2008高考天津数学理科试卷含详细解答(全word版)
2008高考天津数学理科试卷含详细解答全word版
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,3i (i 1)i 1+=-( ) A .1-B .1C .i -D .i2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥,B .a b αβαβ⊥⊥,,∥C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,5.设椭圆22221(1)1x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( ) A .6B .2C .12D.76.设集合{}23S x x =->,{}8T x a x a =<<+,S T =R ,则a 的取值范围是( )A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-7.设函数()1)f x x =<≤的反函数为1()f x -,则( )A .1()f x -在其定义域上是增函数且最大值为1 B .1()f x -在其定义域上是减函数且最小值为0 C .1()f x -在其定义域上是减函数且最大值为1 D .1()fx -在其定义域上是增函数且最小值为08.已知函数10()10x x f x x x -+<⎧=⎨-⎩,,,≥,则不等式(1)(1)1x x f x +++≤的解集是( )A.{}11x x -≤B .{}1x x ≤C.{}1x xD.{}11x x ≤9.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种 B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.5x ⎛ ⎝的二项展开式中2x 的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,(12)AC =,,(32)BD =-,, 则AD AC = .15.已知数列{}n a 中,11a =,111()3n n n a a n ++-=∈*N ,则lim n n a →∞= . 16.设1a >,若仅有一个常数c 使得对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log a a x y c +=,这时a 的取值的集合为 .三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知cos 410x π⎛⎫-= ⎪⎝⎭,324x ππ⎛⎫∈ ⎪⎝⎭,. (Ⅰ)求sin x 的值; (Ⅱ)求sin 23x π⎛⎫+ ⎪⎝⎭的值.18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形.已知3AB =,2AD =,2PA =,PD =60PAB =∠.(Ⅰ)证明AD ⊥平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角P BD A --的大小. 20.(本小题满分12分) 已知函数()(0)af x x b x x=++≠,其中a b ∈R ,. (Ⅰ)若曲线()y f x =在点(2(2))P f ,处的切线方程为31y x =+,求函数()f x 的解析式; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)若对于任意的122a ⎡⎤∈⎢⎥⎣⎦,,不等式()10f x ≤在114⎡⎤⎢⎥⎣⎦,上恒成立,求b 的取值范围.21.(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,20y -=. (Ⅰ)求双曲线C 的方程;(Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.A BCDP22.(本小题满分14分)在数列{}n a 与{}n b 中,11a =,14b =,数列{}n a 的前n 项和n S 满足1(3)0n n nS n S +-+=,12n a +为n b 与1n b +的等比中项,n ∈*N . (Ⅰ)求2a ,2b 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式;(Ⅲ)设1212(1)(1)(1)n aaan n T b b b n =-+-++-∈*N …,,证明223n T n n <,≥.2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.B 4.C 5.B 6.A 7.D 8.C 9.A 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.40 12.24 13.22(1)10x y +-=14.315.7616.{}2三、解答题17.本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分. (Ⅰ)解法一:因为324x ππ⎛⎫∈ ⎪⎝⎭,,所以442x πππ⎛⎫-∈ ⎪⎝⎭,,于是sin 410x π⎛⎫-==⎪⎝⎭. sin sin sin cos cos sin 444444x x x x ⎛ππ⎫ππππ⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭45=+=.解法二:由题设得2210x x +=,即1cos sin 5x x +=.又22sin cos 1x x +=,从而225sin 5sin 120x x --=,解得4sin 5x =或3sin 5x =-. 因为324x ππ⎛⎫∈ ⎪⎝⎭,,所以4sin 5x =.(Ⅱ)解:因为324x ππ⎛⎫∈ ⎪⎝⎭,,故3cos 5x ===-.24sin 22sin cos 25x x x ==-,27cos 22cos 125x x =-=-. 所以,24sin 2sin 2cos cos 2sin 33350x x x πππ+⎛⎫+=+=-⎪⎝⎭. 18.本小题主要考查随机事件、互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B , 由题意得221(1())(1)16P B p -=-=, 解得34p =或54p =(舍去),所以乙投球的命中率为34. (Ⅱ)解:由题设和(Ⅰ)知1()2P A =,1()2P A =,3()4P B =,1()4P B =.ξ可能的取值为0,1,2,3,故2111(0)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭,12(1)()()()()()P P A P B B C P B P B P A ξ==+211311722444232⎛⎫=⨯+⨯⨯⨯=⎪⎝⎭, 2139(3)()()2432P P A P B B ξ⎛⎫===⨯=⎪⎝⎭, 15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==. ξ的分布列为ξ的数学期望0123232323232E ξ=⨯+⨯+⨯+⨯=.19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在PAD △中,由题设2PA =,2AD =,PD =,可得222PAAD PD +=,于是AD PA ⊥.在矩形ABCD 中,AD AB ⊥,又PAAB A =,所以AD ⊥平面PAB .(Ⅱ)解:由题设,BC AD ∥,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角. 在PAB △中,由余弦定理得PB ==由(Ⅰ)知AD⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,因而BC PB ⊥,于是PBC △是直角三角形, 故tan 2PB PCB BC ==. 所以异面直线PC 与AD 所成的角的大小为arctan2. (Ⅲ)解:过点P 作PH AB ⊥于H ,过点H 作HE BD ⊥于E ,连结PE .因为AD ⊥平面PAB ,PH ⊂平面PAB ,所以AD PH ⊥.又AD AB A =,因而PH ⊥平面ABCD ,故HE 为PE 在平面ABCD 内的射影.由三垂线定理可知,BD PE ⊥.从而PEH ∠是二面角P BD A --的平面角. 由题设可得,sin 603PH PA ==cos601AH PA ==,2BH AB AH =-=,BD =,13AD HE BH BD ==. 于是在Rt PHE △中,tan 4PH PEH HE ==. 所以二面角P BD A --的大小为 20.本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:2()1af x x '=-,由导数的几何意义得(2)3f '=,于是8a =-. A BCDPH E由切点(2(2))P f ,在直线31y x =+上可得27b -+=,解得9b =. 所以函数()f x 的解析式为8()9f x x x=-+. (Ⅱ)解:2()1a f x x'=-. 当0a ≤时,显然()0(0)f x x '>≠,这时()f x 在(0)-∞,,(0)+,∞内是增函数. 当0a >时,令()0f x '=,解得x = 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在-,+∞内是增函数,在(,(0内是减函数. (Ⅲ)解:由(Ⅱ)知,()f x 在114⎡⎤⎢⎥⎣⎦,上的最大值为14f ⎛⎫⎪⎝⎭与(1)f 中的较大者,对于任意的122a ⎡⎤∈⎢⎥⎣⎦,,不等式()10f x ≤在114⎡⎤⎢⎥⎣⎦,上恒成立,当且仅当1104(1)10f f ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩≤,≤, 即39449b a b a ⎧-⎪⎨⎪-⎩≤,≤ 对任意的122a ⎡⎤∈⎢⎥⎣⎦,成立. 从而得74b ≤,所以满足条件的b 的取值范围是74⎛⎤- ⎥⎝⎦∞,.21.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.(Ⅰ)解:设双曲线C 的方程为22221(00)x y a b a b-=>>,,由题设得2292a b b a⎧+=⎪⎨=⎪⎩, 解得2245.a b ⎧=⎪⎨=⎪⎩,所以双曲线C 的方程为22145x y -=. (Ⅱ)解:设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满足方程组221.45y kx m x y =+⎧⎪⎨-=⎪⎩,① ② 将①式代入②式,得22()145x kx m +-=,整理得 222(54)84200k x kmx m ----=.此方程有两个不等实根,于是2540k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得22540m k +->. ③由根与系数的关系可知线段MN 的中点坐标00()x y ,满足12024254x x km x k +==-,002554m y kx m k =+=-. 从而线段MN 的垂直平分线的方程为 225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭.此直线与x 轴,y 轴的交点坐标分别为29054km k ⎛⎫⎪-⎝⎭,,29054m k ⎛⎫ ⎪-⎝⎭,.由题设可得 2219981254542km m k k =--. 整理得222(54)k m k-=,0k ≠.将上式代入③式得222(54)540k k k-+->,整理得22(45)(45)0k k k --->,0k ≠.解得02k <<或54k >. 所以k 的取值范围是55550044⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∞,,,,∞. 22.本小题主要考查等差数列的概念、通项公式及前n 项和公式、等比数列的概念、等比中项、不等式证明、数学归纳法等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分.(Ⅰ)解:由题设有12140a a a +-=,11a =,解得23a =.由题设又有22214a b b =,14b =,解得29b =.(Ⅱ)解法一:由题设1(3)0n n nS n S +-+=,11a =,14b =,及23a =,29b =, 进一步可得36a =,316b =,410a =,425b =,猜想(1)2n n n a +=,2(1)n b n =+,n ∈*N . 先证(1)2n n n a +=,n ∈*N .当1n =时,11(11)2a ⨯+=,等式成立.当2n ≥时用数学归纳法证明如下:(1)当2n =时,22(21)2a ⨯+=,等式成立.(2)假设当n k =时等式成立,即(1)2k k k a +=,2k ≥.由题设,1(3)k k kS k S +=+, ① 1(1)(2)k k k S k S --=+.②①的两边分别减去②的两边,整理得1(2)k k ka k a +=+,从而[]1(1)(1)122(1)22k k k k k k k k a a k k +++++++===.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n n n a +=对任何的2n ≥成立. 综上所述,等式(1)2n n n a +=对任何的n ∈*N 都成立. 再用数学归纳法证明2(1)n b n =+,n ∈*N .(1)当1n =时,21(11)b =+,等式成立.(2)假设当n k =时等式成立,即2(1)k b k =+,那么[]22221124(1)(2)(1)1(1)k k k a k k b k b k ++++===+++. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式2(1)n b n =+对任何的n ∈*N都成立.解法二:由题设1(3)n n nS n S +=+, ①1(1)(2)n n n S n S --=+. ②①的两边分别减去②的两边,整理得1(2)n n na n a +=+,2n ≥,所以 3224a a =,4335a a =,……1(1)(1)n n n a n a --=+,3n ≥.将以上各式左右两端分别相乘,得2(1)!(1)!6n n n a a +-=, 由(Ⅰ)并化简得2(1)(1)62n n n n n a a ++==,3n ≥. 上式对1n =,2也成立. 由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即 1221(1)(2)n n b b n n +=++,n ∈*N .令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以 21(1)n b n =+.即 2(1)n b n =+,1n ≥.解法三:由题设有1(3)n n nS n S +=+,n ∈*N ,所以214S S =,3225S S =,……1(1)(2)n n n S n S --=+,2n ≥.将以上各式左右两端分别相乘,得112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+……,化简得1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯,3n ≥. 由(Ⅰ),上式对1n =,2也成立.所以1(1)2n n n n n a S S -+=-=,2n ≥. 上式对1n =也成立. 以下同解法二,可得2(1)n b n =+,1n ≥.(Ⅲ)证明:1212(1)(1)(1)n aa a n n Tb b b =-+-++-… (1)222223(1)(1)n n n +=--++-+…. 当4n k =,k ∈*N 时,222222222345(42)(41)(4)(41)n T k k k k =--++-----+++…. 注意到2222(42)(41)(4)(41)324k k k k k ----+++=-,故 (1)32(12)43242n k k T k k k +=⨯+++-=⨯-… 224(44)4(4)343k k k k k n n =+-=+⨯=+.当41n k =-,k ∈*N 时, 22222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+=. 当42n k =-,k ∈*N 时, 22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---. 当43n k =-,k ∈*N 时, 222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--. 所以,2234333424134n n n k n n n k T k n n k n n n k --=-⎧⎪---=-⎪=∈⎨=-⎪⎪+=⎩*N ,,, ,,,, , 从而3n ≥时,有22213259133312610141237113124812n n n n n T n n n n n n n⎧+<=⎪⎪⎪++<=⎪=⎨⎪<=⎪⎪⎪+<=⎩,,,,…,, ,,,…,, ,,,…,, ,,,…. 总之,当3n ≥时有22n T n <,即22n T n <.。
2008年普通高等学校招生全国统一考试理科数学(天津卷)
2008年普通高等学校招生全国统一考试理科数学(天津卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i2.设变量满足约束条件,则目标函数的最大值为A .2B .3C .4D .53.设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 4.设是两条直线,是两个平面,则的一个充分条件是 A . B . C .D .5.设椭圆上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 A .6B .2C .D .6.设集合,则的取值范围是A .B .C .或D .或7.设函数的反函数为,则A .在其定义域上是增函数且最大值为1B .在其定义域上是减函数且最小值为0C .在其定义域上是减函数且最大值为1D .在其定义域上是增函数且最小值为08.已知函数,则不等式的解集是A .B .C .D .9.已知函数是R 上的偶函数,且在区间上是增函数.令,则A .B .C .D .10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 A .1344种 B .1248种 C .1056种 D .960种二、填空题 11.的二项展开式中,的系数是 (用数字作答).12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称,直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,()()2,3,2,1-==BD AC ,则=⋅AC AD .15.已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→nn a lim .16.设,若仅有一个常数c使得对于任意的,都有满足方程,这时,的取值的集合为.三、解答题17.(本小题满分12分)已知.(Ⅰ)求的值;(Ⅱ)求的值.18.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望. 19.如图,在四棱锥中,底面是矩形.已知.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小.20.已知函数,其中.(Ⅰ)若曲线在点处的切线方程为,求函数的解析式;(Ⅱ)讨论函数的单调性;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围. 21.已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.22.在数列与中,,数列的前项和满足,为与的等比中项,.(Ⅰ)求的值;(Ⅱ)求数列与的通项公式;(Ⅲ)设.证明.参考答案【答案】A【解析】()31(1)11111i i i i ii i i +-+-===----,选A . 2.D 【解析】如图,由图象可知目标函数过点(1,0)A 时z 取得最大值,max 5z =,选D .3.B【解析】()cos 2f x x =-是周期为π的偶函数,选B . 4.C 【解析】A 、B 、D 直线,a b 可能平行,选C . 5.B 【解析】由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒==所以2d =,选B . 6.A 【解析】{|15}S x x x =-或,所以1{3185a a a <-⇒-<<-+>,选A . 7.D【解析】1y =为减函数,由复合函数单调性知()f x 为增函数,所以()1f x -单调递增,排除B 、C ;又()1f x -的值域为()f x 的定义域,所以()1f x -最小值为0.视频 8.C 【解析】 依题意得1010{{(1)()1(1)1x x x x x x x x +<+≥++-≤++≤或所以11{{111111x x x x x x Rx ≥-<-⇒<--≤≤⇒≤∈≤≤或或,选C .9.A【解析】52(cos)(cos )77b f f ππ=-=,52(tan )(tan )77c f f ππ=-= 因为2472πππ<<,所以2220cos sin 1tan 777πππ<<<<,所以b a c <<,选A .10.B【解析】首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有43121248⨯=种不同的排法,选B .视频 11.40 【解析】3552155((2)r r rr r rr T C xC x --+==-,所以2r,系数为225(2)40C -=.12.24 【解析】试题分析:设正方体的外接球的半径为R ,由:343R π=,解得:R 设该正方体的边长为a ,根据223412a R ==解得2a =,所以正方体的表面积为:266424a =⨯=,所以答案为24.考点:1.求的体积公式;2.正方体的外接球;3.球的表面积和体积公式.13.22(1)10x y +-=【解析】抛物线的焦点为(1,0),所以圆心坐标为(0,1),2222(032)3105r --=+=,圆C 的方程为22(1)10x y +-=. 14.3【解析】令AB a =,AD b =,则(1,2)(2,0),(1,2)(3,2)a b a b a b ⎧+=⎪⇒==-⎨-+=-⎪⎩ 所以()3AD AC b a b ⋅=⋅+=. 15.76【解析】22111211111()13())33(n n n n n n n a a a a a a a a ----+-+=+++=-++++所以2173lim 11613n n a →∞=+=-.16.{}2 【解析】由已知得ca y x=,单调递减,所以当[,2]x a a ∈时,所以1122log 2{{23c a c a a aa a a --≥+≥⇒≤≤,因为有且只有一个常数c 符合题意,所以2log 23a +=,解得2a =,所以的取值的集合为{}2.17.(Ⅰ)4sin 5x =(Ⅱ)sin 23x π⎛⎫+= ⎪⎝⎭【解析】(Ⅰ)因为,所以,于是(Ⅱ)因为,故所以18.(Ⅰ)(Ⅱ)的分布列为的数学期望2E ξ= 【详解】试题分析:对于问题(I )由题目条件并结合间接法,即可求出乙投球的命中率p ;对于问题(II ),首先列出两人共命中的次数ξ的所有可能的取值情况,再根据题目条件分别求出ξ取各个值时所对应的概率,就可得到ξ的分布列.试题解析:(I )设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得221(1())(1)16P B p -=-=解得34p =或54(舍去),所以乙投球的命中率为34.(II )由题设知(I )知1()2P A =,1()2P A =,3()4P B =,1()4P B =, ξ可能取值为0,1,2,3故2111(0)()()()2432P P A P B B ξ==⋅=⨯=, 12(1)()()()()()P P A P B B C P B P B P A ξ==⋅+⋅⋅2113117()22444232=⨯+⨯⨯⨯=, 2139(3)()()()2432P P A P B B ξ==⋅=⨯=15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==ξ的分布列为171590123232323232E ξ=⨯+⨯+⨯+⨯= 考点:1、概率;2、离散型随机变量及其分布列.19.(Ⅰ)证明见解析. (Ⅱ)(Ⅲ)【解析】 (Ⅰ)证明:在中,由题设可得于是.在矩形中,.又,所以平面.(Ⅱ)由题设,,所以(或其补角)是异面直线与所成的角.在中,由余弦定理得由(Ⅰ)知平面,平面,所以,因而,于是是直角三角形,故所以异面直线与所成的角的大小为.(Ⅲ)解:过点P做于H,过点H做于E,连结PE因为平面,平面,所以.又,因而平面,故HE为PE再平面ABCD内的射影.由三垂线定理可知,,从而是二面角的平面角.由题设可得,于是再中,所以二面角的大小为.20.(Ⅰ)8()9f x xx=-+(Ⅱ)见详解(Ⅲ)7(,]4【详解】本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.(Ⅰ)解:2()1af x x'=-,由导数的几何意义得(2)3f '=,于是8a =-. 由切点(2,(2))P f 在直线31yx 上可得27b -+=,解得9b =.所以函数()f x 的解析式为8()9f x x x=-+. (Ⅱ)解:2()1a f x x '=-. 当0a ≤时,显然()0f x '>(0x ≠).这时()f x 在(,0)-∞,(0,)+∞上内是增函数. 当0a >时,令()0f x '=,解得x =当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在(,-∞,)+∞内是增函数,在(,内是减函数. 综上,当0a ≤时,()f x 在(,0)-∞,(0,)+∞上内是增函数;当0a >时,()f x 在(,-∞,)+∞内是增函数,在(,内是减函数.(Ⅲ)解:由(Ⅱ)知,()f x 在1[,1]4上的最大值为1()4f 与(1)f 的较大者,对于任意的1[,2]2a ∈,不等式()10f x ≤在1[,1]4上恒成立,当且仅当1()104(1)10f f ⎧≤⎪⎨⎪≤⎩,即39449b a b a⎧≤-⎪⎨⎪≤-⎩,对任意的1[,2]2a ∈成立.从而得74b ≤,所以满足条件的b 的取值范围是7(,]4. 21.(Ⅰ)22145x y -=(Ⅱ)55(,)((0,(,)4224-∞-⋃-⋃⋃+∞ 【解析】试题分析:(1)因为中心在原点的双曲线C 的一个焦点是F 1(一3,0),一条渐近线的方程是,两个条件即可求出双曲线的方程.(2)依题意可得通过假设直线l 的方程,联立双曲线方程消去y ,即可得到一个关于x 的二次方程,运用韦达定理以及判别式要大于零,即可写出线段MN 的中垂线的直线方程,从而求出直线与两坐标轴的交点,即可表示出所求的三角形的面积,从而得到一个等式结合判别式的关系式,即可得到结论.试题解析:(1)设双曲线C 的方程为22221(00)x y a b a b,-=>>,由题设得229{a b b a +==,解得224{ 5.a b ==,,所以双曲线C 的方程为22145x y -=; (2)设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满足方程组22 { 1. 45y kx m x y =+-=,①②,将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=,此方程有两个不等实根,于是2540k -≠, 且222(8)4(54)(420)0km k m ∆=-+-+>,整理得22540m k +->.③ 由根与系数的关系可知线段MN 的中点坐标00()x y ,满足:12024254x x km x k +==-,002554my kx m k =+=-,从而线段MN 的垂直平分线的方程为225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭,此直线与x 轴,y 轴的交点坐标分别为29054km k ⎛⎫ ⎪-⎝⎭,,29054m k⎛⎫⎪-⎝⎭,, 由题设可得2219981·254542km m k k =--,整理得222(54)k m k-=,0k ≠, 将上式代入③式得222(54)540k k k-+->,整理得22(45)(45)0k k k --->,0k ≠,解得0k <<54k >, 所以k 的取值范围是55004224⎛⎫⎛⎛⎫⎛⎫-∞-⋃-⋃⋃+∞ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,,,. 考点:1.待定系数的应用.2.直线与圆锥曲线的位置关系.3.三角形的面积的表示方法.4.韦达定理.5.代数的运算能力.22.(Ⅰ)23a =,29b = (Ⅱ)(1)2n n n a +=,2(1)n b n =+ (Ⅲ)证明见解析. 【解析】本小题主要考查等差数列的概念、通项公式及前n 项和公式、等比数列的概念、等比中项、不等式证明、数学归纳等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分(Ⅰ)解:由题设有,,解得14b =.由题设又有,,解得11a =. (Ⅱ)解法一:由题设,,,及14b =,11a =,进一步可得,425b =,,,猜想,,*n N ∈.先证,*n N ∈.当2n ≥时,,等式成立.当时用数学归纳法证明如下:(1当n k =时,,等式成立.(2)假设2k ≥时等式成立,即,.由题设,①的两边分别减去②的两边,整理得,从而 .这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的成立. 综上所述,等式对任何的*n N ∈都成立再用数学归纳法证明,*n N ∈. (1)当2n ≥时,,等式成立.(2)假设当2k ≥时等式成立,即,那么.这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的*n N ∈都成立.解法二:由题设1(3)n n nS n S +=+1(1)(2)n n n S n S --=+①的两边分别减去②的两边,整理得1(2)n n na n a +=+,.所以3224a a =, 4335a a =,……1(1)(1)n n n a n a +-=+,3n ≥.将以上各式左右两端分别相乘,得2(1)!(1)!6n n n a a +-=, 由(Ⅰ)并化简得2(1)(1)62n n n n n a a ++==,3n ≥. 止式对1,2n =也成立.由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即1221(1)(2)n n b b n n +⋅=++,*n N ∈. 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以21(1)nb n =+,即,1n ≥.解法三:由题设有1(3)n n nS n S +=+,*n N ∈,所以214S S =, 3225S S =,……1(1)(2)n n n S n S --=+,.将以上各式左右两端分别相乘,得112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+,化简得1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯,3n ≥.由(Ⅰ),上式对1,2n =也成立.所以1(1)2n n n n n a S S -+=-=,. 上式对2n ≥时也成立. 以下同解法二,可得,1n ≥.(Ⅲ)证明:12(1)222212(1)(1)(1)23(1)(1)nn n a a a n n T b b b n +=-+-++-=--++-+.当4n k =,*k N ∈时,222222222345(42)(41)(4)(41)n T k k k k =--++-----+++.注意到2222(42)(41)(4)(41)324k k k k k ----+++=-,故(1)32(12)43242n k k T k k k +=⨯+++-=⨯-224(44)4(4)343k k k k k n n =+-=+⨯=+.当41n k =-,*k N ∈时,2222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+= 当42n k =-,*k N ∈时,22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---.当43n k =-,*k N ∈时,222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--.所以.从而3n ≥时,有222132,5,9,13,3312,6,10,14,{12,3,7,11,312,4,8,12,n n n n n T n nnn n n n+<=++<==<=+<=总之,当3n ≥时有22n T n <,即22n T n <.。
2008年高考数学试卷(天津.理)含详解
由切点 在直线 上可得 ,解得 .
所以函数 的解析式为 .
(Ⅱ)解: .
当 时,显然 ( ).这时 在 , 上内是增函数.
当 时,令 ,解得 .
当 变化时, , 的变化情况如下表:
+
0
-
-
0
+
↗
极大值
↘
↘
极小值
↗
所以 在 , 内是增函数,在 , 内是减函数.
(A) 1344种(B) 1248种(C) 1056种(D) 960种
解析:首先确定中间行的数字只能为1,4或2,3,共有 种排法.然后确定其余4个数字的排法数.用总数 去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有 种排法.所以此时余下的这4个数字共有 种方法.由乘法原理可知共有 种不同的排法,选B.
的分布列为
0
1
2
3
的数学期望
(19)
解:(Ⅰ)证明:在 中,由题设 可得
于是 .在矩形 中, .又 ,
所以 平面 .
(Ⅱ)证明:由题设, ,所以 (或其补角)是异面直线 与 所成的角.
在 中,由余弦定理得
由(Ⅰ)知 平面 , 平面 ,
所以 ,因而 ,于是 是直角三角形,故
所以异面直线 与 所成的角的大小为 .
综上所述,等式 对任何的 都成立
再用数学归纳法证明 , .
(1)当 时, ,等式成立.
(2)假设当 时等式成立,即 ,那么
.
这就是说,当 时等式也成立.根据(1)和(2)可知,等式 对任何的 都成立.
解法二:由题设
①的两边分别减去②的两边,整理得 , .所以
2008年高考试题——数学理(天津卷)
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么 其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i(A) 1- (B) 1 (C) i - (D) i(2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5 (3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a(5)设椭圆()1112222>=-+m m ymx 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21 (D)772(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a (C) 3-≤a 或1-≥a (D) 3-<a 或1->a (7)设函数()()1011<≤-=x xx f 的反函数为()x f1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f 1-在其定义域上是减函数且最小值为0 (C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x(9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<(10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2008高考全国卷Ⅰ数学理科试题含答案(全word版)
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )23.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .4三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.62008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+; 4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6. B. 由()()()()212121,1,y x x y x e f x e f x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,33OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=. 12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OHAB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC8与正方形ABDE可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EMANEM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,),(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===,故EM AN ,所成角的余弦值16AN EM AN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD ==,DG =,EG==,CE =222cos 2CG GE CE CGE CG GE +-∠==, πarccos CGE ∴∠=-⎝⎭,即二面角CAD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0fx '=求得两根为x =即()f x 在⎛-∞⎝⎭递增,⎝⎭递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)23313a ⎧---⎪⎪-,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==10由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
2008天津高考数学理科试卷及答案
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,3i (i 1)i 1+=-( ) A .1-B .1C .i -D .i2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,5.设椭圆22221(1)1x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( ) A .6B .2C .12D6.设集合{}23S x x =->,{}8T x a x a =<<+,S T =R ,则a 的取值范围是( )A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-7.设函数()1)f x x =<≤的反函数为1()f x -,则( D )A .1()f x -在其定义域上是增函数且最大值为1B .1()f x -在其定义域上是减函数且最小值为0C .1()f x -在其定义域上是减函数且最大值为1D .1()f x -在其定义域上是增函数且最小值为0 8.已知函数10()10x x f x x x -+<⎧=⎨-⎩,,,≥,则不等式(1)(1)1x x f x +++≤的解集是( )A.{}11x x -≤B .{}1x x ≤C.{}1x xD.{}11x x ≤9.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin 7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种 B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.5x ⎛- ⎝的二项展开式中2x 的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,(12)AC =,,(32)BD =-,,。
2008年高考试题——数学理(天津卷)学生
英语第I卷第一部分:英语知识运用(共两节,满分45分)1. We’ll have a picnic in the park this Sunday _____ it rains or it’s very cold.A. sinceB. ifC. unlessD. until2. My brother is really ____. He often works in his office far into the night.A. open-mindedB. hard-workingC. self-confidentD. warm-hearted3. ---- I just can’t stop worrying about the result of the job interview.----_____. There’s nothing you can do now but wait.A. RelaxB. Go aheadC. Go for itD. Good luck4. _____ their hats into the air, the fans of the winning team let out loud shouts of victory.A. To throwB. ThrownC. ThrowingD. Being thrown5. To know more about the British Museum, you can use the Internet to go to the library, or _______.A. neitherB. someC. allD. both6. She ______ have left school, for her bike is still here.A. can’tB. wouldn’tC. shouldn’tD. needn’t7. The meal over, the managers went back to the meeting room to ______ their discussion.A. put awayB. take downC. look overD. carry on8. It was along the Mississippi River _______ Mark Twain spent much of his childhood.A. howB. whichC. thatD. where9. ----How much do I owe you for lunch?----______. It’s nothing.A. You’re welcomeB. Forget itC. With pleasureD. That’s right10. Many Chinese universities provided scholarships for students ______ financial aid.A. in favour ofB. in honour ofC. in face ofD. in need of11. Most air pollution is caused by the burning of ____ like coal, gas and oil.A. fuelsB. articlesC. goodsD. products12. The last time we had great fun was _____ we were visiting the Water Park.A. whereB. howC. whenD. why13. Her shoes ______ her dress; they look very well together.A. suitB. fitC. compareD. match14. He _____ football regularly for many years when he was young.A. was playingB. playedC. has playedD. had played15. At the railway station, the mother waved goodbye to her daughter until the train was _______.A. out f sightB. out f reachC. out f orderD. out f place第二节:完形填空(共20小题;每小题1.5分,满分30分)Jenna, a popular girl from Westwood Middle School, had graduated first in her class and was ready for new 16 in high school.17, high school was different. In the first week, Jenna went to tryouts(选拔赛)for cheerleaders(拉拉队队员). She was competing against very talented girls, and she knew it would be 18 for her to be selected. Two hours later, the 19 read a list of the girls for a second tryout. Her heart 20 as the list ended without her name. Feeling 21 , she walked home carrying her schoolbag full of homework.Arriving home, she started with math. She had always been a good math student, but now she was 22 . Shemoved on to English and history, and was 23 to find that she didn’t have any trouble with those subjects. Feeling better, she decided not to 24 math for the time being.The nest day Jenna went to see Mrs. Biden about being on the school 25 . Mrs. Biden wasn’t as 26 as Jenna. “I’m sorry, but we have enough 27 for the newspaper already. Co me back next year and we’ll talk then.” Jenna smiled 28 and left. “Why is high school so29 ?” she sighed.Later in 30 class, Jenna devoted herself to figuring out the problems that had given her so much 31 . By the end of class, she understood how t o get them right. As she gathered her books, Jenna decided she’d continue to try to 32 at her new school. She wasn’t sure if she’d succeed, but she knew she had to33 . High school was just as her mom had said: “You will feel like a small fish in a big pond 34 a big fish in a small pond. The challenge is to become the 35 fish you can be.”16. A. processes B. decision C. challenges D. exercises17. A. Therefore B. However C. Otherwise D. Besides18. A. difficult B. easy C. boring D. interesting19. A. editor B. boss C. candidate D. judge20. A. jumped B. sank C. stopped D. raced21. A. strange B. happy C. awful D. lonely22. A. struggling B. improving C. working D. complaining23. A. ashamed B. disappointed C. shocked D. relieved24. A. put up B. prepare for C. worry about D. give up25. A. committee B. newspaper C. radio D. team26. A. enthusiastic B. artistic C. sympathetic D. realistic27. A. speakers B. readers C. cheerleaders D. writers28. A. widely B. weakly C. excitedly D. brightly29. A. similar B. ordinary C. different D. familiar30. A. physics B. history C. English D. math31. A. pleasure B. hope C. trouble D. sorrow32. A. fit in B. look out C. stay up D. get around33. A. swim B. try C. ask D. escape34. A. in return for B. in case of C. in terms of D. instead of35. A. slimmest B. smallest C. best D. gentlest第二部分:阅读理解(共20小题;每小题2分,满分40分)ASandra Cisneros was born in Chicago in 1954 to a Mexican American family. As the only girl in a family of seven children, she often felt like she had “seven fathers,” because her six brothers, as well as her father, tried to control her. Feeling shy and unimportant, she retreated(躲避) into books. Despite her love of reading, she did not do well in elementary school because she was too shy to participate.In high school, with the encouragement of one particular teacher, Cisneros improved her grades and worked for the school literary magazine. Her father encouraged her to go to college because her thought it would be a good way for her to find a husband. Cisneros did attend college, but instead of searching for a husband, she found a teacher who helped her join the famous graduate writing program at the University of Iowa. At the university’s Writers’ Workshop, however, she felt lonely----a Mexican American from a poor neighborhood among students from wealthy families. The feeling of being so different helped Cisneros find her “Creative voice.”“It was not until this moment when I considered myself truly different that my writing acquired a voice. I knew I was a Mexican woman, but I didn’t think it had anything to do with why I felt so much imbalance in my life, but it hadeverything to do with it! That’s when I decided I would write about something my classmates couldn’t write about.”Cisneros published her first work, The House on Mango Street, when she was twenty-nine. The book tells about a young Mexican American girl growing up in a Spanish-speaking area in Chicago, much like the neighborhoods in which Cisneros lived as a child. The book won an award in 1985 and has been used in classes from high school through graduate school le vel. Since then, Cisneros has published several books of poetry, a children’s book, and a short-story collection.36. Which of the following is TRUE about Cisneros in her childhood?A. She had seven brothers.B. She felt herself a nobody.C. She was too shy to go to school.D. She did not have any good teachers.37. The graduate program gave Cisneros a chance to _____.A. work for a school magazineB. run away from her familyC. make a lot of friendsD. develop her writing style38. According to Cisneros, what played the decisive role in her success?A. Her early years in college.B. Her training in the Workshop.C. Her feeling of being different.D. Her childhood experience.39. What do we learn about The House on Mango Street?A. It is quite popular among students.B. It is the only book ever written by Cisneros.C. It wasn’t success as it was written in Spanish.D. It won an award when Cisneros was twenty-nine.BI love charity(慈善) shops and so do lots of other people in Britain because you find quite a few of them on every high street. The charity shop is a British institution, selling everything from clothes to electric goods, all at very good prices. You can get things you won’t find in the shops anymore. The thing I like best about them is that your money is going to a good cause and not into the pockets of profit-driven companies, and you are not damaging the planet, but finding a new home for unwanted goods.The first charity shop was opened in 1947 by Oxfam. The famous charity’s appeal to aid postwar Greece had been so successful it had been flooded with donations(捐赠物). They decided to set up a shop to sell some of these donations to raise money for that appeal. Now there are over 7,000 charity shops in the UK. My favourite charity shop in my hometown is the Red Cross shop, where I always find children’s books, all 10 or 20 pence each.Most of the people working in the charity shops are volunteers, although there is often a manager who gets paid. Over 90% of the goods in the charity shops are donated by the public. Every morning you see bags of unwanted items outside the front of shops, although they don’t encourage this, rather ask people to bring things in when the shop is open.The shops have very low running costs: all profits go to charity work. Charity shops raise more than £110 million a year, funding(资助)medical research, overseas aid, supporting sick and poor children, homeless and disabled people, and much more. What better place to spend your money? You get something special for a very good price and a good moral sense. You provide funds to a good cause and tread lightly on the environment.40. The author loves the charity shop mainly because of _______.A. its convenient locationB. its great variety of goodsC. its spirit of goodwillD. its nice shopping environment41. The first charity shop in the UK was set up to ____.A. sell cheap productsB. deal with unwanted thingsC. raise money for patientsD. help a foreign country42. Which of the following is TRUE about charity shops?A. The operating costs are very low.B. The staff are usually well paid.C. 90% of the donations are second-hand.D. They are open twenty-four hours a day.43. Which of the following may be the best title for the passage?A. What to Buy a Charity Shops.B. Charity Shop: Its Origin & Development.C. Charity Shop: Where You Buy to Donate.D. The Public’s Concern about Charity Shops.CMichael Fish may soon be replaced as a weather forecaster by something truly fishier---the shark(鲨鱼).Research by a British biology student suggests that sharks could be used to predict storms.Lauren Smith, 24, is close to completing her study on shark’s ability to sense pressure.If her studies prove the theory, scientists may be able to monitor the behaviour of sharks to predict bad weather.Miss Smith had previously studied the behaviour of lemon sharks in the Bahamas.She then used their close relatives, lesser spotted dogfish, for further research at Aberdeen University.Her work---thought to be the first of its kind to test the pressure theory ---- resulted from the observation that juvenile blacktip sharks off Florida moved into deeper water ahead of a violent storm in 2001.Miss Smith said: “I’ve always been crazy about traveling and diving and this led me to an interest in sharks.”“I was delighted to have been able to research in the area for my degree. I know there’s so much more we need to understand ---- but it certainly opens the way to more research.”It has been discovered that a shark senses pressure using hair cells in its balance system.At the Bimini Shark Lab in the Bahamas, Miss Smith fixed hi-tech sensors to sharks to record pressure and temperature, while also tracking them using GPS (Global Positioning System) technology.In Aberdeen, she was able to study the effects of tidal(潮汐的) and temperature changes on dogfish----none of which were harmed. She also used a special lab which can mimic(模拟) oceanic pressure changes caused by weather fronts.She is due to complete her study and graduate later this year. She says she will be looking for a job which will give her the chance to enrich her experience of shark research.44.The passage is most probably taken from _____.A. a short-story collectionB. a popular science magazineC. a research paperD. a personal diary45. What do we learn from the first four paragraph of the passage?A. Sharks may be used to predict bad weather.B. Sharks’ behaviour can be controlled.C. Michael Fish is not qualified for his job.D. Lauren Smith will become a weather forecaster.46. Lauren Smith conducted her research by _______.A. removing hair cells from a shark’s balance systemB. measuring the air pressure of weather frontsC. recording sharks’ body temperatureD. monitoring sharks’ reaction to weather changes47. What is the passage mainly about?A. A popular way of forecasting weather.B. A new research effort in predicting storms.C. Biologists’ interest in the secrets of sharks.D. Lauren Smith’s devotion to scientific resear ch.DWe can achieve knowledge either actively or passively(被动地). We achieve it actively by direct experience, by testing and proving an idea, or by reasoning.We achieve knowledge passively by being told by someone else. Most of the learning that takes place in the classroom and the kind that happens when we watch TV or read newspapers or magazines is passive. Conditioned as we are to passive learning, it’s not surprising that we depend on it in our everyday communication with friends and co-workers.Unfortunately, passive learning has a serious problem. It makes us tend to accept what we are told even when it is little more than hearsay and rumor(谣言).Did you ever play the game Rumor? It begins when one person writes down a message but doesn’t show it to anyone. Then the person whispers it, word for word, to another person. That person, in turn, whispers it to still another, and so on, through all the people playing the game. The last person writes down the message word for word as he or she hears it. Then the two written statements are compared. Typically, the original message has changed.That’s what happens in daily life. The simple fact that peo ple repeat a story in their own words changes the story. Then, too, most people listen imperfectly. And many enjoy adding their own creative touch to a story, trying to improve on it, stamping(打上标记)it with their own personal style. Yet those who hear it think they know.This process is also found among scholars and authors: A statement of opinion by one writer may be re-stated as fact by another, who may in turn be quoted by yet another; and this process may continue, unless it occurs to someone to question the facts on which the original writer based his opinion or to challenge the interpretation he placed upon those facts.48. According to the passage, passive learning may occur in _______.A. doing a medical experimentB. solving a math problemC. visiting an exhibitionD. doing scientific reasoning49. The underlined word “it” in Paragraph 2 refers to _____.A. active learningB. knowledgeC. communicationD. passive learning50. The author mentions the game Rumor to show that _____.A. a message may be changed when being passed onB. a message should be delivered in different waysC. people may have problems with their sense of hearingD. people tend not to believe in what they know as rumor51. What can we infer from the passage?A. Active learning is less important.B. Passive learning may not be reliable.C. Active learning occurs more frequently.D. Passive learning is not found among scholars.EAs kids, my friends and I spent a lot of time out in the woods. “The woods” was our part-time address, destination, purpose, and excuse. If I went to a friend’s house and found him not at home, his mother might say, “Oh, he’s out in the woods, ” with a tone(语气) of airy acceptance. It’s similar to the tone people sometimes use nowadays to tell me that someone I’m looking for is on the golf course or at the gym, or even “away from his desk.” For us ten-year-olds, “being out in the woods” was just an excuse to d o whatever we feel like for a while.We sometimes told ourselves that what we were doing in the woods was exploring(探索). Exploring was a more popular idea back then than it is today. History seemed to be mostly about explorers. Our explorations, though, seemed to have less system than the historic kind: something usually came up along the way. Say we stayed in the woods, throwing rocks, shooting frogs, picking blackberries, digging in what we were briefly persuaded was an Italian burial mound.Often we got “lost” and had to climb a tree to find out where we were. If you read a story in which someone does that successfully, be skeptical: the topmost branches are usually too skinny to hold weight, and we could never climb high enough to see anything except other trees. There were four or five trees that we visited regularly----tall beeches, easy to climb and comfortable to sit in.It was in a tree, too, that our days of fooling around in the woods came to an end. By then some of us has reached seventh grade and had begun the rough ride of adolescence(青春期). In March, the month when we usually took to the woods again after winter, two friends and I set out to go exploring. We climbed a tree, and all of a sudden it occurred to all three of us at the same time that were really were rather big to be up in a tree. Soon there would be the spring dances on Friday evenings in the high school cafeteria.52. The author and his fiends were often out in the woods to _______.A. spend their free timeB. play gold and other sportsC. avoid doing their schoolworkD. keep away from their parents53. What can we infer from Paragraph 2?A. The activities in the woods were well planned.B. Human history is not the result of exploration.C. Exploration should be a systematic activity.D. The author explored in the woods aimlessly.54. The underlined word “skeptical” in Paragraph 3 is closest in meaning to ______.A. calmB. doubtfulC. seriousD. optimistic55. How does the author feel about his childhood?A. Happy but short.B. Lonely but memorable.C. Boring and meaningless.D. Long and unforgettable.第三部分:写作第一节:短文改错(共10小题;每小题1分,满分10分)Last summer I go to America and studied at a language 56.school. I had many wonderful experience, but I also 57.had a sad one. One day, the school held party, where 58.I invited to talk about Tianjin. After that they asked me a lot of 59.Things about China. But I couldn’t explain them with English 60.Clearly. I felt sadly. I learnt a lesson from this experience. I 61.have already studied English for eight years, I can’t use it 62.very good. I must work hard to improve my spoken English 63.so that I will not be able to communicate freely with foreigners. 64.I hope I can be a bridge between China and others countries 65.in the future.第二节:书面表达(满分25分)66.假设2008年2月12日是你父亲的生日,下面三幅图描绘的是你给父亲买完礼物后乘坐地铁回家时经历的一件事。
2008高考天津数学理科试卷含详细解答(全word版)
绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y =为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0.(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或所以11111111x x x x x x R x ⎧≥-≤≤⇒≤∈≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,所以b a c <<,选A . (10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2008年普通高等学校招生全国统一考试数学卷(天津.文)含详解
2, 5} 5, 1.设集合 U = x ∈ N 0 < x ≤ 8 , S = {1, 4, , T = {3, 7} ,则 S ∩ T = ( U
A. {1, 4} 2, B. {1, 3, 5, 2,4,7} C. {1, 2} D. {1, 4, 6, 2, 5,8}
{
}
(
)
)
x y ≥ 0, 2.设变量 x,y 满足约束条件 x + y ≤ 1,则目标函数 z = 5 x + y 的最大值为( x + 2 y ≥ 1.
4 3 2
(Ⅰ)当 a =
10 时,讨论函数 f ( x ) 的单调性; 3
(Ⅱ)若函数 f ( x ) 仅在 x = 0 处有极值,求 a 的取值范围; (Ⅲ)若对于任意的 a ∈ [ 2,] ,不等式 f ( x ) ≤ 1 在 [ 11] 上恒成立,求 b 的取值范围. 2 ,
22. (本小题满分 14 分)
2
P ( A + B ) = P ( A) + P ( B )
如果事件 A,B 相互独立,那么
4 3 πR 3
其中 R 表示球的半径
P ( Ai B ) = P ( A)i P ( B )
一,选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
)
则此椭圆的方程为(
x2 y 2 A. + =1 12 16
8.已知函数 f ( x) = A. [ 11] , 9.设 a = sin
x2 y 2 B. + =1 16 12
x2 y 2 C. + =1 48 64
2008年普通高等学校招生全国统一考试(天津卷)文科数学试题及解答
2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: ·如果事件A B ,互斥,那么 ·球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =·如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}08U x x =∈<N ≤,{}1245S =,,,,{}357T =,,,则()US T =ð( )A .{}124,,B .{}123457,,,,,C .{}12,D .{}124568,,,,,2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.函数14)y x =+≤≤的反函数是( )A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤4.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A .12B .13C .14D .155.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( )A .a b αβαβ⊥⊥,∥,B .a b αβαβ⊥⊥,,∥C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,6.把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 7.设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211216x y += B .2211612x y += C .2214864x y += D .2216448x y += 8.已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-,9.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<10.设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( ) A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人.12.52x x ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为 (用数字作答).13.若一个球的体积为,则它的表面积为 .14.已知平面向量(24)=,a ,(12)=-,b ,若()=-c a a b b ,则=c . 15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .16.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数2()2cos 2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合. 18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形.已知3AB =,2AD =,2PA =,PD =,60PAB =∠.(Ⅰ)证明AD ⊥平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角P BD A --的大小.A BCDP20.(本小题满分12分)已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(20)n q ≠≥,.(Ⅰ)设1()n n n b a a n +=-∈*N ,证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的n ∈*N ,n a 是3n a +与6n a +的等差中项. 21.(本小题满分14分)设函数432()2()f x x ax x b x =+++∈R ,其中a b ∈R ,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围. 22.(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,20y -=. (Ⅰ)求双曲线C 的方程;(Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.A 4.B 5.C 6.C 7.B 8.A 9.D 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.11.1012.1013.12π 14.15.22(1)18x y ++=16.432三、解答题17.本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦和余弦、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:1cos 2()2sin 212xf x x ωω+=++sin 2cos22x x ωω=++sin 2cos cos 2sin 244x x ωωππ⎫=++⎪⎭224x ωπ⎛⎫=++ ⎪⎝⎭.由题设,函数()f x 的最小正周期是2π,可得222ωππ=,所以2ω=.(Ⅱ)解:由(Ⅰ)知,()424f x x π⎛⎫=++ ⎪⎝⎭.当4242x k ππ+=+π,即()162k x k ππ=+∈Z 时,sin 44x π⎛⎫+ ⎪⎝⎭取得最大值1,所以函数()f x 的最大值是2+x 的集合为162k x x k ππ⎧⎫=+∈⎨⎬⎩⎭Z ,.18.本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解法一:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B ,由题意得221(1())(1)16P B p -=-=, 解得34p =或54p =(舍去),所以乙投球的命中率为34. 解法二:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B ,由题意得1()()16P B P B =, 于是1()4P B =或1()4P B =-(舍去),故31()4p P B =-=.所以乙投球的命中率为34.(Ⅱ)解法一:由题设和(Ⅰ)知,1()2P A =,1()2P A =.故甲投球2次至少命中1次的概率为31()4P A A -=.解法二:由题设和(Ⅰ)知,1()2P A =,1()2P A =.故甲投球2次至少命中1次的概率为123C ()()()()4P A P A P A P A +=. (Ⅲ)解:由题设和(Ⅰ)知,1()2P A =,1()2P A =,3()4P B =,1()4P B =.甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中2次,乙2次均不中;甲2次均不中,乙中2次.概率分别为11223C ()()C ()()16P A P A P B P B =, 1()()64P A A P B B =, 9()()64P A A P B B =.所以甲、乙两人各投球2次,共命中2次的概率为3191116646432++=. 19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间相角能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在PAD △中,由题设2PA =,2AD =,PD =,可得222PA AD PD +=,于是AD PA ⊥.在矩形ABCD 中,AD AB ⊥,又P A A B A =,所以AD ⊥平面PAB . (Ⅱ)解:由题设,BC AD ∥,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角.在PAB △中,由余弦定理得PB =.由(Ⅰ)知AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB⊥,因而BC PB ⊥,于是PBC △是直角三角形, 故tan 2PBPCB BC ==. 所以异面直线PC 与AD 所成的角的大小为arctan. A BCDP H E(Ⅲ)解:过点P 作PH AB ⊥于H ,过点H 作HE BD ⊥于E ,连结PE . 因为AD ⊥平面PAB ,PH ⊂平面PAB ,所以AD PH ⊥.又A D A B A =,因而PH ⊥平面ABCD ,故HE 为PE 在平面ABCD 内的射影.由三垂线定理可知,BD PE ⊥.从而PEH ∠是二面角P BD A --的平面角. 由题设可得,sin 603PH PA ==cos601AH PA ==,2BH AB AH =-=,BD =13AD HE BH BD == 于是在Rt PHE△中,tan PH PEH HE == 所以二面角P BD A--的大小为arctan. 20.本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前n 项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分. (Ⅰ)证明:由题设11(1)(2)n n n a q a qa n +-=+-≥,得11()n n n n a a q a a +--=-,即12n n b qb n -=,≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解:由(Ⅰ),211a a -=, 32a a q -=,……21(2)n n n a a q n ---=≥.将以上各式相加,得211(2)n n a a q q n --=+++…≥.所以当2n ≥时,11111 1.n n q q a qn q -⎧-+≠⎪=-⎨⎪=⎩,,,上式对1n =显然成立.(Ⅲ)解:由(Ⅱ),当1q =时,显然3a 不是6a 与9a 的等差中项,故1q ≠. 由3693a a a a -=-可得5228q q q q -=-,由0q ≠得3611q q -=-, ①整理得323()20q q +-=,解得32q =-或31q =(舍去).于是q =另一方面,21133(1)11n n n n n q q q a a q q q+--+--==---,15166(1)11n n n n n q q q a a q q q-+-+--==---.由①可得36n n n n a a a a n ++-=-∈*N ,.所以对任意的n ∈*N ,n a 是3n a +与6n a +的等差中项.21.本小题主要考查利用导数研究函数的单调性和极值、函数的最大值、解不等式等基础知识,考查综合分析和解决问题的能力.满分14分. (Ⅰ)解:322()434(434)f x x ax x x x ax '=++=++. 当103a =-时, 2()(4104)2(21)(2)f x x x x x x x '=-+=--.令()0f x '=,解得10x =,212x =,32x =. 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在102⎛⎫⎪⎝⎭,,(2)+,∞内是增函数,在(0)-∞,,122⎛⎫ ⎪⎝⎭,内是减函数.(Ⅱ)解:2()(434)f x x x ax '=++,显然0x =不是方程24340x ax ++=的根.为使()f x 仅在0x =处有极值,必须24340x ax ++≥恒成立,即有29640a ∆=-≤. 解此不等式,得8833a -≤≤.这时,(0)fb =是唯一极值. 因此满足条件的a 的取值范围是8833⎡⎤-⎢⎥⎣⎦,.(Ⅲ)解:由条件[]22a ∈-,可知29640a ∆=-<,从而24340x ax ++>恒成立.当0x <时,()0f x '<;当0x >时,()0f x '>.因此函数()f x 在[]11-,上的最大值是(1)f 与(1)f -两者中的较大者. 为使对任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,当且仅当(1)1(1)1f f ⎧⎨-⎩≤,≤, 即22b a b a --⎧⎨-+⎩≤,≤ 在[]22a ∈-,上恒成立.所以4b -≤,因此满足条件的b 的取值范围是(]4--∞,.22.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.(Ⅰ)解:设双曲线C 的方程为22221(00)x y a b a b-=>>,,由题设得2292a b b a⎧+=⎪⎨=⎪⎩, 解得2245.a b ⎧=⎪⎨=⎪⎩,所以双曲线C 的方程为22145x y -=. (Ⅱ)解:设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满足方程组221.45y kx m x y =+⎧⎪⎨-=⎪⎩,① ②将①式代入②式,得22()145x kx m +-=,整理得 222(54)84200k x kmx m ----=.此方程有两个不等实根,于是2540k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得22540m k +->. ③由根与系数的关系可知线段MN 的中点坐标00()x y ,满足12024254x x km x k +==-,002554m y kx m k =+=-. 从而线段MN 的垂直平分线的方程为 225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭.此直线与x 轴,y 轴的交点坐标分别为29054km k ⎛⎫⎪-⎝⎭,,29054m k ⎛⎫ ⎪-⎝⎭,.由题设可得 2219981254542km m k k =--. 整理得222(54)k m k-=,0k ≠. 将上式代入③式得222(54)540k k k-+->,整理得22(45)(45)0k k k --->,0k ≠.解得0k <<或54k >. 所以k 的取值范围是5555004224⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∞,,,,∞。
2008高考天津数学文科试卷全解全析
2008年普通高等学校招生全国统一考试(天津卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: ·如果事件A B ,互斥,那么 ·球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =·如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}08U x x =∈<N ≤,{}1245S =,,,,{}357T =,,,则()US T =ð( )A .{}124,,B .{}123457,,,,,C .{}12,D .{}124568,,,,,【答案】A【解析】本小题主要考查集合的基本运算.因为{1,2,4,6,8}TU =ð,所以(){1,2,4}U S T =ð,故选A .2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5 【答案】D【解析】本小题考查线性规划知识,关键是准确作出可行域.如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,故选D .3.函数14)y x =≤≤的反函数是( )A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤【答案】A【解析】本小题主要考查反函数的求法.由1y =+12()(1)f x x -=-,当04x ≤≤时,[,3]11+.所以反函数的定义域为[1,3],故选A .4.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A .12 B .13C .14D .15【答案】B【解析】本小题主要考查等差数列的简单性质.由153535()5252522a a a S a +⋅==⇒=,所以35a =,公差322d a a =-=,从而有73454213a a d =+=+⨯=,故选B .5.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,【答案】C【解析】本小题主要考查空间想象能力、线面垂直的判定以及充要条件的判定.选项A 、B 、D 中直线,a b 可能平行(如图),故选C .6.把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,【答案】C【解析】本小题主要考查函数图象变换的相关知识.变换过程如下:132sin sin()sin(2)33y x y x y x πππ=−−−−−−→=+−−−−−−−→=+向左平移个单位横坐标缩短到原来的倍,故选C .7.设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211216x y += B .2211612x y += C .2214864x y += D .2216448x y +=【答案】B【解析】本小题主要考查抛物线、椭圆的方程及几何性质.由已知,抛物线的焦点为(2,0),椭圆焦点在x 轴上,排除A 、C ,由12e =排除D ,故选B . 8.已知函数20()20x xf x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-,【答案】A【解析】本小题主要考查学生对分段函数的理解及解不等式的相关知识.依题意得221100001122x x x x x x x x x ⎧⎧≤>≤≤<≤⇒≤≤+≥-+≥⇒--⎨⎨⎩⎩或或,故选A . 9.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c <<【答案】D【解析】本小题借助比较大小的形式考查诱导公式及三角函数线的相关知识,需注意当角的终边落在直线y x =的左上方时,sin cos αα>;此外,注意中间量0、1在比较大小中的使用.解法如下:52sin sin 77a ππ==,因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,故选D .10.设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a的取值的集合为( ) A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,【答案】B【解析】本小题综合考查了对数的运算性质、函数的单调性、函数的值域等方面的知识.由log log 3a a x y +=得:3a y x =,该函数在[,2]a a 上单调递减,所以22[,]2y a a ∈,故2122a aa a ⎧⎪⇒⎨⎪⎩≥≥>,故选B . 2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人.【答案】10【解析】本小题主要考查分层抽样中的相关计算,解决此类问题需注意分层抽样是一种等概率抽样,实际就是按比例进行抽样.依题意知抽取超过45岁的职工为258010200⨯=. 12.52x x ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为 (用数字作答).【答案】10【解析】本小题主要考查二项式定理的相关知识,注意展开式中通项的使用.由已知5521552()2r r r r r rr T C x C xx--+=⋅=,令523r -=得:1r =,所以系数为10. 13.若一个球的体积为,则它的表面积为 . 【答案】12π【解析】本小题主要考查球的体积和表面积的计算.由343R π=得R =,所以2142S R ππ==.14.已知平面向量(24)=,a ,(12)=-,b ,若()=-c a a b b ,则=c .【答案】【解析】本小题主要考查向量的坐标运算.因为(2,4)6(1,2)(8,8)c =--=-,所以||82c =. 15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .【答案】22(1)18x y ++=【解析】本小题主要考查直线方程中的对称问题,圆中有关弦长的计算两方面的知识.由已知可求圆心的坐标为(0,1)-,所以2222(411)3185r --=+=,圆的方程为22(1)18x y ++=. 16.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有 种(用数字作答).【答案】432【解析】本小题主要考查排列组合的综合应用.数字之和为10的情况有4,3,2,1、4,4,1,1、 3,3,2,2.所以共有44444442218432A A A +==种不同排法.三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数2()2cos 2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.【解析】本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.【答案】(Ⅰ)()242sin 224sin 2cos 4cos 2sin 222cos 2sin 12sin 22cos 12+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+=++=+++⋅=πωπωπωωωωωx x x x x x xx f 由题设,函数()x f 的最小正周期是2π,可得222πωπ=,所以2=ω. (Ⅱ)由(Ⅰ)知,()244sin 2+⎪⎭⎫ ⎝⎛+=πx x f .当πππk x 2244+=+,即()Z k k x ∈+=216ππ时,⎪⎭⎫ ⎝⎛+44sin πx 取得最大值1,所以函数()x f 的最大值是22+,此时x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,216|ππ. 18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.【解析】本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力. 【答案】(Ⅰ)解法一:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得()()()1611122=-=-p B P 解得43=p 或45(舍去),所以乙投球的命中率为43.解法二:设设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B .由题意得1()()16P B P B =,于是1()4P B =或1()4P B =-(舍去),故31()4p P B =-=. 所以乙投球的命中率为34.(Ⅱ)解法一:由题设和(Ⅰ)知()()21,21==A P A P .故甲投球2次至少命中1次的概率为()431=⋅-A A P解法二:由题设和(Ⅰ)知()()21,21==A P A P 故甲投球2次至少命中1次的概率为()()()()4312=+A P A P A P A P C (Ⅲ)由题设和(Ⅰ)知,()()()()41,43,21,21====B P B P A P A P甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次。
2008年高考试题——理综(天津卷)含答案moon解析
2008年普通高等学校招生全国统一考试(天津卷)理科综合能力测试本试卷分第I卷(选择题)和第H卷两部分,共300分,考试用时150分钟。
第I卷I至5页,第n卷6至15页•考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意事项:1. 答第I卷前,考生务必将自己的姓名、准考兮、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2•每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3•本卷共21题,每题6分•共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:相对原子质最:H 1 C 12 O 16 S 32 CI 35.5 K 39 Br 801. 下列关于蛋白质和氨基酸的叙述,正确的是A. 具有生物催化作用的酶都是由氨基酸组成的B. 高等动物能合成生命活动所需的20种氨基酸C. 细胞中氨基酸种类和数量相同的蛋白质是同一种蛋白质D. 在胚胎发育过程中,基因选择性表达,细胞会产生新的蛋白质2. 下列有关生物膜的叙述,正确的是A. 大鼠脾细胞与兔造血干细胞的细胞膜能够发生融合B. 用蛋白酶处理生物膜可改变其组成,不改变其通透性C. 在生长激素的合成和分泌过程中,生物膜只发生结构上的联系D. 兴奋在神经纤维上传导和在神经元间传递时,生物膜发生的变化是相同的3. 下列有关特异性免疫的叙述,正确的是A. 当抗原侵入宿主细胞时,细胞免疫才开始发挥作用B. 效应B细胞的产生,需要T细胞和抗原的共同刺激C. 在体液免疫过程中,每个效应B细胞只分泌一种特异性抗体D. 当同一种抗原再次进入机体时.产生的效应B细胞均来自记忆细胞A .过程①的自交代数越多,纯合高蔓抗病植株的比例越高 B. 过程②可以取任一植株的适宜花药作培养材料 C. 过程③包括脱分化和再分化两个过程 D. 图中筛选过程不改变抗病基因频率5.为研究人工生态系统中大草履虫和栉毛虫间捕食关系的影响因素,设计两组实验: 实验一:在培养液中依次加入草履虫和栉毛虫,得到种群数量变化曲线(见甲图) ; 实验二:在培养液中先加入沉渣作隐蔽场所, 再同时加入大草履虫和栉毛虫,得到种群数量变化曲线(见乙图)。
2008高考天津数学文科试卷含详细解答(全word版)080709
2008年普通高等学校招生全国统一考试(天津卷)数 学(文科)一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)设集合|0{8}x x N U =∈<≤,{1,2,4,5}S =,{3,5,7}T =,则()U S T = ð (A ){1,2,4} (B ){1,2,3,4,5,7} (C ){1,2} (D ){1,2,4,5,6,8}解:因为{1,2,4,6,8}T U =ð,所以(){1,2,4}U S T = ð,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A )2 (B )3 (C )4(D )5解:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)函数1y =04x ≤≤)的反函数是(A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤)(C )21y x =-(13x ≤≤) (D )21yx =-(04x ≤≤)解:当04x ≤≤时,[,3]11,解1y =12()(1)f x x -=-,选A .(4)若等差数列{}n a 的前5项和525S =,且23a =,则7a =(A )12 (B )13 (C )14 (D )15 解:1524545()5()722a a a a S a ++==⇒=,所以4272255132a a a a d a -=+=+⋅=,选B . (5)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A )βαβα⊥⊥,//,b a (B )βαβα//,,⊥⊥b a (C )βαβα//,,⊥⊂b a (D )βαβα⊥⊂,//,b a 解:选C ,A 、B 、D 的反例如图.(6)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈ 解:选C,132sin sin()sin(2)33y x y x y x πππ=−−−−−−→=+−−−−−−−→=+向左平移个单位横坐标缩短到原来的倍.(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y += 解:抛物线的焦点为(2,0),椭圆焦点在x 轴上,排除A 、C ,由12e =排除D ,选B . (8)已知函数2,0()2,x x f x x x +⎧=⎨-+>≤⎩,则不等式2()f x x ≥的解集是 (A )[1,1]- (B )[2,2]- (C )[2,1]- (D )[1,2]-解:依题意得221100001122x x x x x x x xx ⎧⎧≤>≤≤<≤⇒≤≤+≥-+≥⇒--⎨⎨⎩⎩或或,选A . (9)设5sin7a π=,2cos 7b π=,2tan 7c π=,则 (A )c b a << (B )a c b << (C )a c b << (D )b a c <<解:2sin 7a π=,因为2472πππ<<,所以220cos sin 1tan 7772πππ<<<<,选D .(10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3}解:易得3a y x =,在[,2]a a 上单调递减,所以22[,]2y a a ∈,故2122a a a a ⎧⎪⇒⎨⎪⎩≥≥>,选B .二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中横线上.)(11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.解:依题意知抽取超过45岁的职工为258010200⨯=. (12)52()x x+的二项展开式中,3x 的系数是________________(用数字作答).解:5521552()2r rr r r r r T C xC x x--+=⋅=,1r =,所以系数为10. (13)若一个球的体积为π34,则它的表面积为________________.解:由343R π=得R =2142S R ππ==. (14)已知平面向量(2,4)a = ,(1,2)b =- .若()c a a b b =-⋅,则||c = _____________.解:因为(2,4)6(1,2)(8,8)c =--=- ,所以||c =.(15)已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______________________.解:圆心的坐标为(0,1)-,所以2222(411)3185r --=+=,圆的方程为22(1)18x y ++=. (16)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).解:数字之和为10的情况有4,4,1,1、 4,3,2,1、 3,3,2,2.所以共有44444442218432A A A +==种不同排法.三、解答题(本题共6道大题,满分76分)(17)(本小题满分12分) 已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合. 解:(Ⅰ) ()1cos 22sin 212xf x x ωω+=⋅++sin 2cos 22x x ωω=++sin 2cos cos 2sin 244x x ππωω⎫=++⎪⎭224x πω⎛⎫=++ ⎪⎝⎭由题设,函数()x f 的最小正周期是2π,可得222πωπ=,所以2=ω. (Ⅱ)由(Ⅰ)知,()244sin 2+⎪⎭⎫ ⎝⎛+=πx x f .当πππk x 2244+=+,即()Z k k x ∈+=216ππ时,⎪⎭⎫ ⎝⎛+44sin πx 取得最大值1,所以函数()x f 的最大值是22+,此时x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,216|ππ.(18)(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 解:(Ⅰ)解法一:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B .由题意得()()()1611122=-=-p B P 解得43=p 或45(舍去),所以乙投球的命中率为43.解法二:设设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B .由题意得1()()16P B P B =,于是1()4P B =或1()4P B =-(舍去),故31()4p P B =-=. 所以乙投球的命中率为34.(Ⅱ)解法一:由题设和(Ⅰ)知()()21,21==A P A P .故甲投球2次至少命中1次的概率为()431=⋅-A A P解法二:由题设和(Ⅰ)知()()21,21==A P A P 故甲投球2次至少命中1次的概率为()()()()4312=+A P A P A P A P C (Ⅲ)由题设和(Ⅰ)知,()()()()41,43,21,21====B P B P A P A P甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次。
数学试卷201908年普通高等国统一考试数学(天津卷·理科)(附答案,完全word版)
2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,3i (i 1)i 1+=-( ) A .1-B .1C .i -D .i2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥,B .a b αβαβ⊥⊥,,∥C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,5.设椭圆22221(1)1x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( ) A .6B .2C .12D.76.设集合{}23S x x =->,{}8T x a x a =<<+,S T =R ,则a 的取值范围是( )A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-7.设函数()1)f x x =<≤的反函数为1()f x -,则( )A .1()f x -在其定义域上是增函数且最大值为1 B .1()f x -在其定义域上是减函数且最小值为0 C .1()f x -在其定义域上是减函数且最大值为1 D .1()fx -在其定义域上是增函数且最小值为08.已知函数10()10x x f x x x -+<⎧=⎨-⎩,,,≥,则不等式(1)(1)1x x f x +++≤的解集是( )A.{}11x x -≤B .{}1x x ≤C.{}1x xD.{}11x x ≤9.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种 B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.5x ⎛ ⎝的二项展开式中2x 的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,(12)AC =,,(32)BD =-,, 则AD AC = .15.已知数列{}n a 中,11a =,111()3n n n a a n ++-=∈*N ,则lim n n a →∞= . 16.设1a >,若仅有一个常数c 使得对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log a a x y c +=,这时a 的取值的集合为 .三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知cos 410x π⎛⎫-= ⎪⎝⎭,324x ππ⎛⎫∈ ⎪⎝⎭,. (Ⅰ)求sin x 的值; (Ⅱ)求sin 23x π⎛⎫+ ⎪⎝⎭的值.18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形.已知3AB =,2AD =,2PA =,PD =60PAB =∠.(Ⅰ)证明AD ⊥平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角P BD A --的大小. 20.(本小题满分12分) 已知函数()(0)af x x b x x=++≠,其中a b ∈R ,. (Ⅰ)若曲线()y f x =在点(2(2))P f ,处的切线方程为31y x =+,求函数()f x 的解析式; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)若对于任意的122a ⎡⎤∈⎢⎥⎣⎦,,不等式()10f x ≤在114⎡⎤⎢⎥⎣⎦,上恒成立,求b 的取值范围.21.(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,20y -=. (Ⅰ)求双曲线C 的方程;(Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.A BCDP22.(本小题满分14分)在数列{}n a 与{}n b 中,11a =,14b =,数列{}n a 的前n 项和n S 满足1(3)0n n nS n S +-+=,12n a +为n b 与1n b +的等比中项,n ∈*N . (Ⅰ)求2a ,2b 的值;(Ⅱ)求数列{}n a 与{}n b 的通项公式;(Ⅲ)设1212(1)(1)(1)n aaan n T b b b n =-+-++-∈*N …,,证明223n T n n <,≥.2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.B 4.C 5.B 6.A 7.D 8.C 9.A 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.40 12.24 13.22(1)10x y +-=14.315.7616.{}2三、解答题17.本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分. (Ⅰ)解法一:因为324x ππ⎛⎫∈ ⎪⎝⎭,,所以442x πππ⎛⎫-∈ ⎪⎝⎭,,于是sin 410x π⎛⎫-==⎪⎝⎭. sin sin sin cos cos sin 444444x x x x ⎛ππ⎫ππππ⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭41021025=+⨯=.解法二:由题设得2210x x +=,即1cos sin 5x x +=. 又22sin cos 1x x +=,从而225sin 5sin 120x x --=,解得4sin 5x =或3sin 5x =-. 因为324x ππ⎛⎫∈ ⎪⎝⎭,,所以4sin 5x =.(Ⅱ)解:因为324x ππ⎛⎫∈ ⎪⎝⎭,,故3cos 5x ===-.24sin 22sin cos 25x x x ==-,27cos 22cos 125x x =-=-. 所以,sin 2sin 2cos cos 2sin 333x x x πππ⎛⎫+=+= ⎪⎝⎭.18.本小题主要考查随机事件、互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B , 由题意得221(1())(1)16P B p -=-=, 解得34p =或54p =(舍去),所以乙投球的命中率为34. (Ⅱ)解:由题设和(Ⅰ)知1()2P A =,1()2P A =,3()4P B =,1()4P B =.ξ可能的取值为0,1,2,3,故2111(0)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭,12(1)()()()()()P P A P B B C P B P B P A ξ==+211311722444232⎛⎫=⨯+⨯⨯⨯=⎪⎝⎭, 2139(3)()()2432P P A P B B ξ⎛⎫===⨯=⎪⎝⎭, 15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==. ξ的分布列为ξ的数学期望0123232323232E ξ=⨯+⨯+⨯+⨯=.19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在PAD △中,由题设2PA =,2AD =,PD =222PA AD PD +=,于是AD PA ⊥.在矩形ABCD 中,AD AB ⊥,又PAAB A =,所以AD ⊥平面PAB .(Ⅱ)解:由题设,BC AD ∥,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角. 在PAB △中,由余弦定理得 PB ==由(Ⅰ)知AD ⊥平面PAB ,PB ⊂平面PAB ,AB CDPHE所以AD PB ⊥,因而BC PB ⊥,于是PBC △是直角三角形,故tan 2PB PCB BC ==.所以异面直线PC 与AD 所成的角的大小为arctan2. (Ⅲ)解:过点P 作PH AB ⊥于H ,过点H 作HE BD ⊥于E ,连结PE .因为AD ⊥平面PAB ,PH ⊂平面PAB ,所以AD PH ⊥.又AD AB A =,因而PH ⊥平面ABCD ,故HE 为PE 在平面ABCD 内的射影.由三垂线定理可知,BD PE ⊥.从而PEH ∠是二面角P BD A --的平面角. 由题设可得,sin 603PH PA ==cos601AH PA ==,2BH AB AH =-=,BD =,13AD HE BH BD ==.于是在Rt PHE △中,tan 4PH PEH HE ==.所以二面角P BD A --的大小为 20.本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:2()1af x x'=-,由导数的几何意义得(2)3f '=,于是8a =-. 由切点(2(2))P f ,在直线31y x =+上可得27b -+=,解得9b =. 所以函数()f x 的解析式为8()9f x x x=-+. (Ⅱ)解:2()1a f x x '=-. 当0a ≤时,显然()0(0)f x x '>≠,这时()f x 在(0)-∞,,(0)+,∞内是增函数.当0a >时,令()0f x '=,解得x = 当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在-,+∞内是增函数,在(,(0内是减函数. (Ⅲ)解:由(Ⅱ)知,()f x 在114⎡⎤⎢⎥⎣⎦,上的最大值为14f ⎛⎫⎪⎝⎭与(1)f 中的较大者,对于任意的122a ⎡⎤∈⎢⎥⎣⎦,,不等式()10f x ≤在114⎡⎤⎢⎥⎣⎦,上恒成立,当且仅当1104(1)10f f ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩≤,≤, 即39449b a b a ⎧-⎪⎨⎪-⎩≤,≤ 对任意的122a ⎡⎤∈⎢⎥⎣⎦,成立. 从而得74b ≤,所以满足条件的b 的取值范围是74⎛⎤- ⎥⎝⎦∞,.21.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.(Ⅰ)解:设双曲线C 的方程为22221(00)x y a b a b-=>>,,由题设得2292a b b a⎧+=⎪⎨=⎪⎩, 解得2245.a b ⎧=⎪⎨=⎪⎩,所以双曲线C 的方程为22145x y -=. (Ⅱ)解:设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满足方程组221.45y kx m x y =+⎧⎪⎨-=⎪⎩,① ② 将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=.此方程有两个不等实根,于是2540k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得22540m k +->. ③由根与系数的关系可知线段MN 的中点坐标00()x y ,满足12024254x x km x k +==-,002554my kx m k=+=-. 从而线段MN 的垂直平分线的方程为 225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭. 此直线与x 轴,y 轴的交点坐标分别为29054km k ⎛⎫⎪-⎝⎭,,29054m k ⎛⎫ ⎪-⎝⎭,.由题设可得 2219981254542km m k k =--.整理得222(54)k m k-=,0k ≠. 将上式代入③式得222(54)540k k k-+->,整理得22(45)(45)0k k k --->,0k ≠.解得0k <<或54k >. 所以k 的取值范围是55550044⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∞,,,,∞. 22.本小题主要考查等差数列的概念、通项公式及前n 项和公式、等比数列的概念、等比中项、不等式证明、数学归纳法等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分.(Ⅰ)解:由题设有12140a a a +-=,11a =,解得23a =.由题设又有22214a b b =,14b =,解得29b =.(Ⅱ)解法一:由题设1(3)0n n nS n S +-+=,11a =,14b =,及23a =,29b =, 进一步可得36a =,316b =,410a =,425b =,猜想(1)2n n n a +=,2(1)n b n =+,n ∈*N . 先证(1)2n n n a +=,n ∈*N . 当1n =时,11(11)2a ⨯+=,等式成立.当2n ≥时用数学归纳法证明如下: (1)当2n =时,22(21)2a ⨯+=,等式成立. (2)假设当n k =时等式成立,即(1)2k k k a +=,2k ≥. 由题设,1(3)k k kS k S +=+, ①1(1)(2)k k k S k S --=+. ②①的两边分别减去②的两边,整理得1(2)k k ka k a +=+,从而 []1(1)(1)122(1)22k k k k k k k k a a k k +++++++===. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n n n a +=对任何的2n ≥成立.综上所述,等式(1)2n n n a +=对任何的n ∈*N 都成立. 再用数学归纳法证明2(1)n b n =+,n ∈*N .(1)当1n =时,21(11)b =+,等式成立.(2)假设当n k =时等式成立,即2(1)k b k =+,那么[]22221124(1)(2)(1)1(1)k k k a k k b k b k ++++===+++. 这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式2(1)n b n =+对任何的n ∈*N都成立.解法二:由题设1(3)n n nS n S +=+, ①1(1)(2)n n n S n S --=+. ②①的两边分别减去②的两边,整理得1(2)n n na n a +=+,2n ≥,所以 3224a a =,4335a a =,……1(1)(1)n n n a n a --=+,3n ≥.将以上各式左右两端分别相乘,得2(1)!(1)!6n n n a a +-=, 由(Ⅰ)并化简得2(1)(1)62n n n n n a a ++==,3n ≥. 上式对1n =,2也成立. 由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即 1221(1)(2)n n b b n n +=++,n ∈*N . 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以 21(1)n b n =+.即 2(1)n b n =+,1n ≥.解法三:由题设有1(3)n n nS n S +=+,n ∈*N ,所以214S S =,3225S S =,……1(1)(2)n n n S n S --=+,2n ≥.将以上各式左右两端分别相乘,得112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+……,化简得1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯,3n ≥. 由(Ⅰ),上式对1n =,2也成立.所以1(1)2n n n n n a S S -+=-=,2n ≥. 上式对1n =也成立. 以下同解法二,可得2(1)n b n =+,1n ≥.(Ⅲ)证明:1212(1)(1)(1)n aa a n n Tb b b =-+-++-… (1)222223(1)(1)n n n +=--++-+…. 当4n k =,k ∈*N 时,222222222345(42)(41)(4)(41)n T k k k k =--++-----+++…. 注意到2222(42)(41)(4)(41)324k k k k k ----+++=-,故 (1)32(12)43242n k k T k k k +=⨯+++-=⨯-… 224(44)4(4)343k k k k k n n =+-=+⨯=+.当41n k =-,k ∈*N 时, 22222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+=. 当42n k =-,k ∈*N 时, 22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---. 当43n k =-,k ∈*N 时, 222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--. 所以,2234333424134n n n k n n n k T k n n k n n n k --=-⎧⎪---=-⎪=∈⎨=-⎪⎪+=⎩*N ,,, ,,,, , 从而3n ≥时,有22213259133312610141237113124812n n n n n T n n n n n n n⎧+<=⎪⎪⎪++<=⎪=⎨⎪<=⎪⎪⎪+<=⎩,,,,…,, ,,,…,, ,,,…,, ,,,…. 总之,当3n ≥时有22n T n<,即22n T n <.。
2008年高考天津理综试卷及答案
2008年普通高等学校招生全国统一考试(天津卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共300分,考试用时150分钟。
第Ⅰ卷l 至5页,第Ⅱ卷6至15页.考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.答第I卷前,考生务必将自己的姓名、准考兮、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共21题,每题6分.共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:相对原子质最:H 1C12O 16 S 32 Cl 35.5 K 39 Br 801.下列关于蛋白质和氨基酸的叙述,正确的是A.具有生物催化作用的酶都是由氨基酸组成的B.高等动物能合成生命活动所需的20种氨基酸C.细胞中氨基酸种类和数量相同的蛋白质是同一种蛋白质D.在胚胎发育过程中,基因选择性表达,细胞会产生新的蛋白质2.下列有关生物膜的叙述.正确的是A.大鼠脾细胞与免造血千细胞的细胞膜能够发生融合B.用蛋白酶处理生物膜可改变其组成,不改变其通透性C.在生长激素的合成和分泌过程中,生物膜只发生结构上的联系D.兴奋在神经纤维上传导和在神经元间传递时,生物膜发生的变化是相同的3.下列有关特异性免疫的叙述,正确的是A.当抗原侵入宿主细胞时.细胞免疫才开始发挥作用B.效应B细胞的产生,需要T细胞和抗原的共同刺激C.在体液免疫过程中.每个效应B细胞只分泌一种特异性抗体D .当同一种抗原再次进入机体时.产生的效应B 细胞均来自记忆细胞4.为获得纯合高蔓抗病番茄植株,采用了下图所示的方法;图中两对相对性状独立遗传。
据图分析,不正确...的是 A .过程①的自交代数越多,纯合高蔓抗病植株的比例越高B .过程②可以取任一植株的适宜花药作培养材料C .过程③包括脱分化和再分化两个过程D .图中筛选过程不改变抗病基因频率5.为研究人工生态系统中大草履虫和栉毛虫间捕食关系的影响因素,设计两组实验:实验一:在培养液中依次加入草履虫和栉毛虫,得到种群数量变化曲线(见甲图);实验二:在培养液中先加入沉渣作隐蔽场所,再同时加入大草履虫和栉毛虫,得到种群数量变化曲线(见乙图)。
2008年高考天津理综试卷及答案
2008年普通高等学校招生全国统一考试(天津卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共300分,考试用时150分钟。
第Ⅰ卷l 至5页,第Ⅱ卷6至15页.考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.答第I卷前,考生务必将自己的姓名、准考兮、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共21题,每题6分.共126分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
以下数据可供解题时参考:相对原子质最:H 1C12O 16 S 32 Cl 35.5 K 39 Br 801.下列关于蛋白质和氨基酸的叙述,正确的是A.具有生物催化作用的酶都是由氨基酸组成的B.高等动物能合成生命活动所需的20种氨基酸C.细胞中氨基酸种类和数量相同的蛋白质是同一种蛋白质D.在胚胎发育过程中,基因选择性表达,细胞会产生新的蛋白质2.下列有关生物膜的叙述.正确的是A.大鼠脾细胞与免造血千细胞的细胞膜能够发生融合B.用蛋白酶处理生物膜可改变其组成,不改变其通透性C.在生长激素的合成和分泌过程中,生物膜只发生结构上的联系D.兴奋在神经纤维上传导和在神经元间传递时,生物膜发生的变化是相同的3.下列有关特异性免疫的叙述,正确的是A.当抗原侵入宿主细胞时.细胞免疫才开始发挥作用B.效应B细胞的产生,需要T细胞和抗原的共同刺激C.在体液免疫过程中.每个效应B细胞只分泌一种特异性抗体D .当同一种抗原再次进入机体时.产生的效应B 细胞均来自记忆细胞4.为获得纯合高蔓抗病番茄植株,采用了下图所示的方法;图中两对相对性状独立遗传。
据图分析,不正确...的是 A .过程①的自交代数越多,纯合高蔓抗病植株的比例越高B .过程②可以取任一植株的适宜花药作培养材料C .过程③包括脱分化和再分化两个过程D .图中筛选过程不改变抗病基因频率5.为研究人工生态系统中大草履虫和栉毛虫间捕食关系的影响因素,设计两组实验:实验一:在培养液中依次加入草履虫和栉毛虫,得到种群数量变化曲线(见甲图);实验二:在培养液中先加入沉渣作隐蔽场所,再同时加入大草履虫和栉毛虫,得到种群数量变化曲线(见乙图)。
08-17年天津市高考数学试卷题目版(理科)
2008年天津市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)i是虚数单位,=()A.﹣1 B.1 C.﹣i D.i2.(5分)设变量x,y满足约束条件,则目标函数z=5x+y的最大值为()A.2 B.3 C.4 D.53.(5分)设函数,则函数f(x)是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数4.(5分)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β5.(5分)设椭圆上一点P到其左焦点的距离为3,到右焦点的距离为1,则P点到右准线的距离为()A.6 B.2 C.D.6.(5分)设集合S={x||x﹣2|>3},T={x|a<x<a+8},S∪T=R,则a的取值范围是()A.﹣3<a<﹣1 B.﹣3≤a≤﹣1 C.a≤﹣3或a≥﹣1 D.a<﹣3或a >﹣17.(5分)设函数的反函数为f﹣1(x),则()A.f﹣1(x)在其定义域上是增函数且最大值为1B.f﹣1(x)在其定义域上是减函数且最小值为0C.f﹣1(x)在其定义域上是减函数且最大值为1D.f﹣1(x)在其定义域上是增函数且最小值为08.(5分)已知函数,则不等式x+(x+1)f(x+1)≤1的解集是()A.B.{x|x≤1}C.D.9.(5分)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin),b=f(cos),c=f(tan),则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c10.(5分)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有()A.1344种B.1248种C.1056种D.960种二、填空题(共6小题,每小题4分,满分24分)11.(4分)在(x﹣)5的二次展开式中,x2的系数为(用数字作答).12.(4分)一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为.13.(4分)已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x ﹣3y﹣2=0与圆C相交于A、B两点,且|AB|=6,则圆C的方程为.14.(4分)如图,在平行四边形ABCD中,,则=.15.(4分)已知数列{a n}中,,则=.16.(4分)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为.三、解答题(共6小题,满分76分)17.(12分)已知cos(x﹣)=,x∈(,).(1)求sinx的值;(2)求sin(2x)的值.18.(12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率p;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2,∠PAB=60°.(Ⅰ)证明AD⊥平面PAB;(Ⅱ)求异面直线PC与AD所成的角的大小;(Ⅲ)求二面角P﹣BD﹣A的大小.20.(12分)已知函数,其中a,b∈R.(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)若对于任意的,不等式f(x)≤10在上恒成立,求b 的取值范围.21.(14分)已知中心在原点的双曲线C的一个焦点是F1(﹣3,0),一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.22.(14分)在数列{a n}与{b n}中,a1=1,b1=4,数列{a n}的前n项和S n满足nS n+1﹣(n+3)S n=0,2a n+1为b n与b n+1的等比中项,n∈N*.(Ⅰ)求a2,b2的值;(Ⅱ)求数列{a n}与{b n}的通项公式;(Ⅲ)设.证明|T n|<2n2,n≥3.2009年天津市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)i是虚数单位,=()A.1+2i B.﹣1﹣2i C.1﹣2i D.﹣1+2i2.(5分)设变量x,y满足约束条件:,则目标函数z=2x+3y的最小值为()A.6 B.7 C.8 D.233.(5分)命题“存在x0∈R,2x2﹣1≤0”的否定是()A.不存在x0∈R,2x02﹣1>0 B.存在x0∈R,2x02﹣1>0C.对任意的x∈R,2x2﹣1≤0 D.对任意的x∈R,2x2﹣1>04.(5分)设函数f(x)=x﹣lnx(x>0),则y=f(x)()A.在区间(,1),(l,e)内均有零点B.在区间(,1),(l,e)内均无零点C.在区间(,1)内无零点,在区间(l,e)内有零点D.在区间(,1)内有零点,在区间(l,e)内无零点5.(5分)阅读程序框图,则输出的S=()A.26 B.35 C.40 D.576.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.7.(5分)已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)已知函数f(x)=若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)9.(5分)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.10.(5分)0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数恰有3个,则()A.﹣1<a<0 B.0<a<1 C.1<a<3 D.2<a<3二、填空题(共6小题,每小题4分,满分24分)11.(4分)某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取名学生.12.(4分)如图是一个几何体的三视图,若它的体积是,则a=.13.(4分)设直线l1的参数方程为(t为参数),直线l2的方程为y=3x+4则l1与l2的距离为.14.(4分)若圆x2+y2=4与圆x2+y2+2ay﹣6=0(a>0)的公共弦的长为,则a=.15.(4分)在四边形ABCD中,==(1,1),,则四边形ABCD的面积是.16.(4分)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答)三、解答题(共6小题,满分76分)17.(12分)已知:△ABC中,BC=1,AC=,sinC=2sinA (1)求AB的值.(2)求的值.18.(12分)在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(I)取出的3件产品中一等品件数X的分布列和数学期望;(II)取出的3件产品中一等品件数多于二等品件数的概率.19.(12分)如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD,(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求二面角A﹣CD﹣E的余弦值.20.(12分)已知函数f(x)=(x2+ax﹣2a2+3a)e x(x∈R),其中a∈R.(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当时,求函数f(x)的单调区间和极值.21.(14分)已知椭圆的两个焦点分别为F1(﹣c,0)和F2(c,0)(c>0),过点的直线与椭圆相交于A,B两点,且F1A∥F2B,|F1A|=2|F2B|.(1)求椭圆的离心率;(2)求直线AB的斜率;(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.22.(14分)已知等差数列{a n}的公差为d(d≠0),等比数列{b n}的公比为q(q >1).设s n=a1b1+a2b2+…+a n b n,T n=a1b1﹣a2b2+…+(﹣1)n﹣1anbn,n∈N+,(1)若a1(2)=b1(3)=1,d=2,q=3,求S3的值;(Ⅱ)若b1(6)=1,证明(1﹣q)S2n﹣(1+q)T2n=,n∈(10)N+;(Ⅲ)若正数n满足2≤n≤q,设k1,k2,…,k n和l1,l2,…,l n是1,2,…,n 的两个不同的排列,c1=a k1b1+a k2b2+…+a kn b n,c2=a l1b1+a l2b2+…+a ln b n证明c1≠c2.2010年天津市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)i是虚数单位,复数=()A.1+i B.5+5i C.﹣5﹣5i D.﹣1﹣i2.(5分)函数f(x)=2x+x的零点所在的区间为()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1) D.(1,2)3.(5分)命题“若f(x)是奇函数,则f(﹣x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(﹣x)是偶函数B.若f(x)不是奇函数,则f(﹣x)不是奇函数C.若f(﹣x)是奇函数,则f(x)是奇函数D.若f(﹣x)不是奇函数,则f(x)不是奇函数4.(5分)阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写()A.i<3 B.i<4 C.i<5 D.i<65.(5分)已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.6.(5分)已知{a n}是首项为1的等比数列,S n是{a n}的前n项和,且9S3=S6,则数列的前5项和为()A.或5 B.或5 C.D.7.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则∠A的值为()A.B.C. D.8.(5分)若函数f(x)=,若f(a)>f(﹣a),则实数a的取值范围是()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)9.(5分)设集合A={x||x﹣a|<1,x∈R},B={x||x﹣b|>2,x∈R}.若A⊆B,则实数a,b必满足()A.|a+b|≤3 B.|a+b|≥3 C.|a﹣b|≤3 D.|a﹣b|≥310.(5分)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用()A.288种B.264种C.240种D.168种二、填空题(共6小题,每小题4分,满分24分)11.(4分)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为和.12.(4分)一个几何体的三视图如图所示,则这个几何体的体积为.13.(4分)已知圆C的圆心是直线x﹣y+1=0与x轴的交点,且圆C与直线x+y+3=0相切.则圆C的方程为.14.(4分)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若=,=,则的值为.15.(4分)如图,在△ABC中,AD⊥AB,,,则=.16.(4分)设函数f(x)=x2﹣1,对任意x∈[,+∞),f()﹣4m2f(x)≤f (x﹣1)+4f(m)恒成立,则实数m的取值范围是.三、解答题(共6小题,满分76分)17.(12分)已知函数f(x)=2sinxcosx+2cos2x﹣1(x∈R)(Ⅰ)求函数f(x)的最小正周期及在区间[0,]上的最大值和最小值;(Ⅱ)若f(x0)=,x0∈[,],求cos2x0的值.18.(12分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标.另外2次未击中目标的概率;(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,(1)求异面直线EF与A1D所成角的余弦值;(2)证明AF⊥平面A1ED;(3)求二面角A1﹣ED﹣F的正弦值.20.(12分)已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(﹣a,0).(i)若,求直线l的倾斜角;(ii)若点Q(0,y0)在线段AB的垂直平分线上,且.求y0的值.21.(14分)已知函数f(x)=xe﹣x(x∈R)(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.22.(14分)在数列{a n}中,a1=0,且对任意k∈N*.a2k﹣1,a2k,a2k+1成等差数列,其公差为d k.(Ⅰ)若d k=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*)(Ⅱ)若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为q k,若a2=2,证明:<2n﹣≤2.2011年天津市高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣1+2i D.﹣1﹣2i2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)阅读程序框图,运行相应的程序,则输出i的值为()A.3 B.4 C.5 D.64.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n 为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.1105.(5分)在的二项展开式中,x2的系数为()A.B.C.D.6.(5分)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A.B.C.D.7.(5分)已知,则()A.a>b>c B.b>a>c C.a>c>b D.c>a>b8.(5分)对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C. D.二、填空题(共6小题,每小题5分,满分30分)9.(5分)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.10.(5分)一个几何体的三视图如图所示(单位:m),则这个几何体的体积为m3.11.(5分)已知抛物线C的参数方程为(t为参数),若斜率为1的直线经过抛物线C的焦点,且与圆(x﹣4)2+y2=r2(r>0)相切,则r=.12.(5分)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF:FB:BE=4:2:1.若CE与圆相切,则CE的长为.13.(5分)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.14.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为.三、解答题(共6小题,满分80分)15.(13分)已知函数f(x)=tan(2x+),(1)求f(x)的定义域与最小正周期;(2)设α∈(0,),若f()=2cos2α,求α的大小.16.(13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).17.(13分)如图所示,在三棱柱ABC﹣A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A﹣A1C1﹣B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.18.(13分)在平面直角坐标系xOy中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆的左、右焦点.已知△F1PF2为等腰三角形.(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF 2与椭圆相交于A,B两点,M是直线PF2上的点,满足,求点M的轨迹方程.19.(14分)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)(Ⅰ)当a=时①求f(x)的单调区间;②证明:存在x0∈(2,+∞),使f(x0)=f();(Ⅱ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.20.(14分)已知数列{a n}与{b n}满足:,n∈N*,且a1=2,a2=4.(Ⅰ)求a3,a4,a5的值;(Ⅱ)设c n=a2n﹣1+a2n+1,n∈N*,证明:{c n}是等比数列;(Ⅲ)设S k=a2+a4+…+a2k,k∈N*,证明:.2012年天津市高考数学试卷(理科)一、选择题1.(3分)i是虚数单位,复数=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i2.(3分)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(3分)阅读程序框图,运行相应的程序,当输入x的值为﹣25时,输出x的值为()A.﹣1 B.1 C.3 D.94.(3分)函数f(x)=2x+x3﹣2在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.35.(3分)在(2x2﹣)5的二项展开式中,x项的系数为()A.10 B.﹣10 C.40 D.﹣406.(3分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cosC=()A.B.C.D.7.(3分)已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()A.B.C. D.8.(3分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)二、填空题9.(3分)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.10.(3分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(3分)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x﹣m)(x﹣2)<0},且A∩B=(﹣1,n),则m=,n=.12.(3分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=.13.(3分)如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为.14.(3分)已知函数y=的图象与函数y=kx﹣2的图象恰有两个交点,则实数k的取值范围是.三、解答题15.已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.16.现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.17.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A﹣PC﹣D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.18.已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).19.设椭圆的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.(1)若直线AP与BP的斜率之积为,求椭圆的离心率;(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>.20.已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).2013年天津市高考数学试卷(理科)一.选择题:(每题5分,共40分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]2.(5分)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7 B.﹣4 C.1 D.23.(5分)阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为()A.64 B.73 C.512 D.5854.(5分)已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆相切.其中真命题的序号是()A.①②③B.①②C.①③D.②③5.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.36.(5分)在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=()A.B.C.D.7.(5分)函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.48.(5分)已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=.10.(5分)的二项展开式中的常数项为.11.(5分)已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,则|CP|=.12.(5分)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.13.(5分)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A 做圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.14.(5分)设a+b=2,b>0,则当a=时,取得最小值.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数f(x)=﹣sin(2x+)+6sinxcosx﹣2cos2x+1,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.(13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.17.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(Ⅰ)证明B1C1⊥CE;(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.18.(13分)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F 且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.19.(14分)已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n ∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D . (3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21 (D) 772 解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y x =-+为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0. (8)已知函数()⎩⎨⎧≥-<+-=011x x x x x f ,则不等式()()111≤+++x f x x 的解集是 (A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x 解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或 所以111121212121x x x x x x R x ⎧≥-≤≤-⇒≤-∈--≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩-或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan 7772πππ<<<<,所以b a c <<,选A .(10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2.用钢笔或圆珠笔直接答在试卷上3.本卷共12小题,共100分。
二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中横线上.)(11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数是 (用数字作答).解析:35521552()(2)r rrr r r r T C xC x x--+=-=-,所以2r =,系数为225(2)40C -=.(12)一个正方体的各定点均在同一球的球面上,若该球的体积为π34,则该正方体的表面积为 .解析:由34433R ππ=得3R =,所以2a =,表面积为2624a =. (13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .解析:抛物线的焦点为(1,0),所以圆心坐标为(0,1),2222(032)3105r --=+=,圆C 的方程为22(1)10x y +-=.(14)如图,在平行四边形ABCD 中,()()2,3,2,1-==BD AC ,则=⋅AC AD .解析:令AB a = ,AD b = ,则(1,2)(2,0),(1,2)(3,2)a b a b a b ⎧+=⎪⇒==-⎨-+=-⎪⎩所以()3AD AC b a b ⋅=⋅+=.(15)已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→n n a lim .解析:22111211111()13())33(n n n n n n n a a a a a a a a ----+-+=+++=-++++所以2173lim 11613n n a →∞=+=-.(16)设1>a ,若仅有一个常数c 使得对于任意的[]a a x 2,∈,都有[]2,a a y ∈满足方程c y x a a =+log log ,这时,a 的取值的集合为 .解析:由已知得c a y x =,单调递减,所以当[,2]x a a ∈时,11[,]2c c a y a --∈ 所以1122l o g 223a c c a c a a c a --⎧⎧⎪⇒⎨⎨⎩⎪⎩≥+≥≤≤,因为有且只有一个常数c 符合题意,所以2log 23a +=,解得2a =,所以a 的取值的集合为{2}.三、解答题(本题共6道大题,满分76分) (17)(本小题满分12分) 已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值. (17)解:(Ⅰ)因为⎪⎭⎫⎝⎛∈43,2ππx ,所以⎪⎭⎫ ⎝⎛∈-2,44πππx ,于是10274cos 14sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-ππx x 54221022210274sin 4cos 4cos 4sin 44sin sin =⨯+⨯=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=ππππππx x x x(Ⅱ)因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x(18)(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望. (18)解:(Ⅰ)设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B 由题意得()()()1611122=-=-p B P 解得43=p 或45(舍去),所以乙投球的命中率为43(Ⅱ)由题设和(Ⅰ)知()()()()41,43,21,21====B P B P A P A Pξ可能的取值为0,1,2,3,故()()()321412102=⎪⎭⎫ ⎝⎛⨯=⋅==B B P A P P ξ()()()()()()32721414324121321412112212=⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯==⎪⎭⎫ ⎝⎛⨯=+⋅==A P B P B P C B B P A P P ξ()()()329432132=⎪⎭⎫ ⎝⎛⨯=⋅==B B P A P P ξ()()()()321531012==-=-=-==ξξξξP P P P ξ的分布列为ξ123P321 327 3215 329 ξ的数学期望232933215232713210=⨯+⨯+⨯+⨯=ξE如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.(19)解:(Ⅰ)证明:在PAD ∆中,由题设22,2==PD PA 可得222PD AD PA =+于是PA AD ⊥.在矩形ABCD 中,AB AD ⊥.又A AB PA = ,所以⊥AD 平面PAB .(Ⅱ)证明:由题设,AD BC //,所以PCB ∠(或其补角)是异面直线PC 与AD 所成的角.在PAB ∆中,由余弦定理得由(Ⅰ)知⊥AD 平面PAB ,⊂PB 平面PAB ,所以PB AD ⊥,因而PB BC ⊥,于是PBC ∆是直角三角形,故27tan ==BC PB PCB 所以异面直线PC 与AD 所成的角的大小为27arctan. (Ⅲ)解:过点P 做AB PH ⊥于H ,过点H 做BD HE ⊥于E ,连结PE因为⊥AD 平面PAB ,⊂PH 平面PAB ,所以PH AD ⊥.又A AB AD = , 因而⊥PH 平面ABCD ,故HE 为PE 再平面ABCD 内的射影.由三垂线定理可知, PE BD ⊥,从而PEH ∠是二面角A BD P --的平面角。