2017-2018年山东省临沂市河东区八年级(上)期末数学试卷(解析版)
{3套试卷汇总}2018年临沂市八年级上学期期末质量跟踪监视数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°【答案】C【解析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=12∠ABC,∠BCD=12∠BCA,∴∠CBE+∠BCD=12(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.2.关于x的不等式620xx a-≤⎧⎨≤⎩有解,则a的取值范围是()A.a<3 B.a≤3C.a≥3D.a>3【答案】C【分析】解不等式6-2x≤0,再根据不等式组有解求出a的取值范围即可.【详解】解不等式6-2x≤0,得:x≥1,∵不等式组有解,∴a≥1.故选:C.【点睛】本题主要考查根据不等式组的解判断未知参数的范围,熟练掌握不等式组的解法是解题关键.3.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0【答案】B 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) . ∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.4.下列图形中,具有稳定性的是( )A .正方形B .长方形C .三角形D .平行四边形【答案】C【分析】根据三角形具有稳定性解答.【详解】解:三角形,正方形,平行四边形,长方形中只有三角形具有稳定性.故选C .【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②三角形的一个外角大于任何一个内角;③如果1∠和2∠是对顶角,那么12∠=∠;④若22a b =,则a b =.A .1个B .2个C .3个D .4个 【答案】A【分析】逐一对选项进行分析即可.【详解】①两条直线被第三条直线所截,内错角不一定相等,故错误;②三角形的一个外角大于任何与它不相邻的两个内角,故错误;③如果1∠和2∠是对顶角,那么12∠=∠,故正确;④若22a b =,则a b =或=-a b ,故错误.所以只有一个真命题.故选:A .【点睛】本题主要考查真假命题,会判断命题的真假是解题的关键.6.在一次函数y =(2m ﹣1)x +1中,y 的值随着x 值的增大而减小,则它的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】由y 的值随着x 值的增大而减小可得出2m ﹣1<1,再利用b=1>1,可得出一次函数y =(2m ﹣1)x+1的图象与y 轴交点在其正半轴上,进而可得出一次函数y =(2m ﹣1)x+1的图象不经过第三象限.【详解】解:∵在一次函数y =(2m ﹣1)x +1中,y 的值随着x 值的增大而减小,∴2m ﹣1<1.∵2m ﹣1<1,1>1,∴一次函数y =(2m ﹣1)x +1的图象经过第一、二、四象限,∴一次函数y =(2m ﹣1)x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,即在一次函数y=kx+b (k ≠1)中,①k >1,b >1⇔y=kx+b 的图象在一、二、三象限;②k >1,b <1⇔y=kx+b 的图象在一、三、四象限;③k <1,b >1⇔y=kx+b 的图象在一、二、四象限;④k <1,b <1⇔y=kx+b 的图象在二、三、四象限.7.化简 ) A .3B .3-C .9-D .9【答案】Ba 进行化简.【详解】解:()233--=-故选:B .【点睛】 本题考查二次根式的化简,掌握二次根式的性质2a a =,正确化简是解题关键.8.如图,在平面直角坐标系中,30MON ∠=︒,点1A 、2A 、3A 、4A 在x 轴上,点1B 、2B 、3B … 在射线OM 上,112A B A △、223A B A △、334A B A △……均为等边三角形,若1A 点坐标是(1,0) ,那么6A 点坐标是( )A .(6,0)B .(12,0)C .(16,0)D .(32,0)【答案】D 【分析】根据等边三角形的性质得出160n n n B A A +∠=︒,然后利用三角形外角的性质得出n n OB A MON ∠=∠,从而有n n n A B OA =,然后进行计算即可.【详解】∵112A B A △,223A B A △,…,1n n n A B A +△均为等边三角形,160n n n B A A +∴∠=︒.30MON ∠=︒,30n n OB A ∴∠=︒,n n OB A MON ∴∠=∠,n n n A B OA ∴= .∵1A 点坐标是(1,0),1111A B OA ∴== ,2112112OA OA A A ∴=+=+= ,同理,34564,8,16,32OA OA OA OA ====,∴6A 点坐标是(32,0).故选:D .【点睛】本题主要考查点的坐标的规律,掌握等边三角形的性质和三角形外角的性质是解题的关键.9.一个多边形的每一个内角都等于120°,则它的内角和为( )A .540°B .720°C .900°D .1080°【答案】B【分析】从每一个内角都等于120°可以推出每一个外角都是60°,再根据多边形的外角和是360°可求出多边形的边数,再乘以120°就是此多边形的内角和. 【详解】解:()360120720180120︒︒︒︒︒⨯=-, 故选:B .【点睛】此题重在掌握多边形内角和与外角和的公式,能够将内角与外角灵活的转换是解题的关键.10.如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠3=40°,那么∠2的度数为( )A .80°B .90°C .100°D .102°【答案】A 【解析】分析:根据平行线性质求出∠A ,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.二、填空题11.一组数据1,2,a 的平均数为2,另一组数据,1,,1,2a -的中位数为___________.【答案】32【分析】先根据平均数的定义求出a 的值,再根据中位数的定义求解即可.【详解】解:∵一组数据1,2,a 的平均数为2,∴a=3,∴另一组数据-1,a ,1,2为-1,3,1,2,∴中位数为123 22 +=,故答案为:3 2 .【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12.如图,AB=AC,则数轴上点C所表示的数为__________.【答案】51-【解析】分析:根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.详解:由勾股定理得:AB=2221+=5,∴AC=5,∵点A表示的数是﹣1,∴点C表示的数是5﹣1.故答案为5﹣1.点睛:本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC =_____.【答案】15°.【解析】先根据线段垂直平分线的性质得出DA=DB,∠AED=∠BED=90︒,即可得出∠A=∠ABD,∠BDE=∠ADE,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD,∠ABC的度数,即可求出∠DBC的度数.【详解】∵AB的垂直平分线交AC于D,交AB于E,∴DA=DB,∠AED=∠BED=90︒,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=118050652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为:15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.14.若不等式(1)(1)a x a +>+的解集为1x <,则a 满足________.【答案】1a <-【分析】根据(1)(1)a x a +>+的解集为1x <,列不等式求解即可.【详解】解:∵(1)(1)a x a +>+的解集为1x <,∴a+1<0,∴1a <-.故答案为1a <-.【点睛】本题考查了根据不等式解集的情况求参数,根据题意列出关于a 的不等式是解答本题的关键. 15.若分式||33x x--的值为0,则x =__________ 【答案】-1【分析】根据分式值为0,可得30x -=且30x -≠,据此求出x 的值为多少即可. 【详解】解:∵303x x-=-, ∴30x -=且30x -≠,∴x =-1,故答案为:-1.【点睛】此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零.16.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.【答案】1【分析】根据众数的定义,即可得到答案.【详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【点睛】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键. 17.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②DB =DC ;③AD ⊥BC ;④AC =3EC ,其中正确的结论是_____(填序号).【答案】①②③④【分析】根据平行线的性质结合三线合一的性质证明△ABC 为等腰三角形,即可得到BD=CD ,AD ⊥BC ,故②③正确;通过△CDE ≌△DBF 即可得到DE=DF ,CE=BF ,故①④正确.【详解】∵BC 平分∠ABF ,∴∠FBC=∠ABC ,∵BF ∥AC ,∴∠FBC=∠ACB ,∴∠ACB=∠ABC=∠CBF ,∴AC= AB ,∴△ABC 为等腰三角形,∵AD 是△ABC 的角平分线,∴DB =DC ,故②正确;AD ⊥BC ,故③正确;在△CDE 与△DBF 中,ACB CBF CD BDEDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △CDE ≌Rt △BDF (ASA ),∴DE=DF ,故①正确;CE= BF ,∵AE =2BF ,∴AE =2CE ,AC= AE+CE=2CE+CE=3CE ,故④正确;综上,①②③④均正确;故答案为:①②③④.【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定和性质是解题的关键.三、解答题18.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.【答案】(1)见解析;(2)见解析【分析】(1)根据题意作AB的垂直平分线;(2)根据题意求出∠BDC=∠C=72°,即可证明.【详解】(1)解:如图,点D为所作,;(2)证明:∵AB=AC,∴∠ABC=∠C=12(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.【点睛】此题主要考查等腰三角形的性质,垂直平分线的尺规作图方法,以及垂直平分线的性质,解题的关键是熟知等腰三角形的判定与性质.19.先化简,再求值:(m+252m +-)324m m -÷-,其中m=﹣1. 【答案】﹣2m ﹣6,﹣2. 【分析】把m+2看成21m +,先计算括号里面的,再算乘法,化简后代入求值. 【详解】解:(m+252m +-)324m m -÷- =(2512m m +--)()223m m-⋅-, ()2224523m m m m---=⋅--, ()()()332223m m m m m-+-=⋅-- =﹣2(m+3)=﹣2m ﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣2.【点睛】本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.20.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:()1如图1,已知:在ABC 中,BAC 90∠=,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E.试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;()2组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将()1中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α(∠∠∠===其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.()3数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠∠∠==,试判断DEF 的形状,并说明理由.【答案】()1DE BD CE =+,理由见解析;() 2结论DE BD CE =+成立;理由见解析;()3DFE 为等边三角形,理由见解析.【分析】(1)先利用同角的余角相等,判断出ABD=CAE ∠∠,进而判断△ADB ≌△CEA ,得出BD=AE ,AD=CE ,即可得出结论;(2)先利用三角形内角和及平角的性质,判断出ABD=CAE ∠∠,进而判断出△ADB ≌△CEA ,得出BD=AE ,AD=CE ,即可得出结论;(3)由(2)得,△ADB ≌△CEA ,得出BD=AE ,再判断出△FBD ≌△FAE ,得出BFD=AFE ∠∠,进而得出DFE=60∠︒ ,即可得出结论.【详解】()1DE BD CE =+,理由:BAC 90∠=,BAD CAE 90∠∠∴+=,BD m ⊥,CE m ⊥,ADB CEA 90∠∠∴==,BAD ABD 90∠∠∴+=,ABD CAE ∠∠∴=,在ADB 和CEA 中,90ADB CEA ABD CAE ABAC ⎧∠=∠=⎪∠=∠⎨⎪=⎩,ADB ∴≌()CEA AAS ,BD AE ∴=,AD CE =,DE AD AE BD CE ∴=+=+,故答案为DE BD CE =+;()2解:结论DE BD CE =+成立;理由如下:BAD CAE 180BAC ∠∠∠+=-,BAD ABD 180ADB ∠∠∠+=-,BDA BAC ∠∠=,ABD CAE ∠∠∴=,在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,BAD ∴≌()ACE AAS ,BD AE ∴=,AD CE =,DE DA AE BD CE ∴=+=+;()3DFE 为等边三角形,理由:由()2得,BAD ≌ACE ,BD AE ∴=,ABD CAE ∠∠=,ABD FBA CAE FAC ∠∠∠∴+=+,即FBD FAE ∠∠=,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,FBD ∴≌()FAE SAS ,FD FE ∴=,BFD AFE ∠∠=,DFE DFA AFE DFA BFD 60∠∠∠∠∠∴=+=+=,DFE ∴为等边三角形.【点睛】本题是三角形综合题,主要考查全等三角形的判定和性质,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,等边三角形的判定和性质.21.解方程:121x -=12-342x -. 【答案】3x =【分析】先确定最简公分母是42x -,将方程两边同时乘以最简公分母约去分母可得: 2213x =--,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:2213x =--,解得:3x =,经检验3x =是分式方程的解.【点睛】本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.22.如图,直线EF 与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(-8,0),点F 的坐标为(0,6),点A 的坐标为(-6,0),点P (x ,y )是直线EF 上的一个动点,且P 点在第二象限内;(1)求直线EF的解析式;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是274?【答案】(1)y=34x+1;(2)S=94x+18(﹣8<x<0);(3)点P的坐标为(﹣5,94)时,△OPA的面积是274.【分析】(1)用待定系数法直接求出;(2)先求出OA,表示出PD,根据三角形的面积公式,可得函数解析式;再根据P(x,y)在第二象限内的直线上,可得自变量的取值范围;(3)利用(2)中得到的函数关系式直接代入S值,求出x即可.【详解】解:(1)设直线EF的解析式为y=kx+b,由题意得:-8k b0 b6+=⎧⎨=⎩解得,k=34;∴直线EF的解析式为y=34x+1.(2)如图,作PD⊥x轴于点D,∵点P(x,y)是直线y=34x+1上的一个动点,点A的坐标为(﹣1,0)∴OA=1,PD=34x+1∴S=12OA•PD=12×1×(34x+1)=94x+18(﹣8<x<0);(3)由题意得,94x+18=274,解得,x=﹣5,则y=34×(﹣5)+1=94,∴点P的坐标为(﹣5,94)时,△OPA的面积是274.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,解题的关键是求出直线EF 解析式. 23.为了比较5+1与10的大小,小伍和小陆两名同学对这个问题分别进行了研究.(1)小伍同学利用计算器得到了5 2.236≈,10 3.162≈,所以确定5+1 10 (填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D 在BC 上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同学对5+1和10的大小做出准确的判断.【答案】(1)> ;(2)见解析.【解析】(1)根据题目给出的数值判断大小即可; (2)根据勾股定理求出AB ,再根据三角形的三边关系判断即可.【详解】(1)> ;(2) 2222125Rt ACD AD AC CD +=+=在中, ,22223110Rt ABC AB BC AC =+=+=在中,,5+110ABD AD BD AB +>>在中,即【点睛】本题考查了勾股定理与三角形的三边关系,解题的关键是熟练的掌握勾股定理的运算与三角形的三边关系.24.灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a= %,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?【答案】(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)如图①,在△ABC 中,∠C =90°,请用尺规作图作一条直线,把△ABC 分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.【答案】(1)见解析;(2)图②能,顶角分别是132°和84°,图③不能【分析】(1)本题中,只要找到斜边中点,然后连接直角顶点和斜边中点,那么分成的两个三角形就是等腰三角形.那么只要作AC 的垂直平分线就可以了.AC 的垂直平分线与AB 的交点就是AB 的中点; (2)本题要先根据三角形的内角和求出另一角的度数,然后看看是否能分成等腰三角形,图2可以将∠B 分成24°和48°.图3不能分成等腰三角形.【详解】(1)作线段AC 的垂直平分线MN ,交AB 于点M ,交AC 于点N ;过点C 、M 作直线.直线CM 即为所求.理由:∵MN 为AC 的垂直平分线,∴MA MC =,∴24MCA A ∠=∠=︒.∵90ACB ∠=︒,24A ∠=︒,∴902466B ∠=︒-︒=︒,902466BCM ∠=︒-︒=︒,∴B BCM ∠=∠,∴MB MC =.(2)图②能画一条直线把它分割成两个等腰三角形,分割成的两个等腰三角形的顶角分别是132︒和84︒.图③不能分割成两个等腰三角形..【点睛】本题主要考查了直角三角形的性质和三角形的内角和,等腰三角形的判定等知识点.注意本题作图中的理论依据是直角三角形斜边上的中线等于斜边的一半.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.满足下列条件时,ABC 不是直角三角形的是( )A .AB =4BC =,5AC = B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .22A B C ∠=∠=∠ 【答案】C【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【详解】A 、2224+5符合勾股定理的逆定理,故A 选项是直角三角形,不符合题意; B 、32+42=52,符合勾股定理的逆定理,故B 选项是直角三角形,不符合题意;C 、根据三角形内角和定理,求得各角分别为45°,60°,75°,故C 选项不是直角三角形,符合题意;D 、根据三角形内角和定理,求得各角分别为90°,45°,45°,故D 选项是直角三角形,不符合题意. 故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.已知不等式组122x a x b +>⎧⎨+<⎩的解集为23x -<<,则2019()a b +的值为( ) A .-1B .2019C .1D .-2019【答案】A【分析】根据不等式组的解集即可得出关于a 、b 的方程组,解方程组即可得出a 、b 值,将其代入计算可得.【详解】解不等式x+a >1,得:x >1﹣a , 解不等式2x+b <2,得:x <22b -, 所以不等式组的解集为1﹣a <x <22b -. ∵不等式组的解集为﹣2<x <3,∴1﹣a=﹣2,22b -=3, 解得:a=3,b=﹣4,∴201920192019()(34)(1)a b +=-=-=﹣1.故选:A .【点睛】本题考查了解一元一次不等式组,解题的关键是求出a 、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.3.在代数式2222123252,,,,,33423xx xy xx x x+-+中,分式共有( ).A.2个B.3个C.4个D.5个【答案】B【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式进行分析即可.【详解】解:代数式21325,,42xx x x++是分式,共3个,故选:B.【点睛】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以字母,也可以不含字母,亦即从形式上看是AB的形式,从本质上看分母必须含有字母.4.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x-y=20 B.x+y=20C.5x-2y=60 D.5x+2y=60【答案】C【解析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了1分”列出方程.【详解】设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=1.【点睛】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.6.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布. 以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A.B.C.D.【答案】B【分析】根据轴对称图形的概念求解即可.【详解】A.不是轴对称图形,本选项错误;B.是轴对称图形,本选项正确;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.8.数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是()A.4 B.5 C.5.5 D.6【答案】D【解析】试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=1,则这组数据的众数为1.故选D.考点:1.众数;2.中位数.9.下列长度的三条线段,能构成直角三角形的是()A.8,9,10 B.1.5,5,2 C.6,8,10 D.20,21,32【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】A 、由于82+92≠102,不能构成直角三角形,故本选项不符合题意;B 、由于1.52+22≠52,不能构成直角三角形,故本选项不符合题意;C 、由于62+82=102,能构成直角三角形,故本选项符合题意;D 、由于202+212≠322,不能构成直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.10.已知2264a Nab b -+是一个完全平方式,则N 等于( )A .8B .8±C .16±D .32± 【答案】C【分析】本题考查的是完全平方公式的应用,首尾是a 和8b 的平方,所以中间项应为a 和8b 的乘积的2倍.【详解】∵a 2-N×ab+64b 2是一个完全平方式,∴这两个数是a 和8b ,∴Nab=±1ab ,解得N=±1.故选:C .【点睛】此题考查完全平方公式的结构特征,两数的平方和加上或减去它们乘积的2倍,根据平方项确定出这两个数是求解的关键.二、填空题11_____. 【答案】43【解析】根据算术平方根的定义求解可得.【详解】解:=43故答案为:43【点睛】 本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.12.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是_____分.【答案】89.1 【分析】根据加权平均数公式计算即可:112212............n n n w x w x w x x w w w +++=+++(其中w 1、w 2、……、w n 分别为x 1、x 2、……、x n 的权.).【详解】小明的数学期末成绩是981953856136⨯+⨯+⨯++ =89.1(分), 故答案为89.1.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键. 13.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.【答案】x≥1.【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x ≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小. 1451-_________12(填“>”或“<”) 【答案】>5的整数部分,然后根据整数部分即可解决问题. 【详解】∵52>,∴5-1>1,∴5112->. 故答案为:>.【点睛】本题考查了实数大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n 次方的方法等.当分母相同时比较分子的大小即可.15.11的平方根是__________.【答案】11±【解析】根据平方根的定义即可求解.【详解】解:11的平方根为11±.【点睛】本题考查了平方根的定义,解题的关键在于平方根和算术平方根的区别和联系.16.李老师组织本班学生进行跳绳测试,根据学生测试的成绩,列出了如下表格,则成绩为“良”的频率为______.成绩优 良 及格 不及格 频数10 22 15 3 【答案】0.44【分析】用“良”的频数除以总数即可求解.【详解】根据题意得:成绩为“良”的频率为:220.441022153故答案为:0.44【点睛】本题考查了频率,掌握一个数据出现的频率等于频数除以总数是关键.17.比较大小:_____.(填“>”、“<”或“=”) 【答案】>【解析】利用作差法即可比较出大小.【详解】解:∵,∴>.故答案为>.三、解答题18.老师在黑板上书写了一个代数式的正确计算结果,随后用字母A 代替了原代数式的一部分,如下:22112111x x x A x x x x ⎛⎫-+-÷= ⎪-++-⎝⎭(1)求代数式A ,并将其化简;(2)原代数式的值能等于1-吗?请说明理由.【答案】(1)A =211x x +-;(2)不能,理由见解析. 【解析】(1)根据题意得出A 的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为-1,求出x 的值,代入代数式中的式子进行验证即可.【详解】(1)22112111x x x A x x x x ⎛⎫-+-÷= ⎪-++-⎝⎭, 2211,1121x x x A x x x x +-=⋅+-+-+ ()()()2111,111x x x x x x x +-+=⋅+-+- 1,11x x x x +=+-- 21.1x x +=- (2)不能, 理由:若能使原代数式的值能等于﹣1,则111x x +=--,即x =0, 但是,当x =0时,原代数式中的除数01x x =+,原代数式无意义. 所以原代数式的值不能等于﹣1.【点睛】考查分式的化简求值,掌握分式的运算法则是解题的关键.19. (l)观察猜想:如图①,点B 、A 、C 在同一条直线上,DB BC ⊥,EC BC ⊥ 且90DAE ︒∠=,AD AE = ,则ADB ∆和EAC ∆是否全等?__________(填是或否),线段,,,AB AC BD CE 之间的数量关系为__________(2)问题解决:如图②,在Rt ABC ∆中,90ABC ∠=︒ ,5AC = ,6AB = ,以AC 为直角边向外作等腰Rt DAC ∆ ,连接BD ,求BD 的长。
人教版初中数学八年级上册期末试题(山东省临沂市
2017-2018学年山东省临沂市沂水县八年级(上)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠42.(3分)已知某三角形的三边长分别为4,9,a,若a为偶数,则a的取值有()A.3个B.4个C.5个D.6个3.(3分)若(x+1)0=1,则x的取值范围是()A.x≠0B.x≠1C.x≠﹣1D.任意实数4.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是()A.2cm B.3cm C.4cm D.5cm5.(3分)化简的结果为()A.B.C.D.6.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 7.(3分)如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A.80°B.85°C.100°D.110°8.(3分)(﹣a+3)2的计算结果是()A.﹣a2+9B.﹣a2﹣6a+9C.a2﹣6a+9D.a2+6a+9 9.(3分)下列运算正确的是()A.(﹣2ab)•(﹣3ab)3=﹣54a4b4B.5x2•(3x3)2=15x12C.(﹣0.1b)•(﹣10b2)3=﹣b7D.(3×10n)(×10n)=102n10.(3分)下列各式中,正确的是()A.B.C.D.11.(3分)分式方程的解是()A.x=0B.x=﹣1C.x=±1D.无解12.(3分)当a2+a﹣1=0时,﹣的结果是()A.B.C.1D.013.(3分)如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③14.(3分)如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ ⊥AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.6二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)当x=时,分式的值为零.16.(3分)若点A(m,﹣3),B(﹣2,n)关于y轴对称,则m n的值为.17.(3分)已知m=2n+1,则m2﹣4mn+4n2﹣5的值为.18.(3分)如图,长、宽分别为a、b的长方形硬纸片拼成一个“带孔”正方形,利用面积的不同表示方法,写出一个等式.19.(3分)如图,在面积为16的四边形ABCD中,∠ADC=∠ABC=90°,AD =CD,DP⊥AB于点P,则DP的长是.三、解答题(本大题共7小题,共计63分)20.(8分)计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)(2y+x)+(2y+x)2﹣2x(x+2y)21.(8分)分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy322.(8分)先化简,再求值:(﹣)÷(﹣1),其中a为不等式组的整数解.23.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD 相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.24.(10分)在等边△ABC中,P为BC边的三等分点,PE⊥AB于E,PF⊥BC 交AC于点F.(1)判断△EPF的形状,并说明理由;(2)FE,PB的延长线交于点G,等边△ABC边长为6,求GB的长.25.(10分)“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)若A,B两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案.26.(11分)我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.2017-2018学年山东省临沂市沂水县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)若代数式有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4【分析】根据分式有意义的条件即可求出x的范围;【解答】解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选:D.【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.2.(3分)已知某三角形的三边长分别为4,9,a,若a为偶数,则a的取值有()A.3个B.4个C.5个D.6个【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,进而解答即可.【解答】解:根据三角形的三边关系,得9﹣4<a<9+4,即5<a<13,∵a为偶数,∴a为6,8,10,12,故选:B.【点评】本题主要考查了三角形的三边关系和特殊解,注意:偶数加偶数为偶数,奇数加奇数为偶数,难度适中.3.(3分)若(x+1)0=1,则x的取值范围是()A.x≠0B.x≠1C.x≠﹣1D.任意实数【分析】直接利用零指数幂的性质得出答案.【解答】解:∵(x+1)0=1,∴x+1≠0,则x≠﹣1.故选:C.【点评】此题主要考查了零指数幂的性质,正确把握零指数幂的性质是解题关键.4.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,CD=3cm,则点D到AB的距离是()A.2cm B.3cm C.4cm D.5cm【分析】过D作DE⊥AB于E,根据角平分线性质得出DE=DC,即可求出答案.【解答】解:过D作DE⊥AB于E,∵在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,∴DE=DC=3cm,故选:B.【点评】本题考查了角平分线性质,勾股定理的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角的两边的距离相等.5.(3分)化简的结果为()A.B.C.D.【分析】找出原式分子分母的公因式,约分即可得到结果.【解答】解:原式==.故选:B.【点评】此题考查了约分,约分的关键是找出分子分母的公因式.6.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选:C.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.(3分)如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A.80°B.85°C.100°D.110°【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠B=30°,∠DAE=55°,∴∠D=∠DAE﹣∠B=55°﹣30°=25°,∴∠ACD=180°﹣∠D﹣∠CAD=180°﹣25°﹣55°=100°.故选:C.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.8.(3分)(﹣a+3)2的计算结果是()A.﹣a2+9B.﹣a2﹣6a+9C.a2﹣6a+9D.a2+6a+9【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:(﹣a+3)2=a2﹣6a+9.故选:C.【点评】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.9.(3分)下列运算正确的是()A.(﹣2ab)•(﹣3ab)3=﹣54a4b4B.5x2•(3x3)2=15x12C.(﹣0.1b)•(﹣10b2)3=﹣b7D.(3×10n)(×10n)=102n【分析】根据积的乘方、单项式乘单项式的运算法则分别计算,再作判断.【解答】解:A、(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4,故选项错误;B、5x2•(3x3)2=5x2•(9x6)=45x8,故选项错误;C、(﹣0.1b)•(﹣10b2)3=(﹣0.1b)•(﹣1000b6)=100b7,故选项错误;D、(3×10n)(×10n)=102n,故选项正确.故选:D.【点评】本题考查了积的乘方、单项式乘单项式,熟练掌握运算性质是解决本题的关键.10.(3分)下列各式中,正确的是()A.B.C.D.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.【解答】解:A、分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,故A错误;B、分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,故B错误;C、分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,故C错误;D、分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变.11.(3分)分式方程的解是()A.x=0B.x=﹣1C.x=±1D.无解【分析】先去分母,求出整式方程的解再把所得整式方程的解代入公分母进行检验即可.【解答】解:去分母得,(x+1)﹣2(x﹣1)=4,解得x=﹣1,把x=﹣1代入公分母得,x2﹣1=1﹣1=0,故x=﹣1是原方程的增根,此方程无解.故选:D.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.12.(3分)当a2+a﹣1=0时,﹣的结果是()A.B.C.1D.0【分析】先根据a2+a﹣1=0得出a2=1﹣a,再代入分式进行计算即可.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a,∴原式=﹣=2﹣1=1.故选:C.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.(3分)如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③【分析】先由条件OA=OC,OB=OD且OA⊥OB,OC⊥OD就可以得出△COD ≌△AOB,就有DD=BO,CD=AB,进而可以得出△AOD≌△COB就有∠ADO=∠CBO,从而得出结论.【解答】解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°.∴∠AOB+∠AOC=∠COD+∠AOC,即∠COB=∠AOD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD,∠ABO=∠CDO.在△AOD和△COB中,∴△AOD≌△COB(SAS)∴∠CBO=∠ADO,∴∠ABO﹣∠CBO=∠CDO﹣∠ADO,即∠ABC=∠CDA.综上所述,①②③都是正确的.故选:B.【点评】本题考查了全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.14.(3分)如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ ⊥AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.6【分析】在Rt△BPQ,易求∠PBQ=30°,于是可求BP,进而可求BE,而△BAE≌△ACD,那么有AD=BE=9.【解答】解:∵BQ⊥AD,∴∠BQP=90°,又∵∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,又∵AE=CD,∴△BAE≌△ACD,∴AD=BE=9,故选:A.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)当x=﹣3时,分式的值为零.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.【点评】本题考查了分式的值为零的条件,分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.16.(3分)若点A(m,﹣3),B(﹣2,n)关于y轴对称,则m n的值为.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得m=2,n=﹣3,然后再代入m n求值即可.【解答】解:∵点A(m,﹣3),B(﹣2,n)关于y轴对称,∴m=2,n=﹣3,∴m n=,故答案为:.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标变化规律.17.(3分)已知m=2n+1,则m2﹣4mn+4n2﹣5的值为﹣4.【分析】根据条件可得m﹣2n=1,然后再把代数式m2﹣4mn+4n2﹣5变形为m2﹣4mn+4n2﹣5=(m﹣2n)2﹣5,再代入求值即可.【解答】解:∵m=2n+1,∴m﹣2n=1,∴m2﹣4mn+4n2﹣5=(m﹣2n)2﹣5=1﹣5=﹣4,故答案为:﹣4.【点评】此题主要考查了公式法分解因式,关键是正确把条件变形,然后再代入求值.18.(3分)如图,长、宽分别为a、b的长方形硬纸片拼成一个“带孔”正方形,利用面积的不同表示方法,写出一个等式(a+b)2=(a﹣b)2+4ab.【分析】通过观察可以得大正方形边长为a+b,小正方形边长为a﹣b,利用大正方形面积减去小正方形面积即为阴影部分面积,得出答案.【解答】解:观察图形得:大正方形边长为:a+b,小正方形边长为:a﹣b,根据大正方形面积﹣小正方形面积=阴影面积得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.【点评】本题考查了完全平方公式的几何背景,学生需要掌握完全平方公式和几何图形的关系即可.题目整体涉及很好,可以考查学生的观察能力.19.(3分)如图,在面积为16的四边形ABCD中,∠ADC=∠ABC=90°,AD =CD,DP⊥AB于点P,则DP的长是4.【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP =S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,根据正方形的面积公式得到DP2=16,易得DP=4.【解答】解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,∴△ADP ≌△CDE ,∴DP =DE ,S △ADP =S △CDE ,∴四边形BEDP 为正方形,S 四边形ABCD =S 正方形BEDP ,∴DP 2=16,∴DP =4.故答案为4.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形的性质和勾股定理.本题的关键的作辅助线构造两个全等的三角形.三、解答题(本大题共7小题,共计63分)20.(8分)计算:(1)a (a +b )﹣b (a ﹣b );(2)(x ﹣2y )(2y +x )+(2y +x )2﹣2x (x +2y )【分析】(1)(2)按照先去括号,后合并同类项的步骤化简即可;【解答】解:(1)原式=a 2+ab ﹣ab +b 2=a 2+b 2(2)法一:原式=x 2﹣4y 2+x 2+4xy +4y 2﹣2x 2﹣4xy=(x 2+x 2﹣2x 2)+(﹣4y 2+4y 2)+(4xy ﹣4xy )=0法二:原式=(x +2y )(x ﹣2y +2y +x ﹣2x )=(x +2y )×0=0【点评】本题考查平方差公式、完全平方公式、提公因式等知识,解题的关键是灵活运用所学知识解决问题,记住平方差公式、完全平方公式.21.(8分)分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式2xy,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y);(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2.【点评】此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.22.(8分)先化简,再求值:(﹣)÷(﹣1),其中a为不等式组的整数解.【分析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.【解答】解:原式=[﹣]=•=,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【点评】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.23.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD 相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C 的度数,从而可求出∠BDE的度数;【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.24.(10分)在等边△ABC中,P为BC边的三等分点,PE⊥AB于E,PF⊥BC 交AC于点F.(1)判断△EPF的形状,并说明理由;(2)FE,PB的延长线交于点G,等边△ABC边长为6,求GB的长.【分析】(1)结论:△EPF是等边三角形.只要证明△BEP≌△CPF,即可解决问题.(2)想办法证明BG=BE即可解决问题;【解答】解:(1)结论:△EPF是等边三角形.理由:∵PE⊥AB,∠ABC=60°,∴∠BPE=30°,∴BE=BP=BC=PC,∵FP⊥BC,∴∠EPF=60°,在△BEP和△CPF中,,∴△BEP≌△CPF(ASA),∴EP=PF,∵∠EPF=60°,∴△EPF是等边三角形.(2)∵△EPF是等边三角形,∴∠PEF=60°,∵∠BPE=30°,∴∠G=30°,∵∠ABC=60°,∴∠BE G=30°,∴∠G=∠BEG,∴BG=BE=CP=BC=2.【点评】本题考查全等三角形的判定和性质,等边三角形的性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)若A,B两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案.【分析】(1)设A种设备每台的成本是x万元,B种设备每台的成本是1.5x万元.根据数量=总价÷单价结合“投入16万元生产A种设备,36万元生产B 种设备,则可生产两种设备共10台”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A种设备生产a台,则B种设备生产(60﹣a)台.根据销售后获利不低于126万元且A种设备至少生产53台,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,再根据a为正整数即可得出a的值,进而即可得出该公司生产方案种数;【解答】解:(1)设A种设备每台的成本是x万元,B种设备每台的成本是1.5x 万元,根据题意得:,解得:x=4,经检验x=4是分式方程的解,∴1.5x=6.答:A种设备每台的成本是4万元,B种设备每台的成本是6万元;(2)设A种设备生产a台,则B种设备生产(60﹣a)台,根根据题意得:,解得:53≤a≤57.∵a为整数,∴a=53,54,55,56,57,∴该公司有5种生产方案.【点评】本题考查了分式方程的应用、一元一次不等式组的应用,解题的关键是:(1)根据数量=总价÷单价,列出分式方程;(2)根据数量关系,列出一元一次不等式组.26.(11分)我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.【分析】(2)首先根据命题写出已知,求证,然后根据题意,推出△CAD≌△BAC,即可推出AB=AC,(3)首先根据命题写出已知,求证,画出图形,然后,作出辅助线作DE⊥AC,DF⊥AB,根据条件推出Rt△CED≌Rt△BFC,即可推出∠B=∠C,根据△ABC内,等角对等边,即可推出AB=AC.【解答】解:(2)、(3)都正确.(2)已知:在△ABC中,AD⊥BC,AD平分∠BAC,求证:AB=AC(1分)证明:∵AD⊥BC,AD平分∠BAC,∴∠ADB=∠ADC=90°,∠CAD=∠BAD,∵AD=AD,∴△CAD≌△BAC(ASA)(4分)∴AB=AC,(3)已知:在△ABC中,CD=BD,AD平分∠BAC,求证:AB=AC(5分)证明:作DE⊥AC,DF⊥AB,垂足分别为E、F,(6分)∵AD平分∠BAC,∴DE=DF,∵CD=BD,∴Rt△CED≌Rt△BFC,∴∠B=∠C,∴AB=AC.【点评】本题主要考查等腰三角形的性质、根据命题写已知、求证,全等三角形的判定与性质、角平分线的性质、线段垂直平分线的性质的等性质定理,关键在于根据命题写出已知、求证、画出图形.。
<合集试卷3套>2018年临沂市八年级上学期期末学业水平测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A 和B 分别代表的是( )A .分式的基本性质,最简公分母=0B .分式的基本性质,最简公分母≠0C .等式的基本性质2,最简公分母=0D .等式的基本性质2,最简公分母≠0【答案】C【解析】根据解分式方程的步骤,可得答案.【详解】去分母得依据是等式基本性质2,检验时最简公分母等于零,原分式方程无解.故答案选:C.【点睛】本题考查了解分式方程,解题的关键是熟练的掌握解分式方程的方法.2.点(2,-3)关于y 轴的对称点是( )A .()2,3-B .()2,3C .()2,3--D .()2,3-【答案】C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标.【详解】解:∵所求点与点A (2,–3)关于y 轴对称,∴所求点的横坐标为–2,纵坐标为–3,∴点A (2,–3)关于y 轴的对称点是(–2,–3).故选C .【点睛】本题考查两点关于y 轴对称的知识;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标相同. 3.分式2x 4x 2-+的值为0,则 A .x=-2B .x=±2C .x=2D .x=0【答案】C【分析】根据分式的值为0,分子等于0,分母不等于0解答.【详解】根据分式的值为0的条件,要使2x 40x 2-=+,则有2x 40x 20⎧-=⎨+≠⎩ 即x 2x 2x 2==-⎧⎨≠-⎩, 解得x 2=.故选C .【点睛】本题考查分式的值为0,分子等于0,分母不等于0,熟记概念是关键.4.已知A ,B 两点在y =2x+1上,A 的坐标为(1,m ),B 的坐标为(3,n ),则( )A .m =nB .m <nC .m >nD .无法确定【答案】B【分析】利用一次函数图象上点的坐标特征可得出m ,n 的值,再根据其增减性比较后即可得出结论.【详解】解:将点A (1,m ),B (3,n )代入y =2x+1,解得m =3,n =7∵3<7,∴m <n .故选:B .【点睛】本题考查一次函数上点的特征和增减性,熟练掌握一次函数的相关性质是关键. 5.化简21111x x ++-的结果是( ) A .21x x - B .11x - C .1x + D .1x - 【答案】A【分析】先通分,然后根据分式的加法法则计算即可. 【详解】解:21111x x ++- =()()()()111111x x x x x +-+-+-=()()11x x x +- =21x x - 故选A .【点睛】此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.6.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,AD 平分BAC ∠,则下列结论:①DE DF =;②BE CF =;③180ABD C ∠+∠=︒;④2AB AC AE +=,正确的有( )个A .1B .2C .3D .4【答案】D 【分析】根据角平分线的性质即可判断①;根据HL 可得Rt △DBE ≌Rt △DCF ,进而可得∠DBE=∠C ,BE=CF ,于是可判断②;根据平角的定义和等量代换即可判断③;根据HL 可得Rt △ADE ≌Rt △ADF ,于是可得AE=AF ,进一步根据线段的和差关系即可判断④,从而可得答案.【详解】解:∵AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,∴90E DFC ∠=∠=︒,DE=DF ,故①正确;在Rt △DBE 和Rt △DCF 中,∵DE=DF ,BD CD =,∴Rt △DBE ≌Rt △DCF (HL ),∴∠DBE=∠C ,BE=CF ,故②正确;∵180ABD DBE ∠+∠=︒,∴180ABD C ∠+∠=︒,故③正确;在Rt △ADE 和Rt △ADF 中,∵DE=DF ,AD AD =,∴Rt △ADE ≌Rt △ADF (HL ),∴AE=AF ,∴2AB AC AE BE AF CF AE +=-++=,故④正确;综上,正确的结论是:①②③④,有4个.故选:D .【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述知识是解题的关键.7.如图,在矩形ABCD 中对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为点E ,AE=8,AC=20,则OE 的长为( )A .3B .4C .6D .8【答案】C 【分析】先求AO 的长,再根据勾股定理计算即可求出答案.【详解】解:∵四边形ABCD 是矩形,∴AO=CO 12=AC=10, ∴OE 2210064AO AE =--=1.故选:C .【点睛】此题主要考查了矩形的性质及勾股定理,正确的理解勾股定理是解决问题的关键.8.如果一元一次不等式组3x x a>⎧⎨>⎩的解集为x >3,则a 的取值范围是( ) A .a >3B .a ≥3C .a ≤3D .a <3 【答案】C【分析】由题意不等式组中的不等式分别解出来为x >1,x >a ,已知不等式解集为x >1,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】由题意x >1,x >a ,∵一元一次不等式组3x x a >⎧⎨>⎩的解集为x >1, ∴a ≤1.故选:C .【点睛】主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.9.若关于x 的方程222x m x x +=--有增根,则m 的值与增根x 的值分别是( ) A .4m =-,2x =B .4m =,2x =C .4m =-,2x =-D .4m =,2x =-【答案】B【解析】试题分析:分式方程去分母转化为整式方程x+2=m ,由分式方程有增根,得到最简公分母x ﹣2=0,即x=2,把x=2代入整式方程得:m=4,则m 的值与增根x 的值分别是m=4,x=2.故选B.考点:分式方程的增根.10.(-a 5)2+(-a 2)5的结果是( )A .0B .72a -C .102aD .102a -【答案】A【分析】直接利用幂的乘方运算法则化简进而合并求出答案.【详解】(-a 5)2+(-a 2)5=a 11-a 11=1.故选A .【点睛】此题主要考查了幂的乘方运算,正确化简各式是解题关键.二、填空题11.如图,△ABC ≌△ADE ,∠EAC =35°,则∠BAD =_____°.【答案】35【解析】由全等三角形的性质知:对应角∠CAB=∠EAD 相等,求出∠CAB=∠EAD ,待入求出即可. 解:∵△ABC≌△ADE,∴∠CAB=∠EAD ,∵∠EAC=∠CAB-∠EAB ,∠BAD=∠EAD-∠EAB ,∴∠BAD=∠EAC ,∴∠BAD=∠EAC=35°.故答案为:35.12.Rt ABC 中,90C ∠=︒,12AC cm =,16BC cm =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于点E ,交斜边于点F ,则CDE △的周长为__________.【答案】20cm 或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A 和∠B 两种情况求解即可.【详解】当∠B 翻折时,B 点与D 点重合,DE 与EC 的和就是BC 的长,即DE+EC=16cm ,CD=12AC=6cm ,故△CDE 的周长为16+6=22cm ; 当∠A 翻折时,A 点与D 点重合.同理可得DE+EC=AC=12cm ,CD=12BC=8cm , 故△CDE 的周长为12+8=20cm .故答案为20cm 或22cm .【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.13.如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.【答案】120【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵ABC A B C '''≌,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【点睛】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.141x +有意义,则x 的取值范围是__.【答案】x ≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可. 1x +∴:x+1≥0,解得:x ≥﹣1,故答案为:x ≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.15.当x 为_____时,分式3621x x -+的值为1. 【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.16.若二次根式x 2-有意义,则x 的取值范围是___.【答案】x 2≥【详解】试题分析:根据题意,使二次根式2x -有意义,即x ﹣1≥0,解得x≥1.故答案是x≥1.【点睛】考点:二次根式有意义的条件.17.计算-(-3a 2b 3)2的结果是_______.【答案】-9a 4b 6【分析】根据积的乘方和幂的乘方法则即可解答.【详解】解:232223246399.()()()a b a b a b --=-=-【点睛】本题考查积的乘方和幂的乘方运算,熟练掌握其法则是解题的关键.三、解答题18.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2,对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【答案】见解析.【解析】分析:根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决. 详解:由题意可得:方案二:a 1+ab+(a+b )b=a 1+ab+ab+b 1=a 1+1ab+b 1=(a+b )1,方案三:a 1+[()]2a a b b +++[()]2a a b b ++=2221122a ab b ab b ++++=a 1+1ab+b 1=(a+b )1. 点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.19.因式分解:(1)222516x y -;(2)22344a b ab b -+【答案】(1)(54)(54)x y x y +-;(2)2(2)b a b -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解因式即可.【详解】解:(1)222516x y -(54)(54)x y x y(2)22344a b ab b -+2244b a ab b2(2)b a b【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,在ABC ∆和ABD ∆中,AC 与BD 相交于E ,AD BC =,DAB CBA ∠=∠.(1)求证:AE BE =;(2)请用无刻度的直尺在下图中作出AB 的中点M .【答案】(1)证明见解析;(2)见解析.【分析】(1)由SAS 证明△DAB ≌△CBA ,得出对应角相等∠DBA=∠CAB ,再由等角对等边即可得出结论;(2)延长AD 和BC 相交于点F ,作射线FE 交AB 于点M ,根据轴对称的性质可证得点M 就是所求作的中点.【详解】(1)在△ABC 和≌△BAD 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△BAD ,∴∠DBA=∠CAB ,∴AE=BE ;(2)如图,点M 就是所求作的中点.理由是:由(1)可知:△ABC ≌△BAD ,∴∠DBA=∠CAB ,∠DAB=∠CBA ,∴EA=EB ,FA=FB ,∴点A 、B 关于直线FE 对称,∴点M 就是线段AB 的中点.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定、轴对称的应用;证明三角形全等得出对应角相等是解决问题的关键.21.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中AB AC =,AE AD =,90BAC EAD ∠=∠=︒,45ABC ACB AED ADE ∠=∠=∠=∠=︒,B 、C 、E 在同一条直线上,连结DC .(1)请在图2中找出与ABE ∆全等的三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.【答案】(1)与ABE ∆全等的三角形为△ACD ,理由见解析;(2)见解析【分析】(1)根据等式的基本性质可得∠BAE=∠CAD ,然后利用SAS 即可证出ABE ∆≌△ACD ; (2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与ABE ∆全等的三角形为△ACD ,理由如下∵90BAC EAD ∠=∠=︒∴∠BAC +∠CAE=∠EAD +∠CAE∴∠BAE=∠CAD在ABE ∆和△ACD 中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴ABE ∆≌△ACD(2)∵ABE ∆≌△ACD ,45ABC ACB AED ADE ∠=∠=∠=∠=︒∴∠ABE=∠ACD=45°∴∠DCB=∠ACD +∠ACB=90°∴DC BE ⊥【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS 判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.22.猜想与证明:小强想证明下面的问题:“有两个角(图中的∠B 和 ∠C )相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的∠C 和边BC .(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法,并在备用图上恢复原来的样子。
山东省临沂市河东区2023-2024学年八年级上学期期末数学模拟试题(含答案)
山东省临沂市河东区2023-2024学年八年级上学期期末数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考生号、考试科目用2B 铅笔涂写在答题卡上.3.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上.4.考试结束,将本试卷和答题卡一并收回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分)在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.下列关于银行的图标中不是轴对称图形的是()A .B .C .D .2.幼儿园的小朋友用木棒做拼图形游戏,一个孩子手中有2根木棒长度分别为和,3cm 5cm 下列木棒不能使其能围成一个三角形的是( )A .B .C .D .2cm 3cm 4cm 5cm3.下列运算正确的是( )A .B .232325x y xy x y +=()323626aba b-=-C .D .222(2)4b a b a +=+22(2)(2)4a b a b a b+-=-4.妈妈要将一块如图所示的三角形蛋糕平均分给两个孩子,则图中她所作的线段应该AD 是的()ABC △A .角平分线B .高线C .中线A .7 B .6 C .5 A . B . C 80︒70︒7.若分式的值为0,则实数||55x x -+A .B .C .22311.如图,分别是,AB AC D E =、A . B .B C ∠=∠BD 12.如图,已知:AC BC =A .0个 B .1个 C .2个(2)在直线找一点P,使MN PAC △(3)若网格上的最小正方形的边长为20.(9分)王师傅准备年前换车,看中了价格相同的两款国产车.一款燃油车油箱容积:40升,油价:7元/升;另一款新能源车电池电量:60千瓦时,电价:0.5元/千瓦时.若满油状态下的燃油车的续航里程和满电状态下新能源车的续航里程相等,并且燃油车的每千米行驶费用比新能源车每千米行驶费用多0.5元.请你帮王师傅计算一下,这两款车的每千米行驶费用各是多少?21.(11分)如图,已知在中,为的中点.点ABC △10cm,8cm,AB AC BC D ===AB P 在线段上以的速度由点B 出发向终点C 运动,同时点Q 在线段上以BC 3cm/s CA 的速度由点C 出发向终点A 运动,设点P 的运动时间为.cm/s a s t(1)求的长(用含t 的式子表示);CP (2)若以C 、P 、Q 为顶点的三角形和以B,D,P 为顶点的三角形全等,且和是对应B ∠C ∠角,求t,a 的值.22.(11分)如图1,在等边三角形中,点D 、E 分别在边上,,连ABC AB BC 、CE BD =接与相交于P .,AE CD AE 、CD图1 图2(1)求证:;60APD ∠=︒(2)如图2,连接,当时,求证:.PB 2AP CP =BP PA ⊥八年级数学答案及评分标准一、选择题(本大题共12小题,共48分)题号123456789101112答案BADCCABBCBDA二、填空题(本大题共4小题,共16分)13.直角14.15.616.或()()11x x x +-2-1-三、解答题(本大题共6小题,共56分)解答要写出必要的文字说明、证明过程或演算步骤.17.计算(每小题4分,共8分)(1);(2).2111x x x --++22(1)(1)a a -+解:(1)4分21101x x x --+=+解:(2). 8分2242(1)(1)21a a a a -+=-+18.(8分)(1)解方程;221233x x x x +=++解:. 4分34x =-(2)已知,求代数式的2|23|(1)0x y x -+-=2(22)()(2)4(32)x x y x y y y x ---++-值.解:. 8分79-19.(9分)解:(1)分别作A 、B 、C 关于的对称点,顺次连接,如图即为所求MN ,,A B C '''A B C '''△作;3分(2)如图:点P 即为所求作;6分(3)此三角形面积为:9分20.(9分)解:设新能源车每千米行驶费用为解得; 10分1,3t a ==综上所述,或. 11分415,34t a ==1,3t a ==22.(11分)(1)证明:是等边三角形,ABC △,1分,60AC BC ACB B ∴=∠=∠=︒在和中,ACE △CBD △,AC CBACE CBD CE BD =⎧⎪∠=∠⎨⎪=⎩,3分(SAS)ACECBD ∴△≌△,4分CAE BCD ∴∠=∠;5分60APD CAP ACP BCD ACP ∴∠=∠+∠=∠+∠=︒(2)证明:如图,作于Q,AQ CD ⊥由(1)可得,,60APD ∠=︒CAE BCD ∠=∠,9030PAQ APQ ∴∠=︒-∠=︒,AQ CD ⊥ ,2AP PQ ∴=,2AP CP = ,PQ CP ∴=,CP PQ CQ += ,8分AP CQ ∴=是等边三角形,ABC △,,AC AB CAB ACB ∴=∠=∠,即,9分CAB CAE ACB BCD ∴∠-∠=∠-∠BAP ACQ ∠=∠在和中,ACQ △BAP △,AC BA ACQ BAP CQ AP =⎧⎪∠=∠⎨⎪=⎩,10分(SAS)ACQBAP ∴△≌△,90CQA APB ∴∠=∠=︒.11分BP PA ∴⊥。
(汇总3份试卷)2018年临沂市八年级上学期期末检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.勿忘草是多年生草本植物,它拥有世界上最小的花粉勿忘草的花粉直径为1.111114米,数据1.111114用科学记数法表示为( )A .4⨯115B .4⨯116C .4⨯11-5D .4⨯11-6【答案】D【解析】根据科学记数法的性质以及应用进行表示即可.【详解】60.000004410-=⨯故答案为:D .【点睛】本题考查了科学记数法的应用,掌握科学记数法的性质以及应用是解题的关键.2.若321___11x x x -=+--,则 中的数是( )A .﹣1B .﹣2C .﹣3D .任意实数【答案】B【解析】∵321___11x x x -=+-- ,∴空格中的数应为:3213212(1)21111x x x x x x x ------===-----.故选B.3.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为()A .6B .5C .4D .3【答案】C【分析】由∠ABC=15°,AD 是高,得出BD=AD 后,证△ADC ≌△BDH 后,得到BH=AC ,即可求解.【详解】∵∠ABC=15°,AD ⊥BC ,∴AD=BD ,∠ADC=∠BDH ,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C ,在△ADC 与△BDH 中,ADC BDH BHD CAD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BDH∴BH=AC=1.故选C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .由∠ABC=15°,AD 是高,得出BD=AD 是正确解答本题的关键.4.在平面直角坐标系中,如果点A 的坐标为(﹣1,3),那么点A 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据平面直角坐标系中点P(a,b),①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1;据此求解可得.【详解】解:∵点A 的横坐标为负数、纵坐标为正数,∴点A 一定在第二象限.故选:B .【点睛】本题主要考查坐标确定位置,解题的关键是掌握①第一象限:a>1,b>1;②第二象限:a<1,b>1;③第三象限:a<1,b<1;④第四象限:a>1,b<1.5.如图,等腰△ABC 中,AB =AC ,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且MN =12BC ,MD ⊥BC 交AB 于点D ,NE ⊥BC 交AC 于点E ,在MN 从左至右的运动过程中,△BMD 和△CNE 的面积之和( )A .保持不变B .先变小后变大C .先变大后变小D .一直变大【答案】B 【分析】妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a ﹣m ,根据二次函数即可解决问题.【详解】解:不妨设BC =2a ,∠B =∠C =α,BM =m ,则CN =a ﹣m ,则有S 阴=12•m•mtanα+12(a ﹣m )•(a ﹣m )tanα =12tanα(m 2+a 2﹣2am+m 2) =12tanα(2m 2﹣2am+a 2) =1tan 2α22[2()]22a a m •-+; 当2a m =时,S 阴有最小值; ∴S 阴的值先变小后变大,故选:B .【点睛】此题考查等腰三角形的性质,关键根据二次函数的性质得出面积改变规律.6.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FG AF=( )A .12B .2C 3D 3【答案】A【解析】∵△ABC 是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB ,又∵AD=BE ,∴AB-AD=BC-BE ,即BD=CE ,∴△ACE ≌△CBD ,∴∠CAE=∠BCD ,又∵∠AFG=∠ACF+∠CAE ,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG ⊥CD 于点G ,∴∠AGF=90°,∴∠FAG=30°,∴FG=12AF ,∴12FG AF . 故选A.7.如图,在等腰三角形ABC 中,BA=BC ,∠ABC=120°,D 为AC 边的中点,若BC=6,则BD 的长为( )A .3B .4C .6D .8【答案】A 【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【详解】解:∵BA=BC ,∠ABC=120°,∴∠C=∠A=30°,∵D 为AC 边的中点,∴BD ⊥AC ,∵BC=6,∴BD=12BC=3, 故选:A .【点睛】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.8.如图,在△ABC 中,AB=AC ,∠A=1200,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .1.5cmB .2cmC .2.5cmD .3cm【答案】B 【解析】连接AM 、AN ,∵在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,∴∠B=∠C=30°,∵EM 垂直平分AB ,NF 垂直平分AC ,∴BM=AM ,CN=AN ,∴∠MAB=∠B=30°,∠NAC=∠C=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴△AMN是等边三角形,∴AM=MN=NC,∴BM=MN=CN,∵BM+MN+CN=BC=6cm,∴MN=2cm ,故选B.9.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.7【答案】A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.10.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A .4B .8C .16D .64【答案】D 【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 2及PQ 2,又三角形PQR 为直角三角形,根据勾股定理求出QR 2,即为所求正方形的面积.【详解】解:∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又∵△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣225=1,则正方形QMNR 的面积为1.故选:D .【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.二、填空题11.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.【答案】55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.12在实数范围内有意义,则x 的取值范围是______.【答案】x≤3【分析】根据二次根式有意义的条件解答.【详解】解:根据题意得:3-x≥0,解得:x≤3,故答案为x≤3.【点睛】本题考查二次根式的性质,熟记二次根式有意义被开方数非负是解题关键.13.一种微生物的半径是6610m -⨯,用小数把6610m -⨯表示出来是_______m .【答案】0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6×10-6m=0.1m .故答案为:0.1.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).14.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.【答案】240.【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.15.用反证法证明在△ABC 中,如果AB≠AC ,那么∠B≠∠C 时,应先假设________.【答案】∠B=∠C【分析】根据反证法的一般步骤即可求解. 【详解】用反证法证明在△ABC 中,如果AB≠AC ,求证∠B≠∠C ,第一步应是假设∠B=∠C .故答案为:∠B=∠C【点睛】 本题考查的反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判断假设不不正确,从而肯定原命题的结论正确.16.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.【答案】213【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=213(小时). 故答案为:213. 【点睛】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.17.1258-的立方根是____. 【答案】52-. 【分析】利用立方根的定义即可得出结论 【详解】1258-的立方根是52-. 故答案为:52-【点睛】此题主要考查了 立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.一个正数有两个平方根,并且它们是一对相反数.三、解答题18.先化简,再求值.2321222x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中x =1. 【答案】11x x -+,13. 【分析】先化简分式,然后将x 的值代入计算. 【详解】解:原式()2243212x x x x +÷+-=++ ()()()211221x x x x x -++=⨯++11x x -=+ 当x =1时, 原式211213-==+ . 【点睛】本题考查了分式的计算,掌握分式化简得方法再代入求值是解题的关键.19.某县教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了该县八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出参加抽样调查的八年级学生人数,并将频数直方图补充完整.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生6000人,请你估计“活动时间不少于5天”的大约有多少人?【答案】(1)调查的初一学生人数200人;补图见解析;(2)中位数是4(天),众数是4(天);(3)估计“活动时间不少于5天”的大约有2700人.【分析】(1)由参加实践活动为2天的人数除以所占的百分比即可求出八年级学生总数,根据单位1减去其他的百分比求出a的值,由学生总数乘以活动实践是5天与7天的百分比求出各自的人数,补全统计图即可;(2)出现次数最多的天数为4天,故众数为4;将实践活动的天数按照从小到大顺心排列,找出最中间的两个天数,求出平均数即可得到中位数;(3)求出活动时间不少于4天的百分比之和,乘以6000即可得到结果.【详解】解:(1)调查的初一学生人数:20÷10%=200(人),“活动时间不少于5天”的人数为:200×(1-15%-10%-5%-15%-30%)=50(人),“活动时间不少于7天”的人数为:200×5%=10(人),补全统计图如下:(2)根据中位数的概念,中位数应是第100人的天数和101人的天数的平均数,即中位数是4(天),根据众数的概念,则众数是人数最多的天数,即众数是4(天);(3)估计“活动时间不少于5天”的大约有:(200﹣20﹣30﹣60)÷200×6000=2700(人).【点睛】本题考查了频率分布直方图和扇形统计图,以及用样本估计总体,弄清题意是解本题的关键. 20.为缓解用电紧张,龙泉县电力公司特制定了新的用电收费标准:每月用电量x (千瓦时)与应付电费y (元)的关系如图所示.(1)根据图象求出y 与x 之间的函数关系式;(2)当用电量超过50千瓦时时,收费标准是怎样的?【答案】(1)y =()()0.50500.92050x x x x ⎧≤≤⎪⎨-⎪⎩>;(2)0.9元/度 【分析】(1)利用待定系数法可以求得y 与x 之间的函数关系式;(2)根据用电量为50度时付费25元,用电量100度时付费70元进行计算.【详解】解:(1)当0≤x≤50时,设y 与x 的函数关系式为y =kx ,代入(50,25)得:50k =25,解得k =0.5,即当0≤x≤50时,y 与x 的函数关系式为y =0.5x ;当x >50时,设y 与x 的函数关系式为y =ax+b ,代入(50,25),(100,70)得:502510070a b a b +=⎧⎨+=⎩, 解得:0.920a b =⎧⎨=-⎩, 即当x >50时,y 与x 的函数关系式为y =0.9x ﹣20;由上可得,y 与x 的函数关系式为y =()()0.50500.92050x x x x ⎧≤≤⎪⎨-⎪⎩>; (2)当用电量超过50度时,收费标准是:702510050--=0.9元/度, 答:当用电量超过50度时,收费标准是0.9元/度.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 21.(1)解分式方程:11222x x x++=--. (2)如图,ABC 与DCB 中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =,求证:EBC ECB ∠=∠.【答案】(1)23 x=;(2)见解析【分析】(1)根据解分式方程的一般步骤解方程即可;(2)利用AAS证出△ABE≌△DCE,从而得出EB=EC,然后根据等边对等角即可得出结论.【详解】解:(1)11222xx x++=--()()1221x x+-=-+1241x x+-=--解得23x=经检验:23x=是原方程的解;(2)在△ABE和△DCE中A DAEB DECAB DC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△DCE∴EB=EC∴EBC ECB∠=∠【点睛】此题考查的是解分式方程、全等三角形的判定及性质和等腰三角形的性质,掌握解分式方程的一般步骤、全等三角形的判定及性质和等边对等角是解决此题的关键.22.如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC于点G.(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.【答案】(1)见解析;(2)18cm【分析】(1)连接BE 、EC,只要证明Rt △BFE ≌Rt △CGE ,得BF=CG,再证明Rt △AFE ≌Rt △AGE 得:AF=AG ,根据线段和差定义即可解决.(2由AG=5cm 可得AB+AC=10cm 即可得出△ABC 的周长.【详解】(1)延长AB 至点M ,过点E 作EF ⊥BM 于点F∵AE 平分∠BACEG ⊥AC 于点G∴EG=EF,∠EFB=∠EGC=90°连接BE ,EC∵点D 是BC 的中点,DE ⊥BC∴BE=EC在Rt △BFE 与Rt △CGE 中BE EC EF EG =⎧⎨=⎩∴Rt △BFE ≌Rt △CGE (HL )∴BF=GC∵AB+AC=AB+AG+GC∴AB+AC =AB+BF+AG=AF+AG在Rt △AFE 与Rt △AGE 中AE AE EF EG =⎧⎨=⎩∴Rt △AFE ≌Rt △AGE(HL )∴AF=AG∴AB+AC=2AG(2)∵AG=5cm, AB+AC=2AG∴AB+AC=10cm又∵BC=8cm∴△ABC 的周长为AB+AC+BC=8+10=18cm .【点睛】本题考查角平分线的性质定理、全等三角形的判定和性质、线段垂直平分线的性质等知识,解题的关键是添加辅助线构造全等三角形,需要熟练掌握全等三角形的判定,属于中考常考题型.23.基本运算(1)分解因式:①3224a b ab -②()228a b ab -+(2)整式化简求值:求[()()()2224x y x y x y +--+]÷4y 的值,其中()02x -无意义,且320x y -=.【答案】(1)①2(21)(21)ab a a -+,②()22a b +;(2)52y x --,-1 【分析】(1)①先提取2ab ,再利用平方差公式即可求解;②先化简,再利用完全平方公式即可求解; (2)先根据整式的混合运算法则化简,再根据零指数幂的性质求出x ,y 的值,代入即可求解.【详解】(1)①3224a b ab -=22(41)ab a -=2(21)(21)ab a a -+②()228a b ab -+ 22448a ab b ab =-++2244a ab b =++()22a b =+(2)[()()()2224x y x y x y +--+]÷4y=2222(4816)4x y x xy y y ----÷=2(208)4y xy y --÷=52y x --∵()02x -无意义,且320x y -=,∴2x =,3y =代入上式得:原式=5322-⨯-⨯=-1.【点睛】此题主要考查因式分解与整式的运算,解题的关键是熟知其运算法则.24.某车队要把4000吨货物运到灾区(方案制定后,每天的运货量不变).(1)设每天运输的货物吨数n (单位:吨),求需要的天数;(2)由于到灾区的道路受阻,实际每天比原计划少运20%,因此推迟1天完成任务,求原计划完成任务的天数.【答案】(1)t=4000n (2)原计划4天完成 【分析】(1)根据每天运量×天数=总运量即可列出函数关系式;(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.【详解】解:(1)设需要的天数为t ,∵每天运量×天数=总运量,∴nt=4000,∴t=4000n; (2)设原计划x 天完成,根据题意得: 40004000(120%)1x x⨯-=+ 解得:x=4经检验:x=4是原方程的根.答:原计划4天完成.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.在△ABC 中,AB =AC ,∠BAC =120°,AD ⊥BC ,垂足为G ,且AD =AB ,∠EDF =60°,其两边分别交边AB ,AC 于点E ,F .(1)连接BD ,求证:△ABD 是等边三角形;(2)试猜想:线段AE 、AF 与AD 之间有怎样的数量关系?并给以证明.【答案】(1)详见解析;(2)AE+AF =AD.证明见解析.【分析】(1)连接BD 由等腰三角形的性质和已知条件得出∠BAD=∠DAC=1120=602⨯︒︒,再由AD =AB ,即可得出结论;(2)由△ABD 是等边三角形,得出BD =AD ,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA 证明△BDE≌△ADF,得出AF =BE ,即可求解.【详解】(1)证明:连接BD ,∵AB =AC ,AD ⊥BC ,∴∠BAD =∠DAC =12 ∠BAC , ∵∠BAC =120°, ∴1120=602BAD DAC ∠∠⨯︒︒==,∵AD =AB ,∴△ABD 是等边三角形;(2)猜想:AE+AF =AD ,理由如下:∵△ABD 是等边三角形,∴∠ABD =∠ADB =60°,AB =BD =AD∵∠EDF =60°,∴∠BDE =∠ADF ,在△BDE 与△ADF 中, 60DBE DAF BD AD BDE ADF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BDE ≌△ADF (ASA ),∴AF =BE ,∴AB =BE+AE =AF+AE =AD【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质,熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【答案】D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=1,则正方形QMNR的面积为1.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A.4.5112y xy x-=⎧⎪⎨-=⎪⎩B.4.5112x yy x-=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112y xx y-=⎧⎪⎨-=⎪⎩【答案】B【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5112x yy x-=⎧⎪⎨-=⎪⎩,故选B.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.下列方程组中,不是二元一次方程组的是()A.{32041x yx y-=-=B.{53x y y z+=+=C.{22220x x x yx y-=+-=D.{210x y y=+=【答案】B【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:A、是二元一次方程组,故A正确;B、是三元一次方程组,故B错误;C、是二元一次方程,故C正确;D、是二元一次方程组,故D正确;故选:B.【点睛】本题考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.4.在平面直角坐标系中,直线1:3l y x=+与直线2:l y mx n=+交与点()2,A b-,则关于x,y的方程组3y xy mx n=+⎧⎨=+⎩的解为()‘A .21x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=⎩D .12x y =-⎧⎨=-⎩ 【答案】A【分析】直接根据图像及一次函数与二元一次方程组的关系进行求解即可.【详解】解:由直线1:3l y x =+与直线2:l y mx n =+交与点()2,A b -,可得:231b =-+=,所以()2,1A -;∴由图像可得:关于x ,y 的方程组3y x y mx n =+⎧⎨=+⎩的解为21x y =-⎧⎨=⎩; 故选A .【点睛】本题主要考查一次函数与二元一次方程组,关键是根据题意得到一次函数与二元一次方程组的关系即可. 5.如图,已知AB ∥CD ,AD =CD ,∠1=40°,则∠2的度数为( )A .60°B .65°C .70°D .75°【答案】C 【分析】由等腰三角形的性质可求∠ACD =70°,由平行线的性质可求解.【详解】∵AD =CD ,∠1=40°,∴∠ACD =70°,∵AB ∥CD ,∴∠2=∠ACD =70°,故选:C .【点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题.6.在平面直角坐标系中,点P (﹣2,3)在第( )象限.A .一B .二C .三D .四 【答案】B【分析】根据各象限内点的坐标特征解答.【详解】点P (-2,3)在第二象限.故选B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.下列多项式中能用完全平方公式分解的是( )A .x 2﹣x+1B .1﹣2x+x 2C .﹣a 2+b 2﹣2abD .4x 2+4x ﹣1【答案】B【分析】根据完全平方公式:a 2±2ab+b 2=(a ±b )2可得答案.【详解】A .x 2﹣x+1不能用完全平方公式分解,故此选项错误;B .1﹣2x+x 2= (1-x)2能用完全平方公式分解,故此选项正确;C .﹣a 2+b 2﹣2ab 不能用完全平方公式分解,故此选项错误;D .4x 2+4x ﹣1不能用完全平方公式分解,故此选项错误.故选:B .【点睛】此题主要考查因式分解,解题的关键是熟知完全平方公式的运用.8.如图,CE 是ABC 的角平分线,//EF BC ,交AC 于点F .已知68AFE ∠=︒,则FEC ∠的度数为( )A .68︒B .34︒C .32︒D .22︒【答案】B 【分析】根据平行线的性质和角平分线的性质即可求解.【详解】解:∵//EF BC∴∠ACB=68AFE ∠=︒∵CE 是ABC 的角平分线∴FEC ∠=∠BCE=12ACB ∠=34︒ 故选:B【点睛】此题主要考查平行线的性质和角平分线的性质,灵活运用性质解决问题是解题关键.9.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .8 【答案】C【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.10.解方程去分母得 ( )A .B .C .D .【答案】C 【解析】本题的最简公分母是(x-2).方程两边都乘最简公分母,可把分式方程转换为整式方程.【详解】解:方程两边都乘(x-2),得1=x-1-3(x-2).故选C .【点睛】本题考查解分式方程中的去分母化为整式方程的过程,关键是找到最简公分母,注意不要漏乘,单独的一个数和字母也必须乘最简公分,还有就是分子分母互为相反数时约分为-1.二、填空题11.比较大小:31.(填“>”、“<”或“=”号)【答案】<【解析】先把3121216的大小即可.【详解】∵312,116,12<16, 1216,即3<1.故答案为<.【点睛】本题考查的是实数的大小比较,先根据题意把312的形式是解答此题的关键.12.分解因式:x 3y-xy=______.【答案】(1)(1)xy x x +-【详解】原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)13.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=50°,则∠DCE的度数是__.【答案】10°.【分析】根据∠ECD=∠ECB-∠DCB,求出∠ECB,∠DCB即可解决问题.【详解】∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=100°,∵EC平分∠ACB,∵∠ECB=12∠ACB=50°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=90°﹣50°=40°,∴∠ECD=∠ECB﹣∠DCB=50°﹣40°=10°,故答案为10°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识.14.某学校八年级()1班学生准备在植树节义务植树240棵,原计划每小时植树a棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了__________小时完成任务.(用含a的代数式表示).【答案】40 a【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要240a小时,实际需要2401.2a小时,故提前的时间为240240240200401.2a a a a a-=-=,则实际比原计划提前了40a小时完成任务.故答案为:40a.【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.15.在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为_____.【答案】32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B 、∠C 互余,然后用∠C 表示出∠B ,再列方程求解即可.【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C ,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A 的度数是解题的关键.16.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.【答案】()3,1-【分析】过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .先证明AOD COE BCF ∆∆∆≌≌,得到1AD CE BF ===,2OD OE CF ===,根据点的坐标定义即可求解.【详解】解:如图,过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .()2,1C --,2OE ∴=,1CE =.四边形OABC 是正方形,OA OC BC ∴==.易求AOD COE BCF ∠=∠=∠.又90ODA OEC F ∠=∠=∠=︒∴AOD COE BCF ∆∆∆≌≌,1AD CE BF ∴===,2OD OE CF ===,∴点A 的坐标为()1,2-,211EF =-=,点B 到y 轴的距离为123+=,∴点B 的坐标为()3,1-.故答案为:()3,1-【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.17.分解因式:39a b ab -= .【答案】ab (a+3)(a ﹣3).【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.三、解答题18.如图,已知点B ,C ,F ,E 在同一直线上,∠1=∠2,BF=CE ,AB ∥DE .求证:△ABC ≌△DEF .【答案】证明见解析.【解析】首先根据平行线的性质可得∠E=∠B ,进而求得BC=EF ,再加上∠1=∠2,可利用AAS 证明△ABC ≌△DEF .【详解】证明:∵BF=CE ,∴BF-FC=CE-CF ,即BC=EF ,∵AB ∥DE ,∴∠E=∠B ,在△ABC 和△DEF 中,12B E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (AAS ).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .19.如图,直线1l 的解析表达式为:y=-3x +3,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求△ADC 的面积;(4)在直线2l 上存在一点P ,使得△ADP 的面积是△ADC 面积的2倍,请直接写出点P 的坐标.【答案】(1)D (1,0);(2)362y x =-;(3) 92;(4)P 1(8,6)或P 2(0,-6). 【分析】(1)已知l 1的解析式,令y =0求出x 的值即可;(2)设l 2的解析式为y =kx+b ,由图联立方程组求出k ,b 的值;(3)联立方程组,求出交点C 的坐标,继而可求出S △ADC ;(4)△ADP 与△ADC 底边都是AD ,根据△ADP 的面积是△ADC 面积的2倍,可得点P 的坐标..【详解】解:(1)由y =﹣3x+3,令y =0,得﹣3x+3=0,∴x =1,∴D (1,0);(2)设直线l 2的解析表达式为y =kx+b ,由图象知:x =4,y =0;x =3,y=-32,代入表达式y =kx+b ,∴40332k bk b+=⎧⎪⎨+=-⎪⎩,∴326 kb⎧=⎪⎨⎪=-⎩,∴直线l2的解析表达式为362y x=-;(3)由33362y xy x=-+⎧⎪⎨=-⎪⎩,解得23 xy=⎧⎨=-⎩,∴C(2,﹣3),∵AD=3,∴S△ADC=12×3×|﹣3|=92;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,∴△ADC高就是点C到直线AD的距离的2倍,即C纵坐标的绝对值=6,则P到AD距离=6,∴点P纵坐标是±6,∵y=1.5x-6,y=6,∴1.5x-6=6,解得x=8,∴P1(8,6).∵y=1.5x-6,y=-6,∴1.5x-6=-6,解得x=0,∴P2(0,-6)综上所述,P1(8,6)或P2(0,-6).【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.20.已知ABC∆是等边三角形,点D是AC的中点,P点在射线BC上,Q点在射线BA上,120PDQ∠=︒,(1)如图1,若Q 点与点B 重合,求证:=DB DP .(2)如图2,若点P 在线段BC 上,点Q 在线段AB 上,8,AC =求BP BQ +的值.【答案】(1)见解析(2)12.【解析】(1)由等边三角形和等腰三角形的性质得出∠DBC =∠P ,即可得出DB =DE ;(2)过点D 作DH ∥BC ,交AB 于点 H ,证明△DQH ≌△DPC (ASA ),得出HQ =CP ,得出BQ +BP =BH +HQ +BP =BH +BP +PC =BH +BC =32AC 即可求解. 【详解】(1)证明:∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60︒,∵D 为AC 的中点,∴DB 平分∠ABC ,∴∠DBC =30︒,∵120PDQ ∠=︒∴∠P =180︒−120︒−30︒=30︒∴∠DBC =∠P ,∴DB =DP(2)过点D 作DH ∥BC ,交AB 于点 H ,如图2所示:∵△ABC 为等边三角形,∴∠A =∠B =∠C =60︒,∵DH ∥BC ,∴∠AHD =∠B =60︒,∠ADH =∠C =60︒,∴∠AHD =∠ADH =∠C =60︒,∠HDC =120︒,∴△ADH 是等边三角形,∴DH =AD ,∵D 为AC 的中点,∴DA =DC ,∴DH =DC ,∵∠PDQ =120︒,∠HDC =120︒,∴∠PDH +∠QDH =∠PDH +∠CDP ,∴∠QDH =∠CDP ,在△DQH 和△DPC 中,QHD C DH DCQDH PDC ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△DQH ≌△DPC ,∴HQ =CP ,∴BQ +BP =BH +HQ +BP =BH +BP +PC =BH +BC=32AC =12, 即BP BQ +=12.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定由性质、等腰三角形的判定与性质等知识;熟练掌握等边三角形的性质和等腰三角形的性质,证明三角形全等是解题的关键.21.如图,ABC ∆是等边三角形,P 是ABC ∆的角平分线BD 上一点,PE AB ⊥于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .。
〖汇总3套试卷〗临沂市2018年八年级上学期期末考试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列等式变形是因式分解的是( )A .﹣a (a+b ﹣3)=a 2+ab ﹣3aB .a 2﹣a ﹣2=a (a ﹣1)﹣2C .﹣4a 2+9b 2=﹣(2a+3b )(2a ﹣3b )D .2x+1=x (2+1x) 【答案】C【分析】根据因式分解的定义逐个判断即可. 【详解】解:A 、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意; B 、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、符合因式分解的定义,是因式分解,故本选项符合题意;D 、右边不是几个整式的积的形式(含有分式),不是因式分解,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.2.在同一坐标系中,函数y kx =与y x k =-的图象大致是( ) A . B .C .D .【答案】B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而y kx =必过一、三或二、四象限,可排除C 、D 选项,再利用k 进行分析判断.【详解】A 选项:0k <,0k -<.解集没有公共部分,所以不可能,故A 错误;B 选项:0k <,0k ->.解集有公共部分,所以有可能,故B 正确;C 选项:一次函数的图象不对,所以不可能,故C 错误;D 选项:正比例函数的图象不对,所以不可能,故D 错误.故选:B .【点睛】本题考查正比例函数、一次函数的图象性质,比较基础.3.下列各组条件中能判定ABC DEF ∆≅∆的是( )A .AB DE =,BC EF =,AD ∠=∠B .A D ∠=∠,B E ∠=∠,BC DF = C .AD ∠=∠,BE ∠=∠,CF ∠=∠D .AB DE =,BC EF =,AC DF =【答案】D【分析】根据三角形全等的判定判断即可.【详解】由题意画出图形:A 选项已知两组对应边和一组对应角,但这组角不是夹角,故不能判定两三角形全等;B 选项已知两组对应边和一组边,但这组边不是对应边,故不能判定两三角形全等;C 选项已知三组对应角,不能判定两三角形全等;D 选项已知三组对应边,可以判定两三角形全等;故选D .【点睛】本题考查三角形全等的判定,关键在于熟练掌握判定条件.4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( )A .2和2B .4和2C .2和3D .3和2 【答案】D 【解析】试题分析:根据平均数的含义得:22495x ++++=4,所以x=3; 将这组数据从小到大的顺序排列(2,2,3,4,1),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选D .考点:中位数;算术平均数;众数5.下列说法错误的是( )A .角平分线上的点到角两边的距离相等B.直角三角形的两个锐角互余C.等腰三角形的角平分线、中线、高线互相重合D.一个角等于60°的等腰三角形是等边三角形【答案】C【解析】根据角平分线的判定定理、直角三角形的性质、等腰三角形的性质、等边三角形的判定定理判断即可.【详解】A、角平分线上的点到角的两边距离相等,故本选项正确;B. 直角三角形的两个锐角互余,故本选项正确;C、应该是:等腰三角形底边上的角平分线、中线、高线互相重合,故此选项错误;D、根据等边三角形的判定定理“有一内角为60°的等腰三角形是等边三角形”知本选项正确.故选:C.【点睛】本题考查角平分线的性质,直角三角形的性质,等腰三角形的性质,等边三角形的判定,注意,有一个角是60°的“等腰三角形”是等边三角形,而不是有一个角是60°的“三角形”是等边三角形.6.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.7.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命题D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.8.64的平方根是()A.8 B.8-C.8±D.32【答案】C【分析】根据平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,即可得解.【详解】由已知,得64的平方根是8±,故选:C .【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.9.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A .∠B=∠CB .AD=AEC .∠BDC=∠CEBD .BD=CE【答案】D 【分析】要使△ABD ≌△ACE ,则需对应边相等,夹角相等,可用两边夹一角,也可用两角夹一边判定全等.【详解】已知条件中AB=AC ,∠A 为公共角,A 中∠B=∠C ,满足两角夹一边,可判定其全等,A 正确;B 中AD=AE 两边夹一角,也能判定全等,B 也正确;C 中∠BDC=∠CEB ,即∠ADB=∠AEC ,又∠A 为公共角,∴∠B=∠C ,所以可得三角形全等,C 对;D 中两边及一角,但角并不是夹角,不能判定其全等,D 错.故选D.【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法,是正确解题的前提;做题时要按判定全等的方法逐个验证.10.如图,将一张含有30︒角的三角形纸片的两个顶点放在直尺的两条对边上,若120∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒【答案】C 【分析】利用平行线的性质,三角形的外角的性质解决问题即可;【详解】解:如图,∵AB∥CD,∴∠3=∠2,∴∠3=∠1+30°,∵∠1=20°,∴∠3=∠2=50°;故选:C.【点睛】本题主要考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题11.如图,∠AOB=30º,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=___________.【答案】1【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=1cm ,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD 是等边三角形,∴CD=OC=OD=1.∴△PMN 的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=1.故答案为1.12.233()x y --=_______【答案】69x y -【分析】根据幂的运算法则即可求解.【详解】23369()x y x y ---= 故答案为:69x y -.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.13.已知在ABC 中,90ACB ∠=︒,AC BC =,点D 为直线AC 上一点,连接BD ,若15CBD ∠=︒,则ABD ∠=_______________.【答案】60°或30°【分析】分点D 在线段AC 上和点D 在射线AC 上两种情况,画出图形,利用等腰直角三角形的性质和角的和差计算即可.【详解】解:当点D 在线段AC 上时,如图1,∵90ACB ∠=︒,AC BC =,∴45ABC BAC ∠=∠=︒, ∵15CBD ∠=︒,∴451530ABD ∠=︒-︒=︒;当点D 在射线AC 上时,如图2,∵90ACB ∠=︒,AC BC =,∴45ABC BAC ∠=∠=︒,∵15CBD ∠=︒,∴451560ABD ∠=︒+︒=︒.故答案为:60°或30°.【点睛】本题主要考查了等腰直角三角形的性质,属于基础题型,正确分类画出图形、熟练掌握等腰直角三角形的性质是解题关键.14.已知点32,)6(M a a -+在y 轴上,则a 的值为__________. 【答案】23【分析】根据y 轴上点的坐标特点:y 轴上点的横坐标是0即可解答.【详解】∵点32,)6(M a a -+在y 轴上,∴3a-2=0,∴a=23, 故答案为:23. 【点睛】此题考查数轴上点的坐标特点,熟记点在每个象限及数轴上的坐标特点是解此题的关键.15.分解因式:3x 9x -= .【答案】()()x x 3x 3+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22x 9x x x 9x x 3x 3-=-=+-. 16.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38、52、47、46、50、53、61、72、45、58,则10名女生仰卧起坐个数不少于50个的频率为__________.【答案】0.6【分析】数出这10个数据中不少于50的个数,然后根据频率公式:频率=频数÷总数,计算即可.【详解】解:这10个数据中不少于50有52、50、53、61、72、58,共6个∴10名女生仰卧起坐个数不少于50个的频率为6÷10=0.6故答案为:0.6.【点睛】此题考查的是求频率问题,掌握频率公式:频率=频数÷总数是解决此题的关键.17.分解因式:ax 2+2ax+a=____________.【答案】a (x+1)1【解析】ax 1+1ax+a=a (x 1+1x+1)=a (x+1)1.三、解答题18.如图,在ABC ∆中,CD 平分ACB ∠交AB 于点D ,E 为AC 上一点,且DE CE =.(1)求证://DE BC ;(2)若90A ∠=︒,26BCD S ∆=,13BC =,求AD .【答案】(1)见解析;(2)1.【分析】(1)根据角平分线的定义与等腰三角形的性质,即可得到结论;(2)过D 作DF BC ⊥于F ,根据角平分线的性质定理与三角形的面积公式,即可得到答案.【详解】(1)∵CD 平分ACB ∠,∴ECD BCD ∠=∠,又∵DE CE =,∴ECD EDC ∠=∠,∴BCD CDE ∠=∠,∴//DE BC ;(2)过D 作DF BC ⊥于F ,∵90A ∠=︒,CD 平分ACB ∠,∴AD FD =,∵26BCD S ∆=,13BC =, ∴113262DF ⨯⨯=, ∴4DF =,∴4=AD .【点睛】本题主要考查平行线的判定定理与角平分线的性质定理,掌握“双平等腰”模型以及角平分线的性质是解题的关键.19.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【答案】解:(1)设甲公司单独完成此项工程需x 天,则乙公司单独完成此项工程需1.5x 天. 根据题意,得111x 1.5x 12+=, 解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y ﹣1500)元,根据题意得12(y+y ﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x 天,则乙工程公司单独完成需1.5x 天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.20.计算或因式分解:(1)计算:(a 2-4)÷2a a+;(2)因式分解:a(n -1)2-2a(n -1)+a. 【答案】(1)原式=a 2-2a ;(2)原式=a(n -2)2.【解析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解; (2)首先提取公因式a ,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a +2)(a -2)2a a +=a(a -2)=a 2-2a ;(2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2.21.先化简,再求值:(11x+﹣1)÷21xx-,其中x=2【答案】-1【分析】先对括号内的式子进行通分,再将除法转化为乘法,并对分子、分母因式分解,最后约分即可得到最简形式1-x;接下来将x=2代入化简后的式子中进行计算即可求得答案.【详解】解:原式=x x+x-x+1x-(1)(1)=﹣x+1当x=2时原式=﹣2+1=﹣1.【点睛】本题考查分式的混合运算,求代数式的值.在对分式进行化简时,先观察分式的特点,运用合适的运算法则进行化简.22.某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.(1)文学书和科普书的单价分别是多少元?(2)该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?【答案】(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m 为整数,∴m 的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为多少?【答案】30ECF ∠=︒.【分析】可以取AB 的中点G ,连接CG 交AD 于点F ,根据等边△ABC 的边长为4,AE=2,可得点E 是AC 的中点,点G 和点E 关于AD 对称,此时EF+FC=CG 最小,根据等边三角形的性质即可得∠ECF 的度数.【详解】解:如图,取AB 的中点G ,连接CG 交AD 于点F ,∵等边△ABC 的边长为4,AE=2,∴点E 是AC 的中点,所以点G 和点E 关于AD 对称,此时EF+FC=CG 最小,根据等边三角形三线合一的性质可知:∠ECF=12∠ACB=30°. 【点睛】本题考查了轴对称-最短路线问题、等边三角形的性质,解决本题的关键是利用等边三角形的性质找对称点.24.为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受粤东古城潮州的悠久历史,某中学组织八年级师生共420人前往潮州开展研学活动.学校向租车公司租赁A 、B 两种车型接送师生往返,若租用A 型车3辆,B 型车5辆,则空余15个座位;若租用A 型车5辆,B 型车3辆,则15人没座位. (1)求A 、B 两种车型各有多少个座位?(2)租车公司目前B 型车只有6辆,若A 型车租金为1800元/辆,B 型车租金为2100元/辆,请你为学校设计使座位恰好坐满师生且租金最少的租车方案.【答案】(1)每辆A 型车有45个座位,每辆B 型车有60个座位;(2)租4辆A 型车、4辆B 型车所需租金最少【分析】(1)设每辆A 型车有x 个座位,每辆B 型车有y 个座位,根据“若租用A 型车3辆,B 型车5辆,则空余15个座位;若租用A 型车5辆,B 型车3辆,则15人没座位”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设租m 辆A 型车,n 辆B 型车,根据所租车辆的座位恰好坐满,即可得出关于m ,n 的二元一次方程,结合m ,n 为非负整数且n≤6,即可得出各租车方案,再求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设每辆A 型车有x 个座位,每辆B 型车有y 个座位,依题意,得:35420155342015x y x y +=+⎧⎨+=-⎩, 解得:4560x y =⎧⎨=⎩. 答:每辆A 型车有45个座位,每辆B 型车有60个座位.(2)设租m 辆A 型车,n 辆B 型车,依题意,得:4560420m n +=,374n m ∴=-. m ,n 均为非负整数,∴当0m =时,7n =,76>,不合题意,舍去;当4m =时,4n =;当8m =时,1n =, ∴共有两种租车方案,方案1:租4辆A 型车,4辆B 型车;方案2:租8辆A 型车,1辆B 型车. 方案1所需费用为180042100415600⨯+⨯=(元);方案2所需费用为180082100116500⨯+⨯=(元).1560016500<,∴组4辆A 型车、4辆B 型车所需租金最少.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.25.已知2y -与x 成正比例,当2x =时,6y =. (1)求y 与x 的函数关系式;(2)当6y >时,求x 的取值范围.【答案】 (1) y=2x+2 (2) 6y >时,x >2【分析】(1) 根据正比例函数的定义设y-2=kx (k ≠0)然后把x ,y 的值代入求出k ,即可求出解析式;(2)根据 (1)中的解析式,判断即可.【详解】(1)∵y-2与x 成正比例函数∴设 y-2=kx (k ≠0)将x=2,y=6 代入得,2k=6-2 k=2∴ y-2=2x∴y=2x+2(2)根据函数解析式 y=2x+2得到y 随x 的增加而增大∵ y=6时 x=2∴6y >时,x >2.【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.ABC ∆的三个内角A ∠,B ,C ∠满足::1:2:3A B C ∠∠∠=,则这个三角形是( ) A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 【答案】C【分析】根据::1:2:3A B C ∠∠∠=,设∠A=x ,∠B=2x ,∠C=3x ,再根据内角和列出方程求解即可.【详解】解:设∠A=x ,∠B=2x ,∠C=3x ,则x+2x+3x=180,解得:x=30,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC 为直角三角形,故选C.【点睛】本题是对三角形内角和的考查,熟练掌握三角形内角和知识和准确根据题意列出方程是解决本题的关键. 2.若长方形的长为 (4a 2-2a +1) ,宽为 (2a +1) ,则这个长方形的面积为( )A .8a 3-4a 2+2a -1B .8a 3-1C .8a 3+4a 2-2a -1D .8a 3 +1 【答案】D【分析】利用长方形的面积等于长乘以宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得 S 长方形=(4a 2-2a+1)(2a+1)=8a 3+1. 故选D .【点睛】本题主要考查多项式乘以多项式运算,解决本题的关键是要熟练掌握多项式乘法法则.3.要使分式13x +有意义,则x 的取值应满足( ) A .3x ≥B .-3x <C .3-≠xD .3x ≠【答案】C【分析】根据分式有意义的条件是分母不等于零可得到30x +≠,解不等式即可.【详解】解:由题意得:30x +≠,解得:3x ≠-,故选:C .【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.本题不难,要注意审题.4.如图,点B F 、在线段EC 上, ,CF EB A D =∠=∠,增加下列一个条件,仍不能判定ABC DEF △≌△的是( )A .// DF ACB . DF AC = C .E ABC ∠=∠D .//AB DE【答案】B 【分析】由CF=EB 可求得EF=DC ,结合∠A=∠D ,根据全等三角形的判定方法,逐项判断即可.【详解】∵CF=EB ,∴CF+FB=FB+EB ,即EF=BC ,且∠A=∠D ,∴当// DF AC 时,可得∠DFE=∠C ,满足AAS ,可证明全等;当 DF AC =时,满足ASS ,不能证明全等;当E ABC ∠=∠时,满足AAS ,可证明全等;当//AB DE 时,可得E ABC ∠=∠,满足AAS ,可证明全等.故选B .【点睛】此题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS ,SAS ,ASA ,AAS 和HL .5.在下列长度的各组线段中,能组成直角三角形的是( )A .1,2,3B .5,6,7C .1,4,9D .5,12,13【答案】D【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、因为12+22≠32,所以不能组成直角三角形;B 、因为52+62≠72,所以不能组成直角三角形;C 、因为12+42≠92,所以不能组成直角三角形;D 、因为52+122=132,所以能组成直角三角形.故选:D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( )A .(m+n)小时B .2m n +小时C .m n n m +小时D .mn m n+小时 【答案】D 【解析】假设甲、乙经过x 小时相遇, 令A 、B 距离为a,甲从A 地到B 地要走m 小时,则甲的速度为a m ;乙从B 地到A 地要走n 小时,则乙的速度为,a n 根据题目中的等量关系列出方程求解即可. 【详解】假设甲、乙经过x 小时相遇,令A 、B 距离为a,甲从A 地到B 地要走m 小时,则甲的速度为a m ;乙从B 地到A 地要走n 小时,则乙的速度为,a n根据题意, 列方程a a x x a m n+=, 解得.mn x m n =+ 故选:D.【点睛】本题主要考查分式方程的应用,解题的关键是分析题意,找出题目中的等量关系.7.若x 2﹣2(k ﹣1)x+9是完全平方式,则k 的值为( )A .±1B .±3C .﹣1或3D .4或﹣2 【答案】D【解析】试题解析:∵x 2-2(k-1)x+9是完全平方式,∴k-1=±3,解得:k=4或-2,故选D8.9的平方根是( )A .92B .81C .3±D .3【答案】C【分析】根据平方根的定义求解即可.【详解】9的平方根是±3故选:C【点睛】本题考查的是平方根,理解平方根的定义是关键.9.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道x米,则可列方程200020001010x x -=+,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为( ) A .每天比原计划多铺设10米,结果延期10天完成任务B .每天比原计划少铺设10米,结果延期10天完成任务C .每天比原计划少铺设10米,结果提前10天完成任务D .每天比原计划多铺设10米,结果提前10天完成任务【答案】D【分析】工作时间=工作总量÷工作效率.那么2000x ÷表示原来的工作时间,那么()200010x ÷+就表示现在的工作时间,10就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x 米,那么10x +就应该是实际每天比原计划多铺了10米,而用200020001010x x -=+则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.故选:D .【点睛】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断. 10.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=12,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则BQ+QP 的最小值是( )A .4B .5C .6D .7【答案】C 【分析】如图,作点P 关于直线AD 的对称点P′,连接QP′,由△AQP ≌△AQP′,得PQ=QP′,欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC 时,BQ+QP′的值最小,此时Q 与D 重合,P′与C 重合,最小值为BC 的长.【详解】解:如图,作点P 关于直线AD 的对称点P′,连接QP′,△AQP 和△AQP′中,''⎧=⎪∠=∠⎨⎪=⎩AP AP QAP QAP AQ AQ ,∴△AQP ≌△AQP′,∴PQ=QP′∴欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC 时,BQ+QP′的值最小,此时Q 与D 重合,P′与C 重合,最小值为BC 的长.在Rt △ABC 中,∵∠C=90°,AB=12,∠BAC=30°,∴BC=12AB=6, ∴PQ+BQ 的最小值是6,故选:C .【点睛】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P 、Q 的位置是解题的关键.二、填空题11.当m=____时,关于x 的分式方程2x m -1x-3+=无解. 【答案】-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.12.已知长为a 、宽为b 的长方形的周长为16,面积为15,则22a b ab +=__________.【答案】1【分析】根据长方形的周长公式和面积公式可得2(a+b )=16,ab=15,从而求出a+b=8,然后将多项式因式分解,最后代入求值即可.【详解】解:∵长为a 、宽为b 的长方形的周长为16,面积为15∴2(a+b )=16,ab=15∴a+b=8∴()22158120a b ab ab a b +=+=⨯= 故答案为:1.【点睛】此题考查的是长方形的周长公式、面积公式和因式分解,掌握长方形的周长公式、面积公式和用提公因式法因式分解是解决此题的关键.13.9的平方根是_________.【答案】±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.已知x a y b =⎧⎨=⎩是方程组23327x y x y +=-⎧⎨-=⎩的解,则5a ﹣b 的值是_____. 【答案】1 【分析】把x a y b =⎧⎨=⎩代入方程组,得23327a b a b +=-⎧⎨-=⎩①②,两个方程相加,即可求解. 【详解】把x a y b =⎧⎨=⎩代入方程组23327x y x y +=-⎧⎨-=⎩,得:23327a b a b +=-⎧⎨-=⎩①②, ①+②得:5a ﹣b=1.故答案为:1.【点睛】本题主要考查二元一次方程组的解的定义,掌握方程的解的定义和加减消元法,是解题的关键. 15.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a -+的值为0,则a +b =_____. 【答案】3【分析】先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a -+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a-+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.16.在ABC ∆中,1123A B C ∠=∠=∠,则B 的度数是________°. 【答案】60 【分析】用A ∠分别表示出,B C ∠∠,再根据三角形的内角和为180︒即可算出答案.【详解】∵1123A B C ∠=∠=∠ ∴=2,3B A C A ∠∠∠=∠∴23180A A A ∠+∠+∠=︒∴30A ∠=︒∴=2=60B A ∠∠︒故答案为:60【点睛】本题考查了三角形的内角和,根据题目中的关系用A ∠分别表示出,B C ∠∠是解题关键.17.如果2(2)(3)x x mx m -+-的乘积中不含2x 项,则m 为__________.【答案】23【分析】把式子展开,找到x 2项的系数和,令其为1,可求出m 的值.【详解】()()223x x mx m -+- =x 3+3mx 2-mx-2x 2-6mx+2m,又∵()()223x x mx m -+-的乘积中不含2x 项, ∴3m-2=1,∴m=23. 【点睛】考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为1.三、解答题18.已知:如图,△ABC 中,P 、Q 两点分别是边AB 和AC 的垂直平分线与BC 的交点,连结AP 和AQ ,且BP =PQ =QC .求∠C 的度数.证明:∵P 、Q 两点分别是边AB 和AC 的垂直平分线与BC 的交点,∴PA = ,QC =QA .∵BP =PQ =QC ,∴在△APQ 中,PQ = (等量代换)∴△APQ是三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠.又∵∠AQP是△AQC的外角,∴∠AQP=∠+∠=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=.【答案】BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.【分析】根据线段垂直平分线的性质可得PA=BP,QC=QA,再根据等量关系可得PQ=PA=QA,可得△APQ 是等边三角形,根据等边三角形的性质可得∠AQP=60°,再根据三角形三角形外角的性质和等腰的性质可求∠C的度数.【详解】解:证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,∴PA=BP,QC=QA.(垂直平分线上任意一点,到线段两端点的距离相等)∵BP=PQ=QC,∴在△APQ中,PQ=PA=QA(等量代换)∴△APQ是等边三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠QAC.又∵∠AQP是△AQC的外角,∴∠AQP=∠C+∠QAC=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=30°.故答案为:BP,(垂直平分线上任意一点,到线段两端点的距离相等),PA=QA,等边,QAC,C,QAC,30°.【点睛】考查了线段垂直平分线的性质,等边三角形的判定与性质,三角形外角的性质和等腰三角形的性质,关键是得到△APQ是等边三角形.19.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量.【答案】24万人.。
山东省临沂市八年级上学期数学期末考试试卷
山东省临沂市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·东台月考) 一个等腰三角形两边的长分别为2和5,那么这个三角形的周长是()A . 9B . 12C . 9或12D . 152. (2分)直径小于或等于2.5微米的颗粒物又称作PM2.5,也称为细颗粒物或可入肺颗粒物,相当于头发丝直径的,可直接进入肺部,以室内PM2.5为85微克/立方米,轻度污染指数为130(轻度污染)计算,则每天吸入鼻孔,咽喉,肺及血液里的有毒颗粒物和有害气体总数约为850毫克,若1千克=1000000毫克,则850毫克用科学记数法可记作()A . 850×106千克B . 8.50×10﹣4千克C . 0.850×10﹣4千克D . 850×10﹣4千克3. (2分) (2019七上·闵行月考) 下列各式正确的是()A .B .C .D .4. (2分)如图在△ABC中,∠B=40°,∠C=70°,AD⊥BC于D,AE平分∠BAC交BC于E,则∠DAE等于()A . 15°B . 20°C . 35°D . 70°5. (2分)下列分式中,为最简分式的是()A .B .C .D .6. (2分)下列各图中,不是轴对称图形的是()A .B .C .D .7. (2分) (2019九上·蓬溪期中) 已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是()A . ﹣3B . 1C . ﹣3或1D . ﹣1或38. (2分) (2016九上·永登期中) 已知正方形ABCD的边长是10cm,△APQ是等边三角形,点P在BC上,点Q在CD上,则BP的边长是()A . cmB . cmC . cmD . cm9. (2分)已知四边形ABCD的四条边分别是a、b、c、d.其中a、c是对边,且a2+b2+c2+d2=2ac+2bd,则四边形一定是()A . 平行四边形B . 矩形C . 菱形D . 正方形10. (2分)(2013·台州) 已知△A1B1C1 ,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2 , A1C1=A2C2 ,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2 ,∠B1=∠B2 ,则△A1B1C1≌△A2B2C2 ,对于上述的两个判断,下列说法正确的是()A . ①正确,②错误B . ①错误,②正确C . ①,②都错误D . ①,②都正确二、填空题 (共10题;共10分)11. (1分) (2020九上·简阳月考) 使分式的值等于零的x是________.12. (1分) (2018八上·防城港月考) 如图:小亮从A点出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,⋯⋯照这样走下去,他第一次回到出发点A点时,一共走了________米?13. (1分) (2016八上·南开期中) 如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是________.14. (1分)△ABC与▱DEFG按如图方式放置,点D、G分别在边AB、AC上,点E、F分别在边BC上,若BE=DE,CF=FG,则∠A的大小为________度.15. (1分) (2011八下·新昌竞赛) ________.16. (1分) (2019·广安) 因式分解: ________.17. (1分)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则 ________.18. (1分) (2017七下·武进期中) 如上图,直角三角板内部三角形的一个顶点恰好在直线a上(三角板内部三角形的三边分别与三角板的三边平行),若∠2=30°,∠3=50°,则∠1=________°.19. (1分)如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件________(只要填一个)20. (1分) (2019九上·温州月考) 如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2 ,交x轴于A1;将C2绕点A1旋转180°得到C3 ,交x轴于点A2 . .....如此进行下去,直至得到C2018 ,若点P(4035,m)在第2018段抛物线上,则m的值为________.三、解答题 (共10题;共75分)21. (10分)计算:(1)(2).22. (5分)把下列各式分解因式(1)3ax2+6axy+3ay2(2)a2(x﹣y)﹣b2(x﹣y)23. (10分)(2020·眉山) 如图,和都是等边三角形,点B、C、E三点在同一直线上,连接,,交于点F.(1)若,求证:;(2)若,.①求的值;②求的长.24. (5分)先化简,再求值:(x+3)(x﹣3)+2(x2+4),其中x=.25. (5分) (2016八上·东城期末) 解方程: - =1.26. (5分)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km。
山东省临沂市八年级上学期末数学试卷
山东省临沂市八年级上学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各式运算正确的是()A . a3+a2=2a5B . a3﹣a2=aC . (a3)2=a5D . a6÷a3=a32. (2分) (2018八上·确山期末) 下列作品中,不是轴对称图形的是()A .B .C .D .3. (2分) (2016八上·孝南期中) 在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A . (﹣2,5)B . (2,﹣5)C . (﹣2,﹣5)D . (5,2)4. (2分)下列代数式:−, 0,, 2x−y ,,其中分式有()个.A . 1B . 2C . 35. (2分) (2018八上·大庆期末) 已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A . 11B . 16C . 17D . 16或176. (2分) (2019八下·顺德月考) 等腰三角形的周长为16,其一边长为6,那么它的底边长为()A . 4或6B . 4C . 6D . 57. (2分)(2018·寮步模拟) 如图,已知⊙0的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于().A .B .C .D .8. (2分)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A . +=18B . +=18C . +=18D . +=189. (2分)下列说法:① =是分式方程;②x=1或x=﹣1是分式方程=0的解;③分式方程=转化成一元一次方程时,方程两边需要同乘x(x+4);④解分式方程时一定会出现增根,其中正确的有()B . 2个C . 3个D . 4个10. (2分) (2018八上·伍家岗期末) 如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A . 15°B . 30°C . 45°D . 60°二、填空题 (共10题;共10分)11. (1分) (2015七下·西安期中) 生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为________ cm.12. (1分)如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.如果AB=6,BD=5,AD=4,那么BC的长度是________13. (1分)(2016·南平模拟) 分解因式:ax2﹣2ax+a=________14. (1分)若实数 ,满足≠0,则的最大值是________.15. (1分)分式的值为1时,m的值是________16. (1分)把一张三角形的纸折叠成如图后,面积减少,已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方分米.17. (1分) (2018八上·东城期末) 如果实数满足 ________;18. (1分) (2019九上·台安月考) 如图,边长为2的正三角形ABO的边OB在x轴上,将绕原点O逆时针旋转得到,则点的坐标为________.19. (1分)已知:(x+2)x+5=1,则x=________20. (1分)(2017·宽城模拟) 如图,在平面直角坐标系中,抛物线(a1>0)与抛物线(a2<0)都经过y轴正半轴上的点A.过点A作x轴的平行线,分别与这两条抛物线交于B、C 两点,以BC为边向下作等边△BCD,则△BCD的面积为________.三、计算题 (共4题;共21分)21. (5分)(2017·长春模拟) 先化简,再求值:2x2﹣[3(﹣ x2+ xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x= ,y=﹣1.22. (10分)综合题。
精品解析:2017-2018学年山东省临沂市经济开发区八年级(上)期末数学试卷(解析版)
2017-2018学年山东省临沂市经济开发区八年级(上)期末数学试卷一、单选题1. 下面4个图案,其中不是轴对称图形的是()A. B. C. D.【答案】D【解析】根据轴对称图形的概念可知只有选项D不是轴对称图形,故选D.2. 计算(﹣2a2b)3的结果是()A. ﹣6a6b3B. ﹣8a6b3C. 8a6b3D. ﹣8a5b3【答案】B学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...故选B.3. 在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】试题分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出对称点的坐标,再根据各象限内点的坐标特点解答.∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2),∴点P(3,﹣2)关于y 轴的对称点在第三象限.故选:C.考点:关于x轴、y轴对称的点的坐标.4. 一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A. 6B. 6或8C. 4D. 4或6【答案】B【解析】试题解析:设第三边为x,则7−3<x<7+3,即4<x<10,∵第三边长为偶数,∴第三边长是6或8.故选B.点睛:三角形的任意两边之和大于第三边.5. 下列从左到右的变形,属于分解因式的是()A. (a﹣3)(a+3)=a2﹣9B. x2+x﹣5=x(x+1)﹣5C. a2+a=a(a+1)D. x3y=x•x2•y【答案】C【解析】分解因式是把一个多项式化为几个整式的积的形式,A.是整式的乘法,不是分解因式;B.等号右边不是几个整式的积的形式,不是分解因式;C.是分解因式;D.左边不是一个多项式,不是分解因式,故选C.6. 如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【答案】C【解析】试题解析:∵∠2=∠3,即:∠ACB=∠DCE,又∵AC=CE,∴∠E=∠CAE,∠1+∠BAC=∠DAC=∠3+∠CEA,∵∠1=∠3,∴∠BAC=∠CEA在△ABC和△EDC中,∠ACB=∠DCE,AC=CE,∠BAC=∠E,∴△ABC≌△EDC,∴DE=AB.故选C.7. 若分式的值为零,则x等于()A. 2B. ﹣2C. ±2D. 0【答案】B【解析】试题解析:若分式的值为零,则解得:故选B.点睛:分式值为0:分子为0,分母不为0.8. 图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A. abB. (a+b)2C. (a﹣b)2D. a2﹣b2【答案】C【解析】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选C.点睛:本题考查了列代数式,正确表示出小正方形的边长是关键.9. 如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A. 80°B. 100°C. 140°D. 160°【答案】C【解析】试题解析:∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠D,故选C.10. 如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A. 3∠A=2∠1﹣∠2B. 2∠A=2(∠1﹣∠2)C. 2∠A=∠1﹣∠2D. ∠A=∠1﹣∠2【答案】C【解析】试题分析:根据翻折的性质可得∠3=∠A′DE,∠AED=∠A′ED,再利用三角形的内角和定理和三角形的外角性质分别表示出∠AED和∠A′ED,然后整理即可得解.解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′ED,∴∠3=(180°﹣∠1),在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×(180°﹣∠1)+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选A.考点:翻折变换(折叠问题).11. 如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A. 24°B. 25°C. 30°D. 36°【答案】B【解析】试题分析:根据题意可得:∠=100°,∠=60°,∠=40°,∠=30°,∠=25°.考点:角平分线的性质.12. 如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A. ①②④B. ①②③C. ②③④D. ①③【答案】A【解析】如图,过E作EF⊥AD于F.∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∵Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∵AD=AF+FD=AB+DC,所以④正确;.故选A.二、填空题13. 若要使分式有意义,则x的取值范围是_____.【答案】x≠﹣4.【解析】因为当分母不等于0时分式有意义,所以x+4≠0,即x≠-4,故答案为x≠-4.14. 数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1等于_____.【答案】60°.【解析】试题解析:∵台球桌四角都是直角,∵∠1=∠2,故答案为:15. 如图,在△ABC中,D是BC边上的中点,∠B DE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是_____.(不再添加辅助线和字母)【答案】答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.【解析】试题分析:答案不唯一根据AB=AC,推出∠B=∠C,根据ASA证出△BED和△CFD全等即可;添加∠BED=∠CDF,根据AAS即可推出△BED和△CFD全等;根据∠AED=∠AFD推出∠B=∠C,根据ASA证△BED≌△CFD即可.解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD等;理由是:①∵AB=AC,∴∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又∵∠BDE=∠CDF,∴∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;故答案为:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.考点:全等三角形的判定与性质.16. 化简的结果是_____.【答案】.【解析】试题解析:原式故答案为:17. 已知关于x的分式方程=1无解,则a=_____.【答案】1.【解析】两边都乘以x+2,得a﹣1=x+2,由方程无解,得x=﹣2.当x=2时,a﹣1=0,解得a=1,故答案是:1.18. 如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=_____cm.【答案】6【解析】试题解析:所以为等边三角形,DB=DC,可得AE为的中垂线,故答案为:6.19. 如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则S△OFE=_____.【答案】4【解析】试题解析:作EG⊥OA于G,∵EF OB,∵EG=CE=2,故答案为:点睛:在直角三角形中,角所对的直角边等于斜边的一半.20. 如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A=_____时,△AOP 为等腰三角形.【答案】45°或67.5°或90°.【解析】试题解析:当点O为等腰三角形顶点时,∠A=75°,当点A为等腰三角形顶点时,∠A=120°,当点P为顶点时,∠A=30°,故答案为30°或75°或120°.三、解答题21. (1)因式分解:﹣xyz2+4xyz﹣4xy;(2)因式分解:9(m+n)2﹣(m﹣n)2(3)解方程:.【答案】(1)﹣xy(z﹣2)2;(2)4(2m+n)(m+2n);(3)x=﹣1是分式方程的根.【解析】整体分析:(1)提取公因式-xy后,再用完全平方差公式分解因式;(2)把原式变形为两个整式的平方差后,用平方差公式分解因式;(3)去分母化分式方程为整式方程,求出整式方程解后要检验.解:(1)﹣xyz2+4xyz﹣4xy=﹣xy(z2﹣4z+4)=﹣xy(z﹣2)2;(2)9(m+n)2﹣(m﹣n)2=[3(m+n)]2﹣(m﹣n)2,=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)],=4(2m+n)(m+2n);(3)去分母得,x﹣(2﹣x)=x﹣3,去括号得,x﹣2+x=x﹣3,移项合并同类项得,x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是分式方程的根.22. 化简求值:已知=3,求的值.【答案】原式=5【解析】试题分析:已知等式左边通分并利用同分母分式的加法法则计算,整理得到,代入原式计算即可.试题解析:,.23. 如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.(只需作图,保留作图痕迹)【答案】(1)画图见解析;(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)见解析.【解析】试题分析:(1)分别作出点A、B、C关于轴对称的点,然后顺次连接即可;(2)根据对称的性质写出关于轴对称的的各顶点坐标;(3)连结或交y轴于点P,则点P即为所求.试题解析:(1)如图所示:(2)(3)连结或交y轴于点P,则点P即为所求.24. 已知等边三角形ABC,延长BA至E,延长BC至D,使得AE=BD,求证:EC=ED.【答案】证明见解析.【解析】试题分析:延长BD到F,使BF=BE,连接EF.证明△EBC≌△EFD,即可求证.试题解析:证明:延长BD到F,使BF=BE,连接EF.则BF-BC=BE-BA.即CF=AE;又AE=BD.故CF=BD, DF=BC.∵∠B=60°.∴△BEF为等边三角形,BE=EF;∠B=∠F=60°.∴△EBC≌△EFD(SAS),EC=ED.25. 某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【答案】(1)第一批购进书包的单价是80元;(2)商店共盈利3700元.【解析】试题分析:设第一批购进书包的单价是x元,则第二批购进书包的单价是x+4元,根据等量关系“第一批购进书包的数量×3=第二批购进书包的数量”,列出方程,解方程即可;(2)根据“盈利=总售价﹣总进价”,代入数据计算即可.试题解析:解:(1)设第一批购进书包的单价是x元.则:.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.考点:分式方程的应用.26. 在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA= 度时,存在AQ=2BD,说明理由.【答案】(1)证明见解析;(2)(2)成立,理由见解析;(3)当∠DBA=22.5°时,存在AQ=2BD,理由见解析.【解析】试题分析:(1)首先根据内角和定理得出∠DAP=∠CBP,进而得出△ACQ≌△BCP即可得出答案;(2)延长BA交PQ于H,由于得到推出△AQC≌△BPC(ASA),即可得出结论;(3)当时,存在根据等腰三角形的性质得到BP=2BD,通过△PBC≌△ACQ,根据全等三角形的性质即可得到结论.试题解析:(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中∴△ACQ≌△BCP(ASA),∴BP=AQ(2)成立,理由:延长BA交PQ于H,∠AQC=∠BQD, ∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴AQ=BP,故答案为:成立;(3)22.5°,当∠DBA=22.5°时,存在AQ=2BD,理由:∵∠BAC=∠DBA+∠APB=45°,∴∠PBA=∠APB=22.5°,∴AP=AB,∵AD⊥BP,∴BP=2BD,在△PBC与△QAC中,∴△PBC≌△ACQ,∴AQ=PB,∴AQ=2BD.故答案为:22.5°.。
<合集试卷3套>2018年临沂市八年级上学期期末经典数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是()A.带根号的数都是无理数B.数轴上的每一个点都表示一个有理数C.一个正数只有一个平方根D.实数的绝对值都不小于零【答案】D【分析】根据无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质逐一判断即可【详解】A.带根号的数不一定是无理数,故此选项错误;B.数轴上的每一个点都表示一个实数,故此选项错误;C.一个正数有2个平方根,故此选项错误;D.实数的绝对值都不小于零,正确.故选:D.【点睛】本题考查了无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质,熟练掌握相关的知识是解题的关键2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③B.①②③④C.①③D.②④【答案】A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4×12×ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方= a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方= a2+b2,即a 2+b 2=41,故①正确;根据题意得4个直角三角形的面积=4×12×ab=2ab , 4个直角三角形的面积=S 大正方形-S 小正方形 =41-4=45,即2ab=45,故③正确;由①③可得a 2+b 2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴由①③可得a 2+b 2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A .【点睛】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键. 3.若关于x 的方程233x k x =++有正数根,则k 的取值范围是( ) A .2k <B .3k ≠C .32k -<<-D .2k <且3k ≠-【答案】A【分析】分式方程去分母转化为整式方程,表示出x ,根据方程有正数根列出关于k 的不等式,求出不等式的解集即可得到k 的范围.【详解】去分母得:2x+6=1x+1k ,解得:x=6﹣1k ,根据题意得:6﹣1k >0,且6﹣1k ≠﹣1,6﹣1k ≠﹣k ,解得:k <2且k ≠1.∴k <2.故选:A .【点睛】本题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.在平面直角坐标系中,若将点()1,2A 的横坐标乘以1-,纵坐标不变,可得到点'A ,则点A 和点'A 的关系是( )A .关于x 轴对称B .关于y 轴对称C .将点A 向y 轴负方向平移一个单位得到点'AD .将点A 向x 轴负方向平移一个单位得到点'A【答案】B【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点是(-x ,y ),据此解答本题即可.【详解】解:∵在直角坐标系中()1,2A 的横坐标乘以1-,纵坐标不变,∴A '的坐标是(-1,2),∴A 和点A '关于y 轴对称;故选:B .【点睛】本题考查的是平面直角坐标系中关于坐标轴对称的两点坐标之间的关系:关于纵坐标对称,则纵坐标不变,横坐标互为相反数.5.下列条件:①∠AEC =∠C ,②∠C =∠BFD ,③∠BEC +∠C =180°,其中能判断AB //CD 的是( )A .①②B .①③C .②D .①②③【答案】B【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:①由“内错角相等,两直线平行”知,根据AEC C ∠=∠能判断//AB CD .②由“同位角相等,两直线平行”知,根据C BFD ∠=∠能判断//BF EC .③由“同旁内角互补,两直线平行”知,根据180BEC C ∠+∠=︒能判断//AB CD .故选:B .【点睛】本题考查的是平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.6.如图,AD 是ABC ∆的角平分线,DE ,DF 分别是ABD ∆和ACD ∆的高,连接EF 交AD 于G .下列结论:①AD 垂直平分EF ;②EF 垂直平分AD ;③AD 平分EDF ∠;④当BAC ∠为60︒时,3AG DG =,其中不正确的结论的个数为( )A .1B .2C .3D .4【答案】A 【分析】根据角平分线性质求出DE=DF,根据HL 可证△AED ≌△AFD,即可推出AE=AF,再逐个判断即可.【详解】解:∵AD 是△ABC 的角平分线,DE,DF 分别是△ABD 和△ACD 的高,∴DE=DF,∠AED=∠AFD=90° ,在Rt △AED 和Rt △AFD 中,AD AD DE DF =⎧⎨=⎩∴Rt △AED ≌Rt △AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD 平分∠EDF;③正确;∵AE=AF ,DE=DF,∴AD 垂直平分EF,①正确;②错误,∵∠BAC=60°,∴∠DAE=30°, ∴33,,23AG AE AD AE == ∴2333131326323DG AD AG AE AE AE AE AG =-=-===, ∴AG=3DG ,④正确.故选:A【点睛】本题考查了全等三角形的性质和判定,角平分线性质的应用,垂直平分线的判定,解直角三角形,能求出Rt △AED ≌Rt △AFD 是解此题的关键.7.已知反比例函数k y x =图像经过点(2,—3),则下列点中必在此函数图像上的是( ) A .(2, 3)B .(1, 6)C .(—1, 6)D .(—2,—3) 【答案】C【解析】先根据反比例函数k y x=经过点(2,-3)求出k 的值,再对各选项进行逐一分析即可.【详解】∵反比例函数kyx=经过点(2,-3),∴k=2×-3=-1.A、∵2×3=1≠-1,∴此点不在函数图象上,故本选项错误;B、∵1×1=1≠-1,∴此点不在函数图象上,故本选项错误;C、∵(-1)×1=-1,∴此点在函数图象上,故本选项正确;D、∵(-2)×(-3)=1≠-1,∴此点不在函数图象上,故本选项错误.故选C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D【答案】C【解析】试题解析:A. 加上AB=DE,不能证明这两个三角形全等,故此选项错误;B. 加上BC=EF,不能证明这两个三角形全等,故此选项错误;C. 加上AB=FE,可用ASA证明两个三角形全等,故此选项正确;D. 加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选C.9.已知21xy=⎧⎨=⎩,是二元一次方程26ax y+=的一个解,那么a的值为()A.2 B.-2 C.4 D.-4 【答案】A【分析】把x与y的值代入方程计算即可求出a的值.【详解】将21xy=⎧⎨=⎩代入方程26ax y+=得2a+2=6解得a=2故选:A【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.在边长为a的正方形中挖掉一个边长为b的小正方形(a b>),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()2a ab a a b -=- 【答案】A 【分析】在左图中,大正方形减小正方形剩下的部分面积为a 2-b 2;因为拼成的长方形的长为a+b ,宽为a-b ,根据“长方形的面积=长×宽”可得:(a+b)(a-b),因为面积相等,进而得出结论.【详解】解:由图可知,大正方形减小正方形剩下的部分面积为a 2-b 2;拼成的长方形的面积:(a+b)(a-b),∴()()22a b a b a b -=+-. 故选:A .【点睛】此题主要考查了平方差公式的几何背景,解题的关键是求出第一个图的阴影部分面积,进而根据长方形的面积计算公式求出拼成的长方形的面积,根据面积不变得出结论.二、填空题11337x <<的整数x 的和是__________. 【答案】1 337的范围,可知满足条件的整数x 的情况. 134<<363749<< ∴132<<,6377<<,∴16x <<,满足条件的整数x 为:2,3,4,5,∴满足条件的整数x 的和为2+3+4+5=1.故答案为:1.【点睛】本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.12.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG 是∠DAC 的平分线,AF=AE ,∴AN ⊥BE ,FN=EN ,在△ABN 与△GBN 中, ∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN ≌△GBN (ASA ),∴AN=GN ,又∵FN=EN,∠ANE=∠GNF,∴△ANE≌△GNF(SAS),∴∠NAE=∠NGF,∴GF∥AE,即GF∥AC,故④正确;∵AE=AF,AE=FG,而△AEF不一定是等边三角形,∴EF不一定等于AE,∴EF不一定等于FG,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.13.某市对旧城区规划改建,根据2001年至2003年发展情况调查,制作成了房地产开发公司个数的条形图和各年度每个房地产开发公司平均建筑面积情况的条形图,利用统计图提供的信息计算出这3年中该市平均每年的建筑面积是_____万平方米.【答案】1【分析】根据加权平均数的计算方法进行求解即可.【详解】解:3年中该市平均每年的建筑面积=(15×9+30×30+51×21)÷3=1(万平方米).故答案为:1.【点睛】本题考查求加权平均数,掌握求加权平均数的方法是解题的关键.14.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=50°,则∠DCE的度数是__.【答案】10°.【分析】根据∠ECD=∠ECB-∠DCB ,求出∠ECB ,∠DCB 即可解决问题.【详解】∵∠A =30°,∠B =50°,∴∠ACB =180°﹣∠A ﹣∠B =100°,∵EC 平分∠ACB ,∵∠ECB =12∠ACB =50°, ∵CD ⊥AB ,∴∠CDB =90°, ∴∠DCB =90°﹣50°=40°,∴∠ECD =∠ECB ﹣∠DCB =50°﹣40°=10°,故答案为10°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识. 15.若,则的值为____. 【答案】-5【解析】利用多项式乘以多项式的运算法则计算,即可求得a 、b 的值,由此即可求得a+b 的值.【详解】∵=,∴a=1,b=-6,∴a+b=1+(-6)=-5.故答案为:-5.【点睛】本题考查了多项式乘以多项式的运算法则,熟练运用多项式乘以多项式的运算法则计算出是解决问题的关键.16.对于实数a ,b ,定义运算:a ▲b=()()00b a a a b a b a b b ⎧≤≠⎪⎨>≠⎪⎩,,,;如:2▲3=328=,4▲2=4216=.按照此定义的运算方式计算[(-14)▲2019]× [2020▲4]=________. 【答案】-1 【分析】根据题中的新定义进行计算即可.【详解】根据题意可得,原式=20192020201920192019111()4=()44=-44=-4444-⨯-⨯⨯⨯⨯(), 故答案为:-1.【点睛】本题考查了整数指数幂,掌握运算法则是解题关键.17.如图(1),在三角形ABC 中,38A ∠=︒72C ∠=︒,BC 边绕点C 按逆时针方向旋转1(080)αα︒≤≤︒,在旋转过程中(图2),当//CB AB '时,旋转角为__________度;当CB '所在直线垂直于AB 时,旋转角为___________度.【答案】70 1【分析】在三角形ABC 中,根据三角形的内角和得到∠B=180°-38°-72°=70°,如图1,当CB′∥AB 时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB 时根据垂直的定义即可得到结论.【详解】解:∵在三角形ABC 中,∠A=38°,∠C=72°,∴∠B=180°-38°-72°=70°,如图1,当CB′∥AB 时,旋转角=∠B=70°,∴当CB′∥AB 时,旋转角为70°;如图2,当CB′⊥AB 时,∠BCB″=90°-70°=20°,∴旋转角=180°-20°=1°,∴当CB′⊥AB 时,旋转角为1°;故答案为:70;1.【点睛】本题考查了三角形的内角和,平行线的性质,正确的画出图形是解题的关键.三、解答题18(1)求+a b 的值;(2)求20207x y +的值.【答案】 (1)2020;(2)15.【分析】(1)根据二次根式有意义的条件可得关于a 、b 的不等式组,解不等式组即可求得答案;(2)把a+b 的值代入所给式子,继而根据非负数的性质可得关于x 、y 的方程组,解方程组求解x 、y 的值代入所求式子进行计算即可.【详解】(1)由题意2020020200a b a b +-≥⎧⎨--≥⎩①②, 由①得:a+b ≥2020,由②得:a+b ≤2020,所以a+b=2020;(2)∵a+b=2020,=变为0=,00≥≥,∴230240x y x y +-=⎧⎨--=⎩, ∴21x y =⎧⎨=-⎩, ∴20207x y +=7×2+(-1)2020=14+1=1.【点睛】本题考查了二次根式有意义的条件,二次根式的非负性,熟练掌握二次根式的相关知识是解题的关键. 19.有公路l 1同侧、l 2异侧的两个城镇A ,B ,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A ,B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)【答案】答案作图见解析【分析】根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.【详解】解:连接A,B两点,作AB的垂直平分线,作两直线交角的角平分线,交点有两个.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.考点:作图-应用与设计作图20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.【答案】(1)12;(2)30°.【解析】试题分析:(1)根据线段的垂直平分线的性质证PA=PB,QA=AC.(2)结合等腰三角形的性质和三角形的内角和定理求解.试题解析:(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.∵△APQ的周长为12,∴BC=12.(2)∵AP=BP,AQ=CQ,∴∠B=∠BAP,∠C=∠CAQ.∵∠BAC=105°,∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.21.特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立说出这两个两位数的乘积.如果这两个两位数分别写作AB和AC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A和(A+1)的乘积,后两位数字就是B和C的乘积. 如:47×43=2021,61×69=4209.(1)请你直接写出83×87的值;(2)设这两个两位数的十位数字为x(x>3),个位数字分别为y和z(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.(3)99991×99999=___________________(直接填结果)【答案】(1)7221;(2)100x(x+1)+yz;(3)9999000009.【分析】()1套用上面的归纳总结代入数据,即可得出结论;()2利用上面总结的结论套入数据表示出该两个两位数的成绩,在将等式展开合并同类项得出左边=右边,从而证明结论成立.()3直接运算即可.【详解】(1)83和87满足题中的条件,即十位数都是8,8>3,且个位数字分别是3和7,之和为10,那么它们的乘积是一个4位数,前两位数字是8和9的乘积,后两位数字就是3和7的乘积,因而,83⨯87=100⨯8⨯(8+1)+3⨯7=7200+21=7221.答案为:7221.(2) 这两个两位数的十位数字为x(x>3),个位数字分别为y和z,则由题知y+z=10,因而有:(10x+y)(10x+z)=100x2+10xz+10xy+yz=100x2+10x(y+z)+yz,=100x2+100x+yz,=100x(x+1)+yz.(3)99991⨯99999=100⨯9999⨯(9999+1)+1⨯9=9999000000+9=9999000009.【点睛】通过阅读题干掌握题中所给信息得出推理方法,然后通过多项式的展开式得出答案.学生应熟练掌握归纳推理的数学思想.22.如图,图中数字代表正方形的面积,120ACB ∠=︒,求正方形P 的面积.(提示:直角三角形中,30角所对的直角边等于斜边的一半)【答案】1【分析】作AD ⊥BC ,交BC 延长线于D ,已知∠ACB=120°,可得∠ACD=60°,∠DAC=30°;即可求出AD ,进而求出BD ,由勾股定理AB 2=AD 2+BD 2,即可求得AB 2即为正方形P 的面积. 【详解】如图,作AD ⊥BC ,交BC 延长线于D ,∵∠ACB=120°,∴∠ACD=60°,∠DAC=30°;∴CD=12AC =1, ∴3,在Rt △ADB 中,BD=BC+CD=3+1=4,3,根据勾股定理得:AB 2=AD 2+BD 2=3+16=1;∴正方形P 的面积=AB 2=1.【点睛】本题考查了特殊角三角函数解直角三角形和利用勾股定理解直角三角形.23.某农场去年生产大豆和小麦共300吨.采用新技术后,今年总产量为350吨,与去年相比较,大豆超产10%,小麦超产20%.求该农场今年实际生产大豆和小麦各多少吨?【答案】大豆,小麦今年的产量分别为110吨和240吨【分析】设农场去年生产大豆x 吨,小麦y 吨,利用去年计划生产大豆和小麦共300吨.x+y=300,再利用大豆超产10%,小麦超产20%.今年总产量为350吨,得出等式(1+20%)y+(1+1%)x=350,进而组成方程组求出答案.【详解】解:设去年大豆、小麦产量分别为x 吨、y 吨,由题意得:300(110%)(120%)350x y x y +=⎧⎨+++=⎩解得100200x y =⎧⎨=⎩(110%) 1.1100110x +=⨯=吨,(120%)y 1.2200240+=⨯=吨.答:大豆,小麦今年的产量分别为110吨和240吨.【点睛】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键. 24.如图,在△ABC 中,AB = AC = 2,∠B =∠C = 50°,点D 在线段BC 上运动(点D 不与B 、C 重合),连结AD ,作∠ADE = 50°,DE 交线段AC 于点E .(1)若DC = 2,求证:△ABD ≌△DCE ;(2)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.【答案】(1)证明见解析;(2)可以,115°或100°.【分析】(1)利用公共角求得∠ADB=∠DEC, DC=AB, ∠B =∠C,所以利用AAS,证明△ABD ≌△DCE.(2)可以令△ADE 是等腰三角形,需要分类讨论:(1)中是一种类型,EA=ED 也是一种类型,可分别求出∠BDA 度数.【详解】证明:(1)∵ AB = AC = 2,DC = 2,∴ AB = DC ,∵ ∠B =∠C = 50°,∠ADE = 50°,∴ ∠BDA +∠CDE = 130°,∠CED +∠CDE = 130°,∴ ∠BDA =∠CED,∴ △ABD ≌△DCE (AAS ).(2)解:可以.有以下三种可能:①由(1)得:△ABD ≌△DCE ,得AD = DE.则有∠DAE =∠DEA = 65°∴ ∠BDA =∠CED = 65° + 50° = 115°;②由(1)得∠BDA =∠CED,∵ 点D 在线段BC 上运动(点D 不与B 、C 重合)∴ AD AE ≠;③当EA = ED 时,∠EAD =∠ADE = 50°,∴ ∠BDA =∠CED = 50° + 50° = 100°.25.如图,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x 、y 轴交于,A B 两点,正比例函数的图像2l 与1l 交于点(),3C m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S ∆∆-的值;(3)在坐标轴上找一点P ,使以OC 为腰的OCP ∆为等腰三角形,请直接写出点P 的坐标.【答案】(1)m=4,l 2的解析式为34y x =;(2)5;(3)点P 的坐标为(50-,),(0,5-),(0,5),(5,0),(8,0),(0,6).【分析】(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=3,CE=4,再根据A (10,0),B (0,5),可得AO=10,BO=5,进而得出S △AOC -S △BOC 的值;(3)由等腰三角形的定义,可对点P 进行分类讨论,分别求出点P 的坐标即可.【详解】解:(1)把C (m ,3)代入一次函数152y x =-+,可得 1352m =-+, 解得m=4,∴C (4,3),设l 2的解析式为y=ax ,则3=4a ,解得:a=34, ∴l 2的解析式为:34y x =; (2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=3,CE=4,由152y x =-+,令x=0,则y=5;令y=0,则x=10, ∴A (10,0),B (0,5),∴AO=10,BO=5,∴S △AOC -S △BOC =12×10×312-×5×4=15-10=5; (3)∵OCP ∆是以OC 为腰的等腰三角形,则点P 的位置有6种情况,如图:∵点C 的坐标为:(4,3),∴22435OC =+=,∴1234565OC OP OP OP OP CP CP =======,∴点P 的坐标为:(50-,),(0,5-),(0,5),(5,0),(8,0),(0,6). 【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰三角形的性质,勾股定理及分类讨论思想等.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知A (x 1,3),B (x 2,12)是一次函数y =﹣6x+10的图象上的两点,则下列判断正确的是( ) A .12x x <B .12x x >C .12x x =D .以上结论都不正确【答案】B【分析】根据一次函数y =−6x +10图象的增减性,以及点A 和点B 的纵坐标的大小关系,即可得到答案.【详解】解:∵一次函数y =−6x +10的图象上的点y 随着x 的增大而减小,且3<12,∴x 1>x 2,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键. 2.估计15的运算结果应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【分析】根据算术平方根的定义由9<15<16可得到315<<1.【详解】解:∵9<15<16,∴315<<1.故选:A .【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.3.如图,把△ABC 绕着点C 顺时针旋转m°,得到△EDC ,若点A 、D 、E 在一条直线上, ∠ACB=n°,则∠ADC 的度数是( )A .190-2m n ⎛⎫+︒ ⎪⎝⎭ B .()m n -︒ C .190-2n m ⎛⎫+︒ ⎪⎝⎭ D .()180n m --︒【答案】A【分析】根据旋转的性质即可得到∠ACD 和∠CAD 的度数,再根据三角形内角和定理进行解答即可.【详解】∵将△ABC 绕点C 顺时针旋转m°得到△EDC .∴∠DCE=∠ACB=n°,∠ACE=m°,AC=CE ,∴∠ACD=m°-n°,∵点A ,D ,E 在同一条直线上,∴∠CAD=12(180°-m°), ∵在△ADC 中,∠ADC+∠DAC+∠DCA=180°,∴∠ADC=180°-∠CAD-∠ACD=180°-12(180°-m°)-(m°-n°) =90°+n°-12m° =(90+n-12m)°, 故选:A .【点睛】本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,关键是根据旋转的性质和三角形内角和解答.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等. 4.下列二次根式中, 是最简二次根式的是( )A B C .D 【答案】C【分析】化简得到结果,即可做出判断.【详解】A. 3不是最简二次根式;C.D.故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.5.在ABC 中,ABC ∠与ACB ∠的平分线交于点I ,过点I 作DE //BC 交BA 于点D ,交AC 于点E ,AB 5=,AC 3=,A 50∠=,则下列说法错误的是( )A .DBI 和EIC 是等腰三角形B .I 为DE 中点C .ADE 的周长是8D .BIC 115∠=【答案】B 【解析】由角平分线以及平行线的性质可以得到等角,从而可以判定IDB 和IEC 是等腰三角形,所以BD DI =,CE EI =,ADE 的周长被转化为ABC 的两边AB 和AC 的和,即求得ADE 的周长为1.【详解】解:BI 平分DBC ∠,DBI CBI ∠∠∴=,DE //BC ,DIB IBC ∠∠∴=,DIB DBI ∠∠∴=,BD DI ∴=.同理,CE EI =.DBI ∴和EIC 是等腰三角形;ADE ∴的周长AD DI IE EA AB AC 8=+++=+=;A 50∠=,ABC ACB 130∠∠∴+=,IBC ICB 65∠∠∴+=,BIC 115∠∴=,故选项A ,C ,D 正确,故选:B .【点睛】考查了等腰三角形的性质与判定以及角平分线的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.6.下列二次根式是最简二次根式的是( )A 12B 8C 7D .以上都不是【答案】C【分析】根据最简二次根式的定义分别进行判断,即可得出结论.【详解】解:A.1222=,故此选项错误; B.822=,故此选项错误;C. 7是最简二次根式,故此选项正确.故选:C .【点睛】本题主要考查最简二次根式,掌握最简二次根式的定义是解答此题的关键.7.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )A .B .C .D .【答案】D【分析】随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.【详解】解:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是为h=20-5t ,是一次函数图象,即t 越大,h 越小,符合此条件的只有D .故选:D .【点睛】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.8.如图,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A .122A ∠+∠=∠B .12A ∠+∠=∠C .2(12)A ∠=∠+∠D .1122A ∠+∠=∠ 【答案】A 【分析】画出折叠之前的部分,连接AA ',由折叠的性质可知DAE DA E '∠=∠,根据三角形外角的性质可得∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接AA '由折叠的性质可知DAE DA E '∠=∠∵∠1是DAA '的外角,∠2是AA E '的外角∴∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠∴∠1+∠2=DAA DA A ''∠+∠+EAA EA A ''∠+∠=()()DAA EAA DA A EA A ''''∠+∠+∠+∠=DAE DA E '∠+∠=2DAE ∠故选A .【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.9.下列计算正确的是( ).A 826=B .2712943=C .(25)(25)1-+=D 23212= 【答案】D 【分析】先把各二次根式化为最简二次根式,再合并同类二次根式,或者根据乘法公式进行计算.【详解】A 822222===本选项错误;B 271233233--==,本选项错误;C选项:()()()22252525451-+=-=-=-,本选项错误;D选项:)622626223212222-⨯--===-⨯,本选项正确.故选D.【点睛】本题考查了二次根式的混合运算,关键要先把各二次根式化为最简二次根式.10.下列命题中,是假命题的是()A.平行四边形的两组对边分别相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形【答案】D【分析】分别利用平行四边形的性质以及矩形的性质与判定方法分析得出即可.【详解】解:A、平行四边形的两组对边分别相等,正确,不合题意;B、两组对边分别相等的四边形是偶像四边形,正确,不合题意;C、矩形的对角线相等,正确,不合题意;D、对角线相等的四边形是矩形,错误,等腰梯形的对角线相等,故此选项正确.故选D.“点睛”此题主要考查了命题与定理,正确把握矩形的判定与性质是解题的关键.二、填空题11.如图,ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,如果AC=6cm,BC=8cm,那么DEB的周长为_________cm.【答案】1【分析】依据△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根据勾股定理可得AB的长,进而得出EB的长;设DE=CD=x,则BD=8-x,依据勾股定理可得,Rt△BDE中,DE2+BE2=BD2,解方程即可得到DE的长,再利用BC-CD得出BD的长,最后把BE,DE和BD相加求解即可.【详解】解:∵AD平分∠CAB,∴∠CAD=∠EAD,又∵∠C=90°,DE⊥AB,∴∠C=∠AED=90°,又∵AD=AD,∴△ACD ≌△AED (AAS ),∴AC=AE=6cm ,CD=ED ,∵Rt △ABC 中,AB=22AC BC +=10(cm ), ∴BE=AB-AE=10-6=4(cm ),设DE=CD=x ,则BD=8-x ,∵Rt △BDE 中,DE 2+BE 2=BD 2,∴x 2+42=(8-x )2,解得x=3,∴DE=CD=3cm ,∴BD=BC-CD=8-3=5cm ,∴BE+DE+BD=3+4+5=1cm ,故答案为:1.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解是解决问题的关键.12.已知5x +与3是同类二次根式,写出一个满足条件的x 的正整数的值为__________.【答案】22【分析】根据同类二次根式定义可得5x +化为最简二次根式后被开方数为3,进而可得x 的值.【详解】当22x =时,527x +=,2733=,33和3是同类二次根式故答案为:22.【点睛】此题主要考查了同类二次根式,关键是掌握把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.13.如图,△EFG ≌△NMH ,EH=2.4,HN=5.1,则GH 的长度是_____.【答案】2.1.【分析】根据全等三角形的性质求出EG ,结合图形计算,得到答案.【详解】解:∵△EFG≌△NMH,∴EG=HN=5.1,∴GH=EG﹣EH=5.1﹣2.4=2.1.故答案为:2.1.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.14.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【答案】35.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=25(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-23=55(千米)则每分钟乙比甲多行驶35千米故答案为3 515.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,BD的长为_____.【答案】1.【分析】根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.【详解】解:∵∠D=90°,CD=6,AD=8,∴AC22CD AD+2268+10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=1,。
[试卷合集3套]临沂市2018年八年级上学期期末质量跟踪监视数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图①,在边长为a的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是()A.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)【答案】D【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b).故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.2.下列运算错误的是A.()()22a b1b a-=-B.a b1a b--=-+C.0.5a b5a10b0.2a0.3b2a3b++=--D.a b b aa b b a--=++【答案】D【解析】试题分析:根据分式的运算法则逐一计算作出判断:A.()()()()2222a b a b1b a a b--==--,计算正确;B.a b a b1a b a b--+=-=-++,计算正确;C.()()100.5a b0.5a b5a10b0.2a0.3b100.2a0.3b2a3b+++==---,计算正确;D.()b aa b b aa b b a b a----==-+++,计算错误.故选D .3.角平分线的作法(尺规作图)①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;②分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;③过点P 作射线OP ,射线OP 即为所求.角平分线的作法依据的是( )A .SSSB .SASC .AASD .ASA【答案】A【分析】根据角平分线的作法步骤,连接CP 、DP ,由作图可证△OCP ≌△ODP ,则∠COP =∠DOP ,而证明△OCP ≌△ODP 的条件就是作图的依据.【详解】解:如下图所示:连接CP 、DP在△OCP 与△ODP 中,由作图可知:OC OD CP DP OP OP =⎧⎪=⎨⎪=⎩∴△OCP ≌△ODP (SSS )故选:A .【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。
〖汇总3套试卷〗临沂市2018年八年级上学期期末联考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1x必须满足的条件是()A.x≤2B.x<2C.x≤-2D.x<-2【答案】A,∴2-x≥0,∴x≤2.故选A.2.下列运算中,结果是a5的是()A.a2• a3B.a10÷a2C.(a2)3D.( - a)5【答案】A【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方、及乘方的意义逐项计算即可.【详解】A. a2• a3=a5,故正确;B. a10÷a2=a8,故不正确;C. (a2)3=a6,故不正确;D. ( - a)5=-a5,故不正确;故选A.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘.3.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗【答案】B【分析】根据命题的定义对各个选项进行分析从而得到答案.【详解】A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点睛】此题主要考查学生对命题与定理的理解及掌握情况.4.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A .1cmB .2cmC .3cmD .4cm【答案】B【解析】解:如图,∵AE 平分∠BAD 交BC 边于点E ,∴∠BAE=∠EAD ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC=5,∴∠DAE=∠AEB ,∴∠BAE=∠AEB ,∴AB=BE=3,∴EC=BC-BE=5-3=1.故选B .5.若分式33x x -+的值为零,则x 的值是( ) A .3B .-3C .±3D .0【答案】A【分析】分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得x-2=1且x+2≠1,解得x=2.故选:A .【点睛】分式值为1,要求分子为1,分母不为1.6.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.7.在平面直角坐标系中,将点12A (,-)向上平移3个单位长度,再向左平移2个单位长度,得到点B ,则点B 所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出点B 的坐标,从而判断出所在的象限. 【详解】解:∵将点()12A ,-向上平移3个单位长度,再向左平移2个单位长度,得到点B ∴点B 的坐标为()()12231-+=-,-,1 ∴点B 在第二象限故选B .【点睛】此题考查的是平面直角坐标系中点的平移,掌握点的坐标平移规律:横坐标左减右加,纵坐标上加下减是解决此题的关键.8.已知非等腰三角形的两边长分别是2 cm 和9 cm,如果第三边的长为整数,那么第三边的长为( ) A .8 cm 或10 cm B .8 cm 或9 cm C .8 cm D .10 cm【答案】A【解析】根据三角形的三边关系求得第三边的取值范围,再根据第三边为整数即可得出答案.【详解】解:根据三角形的三边关系,得7cm <第三边<11cm ,故第三边为8,1,10,又∵三角形为非等腰三角形,∴第三边≠1.故选:A .【点睛】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.9.下面有4个汽车标致图案,其中不是轴对称图形为( )A.B.C.D.【答案】C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.10.菱形的一个内角是60°,边长是5cm,则这个菱形的较短的对角线长是()A.52cm B.5cm C.3cm D.3cm【答案】B【分析】根据菱形的性质以及已知条件可得,较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线等于其边长.【详解】菱形的一个内角是60°,根据菱形的性质可知,60°角所对的对角线与菱形的两边构成的三角形是一个等边三角形,故这个菱形较短的对角线长5cm.选B.【点睛】本题考查了菱形的性质以及等边三角形的性质,从而确定较短的对角线来求解.二、填空题11.有一个两位数,个位上的数字比十位上的数字大5,如果把这个两位数的数字对换位置,那么所得的新数与原数的和是143,则这个两位数是_________.【答案】49【分析】设个位数字是x,十位数字是y,根据新数与原数的和是143列方程解答即可得到答案.【详解】设个位数字是x,则十位数字是y,51010143x y y x x y -=⎧⎨+++=⎩, 解得94x y =⎧⎨=⎩, ∴这个两位数是49,故答案为:49.【点睛】此题考查一元二次方程组的应用,正确理解新数与原数的表示方法是解题的关键.12.计算:()()565223+-=__________. 【答案】192【解析】直接计算即可得解.【详解】解:原式=552652523623⨯+⨯-⨯-⨯=25210310362+--=192故答案为192.【点睛】此题主要考查二次根式的混合运算,熟练掌握法则即可解题.13.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A (1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.【答案】y=98x-98, 【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD 的面积只要等于5即可,∴设BC=4-x ,则[]4x 3325-+⨯÷=,解得,x=113, ∴点B的坐标为11,33⎛⎫ ⎪⎝⎭, 设过点A 和点B 的直线的解析式为y=kx+b ,01133k b k b +=⎧⎪⎨+=⎪⎩,解得,9898k b ⎧=⎪⎪⎨⎪=-⎪⎩,即过点A 和点B 的直线的解析式为y=9988x -. 故答案为:y=9988x -. 【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.14.如图,以AB 为斜边的Rt △ABC 的每条边为边作三个正方形,分别是正方形ABMN ,正方形BCPQ ,正方形ACEF ,且边EF 恰好经过点N .若S 3=S 4=5,则S 1+S 5=_____.(注:图中所示面积S 表示相应封闭区域的面积,如S 3表示△ABC 的面积)【答案】1【分析】如图,连接MQ ,作MG ⊥EC 于G ,设PC 交BM 于T ,MN 交EC 于R .证明△ABC ≌△MBQ (SAS ),推出∠ACB =∠BQM =90°,由∠PQB =90°,推出M ,P ,Q 共线,由四边形CGMP 是矩形,推出MG =PC =BC ,证明△MGR ≌△BCT (AAS ),推出MR =BT ,由MN =BM ,NR =MT ,可证△NRE ≌MTP ,推出S 1+S 1=S 3=1.【详解】解:如图,连接MQ ,作MG ⊥EC 于G ,设PC 交BM 于T ,MN 交EC 于R .∵∠ABM =∠CBQ =90°,∴∠ABC =∠MBQ ,∵BA =BM ,BC =BQ ,∴△ABC ≌△MBQ (SAS ),∴∠ACB =∠MQB =90°,∵∠PQB =90°,∴M ,P ,Q 共线,∵四边形CGMP 是矩形,∴MG =PC =BC ,∵∠BCT =∠MGR =90°,∠BTC+∠CBT =90°,∠BQM+∠CBT =90°,∴∠MRG =∠BTC ,∴△MGR ≌△BCT (AAS ),∴MR =BT ,∵MN =BM ,∴NR =MT ,∵∠MRG =∠BTC ,∴∠NRE =∠MTP ,∵∠E =∠MPT =90°,则△NRE ≌MTP (AAS ),∴S 1+S 1=S 3=1.故答案为:1.【点睛】本题考查全等三角形的判定和性质、矩形的性质,解题的关键是三组三角形全等,依次为:△ABC ≌△MBQ ,△MGR ≌△BCT ,△NRE ≌MTP .15.分解因式:ab 2﹣4ab+4a= .【答案】a (b ﹣1)1.【解析】ab 1﹣4ab+4a=a (b 1﹣4b+4)﹣﹣(提取公因式)=a (b ﹣1)1.﹣﹣(完全平方公式)故答案为a (b ﹣1)1.16.根据223324(1)(1)1,(1)(1)1,(1)(1)1,x x x x x x x x x x x x -+=--++=--+++=-4325(1)(1)1,x x x x x x -++++=-…的规律,可以得出2018201720162222221+++⋅⋅⋅+++的末位数字是___________.【答案】7【分析】由多项式的乘法概括出运算规律,根据规律得到2018201720162222221+++⋅⋅⋅+++的结果,再根据1234522,24,28,216,232,,=====•••可得答案.【详解】解:根据规律得:2018201720162222221+++⋅⋅⋅+++(21)=-(2018201720162222221+++⋅⋅⋅+++)201921,=-1234522,24,28,216,232,=====•••∴ 个位数每4个循环,201945043,∴÷=•••20192∴的尾数为8,∴ 201921-的末位数字是7.故答案为:7.【点睛】本题考查的与多项式乘法相关的规律,掌握归纳出运算规律是解题的关键.17.如图,已知AB AD =,请你添加一个条件使ABC ADE ∆∆≌__________.【答案】AC=AE 或∠ADE=∠ABC 或∠C=∠E (答案不唯一)【分析】根据图形可知证明△ABC ≌△ADE 已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】解:∵∠A=∠A ,AB=AD ,∴添加条件AC=AE ,此时满足SAS ;添加条件∠ADE=∠ABC ,此时满足ASA ;添加条件∠C=∠E ,此时满足AAS ,故答案为:AC=AE 或∠ADE=∠ABC 或∠C=∠E (答案不唯一).【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.三、解答题18.如图所示,在平面直角坐标系xOy 中,已知点(1,2)(3,1)(0,1),,---A B C(1)在图作出ABC 关于y 轴的称图形111A B C △(2)若将ABC 向右移2个单位得到A B C ''',则点A 的对应点A '的坐标是 .【答案】(1)作图见解析;(2)(1,2)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A1B1C1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.【答案】(1)见解析(1)2【解析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE ,然后利用“角边角”证明△ADC 和△BDF 全等,根据全等三角形对应边相等可得BF=AC ,再根据等腰三角形三线合一的性质可得AC=1AF ,从而得证.(1)根据全等三角形对应边相等可得DF=CD ,然后利用勾股定理列式求出CF ,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF ,然后根据AD=AF+DF 代入数据即可得解.解:(1)证明:∵AD ⊥BC ,∠BAD=45°,∴△ABD 是等腰直角三角形.∴AD=BD .∵BE ⊥AC ,AD ⊥BC ,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE .在△ADC 和△BDF 中,∠CAD=∠CBF ,AD=BD ,∠ADC=∠BDF=90°,∴△ADC ≌△BDF (ASA ).∴BF=AC .∵AB=BC ,BE ⊥AC ,∴AC=1AE .∴BF=1AE .(1)∵△ADC ≌△BDF ,∴.在Rt △CDF 中,CF 2===.∵BE ⊥AC ,AE=EC ,∴AF=CF=1.∴.20.计算(1)[2a(a 2b-ab 2)+ab(ab-a 2)] ÷a 2b(2)22y x y - ÷11 x y x y ⎛⎫- ⎪-+⎝⎭【答案】(1)-a b ;(2)12. 【分析】(1)先计算括号内的运算,然后再计算整式除法运算,即可得到答案;(2)先通分计算括号内的运算,然后计算分式除法,即可得到答案.【详解】解:(1)原式=3222232(22)a b a b a b a b a b -+-÷=3222()a b a b a b -÷=-a b ; (2)原式=()()()()y x y x y x y x y x y x y +-+÷+-+- =()()()()2y x y x y x y x y y+-⨯+- =12; 【点睛】本题考查了分式的混合运算,分式的化简求值,整式的运算混算,整式的化简,解题的关键是熟练掌握运算法则进行解题.21.解分式方程:(1)33122x x x-+=-- (2)22222222x x x x x x x++--=-- 【答案】(1)1x =;(2)12x =- 【分析】(1)方程左右两边同时乘以(2)x - ,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可;(2)方程左右两边同时乘以(2)x x - ,去掉分母,然后按照解整式方程,检验,写出分式方程的解的步骤解方程即可.【详解】(1)左右两边同乘(2)x -,得()3+23x x -=- ,解整式方程得,1x =,经检验,1x =是原分式方程的解;(2)左右两边同乘()2x x -,得()()()222222x x x x x +--+=- ,解整式方程得,12x =-, 经检验,12x =-是原分式方程的解. 【点睛】本题主要考查解分式方程,掌握解分式方程的步骤是解题的关键.22.如图,BD 平分∠ABC 交AC 于点D ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,若S △ABD =12,求DF 的长.【答案】DF=1.【分析】根据角平分线性质得出DE=DF ,根据三角形的面积公式求出DE 的长,即可得出DF 的长度.【详解】解:∵BD 平分∠ABC 交AC 于点D ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∵S △ABD =12,AB=6,16122DE ∴⨯⨯=, ∴DE=1.∴DF=1.【点睛】本题考查了角平分线定义的应用,能根据角平分线性质得出DE=DF 是解此题的关键.23.如图,数学课上老师在黑板上写了三个算式,要求学生认真观察,寻找规律.请你认真观察思考,解答下列问题:(1)写出第④个式子是 ;(2)验证规律:设两个连续奇数为21,21n n +-(其中n 为正整数),则()()222121n n +--是8的倍数.【答案】(1)2297=84-⨯;(2)见解析【分析】(1)根据前3个式子的规律可知:被减数是()221n +,减数是()221n -(其中n 为正整数),即可得出第④个式子;(2)利用平方差公式将()()222121n n +--进行分解,即可得出结论.【详解】(1)根据前3个式子的规律可得:第④个式子为2297=84-⨯故答案为:2297=84-⨯.(2)()()222121n n +-- ()()()()=21212121⎡⎤⎡⎤++-+--⎣⎦⎣⎦n n n n=8n∴()()222121n n +--是8的倍数.【点睛】本题考查了数字规律问题与因式分解的应用,找出数字规律,熟练运用平方差公式是解题的关键. 24.(1)如图(a ),BD 平分ABC ∠,CD 平分ACB ∠.①当60A ∠=时,求D ∠的度数.②猜想A ∠与D ∠有什么数量关系?并证明你的结论.(2)如图(b ),BD 平分外角CBP ∠,CD 平分外角BCQ ∠,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).【答案】(1)①120°;②1902D A ∠=+∠;证明见解析;(2)不正确;1902D A ∠=-∠ 【分析】(1)①根据角平分线的定义以及三角形的内角和定理计算即可;②结论:∠D=90°+12∠A .根据角平分线的定义以及三角形的内角和定理计算即可; (2)不正确.结论:∠D=90°-12∠A .根据角平分线的定义以及三角形的内角和定理三角形的外角的性质计算即可. 【详解】解:(1)①60A ∠=︒,18060120ABC ACB ∴∠+∠=︒-︒=︒, 12DBC ABC ∠=∠,12DCB ACB ∠=∠, 1120602DBC DCB ∴∠+∠=⨯︒=︒, 18060120D ∴∠=︒-︒=︒;②结论:1902D A ∠=︒+∠. 理由:12DBC ABC ∠=∠,12DCB ACB ∠=∠, 1()2DBC DCB ABC ACB ∴∠+∠=⨯∠+∠ 1(180)2A =︒-∠ 1902A =︒-∠ 11180(90)9022D A A ∴∠=︒-︒-∠=︒+∠; (2)不正确.结论:1902D A ∠=︒-∠. 理由:12DBC PBC ∠=∠,12DCB QCB ∠=∠, 1()2DBC DCB PBC QCB ∴∠+∠=⨯∠+∠ 1()2A ACB A ABC =∠+∠+∠+∠1(180)2A =︒+∠ 1902A =+∠︒, 11180(90)9022D A A ∴∠=︒-︒+∠=︒-∠. 【点睛】本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.分解因式:(1)a 4-16 (2)9(a+b)2-4(a-b)2【答案】(1)(x 2+4)(x+2)(x-2) ;(2)(5a+b)(a+5b)【分析】(1)利用平方差公式分解即可;(2)利用平方差公式分解即可;【详解】解:(1)a 4-16=(x 2+4)(x 2-4)=(x 2+4)(x+2)(x-2) ;(2)9(a+b)2-4(a-b)2=()()()()3232a b a b a b a b ++-+--⎡⎤⎡⎤⎣⎦⎣⎦=(5a+b)(a+5b)【点睛】本题考查了因式分解,掌握平方差公式是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2)B.(-1,2)C.(-1,-2)D.(2,-1)【答案】A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).故选:A.【点睛】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.2.若下列各组数值代表线段的长度,则不能构成三角形的是()A.4, 9, 6 B.15, 20, 8C.9, 15, 8 D.3, 8, 4【答案】D【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】A.6+4>9,则能构成三角形,故此选项不符合题意;B.15+8>20,则能构成三角形,故此选项不符合题意;C.8+9>15,则能构成三角形,故此选项不符合题意;D.3+4<8,则不能构成三角形,故此选项符合题意.故选D.【点睛】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看其中较小的两个数的和是否大于第三个数即可.3.有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,则第一块试验田每亩收获蔬菜为( )A.400kg B.450kg C.500kg D.550kg【答案】B【分析】首先设第一块试验田每亩收获蔬菜x千克,则第二块试验田每亩收获蔬菜(x+300)千克,根据关键语句“有两块面积相同的试验田”可得方程9001500300x x=+,再解方程即可.【详解】设第一块试验田每亩收获蔬菜x千克,由题意得:9001500300x x =+, 解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程. 4.如图所示,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,DE=4,BC=9,则BD 的长为( )A .6B .5C .4D .3【答案】B 【分析】利用角平分线性质定理可得,角平分线上的点到角两边的距离相等,通过等量代换即可得.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DC=DE=4,∴BD=BC ﹣CD=9﹣4=1.故选:B .【点睛】掌握角平分线的性质为本题的关键.5.下列图形中是轴对称图形的有( )A .B .C .D .【答案】B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.6.下列方程中,不论m 取何值,一定有实数根的是( )A .210mx x --=B .210x mx --=C .20x x m --=D .210x mx -+= 【答案】B【分析】分别计算△,再根据△与0的关系来确定方程有无实数根.【详解】解:A ,210mx x --=,14m =+△,当14m <-时,方程无实数根,故选项错误; B ,210x mx --=,240m =+>△,不论m 取何值,方程一定有实数根,故选项正确;C ,20x x m --=,14m =+△,当14m <-时,方程无实数根,故选项错误; D ,210x mx -+=,24m =-△,当22m -<<时,方程无实数根,故选项错误;故选:B .【点睛】此题考查根的判别式,解题的关键是注意分三种情况进行讨论.7.下列命题属于真命题的是( )A .同旁内角相等,两直线平行B .相等的角是对顶角C .平行于同一条直线的两条直线平行D .同位角相等【答案】C【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A 、同旁内角互补,两直线平行,是假命题;B 、相等的角不一定是对顶角,是假命题;C 、平行于同一条直线的两条直线平行,是真命题;D 、两直线平行,同位角相等,是假命题;故选C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB =3cm ,CD =4cm ,则剪去的直角三角形的斜边长为( )A.5cm B.12cm C.16cm D.20cm【答案】D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.9.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【答案】B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.10.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【答案】D【解析】试题分析:在Rt△ABC和Rt△ADC中,∵BC=DC,AC=AC,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠ACD,∵∠1+∠ACD=90°,∴∠2+∠1=90°,∵∠1=40°,∴∠2=50°,故选B.考点:全等三角形的判定与性质.二、填空题11.已知关于x,y的方程组4375x y mx y m+=⎧⎨-=-⎩的解满足不等式2x+y>8,则m的取值范围是____.【答案】m<﹣1.【分析】先解方程组,然后将x、y的值代入不等式解答.【详解】解:解方程组得x=2m﹣1,y=4﹣5m,将x=2m﹣1,y=4﹣5m代入不等式2x+y>8得4m﹣2+4﹣5m>8,∴m<﹣1.故答案为:m<﹣1.【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.12.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.【答案】2米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.设河深BC=xm,则AB=3.5+x米.根据勾股定理得出:∵AC3+BC3=AB3∴1.53+x3=(x+3.5)3解得:x=3.【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.13.据印刷工业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.000 000 01米)量级的超高精度导电线路,将0.000 000 01用科学记数法表示应为___________.【答案】8110-⨯【分析】科学计数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以1a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到1的后面,所以n =-1.【详解】0.000 000 01=8110-⨯故答案为8110-⨯.【点睛】本题考查的知识点是用科学计数法表示绝对值较大的数,关键是在理解科学计数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.14.等腰三角形的两边长分别是3和7,则其周长为 .【答案】1【解析】试题分析:因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论: 当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为1;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去.∴等腰三角形的周长为1.15.如图,在ABC ∆中,90C ∠=︒,AD 是BAC ∠的平分线,DE ⊥AB 于点E ,点F 在AC 上,BD DF =,若3AF =,1BE =,则DE 的长为_______.【答案】43【分析】由AD 为角平分线,利用角平分线定理得到DE=DC ,再由BD=DF ,利用HL 得到三角形FCD 与三角形BDF 全等,利用全等三角形对应边相等得出CD=BE ,利用AAS 得到三角形ACD 与三角形AED 全等,利用全等三角形对应边相等得到AC=AE ,由AB=AE+EB ,得出AB=AF+2BE .再利用直角三角形的面积公式解答即可.【详解】解:AD 是BAC ∠的平分线,DE AB ⊥,DC AC ⊥,DE DC ∴=,在Rt CFD ∆和Rt EBD ∆中,DF BD CD ED =⎧⎨=⎩, Rt CFD Rt EBD(HL)∴∆≅∆,1CF EB ∴==,314AC AF CF ∴=+=+=;在ACD ∆和AED ∆中,90CAD EAD ACD AED AD AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ACD AED AAS ∴∆≅∆,AC AE ∴=,2325AB AE EB AC EB AF FC EB AF EB ∴=+=+=++=+=+=,3BC ∴==, ∴111222AC CD AB DE AC BC +=, 即1114543222DE DE ⨯⨯+⨯⨯=⨯⨯, 解得:43DE =. 故答案:43. 【点睛】 此题考查了全等三角形的判定与性质,以及角平分线性质,熟练掌握全等三角形的判定与性质是解本题的关键.16.如图,在Rt ABC ∆中,90ACB ∠=︒,66ABC ∠=︒,将ABC ∆绕点C 旋转到A B C '''∆的位置,使顶点B '恰好在斜边AB 上,AC 与A B ''相交于点D ,则B DC '∠=_________.【答案】24°【分析】根据旋转的性质,得到BC B C '=,66ABCA B C ,然后利用三角形内角和定理,求出B DC '∠的度数.【详解】解:由旋转的性质,得BC B C '=,66ABCA B C , ∴66B BC A B C ,∵90ACB ∠=︒,∴90DCB ∠=︒,∴1809066=24B DC '∠=︒-︒-︒︒;故答案为:24︒.【点睛】本题考查了旋转的性质,等边对等角,以及三角形内角和定理,解题的关键是正确得到66B BC A B C .17.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是_____.【答案】60° 【解析】∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故答案为60°.三、解答题18.描述证明:小明在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整小明发现的这个有趣的现象;(2)请你证明小明发现的这个有趣现象.【答案】(1)2a b ab b a ++=;a b ab +=;(2)先通分,再根据完全平方公式分解因式,然后去分母即可得到结论.【分析】(1)依据题意,用含“a”、“b ”的式子把题中描述的数量关系表达出来即可;(2)把(1)中条件中所列的式子通过分式的运算化简,再结合乘法公式进行变形,就可得到结论;【详解】解:(1)如果2a b ab b a++=,那么a b ab +=; (2)证明:∵2a b ab b a++=, ∴222a b ab ab ab++=, ∴2222a b ab ab ++=(),∴22a b ab +=()(); 又∵a 、b 均为正数,∴a b ab +=.【点睛】此题主要考查的是分式的加减运算及完全平方公式的应用.解(2)时,由条件“2a b ab b a++=,”右边是整式,而左边是异分母分式的加、减,易知需将左边化简;而当化简得到“222a b ab ab ab++=”时,熟悉“完全平方公式”的同学就已经非常清楚该怎样做了.19.先化简,再求值: 2224(3)(3)(105)(2)45x y x y xy xy x y x y +---++-,其中x=1,y=2. 【答案】2134x xy -;5【分析】利用平方差公式、完全平方公式以及整式的混合运算将原式化简,再将x=1,y=2代入化简后的式子,求值即可.【详解】解:原式22222222984444x y xy x y x xy y x y =--++++- 2134x xy =-当x=1,y=2时,原式21314121385=⨯-⨯⨯=-=【点睛】本题考查整式的混合运算和化简求值,熟练掌握整式的混合运算法则以及平方差公式、完全平方公式是解题关键.20.某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用x (5x >)件服装,选择甲店则需要1y 元,选择乙店则需要2y 元,请分别求出1y ,2y 关于x 的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?【答案】(1)甲店每件租金50元,乙店每件租金60元;(2)1=0.85040y x x ⨯=,260(05)36120(5)x x y x x <≤⎧=⎨+>⎩;(3)租用30件时,甲乙两店的租金相同【分析】(1)设甲店每件租金x 元,乙店每件租金y 元,根据“在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元”列出方程组进行求解即可; (2)根据甲、乙两店的优惠政策进行求解即可得;(3)根据两店租金相同,列出方程求解即可.【详解】解:(1)设甲店每件租金x 元,乙店每件租金y 元,由题意可得232804260x y x y +=⎧⎨+=⎩,解得5060x y =⎧⎨=⎩, 答:甲店每件租金50元,乙店每件租金60元.(2)甲店:1=0.85040y x x ⨯=,乙店:当不超过5件时,则有260y x =当超过5件时,则有26050.660(5)36120y x x =⨯+⨯-=+,综上:260(05)36120(5)x x y x x <≤⎧=⎨+>⎩. (3)由4036120x x =+,解得30x =,答:租用30件时,甲乙两店的租金相同.【点睛】本题考查了二元一次方程组的实际应用,一次函数的实际应用问题,解题的关键是根据题意列出方程或函数关系式.21.化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.【答案】x+2;当x=1时,原式=1.【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可. 【详解】解:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ 22(2)33[](2)24x x x x x x --=-÷--- 233224x x x x x -⎛⎫=-÷ ⎪---⎝⎭ 3(2)(2)23x x x x x -+-=⨯-- =x+2,∵x 2-4≠0,x-1≠0,∴x≠2且x≠-2且x≠1,∴可取x=1代入,原式=1.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.。
┃精选3套试卷┃2018届临沂市八年级上学期期末检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在△ABC 和△A′B′C′中,AB= A′B′,∠B=∠B′,补充条件后仍不一定保证△ABC ≌△A′B′C′,则补充的这个条件是( )A .BC= B′C′B .AC= A′C′C .∠A=∠A′D .∠C=∠C′ 【答案】B【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等进行判定,做题时要按判定全等的方法逐个验证.【详解】解:A 、若添加BC=B ˊC ˊ,可利用SAS 进行全等的判定,故本选项错误;B 、若添加AC=A'C',不能进行全等的判定,故本选项正确;C 、若添加∠A=∠A',可利用ASA 进行全等的判定,故本选项错误;D 、若添加∠C=∠C ˊ,可利用AAS 进行全等的判定,故本选项错误;故选B .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.2.对于所有实数a ,b ,下列等式总能成立的是( )A .()2b a b a +=+B .22222(b a b )a +=+C .22b a b a +=+D .2(b)a b a +=+ 【答案】B【详解】解:A 、错误,∵()2=++2a b a b ab +;B 、正确,因为a 2+b 2≥0,所以222()a b +=a 2+b 2;C 、错误,22b a +是最简二次根式,无法化简;D 、错误,∵2(+b)a =|a+b|,其结果a+b 的符号不能确定.故选B .3.下面有4个汽车标致图案,其中不是轴对称图形为( )A .B .C .D .【答案】C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.4.213-⎛⎫⎪⎝⎭的相反数是()A.9 B.-9 C.19D.19-【答案】B【分析】先根据负指数幂的运算法则求出213-⎛⎫⎪⎝⎭的值,然后再根据相反数的定义进行求解即可.【详解】2211113193-⎛⎫==⎪⎝⎭⎛⎫⎪⎝⎭=9,9的相反数为-9,故213-⎛⎫⎪⎝⎭的相反数是-9,故选B.【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.5.已知□ABCD的周长为32,AB=4,则BC的长为( )A.4 B.12 C.24 D.28【答案】B【分析】根据平行四边形的性质得AB=CD,AD=BC,根据2(AB+BC)=32即可求解【详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵平行四边形ABCD的周长是32∴2(AB+BC)=32∴BC=12故正确答案为B【点睛】此题主要考查平行四边形的性质6.如图,在等腰三角形ABC 中,BA=BC ,∠ABC=120°,D 为AC 边的中点,若BC=6,则BD 的长为( )A .3B .4C .6D .8【答案】A 【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【详解】解:∵BA=BC ,∠ABC=120°,∴∠C=∠A=30°,∵D 为AC 边的中点,∴BD ⊥AC ,∵BC=6,∴BD=12BC=3, 故选:A .【点睛】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.7.一次函数()21y k x k =-+的图象经过点()0,4,且y 随x 的增大而减小,则k 的值是( ). A .2B .2±C .0D .2-【答案】D 【分析】将点代入一次函数中,可得24k =,y 随x 的增大而减小,可得-10k <,计算求解即可.【详解】∵ 一次函数()21y k x k =-+的图象经过点()0,4, ∴ 24k =,解得:=2k ±,∵ y 随x 的增大而减小,∴-1k <0,解得:k <1,∴=-2k ,故选:D .【点睛】本题考查了一次函数图象与系数的关系,明确:①k >0,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.8.下面的图形中对称轴最多的是( )A .B .C .D .【答案】B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A 、有1条对称轴;B 、有4条对称轴;C 、有1条对称轴;D 、有2条对称轴;综上可得:对称轴最多的是选项B .故选:B .【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.9.在xy , 1,23x ,(x+y ),2xy x y +这四个有理式中,分式是( ) A .xyB .2xC .13(x+y )D .2xy x y+ 【答案】D 【分析】根据分式的定义逐项排除即可;【详解】解:A .属于整式中单项式不是分式,不合题意;B .属于整式中的单项式不是分式,不合题意;C .属于整式中的多项式不是分式,不合题意;D .属于分式,符合题意;故答案为D .【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.10.下列长度的三条线段能组成三角形的是( )A .3,4,8B .2,5,3C .52,72,5D .5,5,10【答案】C 【解析】选项A ,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B ,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C ,52+72>5,根据三角形的三边关系可知,能够组成三角形;选项D ,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.二、填空题11.已知点A (a ,1)与点B (5,b )关于y 轴对称,则b a a b +=_____. 【答案】265- 【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:∵点A (a ,1)与点A′(5,b )关于y 轴对称,∴a =﹣5,b =1, ∴b a a b +=﹣15+(﹣5)=﹣265, 故答案为:﹣265. 【点睛】 考核知识点:轴对称与坐标.理解性质是关键.12.多项式kx 2-9xy -10y 2可分解因式得(mx +2y)(3x -5y),则k=_______,m=________.【答案】k=9 m=1【分析】直接利用多项式乘法将原式化简,进而得出关于m ,k 的等式求出答案即可.【详解】解:∵kx 2-9xy-10y 2=(mx+2y )(1x-5y ),∴kx 2-9xy-10y 2=1mx 2-5mxy+6xy-10y 2=1mx 2-(5mxy-6xy )-10y 2,∴3,569,m k m =⎧⎨-=⎩解得:9,3.k m =⎧⎨=⎩故答案为:9,1.【点睛】此题主要考查了十字相乘法的应用,正确利用多项式乘法是解题关键.13.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边()n a b +展开的系数与右边杨辉三角对应的数,则6()a b +展开后最大的系数为_____【答案】15【解析】根据题意已知的式子找到展开后最大的系数规律即可求解.【详解】∵1()a b +展开后最大的系数为1=0+1; 2()a b +展开后最大的系数为2=1+1;3()a b +展开后最大的系数为3=1+2;4()a b +展开后最大的系数为6=1+2+3;∴5()a b +展开后最大的系数为1+2+3+4=10; 6()a b +展开后最大的系数为1+2+3+4+5=15;故答案为:15.【点睛】此题主要考查多项式的规律探索,解题的关键是根据已知的式子找到规律求解.14.若点M (m ,﹣1)关于x 轴的对称点是N (2,n ),则m+n 的值是_____.【答案】1【分析】直接利用关于x 轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M (m ,﹣1)关于x 轴的对称点是N (2,n ),∴m=2,n=1,∴m+n=1.故答案为:1.【点睛】本题考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.15.等腰三角形ABC 中,∠A =40°,则∠B 的度数是___________.【答案】40°或70°或100°【分析】等腰三角形△ABC 可能有三种情况,①当∠A 为顶角时,②当∠B 为顶角,②当∠C 为顶角时,根据各种情况求对应度数即可.【详解】根据题意,当∠A 为顶角时,∠B=∠C=70°,当∠B 为顶角时,∠A=∠C=40°,∠B=100°,当∠C 为顶角时,∠A=∠B=40°,故∠B 的度数可能是40°或70°或100°,故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握.16.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________.【答案】2【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.17.对于实数x ,我们规定[X )表示大于x 的最小整数,如[4)═5,=2,[﹣2.5)=﹣2,现对64进行如下操作:641第次64=92第次9="4"3第次4)=34第次=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是 . 【答案】3【解析】试题分析:将1代入操作程序,只需要3次后变为2,设这个最大正整数为m ,从而求得这个最大的数.【解答】解:11第次[=82第次8)=33第次3=2,设这个最大正整数为m ,则m 1第次=1, ∴1.∴m <2.∴m 的最大正整数值为3.考点:估算无理数的大小三、解答题18.两个工程队共同参与一项筑路工程,若先由甲、乙队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需36天,共需施工费828万元. (1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过800万元,则乙队最少施工多少天?【答案】(1)90天;(2)甲队每天施工费为15万元,乙队每天施工费为8万元;(3)乙队最少施工30天【分析】(1)乙队单独完成这项工程需x 天,设根据“先由甲、乙队合作30天,剩下的工程再由乙队单独做15天可以完成”列出方程,解之即可;(2)设甲队每天施工费为m 万元,乙队每天施工费为n 万元,根据两种情况下的总施工费分别为810万元和828万元列出方程组,解之即可;(3)求出甲队单独施工需要的天数,设乙队施工a 天,甲队施工b 天,则有19060a b +=,再根据工程预算的总费用不超过800万元列出不等式,代入求解即可得到a 的最小值,即最少施工的天数.【详解】解:(1)设乙队单独完成这项工程需x 天,由题意可得:113015136x⨯+⨯=, 解得:x=90,经检验:x=90是原方程的解,∴乙队单独完成这项工程需90天;(2)设甲队每天施工费为m 万元,乙队每天施工费为n 万元,由题意得: ()()301581036828m n n m n ⎧++=⎪⎨+=⎪⎩, 解得:158m n =⎧⎨=⎩, ∴甲队每天施工费为15万元,乙队每天施工费为8万元;(3)∵乙队单独完成工程需90天,甲、乙合作完成此工程共需36天, ∴甲队单独完成这项工程的天数为:160113690=-,设乙队施工a 天,甲队施工b 天,由题意得:19060158800a b b a ⎧+=⎪⎨⎪+≤⎩①②, 由①得:2603b a =-, 把2603b a =-代入②可解得:a≥50, ∴乙队最少施工30天.【点睛】此题主要考查了分式方程的应用,以及不等式的应用,列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到等量关系是解决问题的关键,此题工作量问题,用到的公式是:工作效率=工作总量÷工作时间.19.(1)分解因式:①249x -②22363ax axy ay ++ (2)解方程:21122x x x -=-- 【答案】(1)①(23)(23)x x +-;②23()a x y +;(2)1x =-【分析】(1)①利用平方差公式进行分解;②先提公因式,再用完全平方公式进行分解;(2)去分母,化成整式方程,再去括号,移项合并,系数化为1即可;【详解】解:(1)①22249(2)3(23)(23)x x x x -=-=+-;② 222223633(2)3()ax axy ay a x xy y a x y ++=++=+; (2)21122x x x -=-- 方程两边同乘(2)x -,得:2(2)1x x --=解得1x =-检验:当1x =-时,20x -≠所以原分式方程的解为1x =-.【点睛】本题考查了因式分解和解分式方程,观察多项式的形式,选择合适的方法进行分解是关键,解分式方程要记得检验.20.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?【答案】(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只; (2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x只,乙种节能灯进了y只,依题意得:120 30353800x yx y+=⎧⎨+=⎩,解得:8040 xy=⎧⎨=⎩,答:甲、乙两种节能灯各进80只,40只;(2)由题意可得,该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.21.如图,在平面直角坐标系中,ABC的顶点均在正方形网格的格点上.(1)画出ABC关于y轴对称的A B C''';(2)在x轴上找到一点P,使得PB PC+最小.【答案】(1)见解析;(2)见解析【分析】(1)根据轴对称的性质先描出三个顶点,依次连接即可;(2)过x轴作B点的对称点''B,连接''B C与x轴的交点即为P点.【详解】(1)A B C'''就是所求作的图形;(2)点P就是所求作的点.【点睛】本题考查坐标与图形变化—轴对称.正确得出对应点位置是解题关键.22.某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?【答案】(1)每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车;(2)1名【分析】(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设还需要招聘m名新工人才能完成一个月的生产计划,根据工作总量=工作效率×人数结合计划一个月生产200辆,即可得出关于m的一元一次方程,解之即可得出结论.【详解】解:(1)设每名熟练工每月可以按装x辆电动汽车,每名新工人每月可以按装y辆电动汽车,依题意,得:28 2314 x yx y+=⎧⎨+=⎩,解得:42 xy=⎧⎨=⎩.答:每名熟练工每月可以按装4辆电动汽车,每名新工人每月可以按装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=1.答:还需要招聘1名新工人才能完成一个月的生产计划.本题考查的是用二元一次方程组解决问题中的工程问题,理解题意,找准数量关系列出方程组是解答关键. 23.给出下列等式:21﹣20=20,22﹣21=21,23﹣22=22,24﹣23=23,……(1)探索上面式子的规律,试写出第n个等式,并证明其成立.(2)运用上述规律计算20+21+22+…+22017+22018值.【答案】(1)2n﹣2n﹣1=2n﹣1,证明详见解析;(2)22019﹣1.【分析】(1)根据题目中的式子,可以写出第n个等式,并加以证明;(2)根据(1)中的结果,将所求式子变形,即可求得所求式子的值.【详解】(1)第n个等式是:2n﹣2n﹣1=2n﹣1,证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=(2﹣1)×2n﹣1=1×2n﹣1=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立;(2)20+21+22+…+22017+22018=(21﹣20)+(22﹣21)+(23﹣22)+…+(22019﹣22018)=21﹣20+22﹣21+23﹣22+…+22019﹣22018=﹣20+22019=22019﹣1.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,求出所求式子的值.24.如图,AD是△ABC的中线,AB=AC=13,BC=10,求AD长.【答案】1【分析】利用勾股定理和等腰三角形的性质求得AD的长度即可.【详解】解:∵AB=AC=13,BC=10,AD是中线,∴AD⊥BC,BD=5,∴∠ADB=90°,∴AD2=AB2﹣BD2=144,【点睛】本题考查的知识点是等腰三角形的性质以及勾股定理,利用等腰三角形的性质求出BD 的长是解此题的关键.25.老师在黑板上写出了一个分式的计算题,随后用手捂住了一部分,如下图所示:(1)求所捂部分表示的代数式;(2)所捂部分代数式的值能等于-1吗?为什么?【答案】(1)211x x +-;(2)不能,理由见解析. 【分析】(1)根据分式运算的逆运算,表达出所捂部分,再化简即可;(2)令211x x +-=-1,解分式方程即可,再检验所得的x 的值是否使原代数式有意义. 【详解】解:(1)原式=22111121x x x x x x x +-⋅+-+-+ =2(1)(1)1(1)x x x x x +-+-- =11-1x x x x ++- =211x x +-, ∴所捂部分的代数式是211x x +-. (2)由题意得:211x x +-=-1 211x x +=-+30x =0x =经检验0x =是原分式方程的解.当0x =时,分式1x x+没有意义,所以原代数式的值不能等于-1. 【点睛】本题考查了分式的化简求值问题,解题的关键是逆向表达出所捂部分,熟练掌握分式运算的法则.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣6【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000036的小数点向右移动6位得到3.6,所以0.0000036=3.6×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若等腰三角形的周长为40,一边为16,则腰长为()A.16B.12C.16或12 D.以上都不对【答案】C【分析】分两种情况:腰长为12和底边长为12,分别利用等腰三角形的定义进行讨论即可.-⨯=【详解】若腰长为1,则底边为401628此时,三角形三边为16,16,8,可以组成三角形,符合题意;-÷=若底边长为1,则腰长为(4016)212此时,三角形三边为12,12,16,可以组成三角形,符合题意;综上所述,腰长为12或1.故选:C.【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义并分情况讨论是解题的关键.3.下列各数中是无理数的是()A.3.14B C D【答案】C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B,是整数,属于有理数;CD.16=4,是整数,属于有理数;故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.4.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【分析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.5.数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是()A.4 B.5 C.5.5 D.6【答案】D【解析】试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=1,则这组数据的众数为1.故选D.考点:1.众数;2.中位数.6.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cm C.5cm,5cm,2cm D.10cm,15cm,17cm【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.下面计算正确的是()-A.B C D2【答案】B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A选项错误;B. ===3,故B选项正确;C. ==C选项错误;D.2-==,故D选项错误;(2)2故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16 B.11 C.3 D.6【答案】D【分析】根据三角形的三边关系即可解答.【详解】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.9.已知以下三个数, 不能组成直角三角形的是 ( )A .9、12、15B 3、C .0.3、0.4、0.5;D .222345、、 【答案】D【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A 、92+122=152,能构成直角三角形,故不符合题意;B 、)2+32=(2,能构成直角三角形,故不符合题意;C 、0.32+0.42=0.52,能构成直角三角形,故不符合题意;D 、(32)2+(42)2≠(52)2,不能构成直角三角形,故符合题意;故选D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.在投掷一枚硬币100次的试验中,“正面朝下”的频数45,则“正面朝下”的频率为( ) A .0.45B .0.55C .45D .55 【答案】A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可.【详解】解:“正面朝下”的频数45,则“正面朝下”的频率为45=0.45100, 故答案为:A .【点睛】本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法.二、填空题11.若分式(1)x x x-值为0,则x =______. 【答案】1【分析】分式的值为零,分子等于零且分母不等于零.【详解】当 (1)x x x-=2时,(1)x x -=2,x ≠2 解得 x =1.故答案是:1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.12.若代数式x 2+4x+k 是完全平方式,则k=_______【答案】1【分析】利用完全平方公式的结构特征判断即可得到k 的值.【详解】∵x 2+1x+k 是完全平方式,∴k=1,故答案为:1.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.13.在Rt △ABC 中,∠ACB=90°,D 为AB 上的中点,若CD=5cm ,则AB=_____________cm.【答案】1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,∴线段CD 是斜边AB 上的中线;又∵CD=5cm ,∴AB=2CD=1cm .故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.14.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,数字0.00000156用科学记数法表示为 ________________.【答案】61.5610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯,其中110a ≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 001 56=1.56×610-.故答案为:1.56×610-.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a ⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.使分式1x x -有意义的x 的范围是 ________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省临沂市河东区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下面4个图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b3 3.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8C.4D.4或65.(3分)下列从左到右的变形,属于分解因式的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x(x﹣1)﹣5C.a2+a=a(a+1)D.x3y=x•x2•y6.(3分)如图,A在DE上,且AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC7.(3分)若分式的值为零,则x等于()A.0B.2C.±2D.﹣28.(3分)如图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29.(3分)如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80°B.100°C.140°D.160°10.(3分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠211.(3分)如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°12.(3分)如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)若要使分式有意义,则x的取值范围是.14.(3分)数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1等于.15.(3分)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是.(不再添加辅助线和字母)16.(3分)化简的结果是.17.(3分)已知关于x的分式方程=1无解,则a=.18.(3分)如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=cm.19.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则S△OFE=.20.(3分)如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A=时,△AOP为等腰三角形.三、解答题(共计60分)21.(12分)(1)因式分解:﹣xyz2+4xyz﹣4xy(2)因式分解:9(m+n)2﹣(m﹣n)2(3)解方程:+=122.(6分)化简求值:已知+=3,求的值23.(9分)如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.(只需作图,保留作图痕迹)24.(9分)已知等边三角形ABC,延长BA至E,延长BC至D,使得AE=BD,求证:EC=ED.25.(12分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?26.(12分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=度时,存在AQ=2BD,说明理由.2017-2018学年山东省临沂市河东区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下面4个图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.2.(3分)计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b3【解答】解:(﹣2a2b)3=﹣8a6b3.故选:B.3.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2),∴点P(3,﹣2)关于y轴的对称点在第三象限.故选:C.4.(3分)一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8C.4D.4或6【解答】解:设第三边为x,则7﹣3<x<7+3,即4<x<10,∵第三边长为偶数,∴第三边长是6或8.故选:B.5.(3分)下列从左到右的变形,属于分解因式的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x(x﹣1)﹣5C.a2+a=a(a+1)D.x3y=x•x2•y【解答】解:A、右边不是整式积是形式,故本选项错误;B、不是因式分解,故本选项错误;C、是因式分解,故本选项正确;D、不是因式分解,故本选项错误.故选:C.6.(3分)如图,A在DE上,且AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC【解答】解:∵∠2=∠3,∴∠DCE=∠3+∠ACD=∠2+∠ACD=∠ACB,即:∠ACB=∠DCE,又∵AC=CE,∴∠E=∠CAE,∠1+∠BAC=∠DAC=∠3+∠CEA,∵∠1=∠3,∴∠BAC=∠CEA在△ABC和△EDC中,∠ACB=∠DCE,AC=CE,∠BAC=∠E,∴△ABC≌△EDC,∴DE=AB.故选:C.7.(3分)若分式的值为零,则x等于()A.0B.2C.±2D.﹣2【解答】解:由题意得:x2﹣4=0,2x﹣4≠0,解得:x=﹣2,故选:D.8.(3分)如图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:中间空的部分的面积=大正方形的面积﹣4个小长方形的面积,=(a+b)2﹣4ab,=a2+2ab+b2﹣4ab,=(a﹣b)2;故选:C.9.(3分)如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80°B.100°C.140°D.160°【解答】解:∵∠BAD=80°,∴∠B+∠BCD+∠D=280°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠D,∴∠BCD=280°÷2=140゜,故选:C.10.(3分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2D.∠A=∠1﹣∠2【解答】解:如图,由翻折的性质得,∠3=∠A′DE,∠AED=∠A′E D,∴∠3=(180°﹣∠1),在△ADE中,∠AED=180°﹣∠3﹣∠A,∠CED=∠3+∠A,∴∠A′ED=∠CED+∠2=∠3+∠A+∠2,∴180°﹣∠3﹣∠A=∠3+∠A+∠2,整理得,2∠3+2∠A+∠2=180°,∴2×(180°﹣∠1)+2∠A+∠2=180°,∴2∠A=∠1﹣∠2.故选:A.11.(3分)如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°【解答】解:∵∠A=20°,∴∠ABC+∠ACB=180°﹣20°=160°,∵∠ABC与∠ACB的角平分线交于D1,∴∠D1BC+∠D1CB=80°,由题意得,∴∠D2BC+∠D2CB=80°+40°=120°,∴∠D3BC+∠D3CB=120°+20°=140°,∴∠D4BC+∠D4CB=140°+10°=150°,∴∠D5BC+∠D5CB=150°+5°=155°,∴∠BD5C=180°﹣155°=25°.故选:B.12.(3分)如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)若要使分式有意义,则x的取值范围是x≠﹣4.【解答】解:要使分式有意义,得4+x≠0.解得x≠﹣4,故答案为:x≠﹣4.14.(3分)数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1等于60°.【解答】解:∵由题意可得:∠2+∠3=90°,∠3=30°,∴∠2=60°,∵∠1=∠2,∴∠1=60°.故答案为:60°.15.(3分)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.(不再添加辅助线和字母)【解答】解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD 等;理由是:①∵AB=AC,∴∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又∵∠BDE=∠CDF,∴∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;故答案为:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.16.(3分)化简的结果是.【解答】解:原式==,故答案为.17.(3分)已知关于x的分式方程=1无解,则a=1.【解答】解:两边都乘以x+2,得a﹣1=x+2,由方程无解,得x=﹣2.当x=2时,a﹣1=0,解得a=1,故答案为:1.18.(3分)如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=6cm.【解答】解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠BAC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.19.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则S△OFE=4.【解答】解:作ED⊥OA于D,∵EF∥OB,∠AOE=∠BOE=15°,∴∠OEF=∠COE=15°,ED=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4,∵OE平分∠AOB,ED⊥OA,EC⊥OB,∴DE=CE=2,=×OF×DE=4,∴S△OFE故答案为:4.20.(3分)如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A=45°或67.5°或90°时,△AOP为等腰三角形.【解答】解:若△AOP为等腰三角形则有AO=AP、AO=OP和OP=AP三种情况,①当AO=AP时,则有∠O=∠APO=45°,∴∠A=90°;②当AO=OP时,则∠A=∠APO==67.5°;③当OP=AP时,则∠A=∠AON=45°,综上可知∠A为45°或67.5°或90°,故答案为:45°或67.5°或90°.三、解答题(共计60分)21.(12分)(1)因式分解:﹣xyz2+4xyz﹣4xy(2)因式分解:9(m+n)2﹣(m﹣n)2(3)解方程:+=1【解答】解:(1)原式=﹣xy(z2﹣4z+4)=﹣xy(z﹣2)2;(2)原式=[3(m+n)]2﹣(m﹣n)2,=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)],=4(2m+n)(m+2n);(3)去分母得:x﹣(2﹣x)=x﹣3,x﹣2+x=x﹣3,x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是分式方程的根.22.(6分)化简求值:已知+=3,求的值【解答】解:∵+=3,∴=3,则x+y=3xy,∴原式====5.23.(9分)如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.(只需作图,保留作图痕迹)【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.24.(9分)已知等边三角形ABC,延长BA至E,延长BC至D,使得AE=BD,求证:EC=ED.【解答】证明:延长BD至F,使DF=AB,连结EF,∵△ABC是等边三角形,∴AB=BC=AC,∠B=60°.∵AE=BD,DF=AB,∴AE+AB=BD+DF,∴BE=BF.∵∠B=60°,∴△BEF为等边三角形,∴∠B=∠F=60°,BE=FE.∵DF=AB,∴BC=DF.在△BCE和△FDE中,∵,∴△BCE≌△FDE(SAS),∴EC=ED.25.(12分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.26.(12分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?成立(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=22.5°度时,存在AQ=2BD,说明理由.【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)成立,理由:延长BA交PQ于H,∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴AQ=BP,故答案为:成立;(3)当∠DBA=22.5°时,存在AQ=2BD,理由:∵∠BAC=∠DBA+∠APB=45°,∴∠PBA=∠APB=22.5°,∴AP=AB,∵AD⊥BP,∴BP=2BD,在△PBC与△QAC中,,∴△PBC≌△ACQ,∴AQ=PB,∴AQ=2BD.故答案为:22.5°第21页(共21页)。