2012全国各地中考数学压轴题精选(21-30)解析版
2012年中考数学压轴题精选附答案
25、如图:∠MON = 90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON 上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1。
(1)连续D1D,求证:∠ADD1= 90°;(2)连结CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断。
26、如图:正方形ABCO的边长为3,过A点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动。
(1)求直线AD的解析式;(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;(3)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出来;若没有,请说明理由。
24.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥3,AD=12.BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC,cos∠ABD=5⑴求证:△ANM≌△ENM;⑵求证:FB是⊙O的切线;⑶证明四边形AMEN是菱形,并求该菱形的面积S.7),且顶点C的横坐标为4,该图象在x 轴上截25.如图,二次函数的图象经过点D(0,39得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.七、(本大题8分)20.如图8,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.21.如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S =?若存在,求点E 的坐标;若不存在,请说明理由.P BC EA (图8)23.(本小题9分)如图,AB 是⊙O 的直径,C 是AB 延长线上一点,CD 与⊙O 相切于点E ,AD ⊥CD (1)求证:AE 平分∠DAC ; (2)若AB=3,∠ABE=60°,①求AD 的长;②求出图中阴影部分的面积。
2012年全国各地中考数学压轴题精选(解析版...
2012年全国各地中考数学压轴题精选(解析版二)11.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.解题思路:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤时,当<t≤2时,当2<t≤时,当<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.12.(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.解题思路:(1)利用待定系数法求抛物线的解析式.因为已知A(3,0),所以需要求得B点坐标.如答图1,连接OB,利用勾股定理求解;(2)由∠PBO=∠POB,可知符合条件的点在线段OB的垂直平分线上.如答图2,OB的垂直平分线与抛物线有两个交点,因此所求的P点有两个,注意不要漏解;(3)如答图3,作MH⊥x轴于点H,构造梯形MBOH与三角形MHA,求得△MAB面积的表达式,这个表达式是关于M点横坐标的二次函数,利用二次函数的极值求得△MAB面积的最大值.解答:解:(1)如答图1,连接OB.∵BC=2,OC=1∴OB==∴B(0,)将A(3,0),B(0,)代入二次函数的表达式得,解得,∴y=﹣x2+x+.(2)存在.如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P.∵B(0,),O(0,0),∴直线l的表达式为y=.代入抛物线的表达式,得﹣x2+x+=;解得x=1±,∴P(1±,).(3)如答图3,作MH⊥x轴于点H.设M(x m,y m),则S△MAB=S梯形MBOH+S△MHA﹣S△OAB=(MH+OB)•OH+HA•MH﹣OA•OB =(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣∵y m=﹣x m2+x m+,∴S△MAB=x m+(﹣x m2+x m+)﹣=x m2+x m=(x m﹣)2+∴当x m=时,S△MAB取得最大值,最大值为.13.(2012•铜仁地区)如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C (1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.解题思路:(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.解答:解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组…3分解得:∴抛物线的解析式为y=x2﹣4x+3 …5分(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)…7分若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)…10分(3)如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△ACP1+S△ACE==4+|y|…11分∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解…12分②当P2(1,2)时,S四边形AP2CE=S△ACP2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.…14分14.(2012•温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.解题思路:(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△AGH∽△PCB,根据相似的性质得到:,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.解答:解:(1)当m=3时,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称∴BC=4.(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△AGH∽△PCB,∴,∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,∴,∴m=.(3)∵B,C不重合,∴m≠1,(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,∴△BPC≌△MEP,∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴m﹣1=1,∴m=2,此时点E的坐标是(0,4);(II)当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,(i)若点E在x轴上(如图3),易证△BPC≌△MEP,∴BC=PM,∴2(1﹣m)=m,∴m=,此时点E的坐标是(,0);(ii)若点E在y轴上(如图4),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴1﹣m=1,∴m=0(舍去),综上所述,当m=2时,点E的坐标是(0,2)或(0,4),当m=时,点E的坐标是(,0).15.(2012•成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.题思路:(1)首先求得m的值和直线的解析式,根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;(2)存在点E使得以A、C、E、F为顶点的四边形是平行四边形.如答图1所示,过点E作EG⊥x轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,如答图1所示,不要漏解;(3)本问较为复杂,如答图2所示,分几个步骤解决:第1步:确定何时△ACP的周长最小.利用轴对称的性质和两点之间线段最短的原理解决;第2步:确定P点坐标P(1,3),从而直线M1M2的解析式可以表示为y=kx+3﹣k;第3步:利用根与系数关系求得M1、M2两点坐标间的关系,得到x1+x2=2﹣4k,x1x2=﹣4k﹣3.这一步是为了后续的复杂计算做准备;第4步:利用两点间的距离公式,分别求得线段M1M2、M1P和M2P的长度,相互比较即可得到结论:=1为定值.这一步涉及大量的运算,注意不要出错,否则难以得出最后的结论.答:解:(1)∵经过点(﹣3,0),∴0=+m,解得m=,∴直线解析式为,C(0,).∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),∴另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x﹣5),∵抛物线经过C(0,),∴=a•3(﹣5),解得a=,∴抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,又∵,∴△CAO≌△EFG,∴EG=CO=,即y E=,∴=x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,同理可求得E′(+1,),S▱ACE′F′=.(3)要使△ACP的周长最小,只需AP+CP最小即可.如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).∵B(5,0),C(0,),∴直线BC解析式为y=x+,∵x P=1,∴y P=3,即P(1,3).令经过点P(1,3)的直线为y=kx+3﹣k,∵y=kx+3﹣k,y=x2+x+,联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.∵y1=kx1+3﹣k,y2=kx2+3﹣k,∴y1﹣y2=k(x1﹣x2).根据两点间距离公式得到:M1M2==== ∴M1M2===4(1+k2).又M1P===;同理M2P=∴M1P•M2P=(1+k2)•=(1+k2)•=(1+k2)•=4(1+k2).∴M1P•M2P=M1M2,∴=1为定值.16.(2012•梅州)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是(6,2);②∠CAO=30度;③当点Q与点A重合时,点P的坐标为(3,3);(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.解题思路:(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从MN=AN,AM=AN与AM=MN去分析求解即可求得答案;(3)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.解答:解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②∵tan∠CAO===,∴∠CAO=30°;③如下图:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE==3,∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②30,③(3,3);(2)情况①:MN=AN=3,则∠AMN=∠MAN=30°,∴∠MNO=60°,∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合,∴点P与D重合,∴此时m=0,情况②,如图AM=AN,作MJ⊥x轴、PI⊥x轴;MJ=MQ•sin60°=AQ•sin60°=(OA﹣IQ﹣OI)•sin60°=(3﹣m)=AM=AN=,可得(3﹣m)=,解得:m=3﹣,情况③AM=NM,此时M的横坐标是4.5,过点P作PI⊥OA于I,过点M作MG⊥OA于G,∴MG=,∴QK===3,GQ==,∴KG=3﹣0.5=2.5,AG=AN=1.5,∴OK=2,∴m=2,(3)当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,可得,EF=(3+x),此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)•OC=(3+x),当3<x≤5时,S=S梯形﹣S△HAQ=S梯形﹣AH•AQ=(3+x)﹣(x﹣3)2,当5<x≤9时,S=(BE+OA)•OC=(12﹣x),当9<x时,S=OA•AH=.17.(2012•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.解题思路:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.解答:解:(1)∵分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0)…(1分)将x=0,y=2代入y=﹣x2+bx+c得c=2…(2分)将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2…(3分)(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO===,∴ME=BE•tan∠ABO=(4﹣t)×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t…(5分)∴当t=2时,MN有最大值4…(6分)(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.…(7分)(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2)…(8分)(ii)当D不在y轴上时,由图可知D为D1N与D2M的交点,易得D1N的方程为y=x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)…(9分)故所求的D点坐标为(0,6),(0,﹣2)或(4,4)…(10分)18.(2012•南充)如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD 时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.解题思路:(1)根据抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),利用待定系数法求抛物线解析式;(2)如答图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF的长度,从而得到时间t的数值;(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.如答图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.解答:解:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.∵tan∠AOB=,∴sin∠AOB=,∴AE=OA•sin∠AOB=4×=2.4,OD=OA•tan∠OAD=OA•tan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.过O点作OF⊥AD于F,则在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF===1.8,∴t=1.8秒;(3)如答图3,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=,此时原方程的解为x=,即x R=,而y R=x R2﹣2x R=∴点R的坐标为R(,).19.(2012•凉山州)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c 经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.题思路:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标;(2)关键是求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值;(3)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标.注意“△MON是等腰三角形”,其中包含三种情况,需要逐一讨论,不能漏解.答:解:(1)∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,4)抛物线y=﹣x2+bx+c经过A、B两点,可得,解得,∴抛物线解析式为y=﹣x2﹣3x+4.令y=0,得﹣x2﹣3x+4=0,解得x1=﹣4,x2=1,∴C(1,0).(2)如答图1所示,设D(t,0).∵OA=OB,∴∠BAO=45°,∴E(t,t),P(t,﹣t2﹣3t+4).PE=y P﹣y E=﹣t2﹣3t+4﹣t=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,线段PE的长度有最大值4,此时P(﹣2,6).(3)存在.如答图2所示,过N点作NH⊥x轴于点H.设OH=m(m>0),∵OA=OB,∴∠BAO=45°,∴NH=AH=4﹣m,∴y Q=4﹣m.又M为OA中点,∴MH=2﹣m.△MON为等腰三角形:①若MN=ON,则H为底边OM的中点,∴m=1,∴y Q=4﹣m=3.由﹣x Q2﹣3x Q+4=3,解得x Q=,∴点Q坐标为(,3)或(,3);②若MN=OM=2,则在Rt△MNH中,根据勾股定理得:MN2=NH2+MH2,即22=(4﹣m)2+(2﹣m)2,化简得m2﹣6m+8=0,解得:m1=2,m2=4(不合题意,舍去)∴y Q=2,由﹣x Q2﹣3x Q+4=2,解得x Q=,∴点Q坐标为(,2)或(,2);③若ON=OM=2,则在Rt△NOH中,根据勾股定理得:ON2=NH2+OH2,即22=(4﹣m)2+m2,化简得m2﹣4m+6=0,∵△=﹣8<0,∴此时不存在这样的直线l,使得△MON为等腰三角形.综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为(,3)或(,3)或(,2)或(,2).20.(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x 轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.解题思路:(1)抛物线y=ax2+bx+c经过点O、A、C,利用待定系数法求抛物线的解析式;(2)根据等腰梯形的性质,确定相关点的坐标以及线段长度的数量关系,得到一元二次方程,求出t的值,从而可解.结论:存在点P(,),使得四边形ABPM为等腰梯形;(3)本问关键是求得重叠部分面积S的表达式,然后利用二次函数的极值求得S的最大值.解答中提供了三种求解面积S表达式的方法,殊途同归,可仔细体味.解答:解:(1)∵抛物线y=ax2+bx+c经过点O、A、C,可得c=0,∴,解得a=,b=,∴抛物线解析式为y=x2+x.(2)设点P的横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN=∴P(t,),∵点M在抛物线上,∴M(t,t2+t).如解答图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,AG=y A﹣y M=2﹣(t2+t)=t2﹣t+2,BH=PN=.当AG=BH时,四边形ABPM为等腰梯形,∴t2﹣t+2=,化简得3t2﹣8t+4=0,解得t1=2(不合题意,舍去),t2=,∴点P的坐标为(,)∴存在点P(,),使得四边形ABPM为等腰梯形.(3)如解答图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x轴于K,交OC于R.求得过A、C的直线为y AC=﹣x+3,可设点A′的横坐标为a,则点A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,∴点Q的坐标为(a,).解法一:设AB与OC相交于点J,∵△ARQ∽△AOJ,相似三角形对应高的比等于相似比,∴=∴HT===2﹣a,KT=A′T=(3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣=3﹣a.S四边形RKTQ=S△A′KT﹣S△A′RQ=KT•A′T﹣A′Q•HT=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH ③由△A′KT∽△A′O′B′,得,则KT=④由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,所以点R的坐标为R(2a﹣2,a﹣1)S四边形RKTQ=S△QOT﹣S△ROK=•OT•QT﹣•OK•RH=a•a﹣(1+a﹣)•(a﹣1)=a2+a﹣=(a﹣)2+由于<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,∴OK=OT﹣KT=a﹣(a+)=a﹣,过点R作RH⊥x轴于H,∵tan∠OAB=tan∠RKH==2,∴RH=2KH又∵tan∠OAB=tan∠ROH===,∴2RH=OK+KH=a﹣+RH,∴RH=a﹣1,OH=2(a﹣1),∴点R坐标R(2a﹣2,a﹣1)S四边形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•(xQ﹣xR)=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.。
2012中考数学 压轴题精选精析(91-100例)
2012中考数学压轴题精选精析(91-100例)19.(2011·某某某某·模拟9)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第24题答案:解:(1)依题意,每千克原料的进货价为160×75%=120(元) --------------2分设化工商店调整价格后的标价为x元,则0.8x-120=0.8x×20%解得x=187.5187.5×0.8=150(元)----------------------------------------------------------------------2分∴调整价格后的标价是187.5元,打折后的实际售价是150元.----------1分(2)①描点画图,观察图象,可知这些点的发展趋势近似是一条直线,所以猜想y与x之间存在着一次函数关系.--------------------------------------------------------------2分②根据①中的猜想,设y 与x 之间的函数表达式为y =kx +b ,将点(150,500)和(160,480)代入表达式,得⎩⎪⎨⎪⎧500=150k +b 480=160k +b 解得⎩⎪⎨⎪⎧k =-2b =800∴y 与x 的函数表达式为y =-2x +800---------------------------------------------2分将点(168,464)和(180,440)代入y =-2x +800均成立,即这些点都符合y =-2x +800的发展趋势.∴①中猜想y 与x 之间存在着一次函数关系是正确的.---------------------------1分③设化工商店这个月销售这种原料的利润为w 元,当y =450时,x =175∴w =(175-120)×450=24750(元)答:化工商店这个月销售这种原料的利润为24750元.---------------------------2分20.(2011·某某某某·模拟10)如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边),试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.答案:(1)(4分)设抛物线的解析式为89252-⎪⎭⎫ ⎝⎛-=x a y ………………………1分∵抛物线经过)14,8(A ,∴89258142-⎪⎭⎫ ⎝⎛-a =,解得:21=a …………2分∴8925212-⎪⎭⎫ ⎝⎛-=x y (或225212+-=x x y ) …………………………1分(2)(4分)令0=x 得2=y ,∴)2,0(B ……………………………………1分 令0=y 得0225212=+-x x ,解得11=x 、42=x ………………………2分 ∴)0 , 1(C 、) 0, 4(D …………………………………………………………1分 (3)(4分)结论:BC AC PB PA +≥+…………………………………1分 理由是:①当点CP 与点重合时,有BC AC PB PA +=+………………………………1分②当时异于点点C P ,∵直线AC 经过点)14,8(A 、)0,1(C ,∴直线AC 的解析式为22-=x y ………3分DAO xyCB . (第24题图)C xyAB DO P .设直线AC 与y 轴相交于点E ,令0=x ,得2-=y , ∴)2,0(-E ,则)2,0()2,0(B E 与点-关于x 轴对称 ∴EC BC =,连结PE ,则PB PE =, ∴AE EC AC BC AC =+=+,∵在APE ∆中,有AE PE PA >+∴BC AC AE PE PA PB PA +=>+=+…………………………………1分 综上所得BC AC BP AP +≥+21.(2011·某某某某·模拟11) 如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线x=1交x 轴于点B 。
2012中考试题精选30套数学压轴题及答案 - 用于合并分析
2012中考数学压轴题及答案1.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. (11浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使P Q R △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.7.(2011浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =12,求22BE DG +的值. 8. (2011浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2011山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2011山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.11.2011淅江宁波)2011年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.(2011淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ;第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF . 则:AD AB 的值是 ,AD AB ,的长分别是 , .(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸……都是矩形. ②本题中所求边长或面积都用含a 的代数式表示.13.(2011山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.14.(2011山东威海)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y 的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P的坐标为(5,0),点Q的坐标为(0,3),把线段PQ向右平移4个单位,然后再向上平移2个单位,得到线段P1Q1,则点P1的坐标为,点Q1的坐标为.15.(2011湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.16.(2011年浙江省绍兴市)将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒). (1)用含t 的代数式表示OP OQ ,;(2)当1t 时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(4) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC能否垂直?若能,求出相应的t 值;若不能,说明理由.17.(2011年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2011年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2011年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2011年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55.(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积Q NR S ∆,求QMN S ∆∶Q NR S ∆的值.21.(2011年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式(3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CM CN+的值是否为定值,若是,求出定值,若不是,请说明理由22.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)23.(天津市2011年)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.(2011年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示).(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.25. (2011年上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.26. (2011年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60的23km 处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道建设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27.(2011年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC =3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?cm),求y与t之间的函数关系式;(2)设△AQP的面积为y(2(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28.(2011年江苏省南通市)已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.29.(2011年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)压轴题答案1.解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0)设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形 =111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,BD=2222112BG DG +=+= BE=22223332BO OE +=+= DE=22222425DF EF +=+=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆.2. (1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32),∴381032OAB tan =-=∠, ∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´,∴△A ´TA 是等边三角形,且A T TP '⊥,∴)t 10(2360sin )t 10(T P -=︒-=,)t 10(21AT 21AP P A -===',○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----= 34)2t (83)28t 4t (8322+--=++-=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4, ∴3432421OC EF 21S =⨯⨯=⋅= 综上所述,S 的最大值是34,此时t 的值是2t 0≤<.3. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=. C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===. tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=. 综上所述,当x 为185或6或152时,PQR △为等腰三角形.4.解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC . ∴ AM AN AB AC =,即43x AN =. ∴ AN =43x . ……………2分 ∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC . ∴ AM MN AB BC =,即45x MN =. ∴ 54MN x =, ∴ 58OD x =. …………………5分 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA . ∴ BM QM BC AC=. ∴ 55258324x BM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==. ∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x .又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形.∴ FN =BM =4-x .∴ ()424PF x x x =--=-.又△PEF ∽ △ACB . ∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分5. 解:(1)(-4,-2);(-m,-k m) (2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ 一定是平行四边形②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23, ∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,的以直线AB 的解析式为 343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=32,DH=GH+GD=32+23=532, ∴GB=32BD=32,OH=OE+HE=OE+BG=37222+= ∴D(532,72)(3)设OP=x,则由(2)可得D(323,22x x ++)若ΔOPD 的面积为:133(2)224x x += 解得:23213x -±=所以P(23213-±,0)(1)①,BG DE BG DE =⊥ ………………………………………………………………2分②,BG DE BG DE =⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 090BCD ECG ∠=∠=∴BCG DCE ∠=∠…………………………………………………………………1分 ∴BCG DCE ∆≅∆(SAS )………………………………………………………1分∴BG DE = C B G C D E∠=∠ 又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ …………………………………………………………………………1分(2)BG DE ⊥成立,BG DE =不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >)∴ BC CG b DC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆………………………………………………………………………1分∴CBG CDE ∠=∠又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ ……………………………………………………………………………1分(3)∵BG DE ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+ 又∵3a =,2b =,k =12∴222222365231()24BD GE +=+++= ………………………………………………1分∴22654BE DG +=………………………………………………………………………1分(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t tt t =--⨯-=-+-…………………………………………4分(2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4),E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22by b x -=-+,令4y =得3(8,4)2b P -.由已知可得2PE DE =即222232(8)(42)42b b b b ⨯-+-=+化简得2332640b b -+=解得 121883b b P P ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -;第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即2222(48)(42)4b b b b -+-=+化简得22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即2222844b b +=+解得12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).事实上,我们可以得到更一般的结论:如果得出AB a OC b ==、、OA h =、设b ak h-=,则P 点的情形如下11. 解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米, 由题意得1201023x x+=, ··························································································· 2分 解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米. ··········································· 4分(2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元. ····················· 6分 (3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=,························································· 8分整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去), ··························································· 9分 ∴这批货物有8车. ······························································································ 10分12. 解:(1)21244a a ,,. ················································································ 3分 (2)相等,比值为2. ·········· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG x =,在矩形ABCD 中,90B C D ∠=∠=∠=,90HGF ∠=,90DHG CGF DGH ∴∠=∠=-∠, HDG GCF ∴△∽△,12DG HG CF GF ∴==, 22CF DG x ∴==. ······························································································· 6分同理BEF CFG ∠=∠.EF FG =, FBE GCF ∴△≌△,14BF CG a x ∴==-. ··························································································· 7分 CF BF BC +=,12244x a x a ∴+-=, ················································································· 8分解得214x a -=. 即214DG a -=. ································································································· 9分(4)2316a , ········································································································ 10分 2271828a -. 12分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFNS 正方形. ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFNS 正方形.14.解:(1)由题意可知,()()()131-+=+m m m m . 解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分 15. 解:(1)解法1:根据题意可得:A (-1,0),B (3,0);则设抛物线的解析式为)3)(1(-+=x x a y (a ≠0)又点D (0,-3)在抛物线上,∴a (0+1)(0-3)=-3,解之得:a =1∴y =x 2-2x -3 ····························································································· 3分 自变量范围:-1≤x ≤3 ············································································· 4分解法2:设抛物线的解析式为c bx ax y ++=2(a ≠0)根据题意可知,A (-1,0),B (3,0),D (0,-3)三点都在抛物线上∴⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a ,解之得:⎪⎩⎪⎨⎧-=-==321c b a∴y =x 2-2x -3 ········································································ 3分 自变量范围:-1≤x ≤3······················································· 4分(2)设经过点C “蛋圆”的切线CE 交x 轴于点E ,连结CM , 在Rt △MOC 中,∵OM =1,CM =2,∴∠CMO =60°,OC =3 在Rt △MCE 中,∵OC =2,∠CMO =60°,∴ME =4∴点C 、E 的坐标分别为(0,3),(-3,0) ············································ 6分∴切线CE 的解析式为3x 33y +=····················································· 8分(3)设过点D (0,-3),“蛋圆”切线的解析式为:y =kx -3(k ≠0) ················· 9分由题意可知方程组⎪⎩⎪⎨⎧--=-=3232x x y kx y 只有一组解即3232--=-x x kx 有两个相等实根,∴k =-2 ······································· 11分 ∴过点D “蛋圆”切线的解析式y =-2x -3 ·············································· 12分(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,.(3)①PQ 能与AC 平行.若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=. ②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,则23335t QF OQ QFAC OC +==.253QF t ⎛⎫∴=+ ⎪⎝⎭.EF QF QE QF OQ ∴=-=-22533t t ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭2(51)(51)3t =-+-.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 6326(51)3t t -∴=⎛⎫-+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不存在.17. 解:(1)直线33y x =--与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ··························································································· 1分 点A C ,都在抛物线上,23033a c c⎧=++⎪∴⎨⎪-=⎩333a c ⎧=⎪∴⎨⎪=-⎩ ∴抛物线的解析式为2323333y x x =-- ·························································· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ································································································ 4分 (2)存在 ················································································································ 5分 1(03)P -, ·············································································································· 7分 2(23)P -, ·············································································································· 9分 (3)存在 ·············································································································· 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.····················································································· 11分。
2012年中考数学压轴题100题精选(21-30题)答案
2012年中考数学压轴题100题精选(21-30题)答案【021】解:(1);… ………………………………3分21(2)①EF∥AB.……………………………………4分,.证明:如图,由题意可得A(–4,0),B(0,3),34kk∴PA=3,PE=,PB=4,PF=.34PA312PB412∴,k∴.………………………… 6分PEPF又∵∠APB=∠EPF.∴△APB ∽△EPF,∴∠PAB=∠PEF.∴EF∥AB.…………………………… 7分②S没有最小值,理由如下:2过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.由上知M(0,),N(,0),Q(,).……………… 8分4334-而S= S,∴S=SS=S-S=S+S+SEFQPEF2PEFOEFEFQOEFEOMFONOMQN △△△△△△△△矩形==2222.………………………… 10分6当时,S的值随k的增大而增大,而0<k<12.…………… 11分 2222∴0<S<24,s没有最小值.…………………………… 12分 22、说明:1.证明AB∥EF时,还可利用以下三种方法.方法一:分别求出经过AB两点和经过、EF两点的直线解析式,利用这两个解析式中x的系数相等来证明AB∥EF;方法二:tantan、,PAB利用=来证明AB∥EF;方法三:连接AFBE利用S=SAEFBFE△△、、得到点A点B到直线EF的距离相等,再由AB两点在直线EF同侧可得到AB∥EF.2.求S的值时,还可进行如下变形:2S=S-S=S-(S-S)=2 S-S,再利用第(1)2PEFOEFPEFPEOFPEFPEFPEOF△△△四边形△△四边形题中的结论.2【022】解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)-4a.……2分∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,112∴C(m,-2)代入得a=.∴解析式为:y=(x-m)-2.………………………5分22(亦可求C点,设顶点式)(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛12物线y=(x-m)-2顶点在坐标原点. (7)分212m-2),设存在实数m,使得△BOD为等腰三角形.(3)由(1)得D(0,2∵△BOD为直角三角形,∴只能OD=OB.……………………………………………9分12∴m-2=|m +2|,当m+2>0时,解得m=4或m=-2(舍).2当m +2<0时,解得m=0(舍)或m=-2(舍);当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍) 综上所述:存在实数m=4,使得△BOD为等腰三角形.……………………………12分△MBC【023】(1)证明:∵是等边三角形,∠∠D ∴∥BC∵是中点∴∵∠∠∠∠,∴△AMB≌△∴∴∴梯形是等腰梯形.△MBC(2)解:在等边中,60°Q,∠∠, B C P∠∠∠∠∠∴∠∠QPC△BMP∽△CQP∴∴∴··································5分,,∵∴················································6分∴∴ (7)分,BPMDBP∥∥(3)解:①当时,则有则四边形和四边形均为平行四边形∴,PCMDPC∥∥当时,则有,则四边形和四边形均为平行四边形∴441313,,、、、、∴当或时,以PM和ABC D中的两个点为顶点的四44边形是平行四边形.此时平行四边形有4个.△PQCy∴当取最小值时,为直角三角形∵4PB,∠,∠,∠∴是的中点,而∴∴BC【024】(1)由可知,,又△ABC为等腰直角三角形,∴,,所以点A的坐标是().D(2)∵∴,则点的坐标是().又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:解得∴抛物线的解析式为………7分M(3)过点作于点,过点作于点,设点的坐标是,则,.PQM∵∴∽∴即,得∵BQN∴∽∴即,得又∵∴即为定值8. 【025】解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0);则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;∴C=2(MC+MD)=2(-x+4+x)=8 OCMD四边形∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;22(2)根据题意得:S=MC·MD=(-x+4)·x=-x+4x=-(x-2)+4 OCMD四边形∴四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且当x=2,即当点M运动到线段AB的中点时,四边形OCMD的面积最大且最大面积为4;(3)如图10(2),当时,;如图10(3),当时,;22a∴S与的函数的图象如下图所示: S 14·2(2·12(·a0 2 4 22【026】解:(1)∵AH∶AC=2∶3,AC=6∴AH=AC=×6=433又∵HF∥DE,∴HG∥CB,∴△AHG∽△ACB…………………………1分AHHG4HG16∴=,即=,∴HG=…………………………………2分63ACBC8111632...........................................∴S=AHHG=×4×=3分△AHG2233(2)①能为正方形...........................................................................4分′′∵HH′∥CD,HC∥HD,∴四边形CDHH为平行四边形′又∠C=90°,∴四边形CDHH为矩形.......................................5分又CH=AC-AH=6-4=2′∴当CD=CH=2时,四边形CDHH为正方形′此时可得t=2秒时,四边形CDHH为正方形 (6)分②(Ⅰ)∵∠DEF=∠ABC,∴EF∥∴当t=4秒时,直角梯形的腰EF与BA重合.′当0≤t≤4时,重叠部分的面积为直角梯形DEFH的面积.…………7分FMAC63过F作FM⊥DE于M,=tan∠DEF=tan∠ABC=== BC84ME44884FM=×2=,HF=DM=DE-ME=4-=∴ME= 33333141616∴直角梯形DEFH′的面积为(4+)×2=∴y= 23331′(Ⅱ)∵当4<t≤5时,重叠部分的面积为四边形CBGH的面积-矩形CDHH的面积.而S边形31324040×8×6-==2t∴y=-=S-S=矩形′△△CDHHCBGHABCAHG233331PD′(Ⅲ)当5<t≤8时,如图,设HD交AB于P.=8-又=tan∠ABC=43DB33∴PD=DB=(8-t)∴重叠部分的面积y=S , 443331122·PDDB=·(8-t)(8-t)=(8-t)=t-△PDB=48822∴重叠部分面积y与t的函数关系式:3(0≤t≤4)16401 -2t(4<t≤5)33312t-6t+24(5<t≤8)【027】解:(1)设抛物线的解析式为:, 把A(3,0)代入解析式求得所以,设直线AB的解析式为:由求得B点的坐标为把,代入中解得:所以 6分2(2)因为C点坐标为(1,4) ,所以当x=1时,y=4,y=2所以CD=4-2=2 8分平方单位) 假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h,则,由S=CABPAB△△12819322得:,化简得:解得,将代入中,解得P点坐标为1224y【028】解:(1)(5′) ∵抛物线与轴交于点(0,3),∴设抛物线解析式为(1′) 根据题意,得,解得∴抛物线的解析式为(5′) (2)(5′)由顶点坐标公式得顶点坐标为(1,4)(2′) 设对称轴与x轴的交点为∴四边形ABDE的面积梯形(5′)222(3)(2′)相似如图,BD=∴BE= ;∴即: ,所以是直角三角形∴,且, ∴∽′【029】解(1)因为△= 所以不论a为何实数,此函数图象与x轴总有两个交点。
2012中考数学压轴题真题(含答案)
1.如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P 的坐标;若不存在,请说明理由.得,解得﹣,所以,抛物线解析式为﹣﹣﹣﹣或(﹣﹣x=(()或(2、.已知抛物线 与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是(-1,0),O 是坐标原点,且OA OC 3=. (1)求抛物线的函数表达式; (2)直接写出直线BC 的函数表达式;(3)如图1,D 为y 轴的负半轴上的一点,且OD =2,以OD 为边作正方形ODEF .将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,在运动过程中,设正方形ODEF 与△OBC 重叠部分的面积为s ,运动的时间为t 秒(0<t ≤2). 求:①s 与t 之间的函数关系式;②在运动过程中,s 是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4)如图2,点P (1,k )在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?若存在,请直接写出M 点坐标;若不存在,请说明理由.c ax ax y +-=222.解答:(1)∵ A (-1,0), OA OC 3= ∴C (0,-3) ………1′∵抛物线经过A (-1,0), C (0,-3) ∴)()⎩⎨⎧=+-⨯-⨯--=012132c a a c∴⎨⎧-==31c a ∴y=x 2-2x -3 (3)(2)直线BC 的函数表达式为y=x -3(3)当正方形ODEF 的顶点D 运动到直线BC 上时,设D 点的坐标为(m ,-2), 根据题意得: -2=m-3,∴m=1 …………………6′①当0<t ≤1时S 1=2t …………………7′ 当1<t ≤2时S 2=OO DDS 11矩形-HGDS 1∆ =2t -()2121-⨯t=-213212-+t t …………………9′②当t =2秒时,S 有最大值,最大值为 ……………10′(4)M 1(-12-,0) M 2(12-,0) M 3(63-,0) M 4(63+,0 )………………14′3如图,抛物线32-+=bx ax y 交y 轴于点C ,直线 l 为抛物线的对称轴,点P 在第图1 图227三象限且为抛物线的顶点.P 到x 轴的距离为310,到y 轴的距离为1.点C 关于直线l 的对称点为A ,连接AC 交直线 l 于B. (1)求抛物线的表达式;(2)直线m x y +=43与抛物线在第一象限内交于点D ,与y 轴交于点F,连接BD 交y 轴于点E ,且DE:BE=4:1.求直线m x y +=43的表达式;(3)若N 为平面直角坐标系内的点,在直线m x y +=43上是否存在点M ,使得以点O 、F 、M 、N 为顶点的四边形是菱形?若存在,直接写出点M 的坐标;若不存在,请说明理由.3.解答:(1)∵抛物线32-+=bx axy 交y 轴于点C∴ C (0,-3)则 OC=3 ……………1分 ∵P 到x 轴的距离为310,P 到y 轴的距离是1且在第三象限 ∴P (-1,-310) ……………2分∵C 关于直线l 的对称点为A∴A (-2,-3) ……………3分 将点A (-2,-3),P (-1,-310)代入32-+=bx axy有⎪⎩⎪⎨⎧-=---=--31033324b a b a 解得⎪⎪⎩⎪⎪⎨⎧==3231b a ………………………5分 第26题图∴抛物线的表达式为 332312-+=x x y ………………………6分(2)过点D 做DG ⊥y 轴于G ,则∠DGE=∠BCE=90°∵∠DEG=∠BEC ∴△DEG ∽△BEC∵DE:BE=4:1 ∴14==BEDE BCDG 则DG=4 ………………………7分将x=4代入332312-+=x x y ,得y=5则 D (4,5) ………………………8分 ∵m x y +=43过点D (4,5)∴m +⨯=4435 则 m =2 ………………………9分∴所求直线的表达式为 243+=x y (10)分(3)存在 M 1516,58( M 254,58(-M 3)1,34(- M 42514,2548(-………………………14分4.在平面直角坐标系中,已知抛物线c bx ax y ++=2经过点A 3(-,0)、B(0,3)、C (1,0)三点.(1) 求抛物线的解析式和顶点D 的坐标;(2) 如图1,将抛物线的对称轴绕抛物线的顶点D 顺时针旋转 60,与直线x y -=交于点N .在直线DN 上是否存在点M ,使得∠MON= 75.若存在,求出点M 的坐标;若不存在,请说明理由;(3) 点P 、Q 分别是抛物线c bx ax y ++=2和直线x y -=上的点,当四边形OBPQ 是直角梯形时,求出点Q 的坐标.4解答.(1)解:由题意把A(-3,0)、B(0,3)、C(1,0)代入c bx ax y ++=2列方程组得⎪⎩⎪⎨⎧=++==+-03039c b a c c b a ,解得 ⎪⎩⎪⎨⎧=-=-=321c b a .……1分 ∴抛物线的解析式是322+--=x x y . ……2分 ∵4)1(3222++-=+--=x x x y ,∴抛物线的顶点D 的坐标为(-1,4).…… 3分(2)存在.理由:方法(一):由旋转得∠EDF=60°, 在Rt △DEF ∴EF=DE×tan60°=43.∴OF=OE+EF=1+4 ∴F 点的坐标为(341--,0).……1 设过点D 、F 的直线解析式是b x y +=κ 把D (-1,4),F (341--,0)代入求得 33433++=x y .……2分分两种情况:①当点M 在射线ND 上时, ∵∠MON=75°,∠BON=45°,∴∠MOB=∠MON ﹣∠BON=30°.∴∠MOC=60°.∴直线OM 的解析式为y =3x .……3分 ∴点M 的坐标为方程组.⎪⎩⎪⎨⎧=++=x y x y 333433的解,解方程组得,⎪⎪⎩⎪⎪⎨⎧+=+=2362132y x . ∴点M 的坐标为(2132+,236+).……4分②当点M 在射线NF 上时,不存在点M 使得∠MON=75°理由:∵∠MON=75°,∠FON=45°, ∴∠FOM=∠MON -∠FON=30°. ∵∠DFE=30°,∴∠FOM=∠DFE .∴OM ∥FN .∴不存在……5分 综上所述,存在点M ,且点M 的坐标为(2132+,236+).方法(二)①M 在射线ND 上,过点M 作MP ⊥x 轴于点P , 由旋转得∠EDF=60°, 在Rt △DEF 中,∵∠EDF=60°,DE=4 ∴EF=DE×tan60°=43.∴OF=OE ﹢EF=1+43.……2分 ∵∠MON=75°,∠BON=45°,∴∠∴∠MOC=60°.在Rt △MOP 中,∴ 在Rt △MPF 中,∵tan ∠MFP=PFMP ,∴=++3413OP OP 33.……3分∴OP=23﹢21.∴MP=6﹢23.∴M 点坐标为(23﹢21、6﹢23).……4分②M 在射线NF 上,,不存在点M 使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON ﹣∠FON=30°. ∵∠DFE=30°.∴∠FOM=∠DFE .∴OM ∥DN . ∴不存在.……5分 综上所述,存在点M ,且点M 的坐标为(2132+,36(3)有两种情况①直角梯形OBPQ 中,PQ ∥OB ,∠如图3,∵∠OBP=∠AOB=90°,∴PB ∥OA . 所以点P 、B 的纵坐标相同都是3.……1分 因为点P 在抛物线322+--=x x y 上,把=y 3代入抛物线的解析式中得x 1=0(舍去) , x 2=﹣2.由PQ ∥OB 得到点P 、Q 的横坐标相同, 都等于-2.把x =﹣2代入=y ﹣x 得y =2.所以Q 点的坐标为(-2,2).……3分②在直角梯形OBPQ 中,PB ∥OQ ,∠BPQ=90°. 如图4,∵D(-1,4),B(0,3) ,∴DB ∥OQ .∵PB ∥OQ , 点P 在抛物线上,∴点P 、D 重合.……1分 ∴∠EDF=∠EFD=45°.∴EF=ED=4. ∴OF=OE+EF=5.……2分作QH ⊥x 轴于H ,∵∠QOF=∠QFO=45°, ∴OQ=FQ .∴OH=21OF=25.∴Q 点的横坐标﹣25.∵Q 点在=y ﹣x 上,∴把x =﹣25代入=y ﹣x 得=y 25.∴Q 点的坐标为(﹣25,25).…… 3分综上,符合条件的点Q 有两个,坐标分别为:(-2,2),(-25,25).※ 试题其他方法参照给分5.如图,已知抛物线经过原点O 和 轴上一点A (4,0),抛物线顶点为E ,它的对称轴与 轴交于点D.直线 经过抛物线上一点B (-2,m )且与轴交于点C , 与抛物线的对称轴交于点F.(1)求m 的值及该抛物线对应的解析式;(2)P 是抛物线上的一点,若S △ADP =S △ADC ,求出所有符合条件的点P 的坐标; (3)点Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M 的运动时间为t 秒,是否能使以Q 、A 、E 、M 四点为顶点的四边形是菱形.若能,请直接写出点M 的运动时间t 的值;若不能,请说明理由.第26题图 备用图5.解答:(1)∵点B(-2,m)在直线12--=x y 上∴m=3 即B (-2,3)┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅ 1分 又∵抛物线经过原点O∴设抛物线的解析式为bx ax y +=2∵点B (-2,3),A (4,0)在抛物线上∴⎩⎨⎧=+=-0416324b a b a 解得:⎪⎩⎪⎨⎧-==141b a∴设抛物线的解析式为x x y -=241 ┅┅┅┅┅┅┅┅┅┅┅┅┅ 4分x 12--=x y y ),(yx(2)∵),(y x P 是抛物线上的一点 ∴)41,(2x x x P -若ADC ADP S S ∆∆= ∵OC AD S ADC ⋅=∆21 y AD S ADP ⋅=∆21 ┅┅┅┅┅┅┅┅ 6分又∵点C 是直线12--=x y 与y 轴交点 ∴C(0,1) ∴OC=1 ∴1412=-x x , 即1412=-x x 或1412-=-x x解得:2,222,2224321==-=+=x x x x∴点P 的坐标为 )1,2(),1,222(),1,222(321--+P P P ┅┅┅ 10分 (3)存在: ,541-=t ,62=t,543+=t ,2134=t ┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅。
2012年中考数学压轴题及解析分类汇编
中考数学压轴题:函数相似三角形问题(一)例1直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.例2 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)ky k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图12012中考数学压轴题函数相似三角形问题(二)例3 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例4 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22=++上.y mx mx n (1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.图12012中考数学压轴题函数相似三角形问题(三) 例5 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1例6 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.图12012中考数学压轴题函数等腰三角形问题(一)例1 如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2例2 如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图12012中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N 分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1例4 如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m,要使△DEF 为等腰三角形,m 的值应为多少?图12012中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1例6 在平面直角坐标系内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM//x轴(如图1所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆与圆O外切,求圆O的半径.图12012中考数学压轴题函数直角三角形问题(一)例1 如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQ AB =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1例2 设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图12012中考数学压轴题函数直角三角形问题(三)例 5 如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例6 已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图1,求证:222BN AM MN +=;思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程.(2)当扇形CEF 绕点C 旋转至图2的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.图1 图2图5 图6 图72012中考数学压轴题函数平行四边形问题(一)例 1 已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.图1例2将抛物线c 1:2y =x 轴翻折,得到抛物线c 2,如图1所示.(1)请直接写出抛物线c 2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.图12012中考数学压轴题函数平行四边形问题(二)例3 如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图2例4在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图22012中考数学压轴题函数平行四边形问题(三)例 5 如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ 的面积(用含x的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.图1例6 如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.图1例 7 如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标.(3)在直线AB上是否存在点E,使得以点E、D、O、A为顶点的四边形是平行四边形?如果存在,直接写出BECD的值;如果不存在,请说明理由.图12012中考数学压轴题函数梯形问题(一)例1 已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.备用图图1 图2例 2 已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图22012中考数学压轴题函数梯形问题(二)例3 如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1例 4 已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图12012中考数学压轴题函数平行四边形问题(三)例 5 如图1,等边△ABC 的边长为4,E 是边BC 上的动点,EH ⊥AC 于H ,过E 作EF ∥AC ,交线段AB 于点F ,在线段AC 上取点P ,使PE =EB .设EC =x (0<x ≤2).(1)请直接写出图中与线段EF 相等的两条线段(不再另外添加辅助线);(2)Q 是线段AC 上的动点,当四边形EFPQ 是平行四边形时,求平行四边形EFPQ 的面积(用含x 的代数式表示);(3)当(2)中 的平行四边形EFPQ 面积最大值时,以E 为圆心,r 为半径作圆,根据⊙E 与此时平行四边形EFPQ 四条边交点的总个数,求相应的r 的取值范围.图1例6 如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.图1例 7 如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E 、D 、O 、A 为顶点的四边形是平行四边形?如果存在,直接写出BE CD的值;如果不存在,请说明理由.图12012中考数学压轴题函数面积问题(一)例 1 如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平行线分别交曲线m y x =(x >0)和m y x=-(x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.图1例2 如图1,在平面直角坐标系xOy 中,直角梯形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,CB ∥OA ,OC =4,BC =3,OA =5,点D 在边OC 上,CD =3,过点D 作DB 的垂线DE ,交x 轴于点E .(1)求点E的坐标;(2)二次函数y=-x2+bx+c的图像经过点B和点E.①求二次函数的解析式和它的对称轴;②如果点M在它的对称轴上且位于x轴上方,满足S△CEM=2S△ABM,求点M的坐标.图12012中考数学压轴题函数面积问题(二)例3 如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.例 4 如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图2012中考数学压轴题函数面积问题(三)例5 如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP 与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1 图2例6 在直角坐标系中,抛物线c=2经过点(0,10)和点(4,2).+y+xbx(1)求这条抛物线的解析式.(2)如图1,在边长一定的矩形ABCD中,CD=1,点C在y轴右侧沿抛物线=2滑动,在滑动过程中CD∥x轴,AB在CD的下方.当点D在y轴上时,y++cbxxAB落在x轴上.①求边BC的长.②当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.。
2012中考数学压轴题及答案40例(2)
2012中考数学压轴题及答案40例(2)5.如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH 交y 轴于R .(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由. (08江苏镇江28题解析)(1)法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△. ····················································································· (1分)OH CH ∴=,即H 为AQ 的中点. ································································· (2分) 法二:(01)A ,,(01)B -,,OA OB ∴=. ······················································ (1分)又BQ x ∥轴,HA HQ ∴=. ·········································································· (2分) (2)①由(1)可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠,RAH PQH ∴△≌△. ····················································································· (3分) AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形. ··············································· (4分)②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,22222222111111444AP AG PG m m m m PQ ⎛⎫⎛⎫=+=-+=+=+= ⎪ ⎪⎝⎭⎝⎭.∴平行四边形APQR 为菱形. ·········································································· (6分)(3)设直线PR 为y kx b =+,由OH CH =,得22m H ⎛⎫⎪⎝⎭,,214P m m ⎛⎫ ⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-. ······················ (7分) 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . ········································ (8分) 6.如图13,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,直线y =-2x -1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E . (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;(3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由.(1)∵ 点B (-2,m )在直线y =-2x -1上,∴ m =-2×(-2)-1=3. ………………………………(2分) ∴ B (-2,3)∵ 抛物线经过原点O 和点A ,对称轴为x =2, ∴ 点A 的坐标为(4,0) .设所求的抛物线对应函数关系式为y =a (x -0)(x -4). ……………………(3分) 将点B (-2,3)代入上式,得3=a (-2-0)(-2-4),∴ 41=a . ∴ 所求的抛物线对应的函数关系式为)4(41-=x x y ,即x x y -=241. (6分)(2)①直线y =-2x -1与y 轴、直线x =2的交点坐标分别为D (0,-1) E (2,-5). 过点B 作BG ∥x 轴,与y 轴交于F 、直线x =2交于G , 则BG ⊥直线x =2,BG =4.在Rt △BGC 中,BC =522=+BG CG .∵ CE =5,∴ CB =CE =5. ……………………(9分) ②过点E 作EH ∥x 轴,交y 轴于H , 则点H 的坐标为H (0,-5).又点F 、D 的坐标为F (0,3)、D (0,-1), ∴ FD =DH =4,BF =EH =2,∠BFD =∠EHD =90°.∴ △DFB ≌△DHE (SAS ),∴ BD =DE .即D 是BE 的中点. ………………………………(11分)(3) 存在. ………………………………(12分) 由于PB =PE ,∴ 点P 在直线CD 上,∴ 符合条件的点P 是直线CD 与该抛物线的交点.设直线CD 对应的函数关系式为y =kx +b .将D (0,-1) C (2,0)代入,得⎩⎨⎧=+-=021b k b . 解得 1,21-==b k . A BCODExy x =2 G FH∴ 直线CD 对应的函数关系式为y =21x -1.∵ 动点P 的坐标为(x ,x x -241),∴21x -1=x x -241. ………………………………(13分) 解得 531+=x ,532-=x . ∴ 2511+=y ,2511-=y . ∴ 符合条件的点P 的坐标为(53+,251+)或(53-,251-).…(14分) (注:用其它方法求解参照以上标准给分.)7.如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5. (1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对 角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解: (解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4),∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ······························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314 ····································································································· 3分 当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去. ∴b =-314. ···································································································· 4分解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根. ∴x =4969b 32-±b , ······································································· 2分∴x 2-x 1=2969b 2-=5,解得 b =±314 ·························································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ························································································· 5分 又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分 (3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与 抛物线y =-32x 2-314x -4的交点, ······················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4, ∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ·········· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ········································· 10分8.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(解析)解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B ,············································· 1分又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ·········································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =·························································································· 5分 1994242ABC S ∴=⨯⨯=△ ····················································································· 6分 (3)过点N 作NP MB ⊥于点PEO MB ⊥ NP EO ∴∥BNP BEO ∴△∽△ ··························································································· 7分 BN NP BE EO∴=····································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= ··················································································· 9分 16(4)25S t t ∴=- 2312(04)55S t t t =-+<< ················································································ 10分2312(2)55S t =--+ ························································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. ······················ 12分。
2012年全国中考数学压轴题分类解析汇编_专题9_几何综合问题
2012年全国中考数学压轴题分类解析汇编专题9:几何综合问题(答案部分)24. (2012湖北恩施12分)【答案】解:(1)证明:连接OB ,∵OB=OA,CE=CB ,∴∠A=∠OBA,∠CEB=∠ABC。
又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°。
∴∠OBA+∠ABC=90°。
∴OB⊥BC。
∴BC 是⊙O 的切线。
(2)连接OF ,AF ,BF ,∵DA=DO,CD⊥OA,∴△OAF 是等边三角形。
∴∠AOF=60°。
∴∠ABF=12∠AOF=30°。
(3)过点C 作CG⊥B E 于点G ,由CE=CB , ∴EG=12BE=5。
易证Rt△ADE∽Rt△CGE, ∴sin∠ECG=sin∠A=513, ∴EG 5CE ==13sin ECG 13=∠。
∴CG 12===。
又∵CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE 得AD DE CG GE =,即AD 2125=,解得24AD 5=。
∴⊙O 的半径为2AD=485。
【考点】等腰(边)三角形的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,勾股定理,相似三角形的判定和性质,锐角三角函数定义。
【分析】(1)连接OB ,有圆的半径相等和已知条件证明∠OBC=90°即可证明BC 是⊙O 的切线。
(2)连接OF ,AF ,BF ,首先证明△OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF 的度数。
(3)过点C 作CG⊥BE 于点G ,由CE=CB ,可求出EG=12BE=5,由Rt△ADE∽Rt△CGE 和勾股定理求出DE=2,由Rt △ADE∽Rt△CGE 求出AD 的长,从而求出⊙O 的半径。
25. (2012黑龙江哈尔滨10分)【答案】解:(1)证明:∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°。
2012年各地中考数学解析汇编《压轴题》精选
1(乐山)如图14,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,n -),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程2230x x --=的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点 (点D 在y 轴右侧),连结OD 、BD .① 当△OPC 为等腰三角形时,求点P 的坐标;② 求△BOD 面积的最大值,并写出此时点D 的坐标.2.(东营)已知抛物线36232++=bx x y 经过A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标; (2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.图143(黄石)已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。
(1)求抛物线1C 的顶点坐标. (2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)Amy ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
(参考公式:在平面直角坐标系中,若11(,)P x y ,22(,)Q x y ,则P ,Q 两点间的距离4.(张家界) 如同,抛物线23322++-=x x y 与x 轴交于C 、A 两点,与y 轴交于点B ,OB =4点O 关于直线AB 的对称点为D ,E 为线段AB 的中点. (1) 分别求出点A 、点B 的坐标 (2) 求直线AB 的解析式 (3) 若反比例函数xky =的图像过点D ,求k 值. (4)两动点P 、Q 同时从点A 出发,分别沿AB 、 AO 方向向B 、O 移动,点P 每秒移动1个单位,点Q每秒移动21个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值, 并求出此时的t 值,若不存在,请说明理由.(2012•泉州)如图,O 为坐标原点,直线l 绕着点A (0,2)旋转,与经过点C (0,1)的二次函数y=x 2+h 的图象交于不同的两点P 、Q .(1)求h 的值;(2)通过操作、观察,算出△POQ 的面积的最小值(不必说理);(3)过点P 、C 作直线,与x 轴交于点B ,试问:在直线l 的旋转过程中,四边形AOBQ 是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.x6(荆门)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=13,A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出....点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.图乙(备用图)7(武汉)如图1,点A为抛物线C1:y=12x2-2的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C.(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FGE=4∶3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.9. (苏州)如图,已知抛物线与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C . ⑴点B 的坐标为 ▲ ,点C 的坐标为 ▲ (用含b 的代数式表示);⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.xyPO CBA10(临忻).如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.11(梅州)如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°。
2012年全国各地中考数学试题分类解析汇编:精选压轴题(3)
2012年各地中考数学压轴题精选11~20_解析版【11. 2012成都】28. (本小题满分l2分)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
解答:解:(1)∵经过点(﹣3,0), ∴0=+m ,解得m=, ∴直线解析式为,C (0,).∵抛物线y=ax 2+bx+c 对称轴为x=1,且与x 轴交于A (﹣3,0),∴另一交点为B (5,0), 设抛物线解析式为y=a (x+3)(x ﹣5), ∵抛物线经过C (0,),∴=a •3(﹣5),解得a=,∴抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则AC∥EF且AC=EF.如答图1,(i)当点E在点E位置时,过点E作EG⊥x轴于点G,∵AC∥EF,∴∠CAO=∠EFG,又∵,∴△CAO≌△EFG,∴EG=CO=,即y E=,∴=x E2+x E+,解得x E=2(x E=0与C点重合,舍去),∴E(2,),S▱ACEF=;(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,同理可求得E′(+1,),S▱ACE′F′=.(3)要使△ACP的周长最小,只需AP+CP最小即可.如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度).∵B(5,0),C(0,),∴直线BC解析式为y=x+,∵x P=1,∴y P=3,即P(1,3).令经过点P(1,3)的直线为y=kx+3﹣k,∵y=kx+3﹣k,y=x2+x+,联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.∵y1=kx1+3﹣k,y2=kx2+3﹣k,∴y1﹣y2=k(x1﹣x2).根据两点间距离公式得到:M1M2===∴M1M2===4(1+k2).又M1P===;同理M2P=∴M1P•M2P=(1+k2)•=(1+k2)•=(1+k2)•=4(1+k2).∴M1P•M2P=M1M2,∴=1为定值.3【12.2012•聊城】25.某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?考点:二次函数的应用;一次函数的应用。
2012年各地中考数学 压轴题精选41~50(解析版)
2012年各地中考数学压轴题精选41~50_解析版【41.2012某某】26.如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H.(1)求两圆的圆心O1,O2所在直线的解析式;(2)求两圆的圆心O1,O2之间的距离d;(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2.试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.解答:解:(1)由题意可知O1(m,m),O2(n,n),设过点O1,O2的直线解析式为y=kx+b,则有:(0<m<n),解得,∴所求直线的解析式为:y=x.(2)由相交两圆的性质,可知P、Q点关于O1O2对称.∵P(4,1),直线O1O2解析式为y=x,∴Q(1,4).如解答图1,连接O1Q.∵Q(1,4),O1(m,m),根据两点间距离公式得到:O1Q==又O1Q为小圆半径,即QO1=m,∴=m,化简得:m2﹣10m+17=0 ①如解答图1,连接O2Q,同理可得:n2﹣10n+17=0 ②由①,②式可知,m、n是一元二次方程x2﹣10x+17=0 ③的两个根,解③得:x=5±,∵0<m<n,∴m=5﹣,n=5+.∵O1(m,m),O2(n,n),∴d=O1O2==8.(3)假设存在这样的抛物线,其解析式为y=ax2+bx+c,因为开口向下,所以a<0.如解答图2,连接PQ.由相交两圆性质可知,PQ⊥O1O2.∵P(4,1),Q(1,4),∴PQ==,又O1O2=8,∴S1=PQ•O1O2=××8=;又S2=(O2R+O1M)•MR=(n+m)(n﹣m)=;∴==1,即抛物线在x轴上截得的线段长为1.∵抛物线过点P(4,1),Q(1,4),∴,解得,∴抛物线解析式为:y=ax2﹣(5a+1)x+5+4a,令y=0,则有:ax2﹣(5a+1)x+5+4a=0,设两根为x1,x2,则有:x1+x2=,x1x2=,∵在x轴上截得的线段长为1,即|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,即()2﹣4()=1,化简得:8a2﹣10a+1=0,解得a=,可见a的两个根均大于0,这与抛物线开口向下(即a<0)矛盾,∴不存在这样的抛物线.【42. 2012六盘水】25.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A 匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.考点:相似三角形的判定与性质;一元二次方程的应用;二次函数的最值;勾股定理;勾股定理的逆定理;菱形的性质;翻折变换(折叠问题)。
2012年中考数学压轴题精选精析
2012年各地中考数学压轴题精选精析(1.2012黄石) 25.(本小题满分10分)已知抛物线1C 的函数解析式为23(0)y ax bx a b =+-<,若抛物线1C 经过点(0,3)-,方程230ax bx a +-=的两根为1x ,2x ,且124x x -=。
(1)求抛物线1C 的顶点坐标. (2)已知实数0x >,请证明:1x x +≥2,并说明x 为何值时才会有12x x+=. (3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线2C ,设1(,)A m y ,2(,)B n y 是2C 上的两个不同点,且满足:090AOB ∠=,0m >,0n <.请你用含有m 的表达式表示出△AOB 的面积S ,并求出S 的最小值及S 取最小值时一次函数OA 的函数解析式。
(参考公式:在平面直角坐标系中,若11(,)P x y ,22(,)Q x y ,则P ,Q 两点间的距离【考点】二次函数综合题. 【专题】压轴题;配方法.【分析】(1)求抛物线的顶点坐标,需要先求出抛物线的解析式,即确定待定系数a 、b 的值.已知抛物线图象与y 轴交点,可确定解析式中的常数项(由此得到a 的值);然后从方程入手求b 的值,题干给出了两根差的绝对值,将其进行适当变形(转化为两根和、两根积的形式),结合根与系数的关系即可求出b 的值. (2)11x x +=,因此将1x x+配成完全平方式,然后根据平方的非负性即可得证.(3)结合(1)的抛物线的解析式以及函数的平移规律,可得出抛物线C 2的解析式;在Rt △OAB 中,由勾股定理可确定m 、n 的关系式,然后用m 列出△AOB 的面积表达式,结合不等式的相关知识可确定△OAB 的最小面积值以及此时m 的值,进而由待定系数法确定一次函数OA 的解析式.【解答】解:(1)∵抛物线过(0,-3)点,∴-3a =-3∴a =1 ……………………………………1分 ∴y=x 2+bx -3∵x 2+bx -3=0的两根为x 1,x 2且21x -x =4∴21221214)(x x x x x x -+=-=4且b <0∴b =-2 ……………………1分 ∴y=x 2-2x -3=(x -1)2-4∴抛物线C1的顶点坐标为(1,-4) ………………………1分 (2)∵x >0,∴0)1(21≥-=-+xx x x ∴,21≥+x x 显然当x =1时,才有,21=+xx ………………………2分 (3)方法一:由平移知识易得C2的解析式为:y =x 2 ………………………1分∴A(m ,m 2),B (n ,n 2) ∵ΔAOB 为Rt Δ ∴OA 2+OB 2=AB 2∴m 2+m 4+n 2+n 4=(m -n )2+(m 2-n 2)2化简得:m n =-1 ……………………1分 ∵SΔAOB =OB OA ∙21=424221n n m m +∙+ ∵m n =-1∴SΔAOB =22221221221mm n m ++=++ =1221121)1(212=∙≥⎪⎭⎫ ⎝⎛+=+m m m m ∴SΔAOB 的最小值为1,此时m =1,A(1,1) ……………………2分 ∴直线OA 的一次函数解析式为y=x ……………………1分方法二:由题意可求抛物线2C 的解析式为:2y x = ··········································· (1分)∴2(,)A m m ,2(,)B n n过点A 、B 作x 轴的垂线,垂足分别为CAOC BOD ACDB S S S S =-- 梯形2222111()()222m n m n m m n n =+--⋅-⋅ 1()2mn m n =--由BOD △ ∽OAC △得 BD ODOC AC=即22n n m m-= ∴1mn =- ········································································································· (1分)∴1n m =-∴1()2S mn m n =--11()2m m=+由(2)知:12m m+≥∴111()2122S m m =+≥⨯=当且仅当1m =,S 取得最小值1此时A 的坐标为(1,1) ·········································································· (2分) ∴一次函数OA 的解析式为y x = ································································· (1分)【点评】该题考查了二次函数解析式的确定、函数图象的平移、不等式的应用等知识,解题过程中完全平方式的变形被多次提及,应熟练掌握并能灵活应用.(2.2012滨州)24.如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.考点:二次函数综合题。
2012年各地中考数学 压轴题精选31~40(解析版)
2012年各地中考数学压轴题精选31~40_解析版【31. 2012某某】24.已知二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,与y轴交于点C,且满足.(1)求这个二次函数的解析式;(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.考点:二次函数综合题。
分析:(1)欲求抛物线的解析式,关键是求得m的值.根据题中所给关系式,利用一元二次方程根与系数的关系,可以求得m的值,从而问题得到解决.注意:解答中求得两个m的值,需要进行检验,把不符合题意的m值舍去;(2)利用平行四边形的性质构造全等三角形,根据全等关系求得P点的纵坐标,进而得到P点的横坐标,从而求得P点坐标.解答:解:(1)∵二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,令y=0,即x2﹣(m2﹣2)x﹣2m=0 ①,则有:x1+x2=m2﹣2,x1x2=﹣2m.∴===,化简得到:m2+m﹣2=0,解得m1=﹣2,m2=1.当m=﹣2时,方程①为:x2﹣2x+4=0,其判别式△=b2﹣4ac=﹣12<0,此时抛物线与x轴没有交点,不符合题意,舍去;当m=1时,方程①为:x2+x﹣2=0,其判别式△=b2﹣4ac=9>0,此时抛物线与x轴有两个不同的交点,符合题意.∴m=1,∴抛物线的解析式为y=x2+x﹣2.(2)假设在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形.如图所示,连接PA.PB.AC.BC,过点P作PD⊥x轴于D点.∵抛物线y=x2+x﹣2与x轴交于A.B两点,与y轴交于C点,∴A(﹣2,0),B(1,0),C(0,2),∴OB=1,OC=2.∵PACB为平行四边形,∴PA∥BC,PA=BC,∴∠PAD=∠CBO,∴∠APD=∠OCB.在Rt△PAD与Rt△CBO中,∵,∴Rt△PAD≌Rt△CBO,∴PD=OC=2,即y P=2,∴直线解析式为y=x+3,∴x P=﹣1,∴P(﹣1,2).所以在直线y=x+3上存在一点P,使四边形PACB为平行四边形,P点坐标为(﹣1,2).点评:本题是代数几何综合题,考查了二次函数的图象与性质、抛物线与x轴的交点、一元二次方程根的解法及根与系数关系、一次函数、平行四边形的性质以及全等三角形的判定与性质等方面的知识,涉及的考点较多,有一定的难度.【32. 2012某某】22.(满分14分)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).考点:二次函数综合题.分析:(1)利用待定系数法求出二次函数解析式即可;(2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x-m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标;(3)综合利用几何变换和相似关系求解.方法一:翻折变换,将△NOB沿x轴翻折;方法二:旋转变换,将△NOB绕原点顺时针旋转90°.特别注意求出Py =-x 的对称点也满足题意,即满足题意的P解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).∴⎩⎨⎧9a +3b =016a +4b =4,解得:⎩⎨⎧a =1b =-3. ∴ 抛物线的解析式是y =x 2-3x .(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),得:4=4k 1,解得k 1=1. ∴ 直线OB 的解析式为y =x .∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m . ∵ 点D 在抛物线y =x 2-3x 上. ∴ 可设D (x ,x 2-3x ). 又点D 在直线y =x -m 上,∴x 2-3x =x -m ,即x 2-4x +m =0. ∵ 抛物线与直线只有一个公共点, ∴△=16-4m =0,解得:m =4. 此时x 1=x 2=2,y =x 2-3x =-2, ∴D 点坐标为(2,-2).(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),∴ 点A 关于直线OB 的对称点A'的坐标是(0,3).第22题图① 第22题图②设直线A'B 的解析式为y =k 2x +3,过点B (4,4), ∴ 4k 2+3=4,解得:k 2=14.∴ 直线A'B 的解析式是y =14x +3.∵∠NBO =∠ABO , ∴ 点N 在直线A'B 上,∴ 设点N (n ,14n +3),又点N 在抛物线y =x 2-3x 上,∴14n +3=n 2-3n , 解得:n 1=-34,n 2=4(不合题意,会去),∴ 点N 的坐标为(-34,4516).方法一:如图1,将△NOB 沿x 轴翻折,得到△N 1OB 1, 则N 1(-34,-4516),B 1(4,-4),∴O 、D 、B 1都在直线y =-x 上. ∵△P 1OD ∽△NOB , ∴△P 1OD ∽△N 1OB 1, ∴OP 1ON 1=OD OB 1=12, ∴ 点P 1的坐标为(-38,-4532).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(4532,38).综上所述,点P 的坐标是(-38,-4532)或(4532,38).方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到△N 2OB 2则N 2(4516,34),B 2(4,-4),∴O 、D 、B 2都在直线y =-x 上. ∵△P 1OD ∽△NOB , ∴△P 1OD ∽△N 2OB 2, ∴OP 1ON 2=OD OB 2=12, 图1图2∴ 点P 1的坐标为(4532,38).将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点P 2(-38,-4532).综上所述,点P 的坐标是(-38,-4532)或(4532,38).点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.【33. 2012某某】27.如图,已知二次函数L 1:y=x 2﹣4x+3与x 轴交于A .B 两点(点A 在点B 左边),与y 轴交于点C .(1)写出二次函数L 1的开口方向、对称轴和顶点坐标; (2)研究二次函数L 2:y=kx 2﹣4kx+3k (k≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y=8k 与抛物线L 2交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.考点:二次函数综合题。
2012中考数学压轴题精选精析(21-30例)
2012中考数学压轴题精选精析(21-30例)21.(2011•湖南邵阳)如图(十一)所示,在平面直角坐标系Oxy 中,已知点A (-94,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧),以AB 为直径的圆恰好经过....点C . (1)求∠ACB 的度数;(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式;(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.【解题思路】:(1) ∵以AB 为直径的圆恰好经过....点C ∴∠ACB =090 (2) ∵△AOC ∽△ABC ∴OB AO OC ∙=2∵A (-94,0),点C (0,3),∴49=AO3=OC ∴OB 4932=∴ 4=OB ∴B(4,0) 把 A 、B 、C 三点坐标代入得 3127312++-=x x y (3)1)OD=OB , D 在OB 的中垂线上,过D 作DH ⊥OB,垂足是H 则H 是OB 中点。
DH=OC 21 OB OH 21= ∴D )23,2( 2) BD=BO 过D 作DG ⊥OB,垂足是G ∴OG:OB=CD:CB DG:OC=1:5∴ OG:4=1:5 DG:3=1:5 ∴OG=54 DG=53∴D(54,53)【点评】:本题考察了相似、勾股定理、抛物线的解析式求解等知识,运用平行于三角形一边的直线截其他两边所得的三角形与原三角形相似构建比例式,求解点到坐标轴的距离,进而得出相应的坐标。
难度中等24、(2011•湖北荆州)如图甲,分别以两个彼此相邻的正方形O ABC 与CDEF 的边OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上),抛物线y= 14x2+bx+c 经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,正方形CDEF 的面积为1. (1)求B 点坐标;(2)求证:ME 是⊙P 的切线;(3)设直线AC 与抛物线对称轴交于N ,Q 点是此轴称轴上不与N 点重合的一动点, ①求△ACQ 周长的最小值;②若FQ=t ,S △ACQ =S ,直接写出S 与t 之间的函数关系式.考点:二次函数综合题.分析:(1)如图甲,连接PE 、PB ,设PC=n ,由正方形CDEF 的面积为1,可得CD=CF=1,根据圆和正方形的对称性知:OP=PC=n ,由PB=PE ,根据勾股定理即可求得n 的值,继而求得B 的坐标;(2)由(1)知A (0,2),C (2,0),即可求得抛物线的解析式,然后求得FM 的长,则可得△PEF ∽△EMF ,则可证得∠PEM=90°,即ME 是⊙P 的切线;(3)①如图乙,延长AB 交抛物线于A′,连CA′交对称轴x=3于Q ,连AQ ,则有AQ=A′Q ,△ACQ周长的最小值为AC+A′C的长,利用勾股定理即可求得△ACQ周长的最小值;②分别当Q点在F点上方时,当Q点在线段FN上时,当Q点在N点下方时去分析即可求得答案.解答:解:(1)如图甲,连接PE、PB,设PC=n,∵正方形CDEF的面积为1,∴CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,∴BC=2PC=2n,∵而PB=PE,∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+1,∴5n2=(n+1)2+1,解得:n=1或n=-12(舍去),∴BC=OC=2,∴B点坐标为(2,2);(2)如图甲,由(1)知A(0,2),C(2,0),∵A,C在抛物线上,\∴ {c=214×4+2b+c=0,解得:{c=2b=-32,∴抛物线的解析式为:y= 14x2-32x+2= 14(x-3)2-14,∴抛物线的对称轴为x=3,即EF所在直线,∵C与G关于直线x=3对称,∴CF=FG=1,∴MF= 12FG= 12,在Rt△PEF与Rt△EMF中,∠EFM=∠EFP,∵ FMEF=121=12,EFPF=12,∴ FMEF=EFPF,∴△PEF∽△EMF,∴∴∠EPF=∠FEM,∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°,∴ME是⊙P的切线;(3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,∴△ACQ周长的最小值为AC+A′C的长,∵A与A′关于直线x=3对称,∴A(0,2),A′(6,2),∴A′C=(6-2)2+22=2 5,而AC=22+22=2 2,∴△ACQ周长的最小值为2 2+2 5;②当Q点在F点上方时,S=t+1,当Q点在线段FN上时,S=1-t,当Q点在N点下方时,S=t-1.点评:此题考查了待定系数法求二次函数的解析式,圆的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性很强,题目难度较大,解题的关键是方程思想、分类讨论与数形结合思想的应用.22、(2011•襄阳)如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴交于点C,连接BC,AC.CD是⊙O'的切线,AD丄CD于点D,tan∠CAD=错误!未找到引用源。
2012年全国各地中考数学压轴题精选
2012年全国各地中考数学压轴题精选(解析版1--20)1.(2012•菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.解题思路:(1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可.解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)2.(2012•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.解题思路:(1)根据与x轴的两个交点A、B的坐标,利设出两点法解析式,然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式;(2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可;(3)①根据相似三角形对应角相等可得∠MCH=∠CAO,然后分(i)点H在点C下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是﹣2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标;②在x轴上取一点D,过点D作DE⊥AC于点E,可以证明△AED和△AOC相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DM∥AC,然后求出直线DM的解析式,与抛物线解析式联立求解即可得到点M的坐标.解答:解:(1)设该二次函数的解析式为:y=a(x+1)(x﹣2),将x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2),解得a=1,∴抛物线的解析式为y=(x+1)(x﹣2),即y=x2﹣x﹣2;(2)设OP=x,则PC=PA=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=;(3)①∵△CHM∽△AOC,∴∠MCH=∠CAO,(i)如图1,当H在点C下方时,∵∠MCH=∠CAO,∴CM∥x轴,∴y M=﹣2,∴x2﹣x﹣2=﹣2,解得x1=0(舍去),x2=1,∴M(1,﹣2),(ii)如图1,当H在点C上方时,∵∠MCH=∠CAO,∴PA=PC,由(2)得,M为直线CP与抛物线的另一交点,设直线CM的解析式为y=kx﹣2,把P(,0)的坐标代入,得k﹣2=0,解得k=,∴y=x﹣2,由x﹣2=x2﹣x﹣2,解得x1=0(舍去),x2=,此时y=×﹣2=,∴M′(,),②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=,在Rt△AOC中,AC===,∵∠COA=∠DEA=90°,∠OAC=∠EAD,∴△AED∽△AOC,∴=,即=,解得AD=2,∴D(1,0)或D(﹣3,0).过点D作DM∥AC,交抛物线于M,如图(备用图)则直线DM的解析式为:y=﹣2x+2或y=﹣2x﹣6,当﹣2x﹣6=x2﹣x﹣2时,即x2+x+4=0,方程无实数根,当﹣2x+2=x2﹣x﹣2时,即x2+x﹣4=0,解得x1=,x2=,∴点M的坐标为(,3+)或(,3﹣).3.(2012•福州)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m 的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).解题思路:(1)利用待定系数法求出二次函数解析式即可;(2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x﹣m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标;(3)综合利用几何变换和相似关系求解.方法一:翻折变换,将△NOB沿x轴翻折;方法二:旋转变换,将△NOB绕原点顺时针旋转90°.特别注意求出P点坐标之后,该点关于直线y=﹣x的对称点也满足题意,即满足题意的P点有两个,避免漏解.解答:解:(1)∵抛物线y=y=ax2+bx(a≠0)经过A(3,0)、B(4,4)∴,解得:∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∵点D在抛物线y=x2﹣3x上,∴可设D(x,x2﹣3x),又点D在直线y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0,∵抛物线与直线只有一个公共点,∴△=16﹣4m=0,解得:m=4,此时x1=x2=2,y=x2﹣3x=﹣2,∴D点的坐标为(2,﹣2).(3)∵直线OB的解析式为y=x,且A(3,0),∴点A关于直线OB的对称点A′的坐标是(0,3),设直线A′B的解析式为y=k2x+3,过点(4,4),∴4k2+3=4,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∴点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=4(不合题意,舍去)∴N点的坐标为(﹣,).方法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(,),B1(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).方法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(,),B2(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,∴△P1OD∽△N2OB2,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).4.(2012•临沂)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.解题思路:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),5.(2012•烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB 向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.解题思路:(1)根据矩形的性质可以写出点A得到坐标;由顶点A的坐标可设该抛物线的顶点式方程为y=a(x﹣1)2+4,然后将点C的坐标代入,即可求得系数a的值(利用待定系数法求抛物线的解析式);(2)利用待定系数法求得直线AC的方程y=﹣2x+6;由图形与坐标变换可以求得点P的坐标(1,4﹣t),据此可以求得点E的纵坐标,将其代入直线AC方程可以求得点E或点G的横坐标;然后结合抛物线方程、图形与坐标变换可以求得GE=4﹣、点A到GE的距离为,C到GE的距离为2﹣;最后根据三角形的面积公式可以求得S△ACG=S△AEG+S△C EG=﹣(t﹣2)2+1,由二次函数的最值可以解得t=2时,S△ACG的最大值为1;(3)因为菱形是邻边相等的平行四边形,所以点H在直线EF上.解答:解:(1)A(1,4).…(1分)由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.…(2分)(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).…(3分)∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.…(4分)∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.…(5分)又点A到GE的距离为,C到GE的距离为2﹣,即S△ACG=S△AEG+S△CEG=•EG•+•EG(2﹣)=•2(t﹣)=﹣(t﹣2)2+1.…(7分)当t=2时,S△ACG的最大值为1.…(8分)(3)t=或t=20﹣8.…(12分)(说明:每值各占(2分),多出的值未舍去,每个扣1分)6.(2012•义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM 与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?解题思路:(1)利用待定系数法求出直线y=kx的解析式,根据A点坐标用勾股定理求出线段OA的长度;(2)如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H,构造相似三角形△QHM与△QGN,将线段QM与线段QN的长度之比转化为相似三角形的相似比,即为定值.需要注意讨论点的位置不同时,这个结论依然成立;(3)由已知条件角的相等关系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED.设OE=x,则由相似边的比例关系可以得到m关于x的表达式(),这是一个二次函数.借助此二次函数图象(如答图3),可见m在不同取值范围时,x的取值(即OE的长度,或E点的位置)有1个或2个.这样就将所求解的问题转化为分析二次函数的图象与性质问题.另外,在相似三角形△ABE与△OED中,运用线段比例关系之前需要首先求出AB的长度.如答图2,可以通过构造相似三角形,或者利用一次函数(直线)的性质求得AB的长度.解答:解:(1)把点A(3,6)代入y=kx 得;∵6=3k,∴k=2,∴y=2x.(2分)OA=.…(3分)(2)是一个定值,理由如下:如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.①当QH与QM重合时,显然QG与QN重合,此时;②当QH与QM不重合时,∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,当点P、Q在抛物线和直线上不同位置时,同理可得.…(7分)①①(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴点F(,0),设点B(x,),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴点B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5 …(8分);(求AB也可采用下面的方法)设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5…(8分)(其它方法求出AB的长酌情给分)在△ABE与△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.…(9分)设OE=x,则AE=﹣x (),由△ABE∽△OED得,∴∴()…(10分)∴顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个.∴当时,E点只有1个…(11分)当时,E点有2个…(12分).7.(2012•益阳)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.解题思路:(1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可证得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF;(2)由正方形ABCD的面积等于3,即可求得此正方形的边长,由在△BGE与△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可证得△BGE∽△ABE,由相似三角形的面积比等于相似比的平方,即可求得答案;(3)首先由正切函数,求得∠BAE=30°,易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′与AE在同一直线上,即BF与AB′的交点是G,然后设BF与AE′的交点为H,可证得△BAG≌△HAG,继而证得结论.解答:(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCF=90°,AB=BC,∴∠ABF+∠CBF=90°,∵AE⊥BF,∴∠ABF+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,∴△ABE≌△BCF.…(4分)(2)解:∵正方形面积为3,∴AB=,…(5分)在△BGE与△ABE中,∵∠GBE=∠BAE,∠EGB=∠EBA=90°,∴△BGE∽△ABE,…(7分)∴,又∵BE=1,∴AE2=AB2+BE2=3+1=4,∴S△BGE=×S△ABE==.…(8分)(3)解:没有变化.…(9分)理由:∵AB=,BE=1,∴tan∠BAE==,∠BAE=30°,…(10分)∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′公共,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,∴∠DAE′=∠B′AE′=∠BAE=30°,∴AB′与AE在同一直线上,即BF与AB′的交点是G,设BF与AE′的交点为H,则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,∴△BAG≌△HAG,…(11分)∴S四边形GHE′B′=S△AB′E′﹣S△AGH=S△AB E﹣S△ABG=S△BGE.∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.…(12分)8.(2012•丽水)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解题思路:(1)根据三角函数求E点坐标,运用待定系数法求解;(2)在Rt△OGE中,运用三角函数和勾股定理求EG,OG的长度,再计算面积;(3)分两种情况讨论求解:①点Q在AC上;②点Q在AB上.求直线OP与直线AC的交点坐标即可.解答:解:(1)在Rt△OCE中,OE=OCtan∠OCE==,∴点E(0,2).设直线AC的函数解析式为y=kx+,有,解得:k=.∴直线AC的函数解析式为y=.(2)在Rt△OGE中,tan∠EOG=tan∠OCE==,设EG=3t,OG=5t,OE==t,∴,得t=2,故EG=6,OG=10,∴S△OEG=.(3)存在.①当点Q在AC上时,点Q即为点G,如图1,作∠FOQ的角平分线交CE于点P1,由△OP1F≌△OP1Q,则有P1F⊥x轴,由于点P1在直线AC上,当x=10时,y=﹣=,∴点P1(10,).②当点Q在AB上时,如图2,有OQ=OF,作∠FOQ的角平分线交CE于点P2,过点Q作QH⊥OB于点H,设OH=a,则BH=QH=14﹣a,在Rt△OQH中,a2+(14﹣a)2=100,解得:a1=6,a2=8,∴Q(﹣6,8)或Q(﹣8,6).连接QF交OP2于点M.当Q(﹣6,8)时,则点M(2,4).当Q(﹣8,6)时,则点M(1,3).设直线OP2的解析式为y=kx,则2k=4,k=2.∴y=2x.解方程组,得.∴P2();当Q(﹣8,6)时,则点M(1,3),同理可求P2′(),P3();如图,有QP4∥OF,QP4=OF=10,点P4在E点,设P4的横坐标为x,则点Q的横坐标为x﹣10,∵y Q=y P,直线AB的函数解析式为y=x+14,∴(x﹣10)+14=﹣x+2,解得:x=,可得:y=,∴点P4(,),当Q在BC边上时,如图,OQ=OF=10,点P5在E点,∴P5(0,2),综上所述,满足条件的P点坐标为(10,)或()或()或(,)或(0,2).9.(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.解题思路:(1)A、B点为抛物线与x轴交点,令y=0,解一元二次方程即可.(2)根据题意求出△ACD中AC边上的高,设为h.在坐标平面内,作AC的平行线,平行线之间的距离等于h.根据等底等高面积相等,可知平行线与坐标轴的交点即为所求的D点.从一次函数的观点来看,这样的平行线可以看做是直线AC向上或向下平移而形成.因此先求出直线AC的解析式,再求出平移距离,即可求得所作平行线的解析式,从而求得D点坐标.注意:这样的平行线有两条,如答图1所示.(3)本问关键是理解“以A、B、M为顶点所作的直角三角形有且只有三个”的含义.因为过A、B点作x轴的垂线,其与直线l的两个交点均可以与A、B点构成直角三角形,这样已经有符合题意的两个直角三角形;第三个直角三角形从直线与圆的位置关系方面考虑,以AB为直径作圆,当直线与圆相切时,根据圆周角定理,切点与A、B点构成直角三角形.从而问题得解.注意:这样的切线有两条,如答图2所示.解答:解:(1)令y=0,即=0,解得x1=﹣4,x2=2,∴A、B点的坐标为A(﹣4,0)、B(2,0).(2)S△ACB=AB•OC=9,在Rt△AOC中,AC===5,设△ACD中AC边上的高为h,则有AC•h=9,解得h=.如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=﹣1的两个交点即为所求的点D.设l1交y轴于E,过C作CF⊥l1于F,则CF=h=,∴CE==.设直线AC的解析式为y=kx+b,将A(﹣4,0),C(0,3)坐标代入,得到,解得,∴直线AC解析式为y=x+3.直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,∴直线l1的解析式为y=x+3﹣=x﹣.则D1的纵坐标为×(﹣1)﹣=,∴D1(﹣1,).同理,直线AC向上平移个长度单位得到l2,可求得D2(﹣1,)综上所述,D点坐标为:D1(﹣1,),D2(﹣1,).(3)如答图2,以AB为直径作⊙F,圆心为F.过E点作⊙F的切线,这样的切线有2条.连接FM,过M作MN⊥x轴于点N.∵A(﹣4,0),B(2,0),∴F(﹣1,0),⊙F半径FM=FB=3.又FE=5,则在Rt△MEF中,ME==4,sin∠MFE=,cos∠MFE=.在Rt△FMN中,MN=MF•sin∠MFE=3×=,FN=MF•cos∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x﹣3.10.(2012•杭州)如图,AE切⊙O于点E,A T交⊙O于点M,N,线段OE交A T于点C,OB⊥A T于点B,已知∠EA T=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC 的周长之比.解题思路:(1)由AE与圆O相切,根据切线的性质得到AE与CE垂直,又OB与A T垂直,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出三角形AEC与三角形OBC相似,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数;(2)在直角三角形AEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OB垂直于MN,由垂径定理得到B为MN的中点,根据MN的长求出MB的长,在直角三角形OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在直角三角形OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值;(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有6个,如图所示,每小图2个,顶点在圆上的三角形,延长EO与圆交于点D,连接DF,由第二问求出半径,的长直径ED的长,根据ED为直径,利用直径所对的圆周角为直角,得到三角形EFD为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出三角形EFD的周长,再由第二问求出的三角形OBC的三边表示出三角形BOC的周长,即可求出两三角形的周长之比.解答:解:(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥A T,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO交圆O于点D,连接DF,如图所示,∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.11.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.解题思路:(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长;(2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;(3)分别从当0≤t≤时,当<t≤2时,当2<t≤时,当<t≤4时去分析求解即可求得答案.解答:解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.12.(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.解题思路:(1)利用待定系数法求抛物线的解析式.因为已知A(3,0),所以需要求得B点坐标.如答图1,连接OB,利用勾股定理求解;(2)由∠PBO=∠POB,可知符合条件的点在线段OB的垂直平分线上.如答图2,OB的垂直平分线与抛物线有两个交点,因此所求的P点有两个,注意不要漏解;(3)如答图3,作MH⊥x轴于点H,构造梯形MBOH与三角形MHA,求得△MAB面积的表达式,这个表达式是关于M点横坐标的二次函数,利用二次函数的极值求得△MAB面积的最大值.解答:解:(1)如答图1,连接OB.∵BC=2,OC=1∴OB==∴B(0,)将A(3,0),B(0,)代入二次函数的表达式得,解得,∴y=﹣x2+x+.(2)存在.如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P.∵B(0,),O(0,0),∴直线l的表达式为y=.代入抛物线的表达式,得﹣x2+x+=;解得x=1±,∴P(1±,).(3)如答图3,作MH⊥x轴于点H.设M(x m,y m),则S△MAB=S梯形MBOH+S△MHA﹣S△OAB=(MH+OB)•OH+HA•MH﹣OA•OB =(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣∵y m=﹣x m2+x m+,∴S△MAB=x m+(﹣x m2+x m+)﹣=x m2+x m=(x m﹣)2+∴当x m=时,S△MAB取得最大值,最大值为.13.(2012•铜仁地区)如图已知:直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.解题思路:(1)首先确定A、B、C三点的坐标,然后利用待定系数法求抛物线的解析式;(2)△ABO为等腰直角三角形,若△ADP与之相似,则有两种情形,如答图1所示.利用相似三角形的性质分别求解,避免遗漏;(3)如答图2所示,分别计算△ADE的面积与四边形APCE的面积,得到面积的表达式.利用面积的相等关系得到一元二次方程,将点E是否存在的问题转化为一元二次方程是否有实数根的问题,从而解决问题.需要注意根据(2)中P点的不同位置分别进行计算,在这两种情况下,一元二次方程的判别式均小于0,即所求的E点均不存在.解答:解:(1)由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入y=ax2+bx+c,得方程组…3分解得:∴抛物线的解析式为y=x2﹣4x+3 …5分(2)由题意可得:△ABO为等腰三角形,如答图1所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(﹣1,4)…7分若△ABO∽△ADP2 ,过点P2作P2 M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合,∴P2(1,2)…10分(3)如答图2,设点E(x,y),则S△ADE=①当P1(﹣1,4)时,S四边形AP1CE=S△AC P1+S△ACE==4+|y|…11分∴2|y|=4+|y|,∴|y|=4∵点E在x轴下方,∴y=﹣4,代入得:x2﹣4x+3=﹣4,即x2﹣4x+7=0,∵△=(﹣4)2﹣4×7=﹣12<0∴此方程无解…12分②当P2(1,2)时,S四边形AP2CE=S△AC P2+S△ACE==2+|y|,∴2|y|=2+|y|,∴|y|=2∵点E在x轴下方,∴y=﹣2,代入得:x2﹣4x+3=﹣2,即x2﹣4x+5=0,∵△=(﹣4)2﹣4×5=﹣4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E.…14分14.(2012•温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.解题思路:(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明△AGH∽△PCB,根据相似的性质得到:,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值;(3)存在,本题要分当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1和当0<m<1时,BC=2(1﹣m),PM=m,BP=1﹣m,两种情况分别讨论,再求出满足题意的m值和相对应的点E坐标.解答:解:(1)当m=3时,y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B,C关于对称轴对称∴BC=4.(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△AGH∽△PCB,∴,∵抛物线y=﹣x2+2mx的对称轴为直线x=m,其中m>1,又∵B,C关于对称轴对称,∴BC=2(m﹣1),∵B(1,2m﹣1),P(1,m),∴BP=m﹣1,又∵A(2m,0),C(2m﹣1,2m﹣1),∴H(2m﹣1,0),∴AH=1,CH=2m﹣1,∴,∴m=.(3)∵B,C不重合,∴m≠1,(I)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1,(i)若点E在x轴上(如图1),∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP,∴△BPC≌△MEP,∴BC=PM,∴2(m﹣1)=m,∴m=2,此时点E的坐标是(2,0);(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,易证△BPC≌△NPE,∴BP=NP=OM=1,∴m﹣1=1,∴m=2,。
2012年中考数学压轴题精选(含答案)
(2012年北京市)24、在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ 。
(1)若α=60°且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图2中,点P 不与点B 、M 重合,线段CQ 的延长线于射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B 、M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =DQ ,请直接写出α的范围。
图1QM(P)C B APM图2QCBA(答案)(1)o CDB 30=∠ (2)α-=∠o CDB 90 (3)o o 6045<<α (2012年北京市)25、在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|。
例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点)。
(1)已知点A(-12,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直/线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年各地中考数学压轴题精选21~30_解析版【21.2012上海】24.如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当∠ECA=∠OAC时,求t的值.考点:相似三角形的判定与性质;待定系数法求二次函数解析式;全等三角形的判定与性质;勾股定理。
解答:解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),∴,解得,∴这个二次函数的解析式为:y=﹣2x2+6x+8;(2)∵∠EFD=∠EDA=90°∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA∴△EDF∽△DAO∴.∵,∴=,∴,∴EF=t.同理,∴DF=2,∴OF=t﹣2.(3)∵抛物线的解析式为:y=﹣2x2+6x+8,∴C(0,8),OC=8.如图,连接EC、AC,过A作EC的垂线交CE于G点.∵∠ECA=∠OAC,∴∠OAC=∠GCA(等角的余角相等);在△CAG与△OCA中,,∴△CAG≌△OCA,∴CG=4,AG=OC=8.如图,过E点作EM⊥x轴于点M,则在Rt△AEM中,∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,由勾股定理得:∵AE2=AM2+EM2=;在Rt△AEG中,由勾股定理得:∴EG===∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4由勾股定理得:EF2+CF2=CE2,即,解得t1=10(不合题意,舍去),t2=6,∴t=6.【22. 2012广东】22.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).考点:二次函数综合题。
解答:解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)S△AEC=AE•OC=m,S△AED=s=m2;则:S△EDC=S△AEC﹣S△AED=﹣m2+m=﹣(m﹣)2+;∴△CDE的最大面积为,此时,AE=m=,BE=AB﹣AE=.过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得:=,即:=∴EF=;∴以E点为圆心,与BC相切的圆的面积S⊙E=π•EF2=.【23. 2012嘉兴】24.在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.考点:二次函数综合题。
解答:解:(1)①把x=代入y=x2,得y=2,∴P(,2),∴OP=∵PA丄x轴,∴PA∥MO.∴tan∠P0M=tan∠0PA==.②设Q(n,n2),∵tan∠QOB=tan∠POM,∴.∴n=∴Q(,),∴OQ=.当OQ=OC 时,则C1(0,),C2(0,);当OQ=CQ 时,则C3(0,1).(2)①∵P(m,m2),设Q(n,n2),∵△APO∽△BOQ,∴∴,得n=,∴Q(,).②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(,)代入,得:解得b=1,∴M(0,1)∵,∠QBO=∠MOA=90°,∴△QBO∽△MOA∴∠MAO=∠QOB,∴QO∥MA同理可证:EM∥OD又∵∠EOD=90°,∴四边形ODME是矩形.【24. 2012贵州安顺】26.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.考点:二次函数综合题。
解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由题意知点A(0,﹣12),所以c=﹣12,又18a+c=0,,∵AB∥OC,且AB=6,∴抛物线的对称轴是,∴b=﹣4,所以抛物线的解析式为;(2)①,(0<t<6)②当t=3时,S取最大值为9.这时点P的坐标(3,﹣12),点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).【25. 2012•资阳】25.抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.考点:二次函数综合题。
专题:压轴题。
分析:(1)利用配方法将二次函数整理成顶点式即可,再利用点在直线上的性质得出答案即可;(2)首先利用点N在抛物线上,得出N点坐标,再利用勾股定理得出NF2=NC2+FC2,进而得出NF2=NB2,即可得出答案;(3)求点M的坐标,需要先求出直线PF的解析式.首先由(2)的思路得出MF=MA,然后连接AF、FB,通过证明△PFA∽△PBF,利用相关的比例线段将PA•PB的值转化为PF的值,进而求出点F的坐标和直线PF的解析式,即可得解.解答:解:(1)y=x2+x+m=(x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)∵点N在抛物线上,∴点N的纵坐标为:a2+a+2,即点N(a,a2+a+2)过点F作FC⊥NB于点C,在Rt△FCN中,FC=a+2,NC=NB﹣CB=a2+a,∴NF2=NC2+FC2=(a2+a)2+(a+2)2,=(a2+a)2+(a2+4a)+4,而NB2=(a2+a+2)2,=(a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB;(3)连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的结论知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴=,PF2=PA×PB=,过点F作FG⊥x轴于点G,在Rt△PFG中,PG==,∴PO=PG+GO=,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k=,b=,∴直线PF:y=x+,解方程x2+x+2=x+,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y=,∴M(﹣3,).点评:考查了二次函数综合题,在该二次函数综合题中,融入了勾股定理、相似三角形等重点知识,(3)题通过构建相似三角形将PA•PB转化为PF的值是解题的关键,也是该题的难点.【26. 2012•德州】23.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.考点:翻折变换(折叠问题);二次函数的最值;全等三角形的判定与性质;正方形的性质。
分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.解答:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)△PHD的周长不变为定值8.证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,∴△ABP≌△QBP.∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△BPA.∴EM=AP=x.∴在Rt△APE中,(4﹣BE)2+x2=BE2.解得,.∴.又四边形PEFG与四边形BEFC全等,∴.即:.配方得,,∴当x=2时,S有最小值6.点评:此题主要考查了翻折变换的性质以及全等三角形的判定与性质和勾股定理、二次函数的最值问题等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.【27. 2012•湘潭】26.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.考点:二次函数综合题。