【XLY】2016春九年级数学下册(北师大版)作业课件:第一章检测卷
北师大版九年级数学下册第一章测试题
北师大版九年级数学下册第一章测试题一、选择题(每小题3分;共30分)1、在Rt △ABC 中;∠C=90°;AC=3;BC=4;那么cosB 的值是( )A.4/5B.3/5C.3/4D.4/32、在Rt △ABC 中;如果各边长度都扩大为原来的2倍;那么锐角A 的正弦值( )A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化3、等腰三角形的底角为30°;底边长为 )A .4B .C .2D .4、如图1;在菱形ABCD 中;∠ABC =60°;AC =4;则BD 长为( )A .B .C .D .85、在△ABC 中;∠C =90°;下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B =D .tan a b A =6、△ABC 中;∠A ;∠B 均为锐角;且有2|tan 2sin 0B A +=(;则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形 7、已知tan 1α=;那么2sin cos 2sin cos αααα-+的值等于( ) A .13 B .12C .1D .16 8、如图2;沿AC 方向开山修路;为了加快施工进度;要在小山的另一边同时施工.从AC 上的一点B ;取∠ABD =145°;BD =500米;∠D =55°;要使A ;C ;E 成一直线;那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米9、如图3;在矩形ABCD 中;D E ⊥AC ;垂足为E ;设∠ADE =α;且cos α=35;AB =4; 则AD 的长为( )A .3B .163C .203D .16510、如图4;已知正方形ABCD 的边长为2;如果将线段BD 绕着点B 旋转后;点D 落在CB 的延长线上的D ′处;那么tan ∠BAD ′等于( )A .1BCD 二、填空题(每小题3分;共24分)。
《初中数学北师大版九年级下学期_第一章_单元测试卷》详细答案与试题解析
《初中数学北师大版九年级下学期第一章单元测试卷》一、单选题(共10题;共40分)1. 在Rt△ABC中,∠C=90∘,∠B=40∘,AB=10,则直角边BC的长是()A.10sin40∘B.10cos40∘C.10tan40∘D.10sin402. 若∠A是锐角,且sin A=14,则()A.0º<∠A<30ºB.30º<∠A<45ºC.45º<∠A<60ºD.60º<∠A<90º3. 如果a是锐角,且cos a=45,那么sin a的值是()A.9 25B.45C.35D.16254. 如图,△ABC的三个顶点均在格点上,则cos A的值为( )A.1 2B.√55C.2D.2√555. 如图,在Rt△ABC中,∠C=90∘,BC=5,AC=12,则sin B的值是()A.5 12B.125C.135D.12136. 如图,在平面直角坐标系中,直线OA过点(3,1),则tanα的值是().A.√1010B.√10 C.13D.37. 在Rt△ABC中,∠C=90∘,∠A、∠B、∠C所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A.1 3B.3C.√24D.√10108. 在Rt△ABC中,∠C=90∘,如果AC=2,cos A=34,那么AB的长是()A.5 2B.83C.103D.23√79. 某兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米它的坡度i=1:√3.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37度,测角仪DE的高度为1.5米,求大楼AB的高度约为()米(sin37∘=0.60,cos37∘=0.80,tan37∘=0.75,√3=1.73)A.39.3B.37.8C.33.3D.25.710. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin xB.a cos x+b cos xC.a sin x+b cos x.D.a cos x+b sin x二、填空题(共6题;共24分)=________.已知∠A是锐角,且tan A=√3,则sin A2如图,当小明沿坡度i=1:√3的坡面由A到B行走了6米时,他实际上升的高度BC=________米.如果α是锐角,且sinα=cos20∘,那么α=________度.若sinα=√2cos60∘,则锐角α=________.某人从地面沿着坡度为i=1:√3的山坡走了100米,这时他离地面的高度是________米.,∠C=∠D,则如图,在四边形ABCD中,AB=√29,AD=7,BC=8,tan∠B=52线段CD的长为________.三、计算题(共2题;共12分)计算:2cos30∘+4sin30∘−tan60∘.+√8cos45∘+√(1−tan60∘)2.计算:3tan30∘−1cos60∘四、解答题(共5题;共44分)我们把底角为51∘的等腰三角形称为最稳定三角形.如图,已知△ABC是最稳定三角形,AB=AC,BC=232.8m.求BC边上的高AD的长.(sin51∘≈0.8,cos51∘≈0.6,tan51∘≈1.2,精确到1m),AC=6√3,求AB的长.如图,在△ABC中,∠A=30∘,tan B=34周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58∘,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58∘=0.85,cos58∘=0.53,tan58∘=1.60)如图,四边形ABCD中,∠ADB=∠DBC=90∘,AD=6,CD=12,tan A=4,求5sin C的值.如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A 处测得古塔顶端点D的仰角为45∘,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30∘.求该古塔BD的高度(,结果保留一位小数).参考答案与试题解析《初中数学北师大版九年级下学期 第一章 单元测试卷》一、单选题(共10题;共40分) 1.【答案】 B【考点】 解直角三角形 【解析】根据余弦的定义求解. 【解答】在Rt △ABC 中,∠C =90∘, cos B =BC AB,BC =10cos 40∘. 2.【答案】 A【考点】锐角三角函数的定义 【解析】根据题意,由30∘的正弦值,判断得到|∠A 的度数范围即可. 【解答】 解:∵ sin 30∘=12又∵ 0<14<12:0∘<∠A <30∘ 故答案为:A . 3.【答案】 C【考点】锐角三角函数的定义 【解析】根据题意,由cos a 的值,计算得到答案即可. 【解答】解∵ sin 2a +cos 2a =1 ∵ 5ln a =√1−cos 2a=√1−(45)2=35故答案为:C .4. 【答案】D【考点】锐角三角函数的定义勾股定理【解析】过B点作BD⊥AC,得AB的长,AD的长,利用锐角三角函数得结果.【解答】解:过B点作BD⊥AC于D,如图,由勾股定理得AB=√12+32=√10,AD=√22+22=2√2,cos A=ADAB =√2√10=2√55.故选D.5.【答案】D【考点】锐角三角函数的定义【解析】由勾股定理先求斜边,再由正弦定义可求.【解答】解:在Rt△ABC中,由勾股定理|AB=√BC2+AC2=√52+122=13inB=ACAB =1213故答案为:D.6.【答案】C【考点】锐角三角函数的定义【解析】将点(3,1)设为点C,过点C作CD⊥x轴于点D,然后利用正切的定义即可求出答案.【解答】将点(3,1)设为点C,过点C作CD⊥x轴于点D,C(3,1)OD=3,CD=1tanα=CD OD=13故答案为:C.7.【答案】A【考点】锐角三角函数的定义【解析】根据余切函数的定义即可求解.【解答】∵在Rt△ABC中,∠C=90∘,∠A、∠B、∠C所对的边分别为a、b、c,a=3b,∴cot A=ba =13.8.【答案】B【考点】锐角三角函数的定义【解析】根据cos A=ACAB =34,求出AB即可.【解答】在Rt△ABC中,∵∠C=90∘,AC=2,又∵cos A=ACAB =34,∴AB=83,9.【答案】C【考点】解直角三角形的应用-仰角俯角问题【解析】延长AB交直线DC于点F,过点E作I5H⊥AF,垂足为点H,在RtttCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角4AEH中利用三角函数求得AF的长,进而求得AB的长.【解答】解:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.:在RtBC中,BFCF=1:√3∴设BF=k,则CF=√3k,BC=2k.又.BC=12k=6.BF=6,CF=6√3DF=DC+CFDF=40+6√3:在RtAEH中,tan∠AEH=AHEHAH=tan37∘×(40+6√3)≈37.785(米),⋅8H=BF−FHBH=6−1.5=4.5AB=AH−HBAB=37.785−4.5≈33.3.3.故答案为:C.10.【答案】D【考点】解直角三角形的应用【解析】作4G⊥OC交OC于点G,交BC于点H,由矩形性质得.∠ABH=90∘AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt=ABH中,根据锐角三角函数余弦定义cos x=ABAH得AH=a COSx 根据锐角三角函数正切定义tan x=BHAB得BH=a+ax,从而可得CH长,在Rt=CGH中,根据锐角三角函数正弦定义sin x=GHCH得GH=bsinxa tan x sin x,由AG=AH+HG计算即可得出答案【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,:四边形ABCD为矩形,AD=b∠ABH=90∘AD=BC=bOB⊥OC∠O=90∘又…∠HGG+∠GHC=90∘∠AB+∠BAH=90∘∠GHC=∠ABB∠BCO=x ∠HCG=∠BAH=x在Rt=ABH中,∵cos∠BAH=cos x=ABAHAB=a∴ AH=a COSx⋅tan∠BAH=tan x=BHBH=a+anxCH=BC−BH=b−a+anx在R t tGGH2中,∵ 5∠HGG=sin x=GH CH(b−−a+−a+am⋅sin x=b sinsin x−axxAG=AH+HG=acos x+b sin x−a tan x sin xa cos x +b sin x−a sin2xcos x=b sin x+a cos x.故答案为:D.二、填空题(共6题;共24分)【答案】12【考点】特殊角的三角函数值【解析】先根据tan A=√3,求出∠A的度数,然后代入求解.【解答】解:∵tan A=√3,∴∠A=60∘,∴sin A2=sin30∘=12.故答案为:12.【答案】3【考点】解直角三角形的应用-坡度坡角问题【解析】根据坡度的概念求出∠A,根据直角三角形的性质解答.【解答】∵i=1:√3,∴tan A=√3=√33,∴∠A=30∘,∴BC=12AB=3(米),【答案】70【考点】互余两角三角函数的关系【解析】直接利用sin A=cos(90∘−∠A),进而得出答案.【解答】∵sinα=cos20∘,∴α=90∘−20∘=70∘.【答案】45∘【考点】特殊角的三角函数值【解析】根据30∘,45∘,60∘角的三角函数值解答即可.【解答】∵sinα=√2cos60∘=√2×12=√22,∴α=45∘.【答案】50【考点】解直角三角形的应用-坡度坡角问题【解析】垂直高度、水平距离和坡面距离构成一个直角三角形.利用坡度比找到垂直高度和水平距离之间的关系后,借助于勾股定理进行解答.【解答】∵坡度为i=1:√3,∴设离地面的高度为x,那么水平距离为√3x.∵x2+(√3x)2=1002解得x=50.即这时他离地面的高度是50米.【答案】6√2613【考点】解直角三角形【解析】如图,作AH⊥BC于H,在CB上截取CE,使得CE=AD,连接AE,作DM⊥AE于M,CN⊥AE于N.构造等腰梯形,把等腰梯形分成两个全等三角形一个矩形解决问题即可.【解答】如图,作AH⊥BC于H,在CB上截取CE,使得CE=AD,连接AE,作DM⊥AE于M,CN⊥AE于N.∵∠ADC=∠ECD,DA=CE,∴四边形ADCE是等腰梯形,则△ADM≅△ECN,可得AM=EN,四边形MNCD是矩形,可得CD=MN,在Rt△ABH中,∵tan B=52,AB=√29,∴AH=5,BH=2,∵BC=8,EC=AD=7,∴BE=8−7=1,∴EH=BH−BE=1,在Rt△AEH中,AE=√AH2+EH2=√26,∵△ECN∽△EAH,∴ENEH =ECAE,∴EN=7√2626,∴AM=EN=7√2626,∴CD=MN=AE−AM−EN=6√2613,三、计算题(共2题;共12分)【答案】解:2cos30∘+4sin30∘−tan60∘=2×√32+4×12−√3=2.【考点】特殊角的三角函数值【解析】代入特殊角的三角函数直接求解即可. 【解答】解:2cos30∘+4sin30∘−tan60∘=2×√32+4×12−√3=2. 【答案】解:原式=3×√33−112+√8×√22+√(1−√3)2=√3−2+2+√3−1=2√3−1.【考点】特殊角的三角函数值【解析】将特殊角的三角函数值代入,根据实数的运算法则求值即可.【解答】此题暂无解答四、解答题(共5题;共44分)【答案】高AD的长是140米.【考点】锐角三角函数的定义解直角三角形特殊角的三角函数值等腰三角形的性质:三线合一【解析】此题暂无解析【解答】根据最稳定三角形得出∠B=∠C=51∘,且AB=AC,再利用三线合一得出BD,最后利用三角函数求出AD.解:∵△ABC是最稳定三角形,∴∠B=∠C=51∘,且AB=AC,∵AD BC,∴BD=BC=116.4m,∴AD=116.4×tan51∘=139.68≈140m,∴BC边上的高AD的长是140米.【答案】如图,过点C作CD⊥AB于点D.∵在Rt△CDA中,∠A=30∘,∴CD=AC⋅sin30∘=3√3,AD=AC×cos30∘=9,在Rt△CDB中,∵tan B=34∴CDBD =34∴BD=4√3,∴AB=AD+DB=9+4√3.【考点】解直角三角形【解析】过点C作CD⊥AB于点D,根据∠A=30∘,tan B=34,AC=6√3可求出AD与BD的长度.【解答】如图,过点C作CD⊥AB于点D.∵在Rt△CDA中,∠A=30∘,∴CD=AC⋅sin30∘=3√3,AD=AC×cos30∘=9,在Rt△CDB中,∵tan B=34∴CDBD =34∴BD=4√3,∴AB=AD+DB=9+4√3.【答案】风筝离地面的高度约为10.1m.【考点】解直角三角形的应用-仰角俯角问题【解析】根据题意画出图形,根据sin58∘=CEBC可求出CE的长,再根据CD=CE+ED即可得出答案.【解答】解:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=CEBC,∴CE=BC⋅sin58∘=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,【答案】解:∵∠ADB=∠DBC=90∘,AD=6,tan A=45,tan A=BDAD,∴BD=4.8.∵CD=12,∴sin C=BDCD =4.812=25.【考点】解直角三角形【解析】根据∠ADB=∠DBC=90∘,AD=6,CD=12,tan A=45,可以求得BD的长,从而可以求得sin C的值.【解答】解:∵∠ADB=∠DBC=90∘,AD=6,tan A=45,tan A=BDAD,∴BD=4.8.∵CD=12,∴sin C=BDCD =4.812=25.【答案】27.3m【考点】解直角三角形的应用-仰角俯角问题勾股定理解直角三角形的应用-坡度坡角问题【解析】先根据题意得出:∠BAD2CD的度数及;AC的长,再在Rt△ABD中可得出AB=BD,利用锐角三角函数的定义可得出BD的长.【解答】解:根据题意可知:∠BAD=45∘,∠BCD=30∘,AC=20m在Rt△ABD中,由∠BAD=∠BDA=45∘,得AB=BD在F加BDC中,由|tan∠BCD=BDBC,得BC=√3BD又BC⋅AB=AC,√3BD−BD=20,∴BD=√3−1≈27.3(n)答:该古塔BD的高度273m。
北师大版九年级数学下册第一章测试题(附答案)
北师大版九年级数学下册第一章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为( )A. 5sin AB. 5cos AC.D.2.在Rt△ABC中,∠C=90°,a=3,b=4,则tanB的值是()A. B. C. D.3.正方形网格中,如图放置,则的值为()A. B. C. D. 24.如图,在直角△ABC中,∠C=90°,BC=1,AC=,下列判断正确的是()A. ∠A=90°B. ∠A=45°C. cotA=D. tanA=5.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B. 3 C. D.6.计算sin60°+cos45°的值等于()A. B. C. D.7.先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A. 5cosαB.C. 5sinαD.8.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30,看这栋高楼底部C的俯角为60,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A. 40mB. 80mC. 120mD. 160m9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.10.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端25米的B处,测得树顶A的仰角∠ABO 为,则树OA的高度为()A. 米B. 25 米C. 25 米D. 25 米11.已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A. B. C. D.12.如图,在直角△BAD中,延长斜边BD到点C,使DC= BD,连接AC,若tanB= ,则tan∠CAD的值()A. B. C. D.二、填空题(共8题;共16分)13.观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB 约是45m,根据以上观测数据可求观光塔的高CD是________ m.14.tan30°=________.15.如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A的仰角为56°,那么旗杆的高度约是________米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)16.计算tan1°•tan2°•tan3°•…•tan88°•tan89°=________.17.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是________.18.用科学计算器计算:8+sin56°≈________ .(精确到0.01)19.某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A处测得蒲宁之珠最高点C的仰角为45°,再往蒲宁之珠方向前进至点B处测得最高点C的仰角为56°,AB=62m,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD约为 ________m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)20.在△ABC中,sinA= ,AB=8,BC=6,则AC=________.三、解答题(共4题;共20分)21.如图所示,在△ABC中,AB=1,AC= ,sin B= ,求BC的长.22.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)23.“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥“之美誉.它像一部史诗,记载着兰州古往今来历史的变迁.桥上飞架了5座等高的弧形钢架拱桥.小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离AB=20m,小芸在A处测得∠CAB=36°,小刚在B处测得∠CBA=43°,求弧形钢架拱梁顶部C处到桥面的距离.(结果精确到0.1m)(参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)24.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).四、综合题(共4题;共40分)25.重庆大坪时代天街已成为人们周末休闲娱乐的重要场所,时代天街从一楼到二楼有一自动扶梯(如图1),图2是侧面示意图.已知自动扶梯AC的坡度为i=1:2.4,AC=13m,BE是二楼楼顶,EF∥MN,B是EF上处在自动扶梯顶端C正上方的一点,且BC⊥EF,在自动扶梯底端A处测得B点仰角为42°.(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)(1)求二楼的层高BC约为多少米;(2)为了吸引顾客,开发商想在P处放置一个高10m的《疯狂动物城》的装饰雕像,并要求雕像最高点与二楼顶层要留出2m距离好放置灯具,请问这个雕像能放得下吗?如果不能,请说明理由.26.共享单车被誉为“新四大发明”之一,如图1所示是某公司2017年向信阳市场提供一种共享自行车的实物图,车架档AC与CD的长分别为45cm,60cm,AC⊥CD,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm,参考数据:sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)27.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B 的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)28.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)答案一、单选题1. C2. A3.A4.D5.D6.B7. B8.D9.A 10.C 11. A 12.D二、填空题13.135 14.15.12 16.1 17.18.9.44 19.189 20.三、解答题21.解:过点A作AD⊥BC于点D,∵AB=1,sin B= ,∴AD=AB·sinB=1× =,DB= = = ,CD= = = .∴BC=CD+BD= + = .22.解:如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF= ≈ = x+ ,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴x+56= x+ ,解得:x=52,答:该铁塔的高AE为52米.23.解:过点C作CD⊥AB于D.设CD=x,在Rt△ADC中,tan36°= ,∴AD= ,在Rt△BCD中,tan∠B= ,BD= ,∴+ =20,解得x=8.179≈8.2m.答:拱梁顶部C处到桥面的距离8.2m.24.解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH= ,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6× =2 ,∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED= ,∴CE= =4+ ≈5.7(米),答:拉线CE的长约为5.7米四、综合题25.(1)解:如图所示:延长BC交MN于H ∵BC⊥EF,EF∥MN,∴BH⊥MN,∵i=1:2.4=5:12=CH:AH,∴设CH=5k,则AH=12k在Rt△ACH中,由勾股定理AC= =13k,∵AC=13m,∴k=1,∴CH=5m,AH=12m,设BC=x,在Rt△ACH中,tan∠BAH= ,∴tan42°= ,x≈5.8 m,答:二楼层高约为5.8 m;(2)解:由题得,大厅层高为BH=BC+CH=5.8+5=10.8(m),而10+2=12m>10.8m,∴雕像放不下.26.(1)解:∵AC⊥CD,AC=45cm,CD=60cm,∴AD= (cm),即车架档AD的长是75cm(2)解:作EF⊥AB于点F,如图所示,∵AC=45cm,EC=20cm,∠EAB=75°,∴EF=AE•sin75°=(45+20)×0.9659≈63cm,即车座点E到车架档AB的距离是63cm27.(1)解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE= DC=2米(2)解:过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC= = = = 米,BD= BF= x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2= +16,解得:x=4+4 ,则AB=(6+4 )米.28.(1)解:当PA=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=PA=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC= =27cm(2)解:当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO= AO=12,∴DE=DO•sin60°=6 ,EO= DO=6,∴FC=DE=6 ,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF 中,∵∠PDF=30°,∴PF=DF•tan30°=42× =14 ,∴PC=PF+FC=14+6 =20 ≈34.68>27,∴点P在直线PC上的位置上升了。
北师大版九年级数学下册第一章单元检测含答案
北师大版九年级数学下册第一章单元检测学校:___________姓名:___________班级:___________考号:___________一、选择题(每小题4分,共10小题,满分40分)1.在Rt △ABC 中,∠C=90°,若sinA=35,则cosB 的值是( ) A .45 B .35 C .34 D .43 2.在△ABC 中,∠A=105°,∠B=45°,cosC 的值是( )A .12B .3C .2D 3.在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( )A .也扩大3倍B .缩小为原来的13C .都不变D .有的扩大,有的缩小4.已知A 为锐角,且cosA ≤12,那么( ) A .0°≤A ≤60° B .60°≤A <90°C .0°<A ≤30°D .30°≤A <90°5.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或结论错误的是( )A. 斜坡AB 的坡角是10°B. 斜坡AB 的坡度是tan10°C. AC=1.2tan10°米D. AB=10sin 2.1米 6.在Rt △ABC 中,∠C=90°,cosB=35,AB=10cm ,则BC 的长度为( ) A. 6cm B. 7cm C. 8cm D. 9cm7.轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是( )海里.A ...50 D .258.如图,某水库堤坝横断面迎水坡AB 的坡比是BC=50m ,则迎水坡面AB 的长度是( ).A .100mB .mC .150mD .9.如图,小山岗的斜坡AC 的坡角α=45°,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,小山岗的高AB 约为( ).(结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)A .164mB .178mC .200mD .1618m10.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为( )A .1B ﹣1C .2.14二、填空题(每小题5分,共4 小题,满分20分)11.在△ABC 中,若|sinA ﹣12|+(2﹣cosB )2=0,则∠C= 度. 12.如图所示,四边形ABCD 中,∠B=90°,AB=2,CD=8,AC ⊥CD ,若sin ∠ACB=13,则cos ∠ADC= .13.已知在Rt △ABC 中,∠C=90°,AC=4,cotA=12,则BC 的长是 . 14.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5m ,则大树的高度为_______m (结果保留根号)。
北师大版九年级数学下册第一章测试题
北师大版九年级数学下册第一章测试题一、选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( )A.4/5B.3/5C.3/4D.4/32、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( )A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化3、等腰三角形的底角为30°,底边长为则腰长为( )A .4B .C .2D .4、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( )A .B .C .D .85、在△ABC 中,∠C =90°,下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B =D .tan a b A =6、△ABC 中,∠A ,∠B 均为锐角,且有2|tan 2sin 0B A +=(,则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形 7、已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( ) A .13 B .12C .1D .16 8、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=35,AB =4, 则AD 的长为( )A .3B .163C .203D .16510、如图4,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )A .1BCD 二、填空题(每小题3分,共24分)。
初三下数学课件(北师版)-第一章综合检测题
于( A )
A.43
B.-34
C.35
D.45
4.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点 P 是 BC 边上的动
点,则 AP 的长不可能是( D )
A.3.5
B.4.2
C.5.8
D.7
5.小强和小明去测量一座古塔的高度(如图),他们在离古塔 60 m 的 A 处, 用测角仪器测得塔顶的仰角为 30°,已知测角仪器高 AD=1.5 m,则古塔 BE 的高为( B )
21.(8 分)如图,在 Rt△ABC 中,∠C=90°,∠A 的平分线交 BC 于点 E,EF⊥AB 于点 F,点 F 恰好 是 AB 的一个三等分点(AF>BF). (1)求证:△ACE≌△AFE; (2)求 tan∠CAE 的值. (1)证明:略; (2)解:BF=a,则 AF=AC=2a,AB=3a,由勾股定理可 知:CB= 5a,在 Rt△ABC 中,∠C=90°,tan∠B=ABCC= 25aa=255,在 Rt△EFB 中,∠EFB=90°,tan∠B=FEBF=EaF=255,EF=255a,由(1) 得,CE=EF=255a,在 Rt△ACE 中,tan∠CAE=CAEC= 55.
23.(10 分)如图,某城市市民广场一入口处有 五级高度相等的小台阶.已知台阶总高 1.5 米, 为了安全,现要做一个不锈钢扶手 AB 及两根 与 FG 垂直且长为 1 米的不锈钢架杆 AD 和 BC(杆子的底端分别为 D、C),且∠DAB= 66.5°(参考数据:cos66.5°≈0.40,sin66.5°≈0.92). (1)求点 D 与点 C 的高度 DH; (2)求所有不锈钢材料的总长度(即 AD+AB+BC 的长,结果精确到 0.1 米).
北师大版九年级数学下册第一章测试题含答案2套
北师大版九年级数学下册第一章测试题含答案2套第一章测试卷(1)一、选择题(每题3分,共30分) 1.cos30°的值为( )A.12B.32C.22D.332.如图,已知Rt △BAC 中,∠C =90°,AC =4,tan A =12,则BC 的长是( )A .2B .8C .2 5D .4 5(第2题) (第3题)3.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,已知AC =5,BC =2,那么sin∠ACD 等于( ) A.53B.23C.253D.524.若3tan(α+10°)=1,则锐角α的度数是( )A .20°B .30°C .40°D .50°5.已知cos θ=0.253 4,则锐角θ约等于( )A .14.7°B .14°7′C .75.3°D .75°3′6.如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角∠CAE =33°,AB =a ,BD=b ,则下列求旗杆CD 长的式子中正确的是( ) A .CD =b sin 33°+a B .CD =b cos33°+a C .CD =b tan33°+aD .CD =btan33°+a(第6题) (第7题)7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( ) A .2B.255C.55D.128.在△ABC 中,∠A =30°,∠B =45°,AB =2(1+3),则BC 等于( )A .2B. 6C .2 2D .1+ 39.如图,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60 m 到C 点,又测得仰角为45°,则该高楼的高度大约为( ) A .82 mB .163 mC .52 mD .30 m(第9题) (第10题)10.如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC ′的位置,此时露在水面上的鱼线B ′C ′长为3 3 m ,则鱼竿转过的角度是( ) A .60°B .45°C .15°D .90°二、填空题(每题3分,共30分)11.已知α为等腰直角三角形的一个锐角,则tan α=________. 12.若反比例函数y =kx 的图象经过点(tan30°,cos60°),则k =________.13.在△ABC 中,∠C =90°,BC =6,sin A =23,则AB =________.14.某梯子与地面所成的角α满足45°≤α≤60°时,人可以安全地爬上斜靠在墙面上的梯子的顶端,现有一个长6 m 的梯子,则使用这个梯子最高可以安全爬上__________高的墙.15.某游客在山脚处看见一个标注海拔40 m 的牌子,当他沿山坡前进50 m 时,他又看见一个标注海拔70 m 的牌子,于是他走过的山坡的坡度是__________.16.如图,△ABC 的顶点A ,C 的坐标分别是(0,23),(2,0),且∠ACB =90°,∠B =30°,则顶点B 的坐标是__________.(第16题) (第17题) (第18题) (第19题) (第20题)17.如图,一棵树的枝叶部分AB 在太阳光下的投影CD 的长是5.5 m ,此时太阳光线与地面的夹角是52°,则AB 的长约为__________ (结果精确到0.1 m .参考数据:sin 52°≈0.79,tan52°≈1.28).18.如图,秋千链子的长度OA =3 m ,静止时秋千踏板处于A 位置,此时踏板距离地面0.3m ,秋千向两边摆动,当踏板处于A ′位置时,摆角最大,此时∠AOA ′=50°,则在A ′位置,踏板与地面的距离约为________m(sin 50°≈0.766,cos50°≈0.642 8,结果精确到0.01 m).19.如图,轮船在A 处观测灯塔C 位于北偏西70°方向上,轮船从A 处以每小时20 n mile的速度沿南偏西50°方向匀速航行,1 h 后到达码头B 处,此时,观测灯塔C 位于北偏西25°方向上,则灯塔C 与码头B 的距离约是________n mile(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).20.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC ,AE =1,连接BE ,则tan E =________. 三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.计算:(1)2-1-3sin 60°+(π-2 020)0+⎪⎪⎪⎪⎪⎪-12;(2)12-3+4cos60°·sin 45°-(tan60°-2)2.22.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,2a =3b ,求∠B 的正弦、余弦和正切值.23.如图,在△ABD中,AC⊥BD于点C,BCCD=32,点E是AB的中点,tan D=2,CE=1,求sin∠ECB的值和AD的长.(第23题)24.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在C处测得点A在西北方向上,如图,量得BC长为200 m,求该河段的宽度(结果保留根号).(第24题)25.如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为30 n mile/h,在此航行过程中,该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值)(第25题)26.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15 m,BA的延长线与MN相交于点D,且∠BDN=30°.假设汽车在高架道路上行驶时,周围39 m以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39 m,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1 m,参考数据:3≈1.7)(第26题) 答案一、1.B 2.A 3.A 4.A 5.C 6.C 7.D 8.A 9.A10.C 点拨:∵sin ∠CAB =BC AC =326=22,∴∠CAB =45°.∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°.∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°. 二、11.1 12.36 13.9 14.3 3 m 15.3∶4 16.(8,23)17.7.0 m 点拨:过点B 作BE ∥CD ,交AD 于点E .∵太阳光线与地面的夹角是52°,且太阳光线是平行的, ∴tan 52°=ABBE ,BE =CD =5.5 m.∴AB =5.5×tan 52°≈5.5×1.28=7.04≈7.0(m).18.1.37 点拨:如图,作A ′D ⊥OA 于点D ,A ′C 垂直地面于点C ,延长OA 交地面于点B .(第18题)易得四边形BCA ′D 为矩形, ∴A ′C =DB .∵∠AOA ′=50°,且OA =OA ′=3 m ,∴在Rt △OA ′D 中,OD =OA ′·cos ∠AOA ′≈3×0.642 8≈1.93(m). 又AB =0.3 m , ∴OB =OA +AB =3.3 m. ∴A ′C =DB =OB -OD ≈1.37 m. 19.2420.23 点拨:延长CA 到F 使AF =AE ,连接BF ,过B 点作BG ⊥AC ,垂足为G .根据题干条件证明△BAF ≌△BAE ,得出∠E =∠F ,然后在Rt △BGF 中,求出tan F 的值,进而求出tan E 的值.三、21.解:(1)原式=12-3×32+1+12=12-32+1+12=12;(2)原式=-(2+3)+4×12×22-(3-2)=-2-3+2-3+2=-23+ 2. 22.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k . ∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23. 23.解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°. ∵点E 是AB 的中点,CE =1, ∴BE =CE =1,AB =2CE =2. ∴∠B =∠ECB . ∵BC CD =32,∴设BC =3x ,则CD =2x . 在Rt △ACD 中,tan D =2, ∴ACCD =2. ∴AC =4x .在Rt △ACB 中,由勾股定理得AB =AC 2+BC 2=5x , ∴sin ∠ECB =sin B =AC AB =45.由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=25x =25×25=455. 24.解:如图,过点A 作AD ⊥BC 于点D .(第24题)根据题意知∠ABC =90°-30°=60°,∠ACD =45°,∴∠CAD =45°. ∴∠ACD =∠CAD . ∴AD =CD .∴BD =BC -CD =200-AD . 在Rt △ABD 中,tan ∠ABD =ADBD ,∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=300-1003(m).答:该河段的宽度为(300-1003)m. 25.解:如图,过点A 作AP ⊥BC ,垂足为P ,设AP =x n mile.(第25题)在Rt △APC 中,∵∠APC =90°, ∠PAC =90°-60°=30°, ∴tan ∠PAC =CP AP =33. ∴CP =33x n mile.在Rt △APB 中,∵∠APB =90°, ∠PAB =45°, ∴BP =AP =x n mile.∵PC +BP =BC =30×12=15(n mile),∴33x +x =15. 解得x =15(3-3)2.∴PB =15(3-3)2 n mile. ∴航行时间为15(3-3)2÷30=3-34(h).答:该渔船从B 处开始航行3-34 h ,离观测点A 的距离最近.26.解:(1)如图,连接PA .(第26题)由已知得AP =39 m ,在Rt △APH 中,PH =AP 2-AH 2=392-152=36(m). 答:此时汽车与点H 的距离为36 m. (2)由题意,隔音板位置应从P 到Q ,在Rt △ADH 中,DH =AH tan 30°=1533=153(m);在Rt △CDQ 中,DQ =CQ sin 30°=3912=78(m).∴PQ =PH +HQ =PH +DQ -DH =36+78-153≈114-15×1.7≈89(m). 答:高架道路旁安装的隔音板至少需要89 m 长.第一章测试卷(2)一、选择题(每题3分,共30分) 1.已知cos A =32,则锐角A 的度数为( )A .30°B .45°C .50°D .60°2.在Rt △ABC 中,∠C =90°,tan B =32,BC =23,则AC 等于( )A .3B .4C .4 3D .63.在锐角三角形ABC 中,若⎝⎛⎭⎪⎫sin A -322+⎪⎪⎪⎪⎪⎪22-cos B =0,则∠C 等于( )A .60°B .45°C .75°D .105°4.如图,在由边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan∠ABC 的值为( )A .35B .34C .105 D .1(第4题) (第5题) (第6题)5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =5,AC =6,则tan B 的值为( )A .45B .35C .34D .436.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,C 在BD 上.有四位同学分别测量出以下4组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 两点之间距离的有( ) A .1组 B .2组 C .3组 D .4组7.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边上的点F 处.已知AB =8,BC =10,则tan ∠EFC 的值为( )A .34B .43C .35D .458.如图所示,从热气球C 处测得地面A ,B 两点的俯角分别为30°,45°,如果此时热气球的高度CD 为100 m ,点A ,D ,B 在同一直线上,则A ,B 两点之间的距离是( ) A .200 m B .200 3 m C .220 3 m D .100(3+1)m(第8题) (第9题) (第10题) 9.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=12S2B.S1=72S2C.S1=85S2D.S1=S210.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318B.3+118C.3+36D.3+16二、填空题(每题3分,共24分)11.计算:cos245°+tan 30°sin 60°=________.12.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为5033,则∠A=_________度.13.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC所在的直线对称,若DM=1,则tan∠ADN=________.14.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.15.如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则tan∠A′BC′=________.(第15题) (第16题) (第17题) (第18题)16.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3 m,cos∠BAC=34,则墙高BC=________.17.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB 的延长线上的D′处,那么tan∠BAD′=________.18.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以10 n mile/h 的速度航行,甲沿南偏西75°方向以10 2 n mile/h的速度航行,当航行1 h后,甲在A 处发现自己的渔具掉在了乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B 处追上.则甲船追赶乙船的速度为________n mile/h. 三、解答题(19题12分,20题10分,21,22每题14分,23题16分,共66分) 19.计算:(1)3sin 60°-2cos 45°+38;(2)12-3+4cos 60°·sin 45°-(tan 60°-2)2.20.a ,b ,c 是△ABC 的三边,且满足等式b 2=c 2-a 2,5a -3c =0,求sin A +sin B 的值.21.如图,已知▱ABCD ,点E 是BC 边上的一点,将边AD 延长至点F ,使∠AFC =∠DEC.(1)求证:四边形DECF 是平行四边形.(2)若AB =13,DF =14,tan A =125,求CF 的长.22.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,如图,量得BC长为200 m,求该河段的宽度(结果保留根号).23.某校教学楼后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB长为22 m,坡角∠BAD=68°.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离(精确到0.1 m).(2)为了确保安全,学校计划改造时保持坡的根部A不动,坡顶B沿BC前进到F点处,问BF至少是多少?(精确到0.1 m)(参考数据:sin 68°≈0.927 2,cos 68°≈0.374 6,tan 68°≈2.475 1,sin 50°≈0.766 0,cos 50°≈0.642 8,tan 50°≈1.191 8)答案一、1.A2.A 点拨:由tan B =AC BC 知AC =BC tan B =23×32=3.3.C 点拨:由题意,得sin A -32=0,22-cos B =0.所以sin A =32,cos B =22.所以∠A =60°,∠B =45°,所以∠C =180°-∠A -∠B =180°-60°-45°=75°. 4.B 5.C6.C 点拨:对于①,可由AB =BC ·tan ∠ACB 求出AB 的长;对于②,由BC =ABtan ∠ACB,BD =AB tan ∠ADB ,BD -BC =CD ,可求出AB 的长;对于③,易知△DEF ∽△DBA ,则DEEF =BDAB ,可求出AB 的长;对于④,无法求得AB 的长,故有①②③共3组,故选C . 7.A8.D 点拨:由题意可知,∠A =30°,∠B =45°,tan A =CD AD ,tan B =CDDB ,又CD =100 m ,因此AB =AD +DB =CD tan A +CD tan B =100tan 30°+100tan 45°=1003+100=100(3+1)(m). 9.D 点拨:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥EF ,交FE 的延长线于点N .在Rt △ABM 中,∵sin B =AMAB ,∴AM =3×sin 50°,∴S 1=12BC ·AM =12×7×3×sin 50°=212sin 50°.在Rt △DEN 中,∠DEN =180°-130°=50°.∵sin ∠DEN =DN DE ,∴DN =7×sin 50°,∴S 2=12EF ·DN =12×3×7×sin 50°=212sin 50°,∴S 1=S 2.故选D .10.D 点拨:依题意知:D 1E 1=12,B 2C 2=33,B 3E 4=36,B 3C 3=13,A 3C 3=23,sin ∠A 3C 3x=sin(30°+45°)=sin 75°=2+64,∴A 3到x 轴的距离3+16. 二、11.1 点拨:cos 245°+tan 30°sin 60°=⎝ ⎛⎭⎪⎫222+33×32=1.12.60 点拨:∵BC =10,∴S △ABC =BC ·AC 2=10·AC 2=5033,则AC =1033,∴tan A =BC AC =101033=3,∴∠A =60°.13.43 14.1215.13 点拨:如图,过A ′作A ′D ⊥BC ′于点D ,设A ′D =x ,则B ′D =x ,BC =2x ,BD =3x .∴tan ∠A ′BC ′=A ′D BD =x 3x =13.16.7 m 点拨:由cos ∠BAC =AC AB =34,知3AB =34,∴AB =4 m.在Rt △ABC 中,BC =AB 2-AC 2=42-32=7(m). 17.2 点拨:由题意知BD ′=BD =2 2.在Rt △ABD ′中,tan ∠BAD ′=BD ′AB =222= 2.18.(10+103) 点拨:如图,由题意可知,∠DOB =30°,∠AOD =75°,∠2=90°-60°=30°.∵∠3=∠AOD =75°,∴∠1=90°-75°=15°,故 ∠1+∠2=15°+30°=45°.如图,过点O 作OC ⊥AB 于点C ,则∠AOC =90°-∠1-∠2=90°-45°=45°.易知OA =102n mile ,∠OAB =∠AOC =45°,∴OC =AC =OA ·sin 45°=102×22=10(n mile).在Rt △OBC 中, ∠BOC =∠AOD +∠BOD -∠AOC =75°+30°-45°=60°,∴BC = OC ·tan 60°=10 3 n mile ,∴AB =AC +BC =(10+103)n mile.∵OC =10 n mile ,∠B =30°,∴OB =2OC =2×10=20(n mile),乙船从O 到B 所用时间为20÷10=2(h ).∵甲船从O 到A 所用时间为1 h ,∴甲船从A 到B 所用时间为2-1=1(h),故甲船追赶乙船的速度为(10+103)n mile/h.三、19.解:(1)原式=3×32-2×22+2=32-1+2 =52.(2)原式=-(2+3)+4×12×22-(3-2)2 =-2-3+2-(2-3) =-2.20.解:由b 2=c 2-a 2,得a 2+b 2=c 2,∴△ABC 为直角三角形,∠C =90°. ∵5a -3c =0, ∴a c =35,即sin A =35. 设a =3k ,c =5k ,则b =(5k )2-(3k )2=4k . ∴sin B =b c =45, ∴sin A +sin B =35+45=75.21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠ADE =∠DEC . 又∵∠AFC =∠DEC , ∴∠AFC =∠ADE . ∴DE ∥FC .∴四边形DECF 是平行四边形.(2)解:过点D 作DH ⊥BC 于点H ,如图所示.∵四边形ABCD 是平行四边形, ∴∠BCD =∠A ,AB =CD =13. 又∵tan A =125=tan ∠DCH =DHCH , ∴DH =12,CH =5. ∵DF =14, ∴CE =14. ∴EH =9.∴DE =92+122=15. ∴CF =DE =15.22.解:如图,过点A 作AD ⊥BC 于点D .根据题意,知∠ABC =90°-30°=60°,∠ACD =45°,∴∠CAD =45°. ∴∠ACD =∠CAD . ∴AD =CD .∴BD =BC -CD =200-AD . 在Rt △ABD 中,tan ∠ABD =ADBD ,∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=(300-1003)(m).故该河段的宽度为(300-1003)m.23.解:(1)如图,作BE⊥AD,E为垂足,则BE=AB·sin 68°=22 sin 68°≈20.4(m).即改造前坡顶与地面的距离约为20.4 m.(2)如图,作FG⊥AD,G为垂足,连接FA.则∠FAG=50°,FG=BE.∵AG=FGtan 50°≈20.41.191 8≈17.12(m),AE=AB·cos 68°=22cos 68°≈8.24(m),∴BF=GE=AG-AE≈8.9 m,即BF至少是8.9 m.。
北师九年级下册数学第一章 直角三角形的边角关系 直角三角形的边角关系 检测题
直角三角形的边角关系 检测题【本检测题满分:120分,时间:120分钟】一、选择题(每小题3分,共30分)1.计算:tan 45°+sin 30°=( ) A. 2 B.232+ C.23 D.231+2.在△ABC 中,若三边BC 、CA 、AB 满足 BC ∶CA ∶AB =5∶12∶13,则cos B =( ) A .125 B .512 C .135 D .13123.(2020·浙江丽水中考)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( ) A .BDBC B. BCABC . ADAC D. CDAC第3题图 第5题图4.(2020•湖北荆门中考)如图,在△ABC 中,∠BAC =90゜,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan ∠DBC 的值为( ) A.13B.√2-1C.2-√3D.145.(2020·山西中考)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( ) A.2B.2 √55C. √55D.126.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A.43 B.45C.54D.347.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为( )A.5 mB.25 mC.45 mD.310m8.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE =2,则tan ∠DBE 的值是( ) A .12 B .2 C .5 D .59.直角三角形两直角边和为7,面积为6,则斜边长为( )A. 5B. √37C. 7D. √3810.(2020·哈尔滨中考)如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此第7题图时飞行高度AC =1 200 m,从飞机上看地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( )A.1 200 mB.1 200√2 mC. 1 200√3 mD.2 400 m第10题图二、填空题(每小题3分,共24分)11.(2020·山东东营中考)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行_________米.12.(2020·陕西中考)如图,有一滑梯AB ,其水平宽度AC 为5.3米,铅直高度BC 为2.8米,则∠A 的度数约为________.(用科学计算器计算,结果精确到0.1°)第12题图13.如图,小兰想测量南塔的高度.她在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m 至B 处,测得仰角为60°,那么塔高约为 _________ m.(小兰身高忽略不计,732.13 ) 14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________ .15.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =________.16.如图,△ABC 的顶点都在方格纸的格点上,则 sin A =_ . 17. (2020·江西中考)如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为___________cm(参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766,结果精确到0.1 cm ,可用科学计算器).① ② 第17题图18.如图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =6,CD =9,则AB =__________. 三、解答题(共66分)19.(8分)计算下列各题: (1)()42460sin 45cos 22+- ;(2)2330tan 3)2(0-+--.20.(7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A ,B ,D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A ,B 两点间的距离为4.5 m .请你根据以上数据求出大树CD 的高度.(精确到0.1 m)21.(7分)每年的5月15日是“世界助残日”.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过9°,已知此商场门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡? (参考数据:sin 9°≈0.156 4,cos 9°≈0.987 7,tan 9°≈0.158 4) 22.(8分)如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100 m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5 m ,请你计算出该建筑物的高度.(取3≈1.732,结果精确到1 m )23.(8分)已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠DCB =30°,CD =400米),测得A 的仰角为︒60,求 山的高度AB .24.(8分)一段路基的横断面是直角梯形,如左下图所示,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部充分利用原有土石方进行坡面改造,使坡度变小,达到如右下图所示的技术要求.试求出改造后坡面的坡度是多少?25.(10分)如图,已知在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A作AE ⊥CD ,AE 分别与CD ,CB 相交于点H ,E ,AH =2CH . (1)求sin B 的值;(2)如果CD =5,求BE 的值.26.(10分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,距100(3+1)现均收到故障船C 的求救信号.已知A ,B 两船相海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上. (1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号). (2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在去营救的途中有无触礁的危险?(参考数据:2≈1.41,3≈1.73)第一章 直角三角形的边角关系检测题参考答案一、选择题 1.C 解析:2.C 解析:设,则,,则,所以△是直角三角形,且∠.所以在Rt △ABC 中,135135==x x AB BC . 3.C 解析:在Rt △BCD 中,cos BDBCα=,故A 项正确; 在Rt △ABC 中,cos BCABα=,故B 项正确; 90BAC α∠+∠=︒,90DAC DCA ∠+∠=︒,∴DCA α∠=∠,∴cos cos CD DCA ACα=∠=,故D 项正确;而sin sin AD DCA ACα=∠=,故C 项错误.4.A 解析:根据题意DE ⊥BC ,∠C =45°,得DE =CE ,设DE =CE =x ,则CD =2x ,AC =AB =22x ,BC =4x ,所以BE =BC -CE =3x .根据锐角三角函数,在Rt △DBE 中,tan ∠DBE =BEDE=3x x =31,即tan ∠DBC =. 5.D 解析:如图所示,连接AC ,则AC,2;AB2,8; BC ,10.∵,∴ △ABC 是直角三角形,且∠BAC 是直角, 第5题答图∴ tan ∠ABC . 6.A 解析:如图,设则由勾股定理知,所以tan B .7.B 解析:设小球距离地面的高度为则小球水平移动的距离为所以解得8.B 解析:设又因为在菱形中,所以所以所以由勾股定理知所以29.A 解析:设直角三角形的两直角边长分别为则所以斜边长10. D 解析:根据题意,得∠B ==30°,在Rt △ABC 中,∠C =90°,∴ AB =2AC . ∵ AC =1 200 m ,∴ AB =2 400 m.故选D. 二、填空题 11.10 解析:如图,过点A 作AC ⊥BC ,则AC = 8米,BC =12-6=6(米).在Rt △ACB 中,根据勾股定理,得AB =22BC AC =2268+=100=10(米).12. 27.8° 解析:根据正切的定义可知 2.8tan 0.528 35.3BC A AC ==≈, 然后使用计算器求出A ∠的度数约为27.8°. 13.43.3 解析:因为,所以所以所以). 14.15°或75° 解析:如图,.ABC第6题答图在图①中,,所以∠∠; 在图②中,,所以∠∠.15. 解析:在Rt △中,∵ ,∴ sin B =,.在Rt △中,∵ ,sin B =,∴.在Rt △中,∵ ,∴ .16.55解析:设每个小方格的边长为1,利用网格,从点向所在直线作垂线,利用勾股定理得,所以sin A =55. 17. 14.1 解析:如图,过点B 作BE ⊥CD 于点E ,∵ BC =BD ,根据等腰三角形的“三线合一”性质,得∠CBE =12∠CBD =20°. 在Rt △BCE 中,cos ∠CBE =BE BC,∴ BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm ).第17题答图18. 解析:如图,延长、交于点,∵ ∠,∴ .∵ ,∴ ,第14题答图BCD②A ABCD ①∴ .∵ ,∴.三、解答题19.解:(1)()46223222242460sin 45cos 22+⎪⎪⎭⎫ ⎝⎛-⨯=+-.226262262322=+-=+⎪⎪⎭⎫ ⎝⎛-=(2)2330tan 3)2(0-+--3231-+-=.323-=20.解:∵ ∠90°, ∠45°,∴∵ ,∴则 m ,∵ ∠35°, ∴ tan ∠tan 35°5.4+x x.整理,得35tan 135tan 5.4-⨯=x ≈10.5. 故大树的高约为10.521.解:因为所以斜坡的坡角小于,故此商场能把台阶换成斜坡. 22.解:设,则由题意可知,m .在Rt △AEC 中,tan ∠CAE =AE CE,即tan 30°=100+x x , ∴33100=+x x ,即3x 3(x +100),解得x 50+503.经检验,50+503是原方程的解.∴故该建筑物的高度约为23.解:如图,过点D 分别作⊥于点,⊥于点,在Rt △中, ∠,米,所以(米),(米).在Rt △ADE 中,∠ADE =60°,设米,则(米).在矩形DEBF 中,BE =DF =200 米, 在Rt △ACB 中, ∠,∴,即x x +=+32002003, ∴, ∴米.24.解:由原题左图可知:BE ⊥DC , m ,.在Rt △BEC 中,)(506.030sin sin m BE BC BC BE ===∴=αα, (m ).由勾股定理得,m.在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形的面积=梯形的面积.1202120204030213020EC ⋅⨯+⨯=⨯⨯+⨯∴, 解得=80(m ).∴ 改造后坡面的坡度4:180:20:11===EC E B i .25.分析:(1)根据已知条件得出∠B =∠DCB =∠CAE ,可以在Rt △ACH 中求出sin B 的值.(2)通过解Rt △ABC 求出AC 与BC 的长,解Rt △ACH 求出CE 的长,利用BE =BC -CE 得到答案. 解:(1)∵ CD 是斜边AB 上的中线, ∴ CD =BD ,∴ ∠B =∠DCB. ∵ ∠ACB =90°,AE ⊥CD ,∴ ∠DCB =∠CAE ,∴ ∠B =∠DCB =∠CAE .∵ AH =2CH , ∴ sin B =sin ∠CAE =CHAC=22AH CH+=55. (2)∵ CD =5,∴ AB =25.∴ BC =25·cos B =4,AC =25·sin B =2, ∴ CE =AC ·tan ∠CAE =1, ∴ BE =BC -CE =3.点拨:直角三角形斜边上的中线等于斜边的一半,即直角三角形斜边上的中线把直角三角形分成两个等腰三角形. 26.分析:(1)过点C 作CE ⊥AB 于点E ,构造直角三角形.设AE =a 海里,通过解直角三角形,用含a 的代数式表示出CE ,AC.在Rt △BCE 中,根据BE =CE ,列出方程,求出a ,进而求出A C.(2)判断巡逻船A 在沿直线AC 去营救船C 的途中有无触礁危险,只要求出观测点D 到AC 的距离,然后与100海里比较即可.因此,过点D 作DF ⊥AC ,构造出Rt △ADF ,求出DF ,将DF 与100海里进行比较. 解:(1)如图,过点C 作CE ⊥AB 于点E ,设AE =a 海里,则BE =AB -AE =100(3+1)-a (海里). 在Rt △ACE 中,∠AEC =90°,∠EAC =60°, ∴ AC =cos 60AE ︒=12a=2a (海里),CE =AE ·tan 60°=3a (海里). 在Rt △BCE 中,BE =CE ,∴ 100(3+1)-a = 3a ,∴ a =100(海里). ∴ AC =2a =200(海里).在△ACD 和△ABC 中,∠ACB =180°-45°-60°=75°=∠ADC ,∠CAD =∠BAC ,∴ △ACD ∽△ABC ,∴ AD AC =AC AB ,即200AD =100(31)+.∴ AD =200(3-1)(海里).答:A 与C 间的距离为200海里,A 与D 间的距离为200(3-1)海里. (2)如图,过点D 作DF ⊥AC 于点F . 在Rt △ADF 中,∠DAF =60°,∴ DF =AD ·sin 60°=200(3-1)×32=100(3-3)≈127>100. ∴ 船A 沿直线AC 航行,前往船C 处途中无触礁危险. 点拨:(1)解斜三角形的问题时,一般通过作高构造直角三角形求解;(2)已知两个直角三角形边长的和或边长的差,常通过列方程的方法解直角三角形.第一章 直角三角形的边角关系检测题参考答案一、选择题1.C 解析:tan 45°+sin 30°=1+12=32 .2.C 解析:设BC =5x ,则CA =12x ,AB =13x ,则BC 2+CA 2=AB 2, 所以△ABC 是直角三角形,且∠C =90o . 所以在Rt △ABC 中,cos B =135135==x x AB BC . 3.C 解析:在Rt △BCD 中,cos BDBCα=,故A 项正确; 在Rt △ABC 中,cos BCABα=,故B 项正确; 90BAC α∠+∠=︒,90DAC DCA ∠+∠=︒,∴DCA α∠=∠,∴cos cos CD DCA ACα=∠=,故D 项正确;而sin sin AD DCA ACα=∠=,故C 项错误.4.A 解析:根据题意DE ⊥BC ,∠C =45°,得DE =CE ,设DE =CE =x ,则CD =2x ,AC =AB =22x ,BC =4x ,所以BE =BC -CE =3x .根据锐角三角函数,在Rt △DBE 中,tan ∠DBE =BEDE=3x x =31,即tan ∠DBC =13. 5.D 解析:如图所示,连接AC ,则AC = √12+12= √2,AC 2=2;AB = √22+22= √8=2 √2 ,AB 2=8; BC = √12+32= √10,BC 2=10.∵ AC 2+AB 2=BC 2,∴ △ABC 是直角三角形,且∠BAC 是直角, 第5题答图∴ tan ∠ABC =AC AB =√22√2=12. 6.A 解析:如图,设AB =5x ,则BC =3x , 由勾股定理知,AC =4x . 所以tan B.7.B 解析:设小球距离地面的高度为则小球水平移动的距离为所以解得8.B 解析:设又因为在菱形中,所以所以所以由勾股定理知所以29.A 解析:设直角三角形的两直角边长分别为则所以斜边BC第6题答图长10. D 解析:根据题意,得∠B ==30°,在Rt △ABC 中,∠C =90°,∴ AB =2AC . ∵ AC =1 200 m ,∴ AB =2 400 m.故选D. 二、填空题 11.10 解析:如图,过点A 作AC ⊥BC ,则AC = 8米,BC =12-6=6(米).在Rt △ACB 中,根据勾股定理,得AB =22BC AC =2268+=100=10(米).12. 27.8° 解析:根据正切的定义可知 2.8tan 0.528 35.3BC A AC ==≈, 然后使用计算器求出A ∠的度数约为27.8°. 13.43.3 解析:因为,所以所以所以). 14.15°或75° 解析:如图,.在图①中,,所以∠∠; 在图②中,,所以∠∠.15. 解析:在Rt △中,∵ ,∴ sin B =,.在Rt △中,∵ ,sin B =,∴.在Rt △中,∵ ,∴ .第14题答图BCD②A ABCD ①16.55解析:设每个小方格的边长为1,利用网格,从点向所在直线作垂线,利用勾股定理得,所以sin A =55. 17. 14.1 解析:如图,过点B 作BE ⊥CD 于点E ,∵ BC =BD ,根据等腰三角形的“三线合一”性质,得∠CBE =12∠CBD =20°. 在Rt △BCE 中,cos ∠CBE =BE BC,∴ BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm ).第17题答图18. 解析:如图,延长、交于点,∵ ∠,∴ .∵ ,∴ ,∴ .∵,∴.三、解答题19.解:(1)()46223222242460sin 45cos 22+⎪⎪⎭⎫ ⎝⎛-⨯=+-.226262262322=+-=+⎪⎪⎭⎫ ⎝⎛-=(2)2330tan 3)2(0-+--3231-+-=.323-=20.解:∵ ∠90°, ∠45°,∴∵ ,∴则 m ,∵ ∠35°, ∴ tan ∠tan 35°5.4+x x.整理,得35tan 135tan 5.4-⨯=x ≈10.5.故大树的高约为10.521.解:因为所以斜坡的坡角小于,故此商场能把台阶换成斜坡. 22.解:设,则由题意可知,m .在Rt △AEC 中,tan ∠CAE =AE CE,即tan 30°=100+x x , ∴33100=+x x ,即3x 3(x +100),解得x 50+503.经检验,50+503是原方程的解.∴故该建筑物的高度约为 23.解:如图,过点D 分别作⊥于点,⊥于点,在Rt △中, ∠,米,所以(米),(米).在Rt △ADE 中,∠ADE =60°,设米,则(米).在矩形DEBF 中,BE =DF =200 米, 在Rt △ACB 中, ∠,∴,即x x +=+32002003, ∴, ∴米.24.解:由原题左图可知:BE ⊥DC ,m ,.在Rt △BEC 中,)(506.030sin sin m BE BC BC BE ===∴=αα, (m ). 由勾股定理得, m.在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形的面积=梯形的面积.1202120204030213020EC ⋅⨯+⨯=⨯⨯+⨯∴,解得=80(m ).∴ 改造后坡面的坡度4:180:20:11===EC E B i .25.分析:(1)根据已知条件得出∠B =∠DCB =∠CAE ,可以在Rt △ACH 中求出sin B 的值.(2)通过解Rt △ABC 求出AC 与BC 的长,解Rt △ACH 求出CE 的长,利用BE =BC -CE 得到答案. 解:(1)∵ CD 是斜边AB 上的中线, ∴ CD =BD ,∴ ∠B =∠DCB. ∵ ∠ACB =90°,AE ⊥CD ,∴ ∠DCB =∠CAE ,∴ ∠B =∠DCB =∠CAE . ∵ AH =2CH , ∴ sin B =sin ∠CAE =CHAC=22AH CH +=55.(2)∵ CD =5,∴ AB =25.∴ BC =25·cos B =4,AC =25·sin B =2, ∴ CE =AC ·tan ∠CAE =1, ∴ BE =BC -CE =3.点拨:直角三角形斜边上的中线等于斜边的一半,即直角三角形斜边上的中线把直角三角形分成两个等腰三角形. 26.分析:(1)过点C 作CE ⊥AB 于点E ,构造直角三角形.设AE =a 海里,通过解直角三角形,用含a 的代数式表示出CE ,AC.在Rt △BCE 中,根据BE =CE ,列出方程,求出a ,进而求出A C.(2)判断巡逻船A 在沿直线AC 去营救船C 的途中有无触礁危险,只要求出观测点D 到AC 的距离,然后与100海里比较即可.因此,过点D 作DF ⊥AC ,构造出Rt △ADF ,求出DF ,将DF 与100海里进行比较. 解:(1)如图,过点C 作CE ⊥AB 于点E ,设AE =a 海里,则BE =AB -AE =100(3+1)-a (海里). 在Rt △ACE 中,∠AEC =90°,∠EAC =60°, ∴ AC =cos 60AE ︒=12a=2a (海里),CE=AE·tan 60°a(海里).在Rt△BCE中,BE=CE,∴+1)-a= ,∴a=100(海里).∴AC=2a=200(海里).在△ACD和△ABC中,∠ACB=180°-45°-60°=75°=∠ADC,∠CAD=∠BAC,∴△ACD∽△ABC,∴ADAC=ACAB,即200AD∴AD海里).答:A与C间的距离为200海里,A与D间的距离为-1)海里.(2)如图,过点D作DF⊥AC于点F.在Rt△ADF中,∠DAF=60°,∴DF=AD·sin 60°-1)×2)≈127>100.∴船A沿直线AC航行,前往船C处途中无触礁危险.点拨:(1)解斜三角形的问题时,一般通过作高构造直角三角形求解;(2)已知两个直角三角形边长的和或边长的差,常通过列方程的方法解直角三角形.。
北师大版九年级数学下册第一章达标检测卷附答案
北师大版九年级数学下册第一章达标检测卷一、选择题(每题3分,共30分)1.2sin 30°的值为()A.12B.1 C.32D. 32.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos A等于()A.35B.45C.34D.433.已知α为锐角,且cos α=12,则α等于()A.30°B.45°C.60°D.无法确定4.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则sin∠ABC的值为()A.35B.34C.105D.15.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin 26.5°B.atan 26.5°C.acos 26.5°D.a cos 26.5°6.【教材P15习题T4变式】如图,从热气球C处测得地面A,B两点的俯角分别为30°,45°,如果此时热气球的高度CD为100 m,点A,D,B在同一直线上,则A,B两点之间的距离是()A.200 m B.200 3 m C.220 3 m D.100(3+1)m 7.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处.已知AB =4,BC=5,则cos∠EFC的值为()A.34B.43C.35D.458.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB的延长线上的一点,且AB=BD,则tan D的值为()A.2 3 B.3 3 C.2+ 3 D.2- 39.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB等于()A.25B.23C.52D.3210.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+3)米B.12米C.(4+23)米D.10米二、填空题(每题3分,共24分)11.计算:tan245°-1=________.12.如图,在山坡上种树,已知∠C=90°,∠A=α,相邻两树的坡面距离AB为m米,则相邻两树的水平距离AC为________米.13.【教材P6做一做改编】如图,在Rt△ABC中,∠C=90°,AC=4,cos A=2 5,则BC的长是________.14.【教材P7习题T4变式】如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan B的值为________.15.规定:在平面直角坐标系xOy 中,若点P 的坐标为(a ,b ),则向量OP →可以表示为OP →=(a ,b ),如果OA →与OB →互相垂直,OA →=(x 1,y 1),OB →=(x 2,y 2),那么x 1x 2+y 1y 2=0.若OM →与ON →互相垂直,OM →=(sin α,1),ON →=(2,-3),则锐角∠α=________.16.【教材P 21习题T 4变式】如图,一轮船在M 处观测到灯塔P 位于南偏西30°方向,该轮船沿正南方向以15海里/时的速度匀速航行2小时后到达N 处,观测到灯塔P 位于南偏西60°方向,若该轮船继续向南航行至离灯塔P 最近的位置T 处,此时轮船与灯塔之间的距离PT 为________海里(结果保留根号).17.如图,一架长为6 m 的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,若梯子的底端B 外移到D 处,则梯子顶端A 下移到C 处,这时又测得∠CDO =50°,那么AC 的长度约为________m(参考数据:sin 70°≈0.94,sin 50°≈0.77,cos 70°≈0.34,cos 50°≈0.64).18.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =35,则点F 的坐标是__________.三、解答题(19,23,24题每题12分,其余每题10分,共66分) 19.计算:(1)3sin 60°-2cos 45°+38;(2)⎝ ⎛⎭⎪⎫-120+4cos 60°·sin 45°-(tan 60°-2)2.20.在Rt△ABC中,∠C=90°,AC=15,∠B=60°,解这个直角三角形.21.【教材P21习题T3改编】如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝底BC的长.22.如图,在Rt△ABC中,∠ACB=90°,sin A=23,点D,E分别在AB,AC上,DE⊥AC,垂足为E,DE=2,DB=9. 求:(1)BC的长;(2)tan∠CDE的值.23.为了承办2022年冬奥会,张家口市加强城市绿化建设.如图,工作人员正在对该市某河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得BC长为200 m,求该河段的宽度(结果保留根号).24.【教材P27复习题T21变式】为了培养学生的动手操作能力,某校积极开展数学实践活动.在一次综合实践活动中,某小组对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25 m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3∶4,即tan θ=34,请你帮助该小组计算古塔的高度ME(结果精确到0.1 m,参考数据:3≈1.732).答案一、1.B2.B3.C4.A5.B6.D7.D8.D9.B10.A点拨:如图,延长AC交BF的延长线于点D,过点C作CE⊥BD于点E.由题意得BF=8米,CF=4米,∠CFD=30°.在Rt△CFE中,∠CFE=30°,CF=4米,∴CE=2米,EF=4cos 30°=23(米).∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴tan D=CEDE=ABBD=12.∴DE=2CE=4米.∴BD=BF+EF+ED=(12+23)米.∴AB=12BD=12×(12+23)=6+3(米).二、11.012.m cos α13.22114.3415.60°16.15317.1.0218.(8,12)点拨:如图,过点F作F A∥OG,交y轴于点A,过点G作GH⊥F A交AF的延长线于点H,∴∠F AE=90°.∴∠FEA +∠AFE =90°. ∵F A ∥OG , ∴∠FGO =∠HFG . ∵∠EFG =90°, ∴∠HFG +∠AFE =90°. ∴∠FEA =∠HFG =∠FGO . ∵cos ∠FGO =35,∴cos ∠FEA =35. 在Rt △AEF 中,∵EF =10, ∴AE =EF ·cos ∠FEA =10×35=6. 由勾股定理,得AF =8.∵∠F AE =90°,∠AOG =90°,∠GHA =90°, ∴四边形OGHA 为矩形. ∴AH =OG . ∵OG =17, ∴AH =17. ∴FH =17-8=9.在Rt △FGH 中,∵FH FG =cos ∠HFG =cos ∠FGO =35, ∴FG =9÷35=15.由勾股定理,得HG =152-92=12, ∴F (8,12).三、19.解:(1)原式=3×32-2×22+2=32-1+2=52;(2)原式=1+4×12×22-(3-2)2=1+2-(2-3)=-1+2+ 3.20.解:∵∠C =90°,∠B =60°,∴∠A =90°-∠B =90°-60°=30°. ∴BC =AC ·tan A =15×33=53, AB =2BC =2×53=10 3.21.解:如图,过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F ,∴EF =AD =6 m ,AE =DF .在Rt △CDF 中,∵CD =14 m ,∠DCF =30°,∴DF =12CD =7 m. ∴AE =7 m. ∵cos ∠DCF =FC CD ,∴FC =CD ·cos ∠DCF =14×32=73(m). 在Rt △ABE 中,∵∠B =45°, ∴BE =AE =7 m.∴BC =BE +EF +FC =7+6+73=13+73(m). 22.解:(1)在Rt △DEA 中,∵DE =2,sin A =23,∴AD =DE sin A =223=3.∵DB =9,∴AB =BD +AD =12.在Rt △ABC 中,∵AB =12,sin A =23, ∴BC =AB ·sin A =12×23=8.(2)在Rt △ABC 中,∵AB =12,BC =8, ∴AC =AB 2-BC 2=122-82=4 5. 在Rt △DEA 中,∵DE =2,AD =3, ∴AE =AD 2-DE 2=32-22= 5. ∴CE =AC -AE =3 5. ∴tan ∠CDE =CE DE =352.23.解:如图,过点A作AD⊥BC于点D.根据题意,知∠ABC=90°-30°=60°,∠ACD=45°,∴∠CAD=45°.∴∠ACD=∠CAD.∴AD=CD.∴在Rt△ABD中,tan ∠ABD=ADBD=ADBC-AD,∴AD200-AD= 3.∴AD=(300-1003) m.答:该河段的宽度为(300-1003)m.24.解:如图,过点D分别作DC⊥EP于点C,作DF⊥ME于点F,过点P作PH⊥DF于点H,则DC=FE,DH=CP,HF=PE.设DC=3x m,∵tan θ=3 4,∴CP=4x m.由勾股定理,得PD2=DC2+CP2,即252=(3x)2+(4x)2,解得x=5(负值舍去).∴DC=15 m,CP=20 m.∴DH=20 m,FE=15 m.设MF=y m,则ME=(y+15)m.在Rt△MDF中,∵tan∠MDF=MF DF,∴DF=MFtan∠MDF=3y m.在Rt△MPE中,∵tan∠MPE=ME PE,∴HF=PE=MEtan∠MPE=33(y+15) m.∵DH=DF-HF,∴3y-33(y+15)=20,解得y=7.5+10 3.∴ME=MF+FE=7.5+103+15≈39.8(m).答:古塔的高度ME约为39.8 m.。
北师大版九年级数学下册 第一章 达标检测卷(含答案)
北师大版九年级数学下册 第一章 达标检测卷(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分)7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A = .8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为 .(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 ____ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = .三、(本大题共5小题,每小题6分,共30分) 13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)17.(2019·通辽)两栋居民楼之间的距离CD=30 m,楼AC和BD均为10层,每层楼高为3 m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到AC的第几层?(参考数据:3≈1.7,2≈1.4)四、(本大题共3小题,每小题8分,共24分)18.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.19.(2019·广元)如图,某海监船以60海里/小时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡查此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.20.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,DE⊥BC于E,连接BD.若tan C=2,BE=3,CE=2,求点B到CD的距离.五、(本大题共2小题,每小题9分,共18分)21.(2019·连云港)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里,在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin 37°=cos 53°≈35,cos 37°≈sin 53°≈45,tan 37°≈34,tan 76°≈4)22.(2019•常德)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A 处,手柄长AB =25cm ,AB 与墙壁DD ′的夹角∠D ′AB =37°,喷出的水流BC 与AB 形成的夹角∠ABC =72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).六、(本大题共12分)23.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD 为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分)7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512.8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分) 13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝ ⎛⎭⎪⎪⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形. 解:∠A =90°-∠B =90°-60°=30°.由tan B =ba ,得b =a tan B =4tan 60°=43.由cos B =a c ,得c =acos B=4cos 60°=8.所以∠A =30°,b =43,c =8.15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝ ⎛⎭⎪⎪⎫222+⎝ ⎛⎭⎪⎪⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BCtan A =2tan 30°=2 3.由题意,得EF =AC =23.在Rt △EFC 中,∠E =45°, ∴CF =EF ·sin 45°=23×22=6,∴AF =AC -CF =23-6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EFAD =BFBD =BEBA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3, ∴在Rt △DEF 中,DE =42+32=5米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中,∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2, 解得x =25,即BF =25. 答:点B 到CD 的距离是25.五、(本大题共2小题,每小题9分,共18分)21.21.(2019·连云港)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里,在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin 37°=cos 53°≈35,cos 37°≈sin 53°≈45,tan 37°≈34,tan 76°≈4)解:(1)在ABC 中,∠ACB =180°-∠B -∠BAC =180°-37°-53°=90°.在RtABC 中,sin B =AC AB,∴AC =AB ·sin 37°=25×35=15(海里).答:观察哨所A 与走私船所在的位置C 的距离为15海里.(2)过点C 作CM ⊥AB 于点M ,由题意易知,D ,C ,M 在一条直线上. 在RtAMC 中,CM =AC ·sin ∠CAM =15×45=12(海里),AM =AC ·cos ∠CAM =15×35=9(海里).在RtAMD 中,tan ∠DAM =DM AM,∴DM =AM ·tan 76°=9×4=36(海里),∴AD =AM 2+DM 2=92+362=917(海里),CD =DM -CM =36-12=24(海里).设缉私艇的速度为x 海里/小时,则有2416=917x ,解得x =617.经检验,x =617是原方程的解.答:当缉私艇的速度为617海里/小时时,恰好在D 处成功拦截.22.22.(2019•常德)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A 处,手柄长AB =25cm ,AB 与墙壁DD ′的夹角∠D ′AB =37°,喷出的水流BC 与AB 形成的夹角∠ABC =72°,现在住户要求:当人站在E 处淋浴时,水流正好喷洒在人体的C 处,且使DE =50cm ,CE =130cm .问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).33.解:过点B 作BG ⊥D ′D 于点G ,延长EC 、GB 交于点F , ∵AB =25,DE =50,∴sin37°=,cos37°=,∴GB ≈25×0.60=15,GA ≈25×0.80=20, ∴BF =50﹣15=35,∵∠ABC =72°,∠D ′AB =37°,∴∠GBA=53°,∴∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180﹣20=160,∴安装师傅应将支架固定在离地面160cm的位置.六、(本大题共12分)23.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD 为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG ,HBFE 为矩形,∴GB =CD =1.7,HB =EF =1.5,∴GH =0.2,在Rt AHE 中,tan∠AEH =AHHE,则AH =HE ·tan ∠AEH ≈1.9a ,∴AG =AH -GH =1.9a -0.2,在Rt ACG 中,∠ACG =45°,∴CG =AG =1.9a -0.2,∴BD =1.9a -0.2,答:小亮与塔底中心的距离BD 为(1.9a -0.2)米;(2)1.9a -0.2+a =52,解得,a =18,则AG =1.9a -0.2=34. ∴AB =AG +GB =35.7.答:慈氏塔的高度AB 为35.7米.。
2016-2017学年北师大版九年级数学下册第一章检测题及答案
2016-2017学年北师大版九年级数学下册第一章检测题时间:120分钟 满分:120分 2016.12.3一、选择题(每小题3分,共30分)1.(2015·玉林)计算:cos 245°+sin 245°=( ) A.12 B .1 C.14 D.322.把△ABC 三边的长度都缩小为原来的13,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定3.在Rt △ABC 中,∠C =90°,若sin A =23,则cos B 的值等于( )A.12B.22C.23D .1 4.在Rt △ABC 中,∠C =90°,∠B =50°,AB =10,则BC 的长为( )A .10tan50°B .10sin40°C .10sin50° D.10cos50°5.已知α为锐角,且sin (α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°6.已知锐角α满足等式3cos 2α-8cos α+4=0,则cos α的值为( ) A.23 B .2 C .2或23D .以上都不对 7.(2015·淄博)若锐角α满足cos α<22且tan α<3,则α的范围是( )A .30°<α<45°B .45°<α<60°C .60°<α<90°D .30°<α<60°8.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若BD ∶AD =1∶4,则tan ∠BCD 的值是( )A.14B.13C.12D .2,第9题图),第10题图)9.如图,某校数学兴趣小组用测倾器测量某大桥的桥塔高度,在距桥塔AB 底部50米的C处,测得桥塔顶部A的仰角为41.5°,已知测倾器CD的高度为1米,则桥塔AB的高度为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)A.34米 B.38米 C.45米 D.50米10.转化思想是中学数学中一种常用且有效的解题方法,在本章中这种思想的作用更为突出.通过添加辅助线将非直角三角形问题转化为两个最熟悉的(锐角为30°和45°)直角三角形来解决.试用此方法解决下面问题:如图,在△ABC 中,∠B=60°,∠C=45°,AB=6,则AC的长度是( )A.3 B.3 3 C.5 D.3 6二、填空题(每小题3分,共24分)11.计算:tan245°-1=____.12.某坡面的坡度为1∶3,则坡角是____.13.如图,在坡屋顶的设计图中,AB=AC,屋顶的宽度l为10米,坡角α为35°,则坡屋顶高度h为____米.(结果精确到0.1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70),第13题图),第14题图),第15题图),第16题图)14.如图,P是∠α的边OA上的一点,且点P的坐标为(1,3),则sinα=____.15.如图,海中有一个小岛A,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60°的B处,往东航行20海里后到达该岛南偏西30°的C处后,货船继续向东航行,你认为货船航行途中____触礁的危险.(填“有”或“没有”)16.如图,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30米,则电梯楼的高BC为____米.(精确到0.1米;参考数据:2≈1.414,3≈1.732)17.直线y=kx-1与y轴相交所成的锐角为60°,则k=____.18.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯,若把甲杯中的液体全部倒入乙杯,则图中点P与液面的距离是____.三、解答题(共66分)19.(8分)计算:(1)2sin30°-tan60°+tan45°;(2)cos245°+tan60°·cos30°-3tan230°+4sin230°.20.(8分)在Rt△ABC中,∠C=90°,AC=15,∠B=60°,解这个直角三角形.21.(8分)已知锐角α使关于x的一元二次方程x2-2sinα·x+3sinα-3=0有两个相等的实数根,求α的度数.422.(9分)如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)23.(10分)为解决某地的干旱问题,在山洞C里发现了暗河(如图).经勘察,在山洞的西面有一条南北走向的公路连接着A,B两村庄,山洞C位于A村庄南偏东30°方向,且位于B村庄南偏东60°方向.为方便A,B两村庄的村民取水,需从山洞C处向公路AB紧急修建一条最近的简易公路CD.现已知A,B两村庄相距6千米.(1)求这条最近的简易公路CD的长;(精确到0.01千米)(2)每修建1千米的简易公路需费用16000元,请求出修建该简易公路的最低费用.(精确到个位;参考数据:2≈1.414,3≈1.732)24.(11分)(2015·淄博)如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD和BC表示两根较粗的钢管,EG表示座板平面,EG和BC相交于点F,MN表示地面所在的直线,EG∥MN,EG距MN的高度为42 cm,AB =43 cm,CF=42 cm,∠DBA=60°,∠DAB=80°.求两根较粗钢管AD和BC的长.(结果精确到0.1 cm;参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)25.(12分)如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP>AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP ,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.\答案一、精心选一选(每小题3分,共30分)1.( B )2.( A )3.( C )4.( B )5.( B ) 6.( A )7.( B )8.( C )9.( C )10.( D ) 二、细心填一填(每小题3分,共24分)11.__0__.12.__30°__.13.__3.5__米.14.__32__.15.__没有__16.__82.0__米. 17.__±3.18.__6_cm __.三、耐心做一做(共66分) 19.解:(1)2-3 (2)220.解:∠A =30°,AB =103,BC =5321.解:由题意得b 2-4ac =(2sin α)2-4(3sin α-34)=0,即4sin 2α-43sin α+3=0,解得sin α=32.∵α为锐角,∴α=60°解:过A 作AD ⊥CB ,垂足为点D.在Rt △ADC 中,AD =CD tan60°=363=123≈20.76.在Rt △ADB 中,BD =AD ·tan37°≈20.76×0.75=15.57≈15.6(米),则气球应至少再上升15.6米23.解:(1)过C 作CD ⊥AB ,垂足是D.由题意知,∠A =30°,∠DBC =60°,∴∠ACB =30°,∴BC =AB =6 km.在Rt △BCD 中,CD =BC ·sin60°=33≈5.20(km )(2)5.20×16000=83200(元) 24.解:如图,作FH ⊥AB 于H ,DQ ⊥AB 于Q ,则FH =42 cm.在Rt △BFH 中,BF =FHsin60°≈420.87≈48.28,∴BC =BF +CF =48.28+42≈90.3(cm ).在Rt △BDQ 中,BQ =DQ tan60°.在Rt △ADQ 中,AQ =DQ tan80°.∵BQ +AQ =AB =43,∴DQ tan60°+DQtan80°=43,解得DQ ≈56.999.在Rt △ADQ 中,AD =DQ sin80°≈56.9990.98≈58.2(cm ),则两根较粗钢管AD 和BC 的长分别为58.2 cm ,90.3 cm25解:(1)有三对相似三角形,即△AMP ∽△BPQ ∽△CQD (2)设AP =x ,∴由折叠知BP =AP =EP =x ,AB =DC =2x.由△AMP ∽△BPQ 得AM BP =APBQ,∴BQ =x 2.由△AMP ∽△CQD 得AP CD =AMCQ,∴CQ =2,∴AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+1.∵在Rt △FDM 中,sin ∠DMF =35,DF =DC =2x ,∴2x x 2+1=35,变形得3x 2-10x+3=0,解得x 1=3,x 2=13(不合题意,舍去),∴AB =2x =6。