(份)在D 点,已知BD 是20千米,所以AB 的长度是20÷4⨯(2+3)=25(千米).【例 2】 甲、乙二人同时从A 地出发同向而行去往B 地,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲、乙到B 地后立即返回A 地.已知二人第三次相遇的地点距第一次相遇的地点是20千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.FE 乙甲D CB A【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此::30:203:2S S V V ===乙乙甲甲,设全程为5份,则一个全程中,甲走了3份,乙走了2份,第一次相遇,甲、乙一共行了两个全程,一个全程甲走3份,2个全程甲共走了326⨯=(份)所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,4个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)[拓展] 老师可以把【例 2】的问题改为:已知两个人第四次相遇的地点距离第三次相遇的地点20千米,那么A 、B 两地相距多少千米?[分析] 由此推出,第三次相遇甲乙共走:3⨯2=6(个全程),甲走了:3⨯6=18(份)在第D 点,第四次相遇甲乙共走:4⨯2=8(个全程),甲走了:3⨯8=24(份)在F 点,已知DF 是20千米,所以AB 的长度是20⨯(2+3)=100(千米).[总结] 设一个全程中甲走的路程为M ,乙走的路程为N⑴甲乙二人从两端出发的直线型多次相遇问题: ⑵ 同一出发点的直线型多次相遇问题【例 3】 甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2008次相遇的地点和第2009次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米? D BA【分析】 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008⨯2-1)⨯3=12045(份),120451012045÷=L ,所以第2008次相遇地点是在从A 地向右数5份的C 点,第2009次相遇时甲走:(2009⨯2-1)3⨯=12051(份),120511012051÷=L ,所以第2009次相遇地点在从B 点向左数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).[总结] 对于份数比较大找相遇地点时,用甲走的总份数除以全程份数,得到商和余数,当商为偶数时,从甲的出发点向终点数余数的份数即为相遇地点,当商为奇数时,从终点向甲的起点数余数的份数即为相遇地点[巩固] 甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?乙[分析] 因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V ====乙乙甲甲:S :,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷=L ,所以第100次相遇地点是在从B 地向左数2份的C点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷=L,所以第101次相遇地点在从A点向右数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是16047280÷⨯=(米).【例 4】小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第六次相遇的地点离乙村多远(相遇指迎面相遇)?【分析】画示意图如下.乙甲第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5⨯3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).第六次相遇时,两人已共同走了两村距离26111⨯-=倍的行程.其中张走了3.51138.5⨯=(千米),38.58.54 4.5÷=L,就知道第六次相遇处,离乙村4.5千米.[巩固]甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.[分析]第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4⨯3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米.【例 5】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑.甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动.甲、乙两人在第几次相遇时距A地最近?最近距离是多少米?【分析】(300240)302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份,第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A地是全程的59,第二次相遇时两人共行了3个全程,甲行的距A地9(359)3-⨯-=份,所以第二次相遇地点距A地是全程的13,第三次相遇时两人共行了5个全程,55927⨯÷=L甲行的距A地7份,所以第三次相遇地点距A地是全程的79,所以第二次相遇距A地最近,最近距离是124008003⨯=(米)【例 6】A、B是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第二十一次相遇时,甲跑完几圈又几米?【分析】甲、乙第一次相遇时共跑0.5圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了1003300⨯=米,此时甲差60米跑一圈,则可得0.5圈是30060240-=米,一圈是480米.第一次相遇时甲跑了240100140-=米,以后每次相遇甲又跑了1402280⨯=米,所以第二十一次相遇时甲共跑了:140280(211)5740+⨯-=(米),574048011460÷=L.即跑完11圈又460米.[铺垫] 甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?[分析] 第一次相遇,两人共走了0.5圈;第二次相遇,两人共走了1.5圈.所以第二次相遇时,乙一共走了¼BAD 1003300=⨯=(米),又知到»AD 60=(米),所以圆形场地的半周长为30060240-=(米),那么,周长为2402480⨯=米. 【例 7】 A 、B 两地相距13.5千米,甲、乙两人分别由A 、B 两地同时相向而行,往返一次,甲比乙早返回原地,途中两人第一次相遇于C 点,第二次相遇于点D ,CD 相距3千米,则甲.乙两人的速度比是为多少?【分析】 方法一:根据题意画图如下乙D B设甲、乙第一次相遇时分别走的路程为x 千米,y 千米,依题意列方程组得,3313.53313.5x y y x --=⎧⎨+-=⎩解得7.56x y =⎧⎨=⎩,所以甲乙的速度比,即为甲乙路程比7.5:65:4== 方法二:用甲、乙代表两个人第一次相遇走的路程,可以整体的分析从开始到第二次相遇甲走的路程为:3⨯甲,乙走的路程为:3⨯乙,甲乙二人的路程差为:3⨯(甲-乙);分开考虑甲一共走的路程为:一个全程+乙+3,乙一共走的路程为:一个全程+甲-3,两个人的路程差为:(一个全程+乙+3)-(一个全程+甲-3)=乙-甲+6.综合列式为:3(甲-乙)=乙-甲+6,得到:甲-乙=1.5,由于,甲+乙=13.5,所以甲=7.5(千米),乙=6(千米),所以甲乙的速度比,即为甲乙路程比7.5:65:4==.【例 8】 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?【分析】 设右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点809090-=(米).因此相同时间内,甲乙所行路程比为180:902:1=,所以甲乙二人的速度比为2:1,因此乙每分行驶20210÷=(米),甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90(1020)3÷+=(分).[拓展]如图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?乙甲[分析]甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300(9070)15÷-=(分),此时甲走了9015300 4.5⨯÷=(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需2300590163⨯÷=分钟,即16分40秒.【例 9】甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离.【分析】先画图如下:C2626 66乙甲B方法一: 若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此甲从C走到D之间的路程时,所用时间应为:26620-=(分).同理乙从C走到D之间的路程时,所用时间应为:26632+=(分),所以相同路程内甲乙所用时间比为20:325:8=,因此甲、乙二人的速度比为8:5,所以甲的速度为505880÷⨯=(米/分),A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)方法二:设甲的速度是x米/分钟那么有(50)26(50)6x x-⨯=+⨯解得80x=A、B两地的距离为(8050)6780+⨯=(米),或(8050)26780-⨯=(米)[拓展]甲、乙两人分别从A、B两地同时相向出发.相遇后,甲继续向B地走,乙马上返回,往B地走.甲从A地到达B地.比乙返回B地迟0.5小时.已知甲的速度是乙的34.甲从A地到达地B共用了多少小时?[分析]相遇时,甲、乙两人所用时间相同.由题意知,甲乙二人速度比为3:4,所以甲乙二人所行的路程比为3:4,从相遇到返回B地,甲乙所行路程相同,所以返回所用时间比为4:3,又知甲从A地到达B地比乙返回B地迟0.5小时,即从相遇点到B地这同一段路程中,甲比乙多用0.5小时.可求出从相遇点到B地甲用了0.542⨯=(小时),相遇时,甲乙二人所行的路程比为3:4,甲用时用比例解其他行程问题为243 1.5÷⨯=(小时)甲从A地到达地B共用2 1.5 3.5+=(小时)【例10】 一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【分析】 设原速度是1. 后来速度为(120%) 1.2+=,速度比值:1:(120%)5:6+=这是具体地反映:距离固定,时间与速度成反比.时间比值6:5 这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时.原来时间就是1⨯6=6小时.同样道理,车速提高30%,速度比值:1:(130%)10:13+= 时间比值:13:10这样节省了3份,节省1小时,可以推出行驶一段时间后那段路程的原时间为133 所以前后的时间比值为(6-133):1335:13=.所以总共行驶了全程的5135=+518.[巩固] (第三届走美试题)从上海开车去南京,原计划中午11:30到达.但出发后车速提高了17,11点钟就到了.第二天返回,同一时间从南京出发.按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市的路程是 千米.[分析] 由题意设原来速度和车速提高了17后速度比为7:8,则所用时间比为8:7,设原计划用时8份,提速后用时7份,差的一份正好是30分钟,,则原计划用时为240分钟,返回时间缩短20分钟,是由于车速提高16,原来计划速度与返回提速后速度比为6:7,则返回提速后这段路程内所用时间比为7:6,设这段路程原计划用时7份,提速后用时为6份,差的一份正好是20分钟,所以返回提速后用时120分钟,原计划用时140分钟,则原速行驶120千米用时240140100-=(分钟),上海、南京两市的路程是120100240288÷⨯=(千米)【例11】 甲、乙两人分别从A 、B 两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B 地时,乙离A 地还有14千米,那么A 、B 两地的距离是多少千米?【分析】 因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为3:2,设第一次相遇时甲、乙两人行的路程分别是3份,2份相遇后,甲、乙两人的速度比为[][]3(120%):2(130%)18:13⨯+⨯+=,到达B 地时,即甲又行了2份的路程,这时乙行的路程和甲行的路程比是13:18,即乙的路程为21318⨯=419.乙从相遇后到达A 还要行3份的路程,还剩下4531199-=(份),正好还剩下14千米,所以1份这样的路程是514199÷=(千米).A 、B 两地有这样的325+=(份),因此A 、B 两地的总路程为:9545⨯=(千米)【例12】 (第五届走美决赛试题)小王8点骑摩托车从甲地出发前往乙地,8点15追上一个骑车人.小李开大客车8点15从甲地出发前往乙地,8点半追上这个骑车人.小张8点多也从甲地开小轿车出发前往乙地,速度是小李的1.25倍.当他追上骑车人后,速度提高了20%.结果小王、小李、小张三人一同于9点整到达乙地.小王、小李、骑车人的速度始终不变.骑车人从甲地出发时是 点 分,小张从甲地出发时是8点 分 秒.【分析】9:009:009:009:00骑车人小张小李8:15小王8:00乙地15分15分由题意知小王与小李从甲地到乙地所用时间分别是60分、45分,因此小王与小李的速度比是3:4,又小张速度是小李的1.25倍,因此小王、小李、小张的速度比为3:4:5,设小王、小李、小张的速度分别为3、4、5.由上图可以看小李比小王15分钟多行的路程恰是骑车人15分钟的路程,因此骑车人的速度为(43)15151-⨯÷=,即小王的速度是骑车人的3倍,而小王追上骑车人要15分钟,所以骑车人行这段路程要45分钟,因此骑车人是8点30分出发的.小王从甲地到乙地要1小时,可知全程为603180⨯=,因此骑车人到乙地要3小时,骑车人在9点时恰好行了全程的一半,由题意小张追上骑车人后速度变为6,从追上骑车人到到达乙地小张比骑车人多行了180290÷=,因此小张以速度6行驶路程所用时间为90(61)18÷-=(分),所行路程为186108⨯=,则追赶骑车人所用时间为(180108)514.4-÷=(分),因此小张从甲地到乙地共用时间为1814.432.4+=(分)=32分24秒,即小张从甲地出发时是8点27分36秒[巩固] 甲从A 出发步行向B .同时,乙、丙两人从B 地驾车出发,向A 行驶.甲乙两人相遇在离A 地3千米的C 地,乙到A 地后立即调头,与丙在C 地相遇.若开始出发时甲就跑步,速度提高到步行速度的2.5倍,则甲、丙相遇地点距A 地7.5千米.求AB 两地距离.[分析] 设BC 间的路程为S ,甲的速度为v 甲,乙的速度为v 乙,丙的速度为v 丙,由题意知,3v v S =甲乙, 6v S v S+=乙丙,则36)v S v S S ⨯+=⨯甲丙(,甲提速后速度变为2.5v 甲.则2.57.5(7.53)v v S =--甲丙,即34.5v v S =-甲丙,所以36)34.5S S S S ⨯+=⨯-(,解得18S =,所以AB 两地间路程为18321+=(千米)1.甲、乙两车同时分别从相距55千米的AB 两地相向开出,甲行驶了23千米后跟乙相遇,相遇后两车继续前进,到达对方出发地后立刻返回.问:⑴ 第2次相遇点距B 地多少千米?⑵第6次相遇点距A 地多少千米?【分析】 通过分析,我们可以发现:一个全程里甲走23千米,⑴ 第2次相遇共3全程,故甲走了23⨯3=69(千米),甲走了一个全程多了一点,故距离B 地就是69-55=14(千米).⑵第6次相遇总共是11个全程,故甲走了23⨯11=253(千米),25355433÷=L ,甲走了4个全程多点,多的那部分就是我们要求的距A 的距离为:33千米.2.甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇.相遇后继续前进,到达对方出发地后都又立刻返回,第二次相遇在离B地55千米处,求A、B两地相距多远.【分析】通过画图找出行程之间的关系.第一次相遇就相当于甲车和乙车一共走了一个全程,根据总结:第2次相遇总共走了3个全程,则甲就走了3个75千米,3⨯75=225千米,画图可以知道甲走了一个全程多了那55千米,所以全程为225-55=170千米.3.甲、乙两车分别从A、B两地出发,并在A、B两地间不断往返行驶,已知甲车的速度是15千米/小时,乙车的速度是25千米/小时,甲乙两车第三次相遇地点与第四次相遇的地点相差100千米,求A、B两地的距离是多少千米?【分析】甲、乙两车的速度比为:15:253:5=,所以可以把全程分成8份,每走一个全程甲走3份,乙走5份,第三次相遇甲乙共走:3215⨯-=(个全程),甲走了:3515⨯=(份),第四次相遇甲乙共走:4217⨯-=(个全程),甲走了:3721⨯=(份),画图知到两次相遇点100米是4份,所以AB的长度是10048200÷⨯=(千米).4.甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A地出发去B地,在A、B两地间往返而行,从开始走到第三次相遇,共用了6小时.A、B两地相距多少千米?【分析】从开始走到第一次相遇,两车走的路程是两个AB之长;而到第三次相遇,两车走的路程总共就是6个AB之长是:(52+40)⨯6=552(千米),A、B两地相距的路程是:552÷6=92(千米).5.一列火车从甲地开往乙地,如果将车速提高,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度.【分析】根据题意可知车速提高后与原来速度比为(1+20%):1=6:5,由于所行路程相同,所以所用时间比为5:6,所差时间是1小时,即1份是1小时,所以原来行完全程需要6小时,同理可求出行完240千米后所用时间为40⨯5=200(分钟)=133(时),所以行240千米所用时间为6-133=83(时),火车速度为240÷83=90(千米/时),甲乙两地间的距离为90⨯6=540(千米)6.一只小船第一次顺流航行65千米,逆流航行21千米,一共用了10小时;第二次顺流航行20千米,逆流航行12千米,用了4小时.那么船在静水中航行64千米需要多长时间?【分析】如果把第二次航行中顺流和逆流的航程增加到2.5倍,显然时间会变成:4 2.510⨯=小时;顺流航行20 2.550⨯=千米;逆流航行12 2.530⨯=千米.而第一次航行也是花了10小时,但是顺流航程和逆流航程分别是65和21千米.通过比较很容易看出第二次航行比第一次少了,655015-=千米的顺流航程,但是多了30219-=千米的逆流航程.顺流走15千米所花的时间和逆流走9千米所花的时间相等,由此可知顺流速度和逆流速度比应该是15:95:3=,因此相同时间内顺水路程和逆水路程比为5:3,逆流航行21千米相当于顺流航行35千米,所以顺水速度为(6535)1010+÷=(千米/时),逆水速度为10536÷⨯=(千米/时),静水速度为(106)28+÷=(千米/时),船在静水中航行64千米需要6488÷=(小时)巨蟒与豹子在一个原始森林里,一条巨蟒和一头豹子同时盯上了一只羚羊.豹子看着巨蟒,巨蟒看着豹子,各自打着“算盘”.豹子想:如果我要吃到羚羊,必须首先消灭巨蟒.巨蟒想:如果我要吃到羚羊,必须首先消灭豹子.于是几乎在同一时刻,豹子扑向了巨蟒,巨蟒扑向了豹子.豹子咬着巨蟒的脖颈想:如果我不下力气咬,我就会被巨蟒缠死.巨蟒缠着豹子的身子想:如果不下力气死缠,我就会被豹子咬死.于是双方都死命地用着力气.最后,羚羊安详地踱着步子走了,而豹子与巨蟒双双倒地.猎人看了这一场争斗甚是感慨,说:“如果两者同时扑向猎物,而不是扑向对方,然后平分食物,两者都不会死;如果两者同时走开,一起放弃猎物,两者都不会死;如果两者中一方走开,一方扑向猎物,两者都不会死;如果两者在意识到问题的严重性时互相松开,两者也都不会死.它们的悲哀就在于把本该具备的谦让转化成了你死我活的争斗.”巨蟒和豹子的悲哀在于它们本应该互相谦让,合作吃到鲜美的羚羊,但是却最后落得两败俱伤的下场.原因就在于它们的眼中都只有自己的利益,而根本没有想到他人.没有合作观念,自私自利的人最终必然会遭遇失败.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲假设法
我与知识手拉手
★知识提要★
在三年级,我们已经知道“鸡兔同笼”问题往往用假设法解。
本讲我们将继续使用这种方法来解题。
★知识点★
例1小明参加猜谜语比赛,共20个题,规定猜对一个得5分,猜错一个倒扣3分(不猜按猜错算)。
小明共得60分。
他猜对了几个题?
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只。
问鸡与兔各多少只?
例3 某校数学竞赛,共有20题填空题。
评分标准是每做对1题得5分,做
错1题倒扣3分,某题没做为0分。
小英结果得了69分,那么小英有
几题没做?
例4 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛
8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),问蜻蜓有多
少只?
例5 文化宫电影院有座位2000张,前排票每张4元,后排票每2元5角,
已知前排票比后排票的总价少1100元,问该影院有前座和后座各多
少?
D
1、某小学举行一次数学竞赛,共15道题。
每做对一题得8分,每做错一题倒扣4分。
小明共得72分,他做对了多少道题?
2、小华解答数学判断题,答对一题给4分,答错一题要倒扣4分。
她答了20道判断题,结果只得了56分。
她答错了多少道题?
3、育才小学五年级举行数学竞赛,共10题。
每做对一题得8分,错一题倒扣5分。
张小灵最终得分为41分。
她做对了多少题?
4、在小学生智力竞赛决赛中,某小学抢答了10道题。
如果从100分开始算分,答对一题加10分,答错一题减10分,这个小学最后得了140分。
他们答对了几道题?答错了几道题?
5、搬运1000只玻璃瓶,规定搬一只可得搬运费3角,但打碎一只要赔5角,如果运完后,共得运费260元,问搬运中打碎了几只?
祝贺你过关。
你能得几颗星,就涂上几颗吧。
☆☆☆☆
★★
★★ 四星擂台
1、星华和李冬进行数学比赛,商定算对一题给20分,错一题扣12分,星华和李冬各算了10道题。
两人共得208分,星华比李冬多得64分。
问
星华和李冬各算对了多少道题?
2、公猴、母猴和小猴共38只。
每天共摘桃子266个,已知一只公猴每天摘桃10个,一只母猴每天摘桃8个,一只小猴每天摘5个,又知公猴比母
猴少4只,那么这群猴子中,小猴有多少只?
3、学校买来3元、4元和5元的电影票共400张,用去1560元,其中4元和5元的张数一样多。
每种票各买了多少张?
4、小明参加学校举办的迎香港回归知识竞赛。
试卷共有30道题。
按规则,做对一道题得5分,做错一道题扣2分,空题得0分。
结果小明得了112
分。
他做对了多少道题?
你是好样的。
你能得几颗星,就涂上几颗吧。
☆☆☆☆☆
综合练习:
★ ★★ ★★
五星擂台
1、脱式计算下面各题,能简算的要简算。
1.25×4.5×80 7.2×102 58.37×99+58.37
3.6×1.4+1.8×7.2 5.6×0.31-0.52
2、幼儿园里买回一筐草莓,每个小朋友给4个,还缺6个;每个小朋友给6个,
还缺46个,有几个小朋友,买了多少个草莓?
3、雉(野鸡)兔同笼。
上有35个头,下有94只脚。
问雉兔各几只?
4、有11名同学面向黑板站成一排,听到口令后只能有4个向后转,问经过若干
次口令后能否使这11位同学都背向黑板?
5、1+2+3+4+……+999+1000+1001的和是奇或偶?2+3+4+5+……+1000+1001+1002的和呢?它们都是几个连续自然数的和,但和的奇偶性相同吗?为什么?。