七年级上选择题+填空复习

合集下载

七年级上历史复习题

七年级上历史复习题

七年级上历史复习题一、选择题1. 秦始皇统一六国后,推行了以下哪项政策?A. 焚书坑儒B. 推行郡县制C. 建立科举制D. 实行分封制2. 唐朝时期,以下哪位皇帝开创了“开元盛世”?A. 唐太宗B. 唐玄宗C. 唐高宗D. 唐德宗3. 明朝时期,以下哪项科技成就代表了当时世界的最高水平?A. 造纸术B. 印刷术C. 指南针D. 火药二、填空题1. 公元前221年,________统一了六国,建立了中国历史上第一个统一的中央集权制国家。

2. 唐朝时期,________是著名的高僧,他曾西行取经,对中国佛教的发展产生了深远影响。

3. 明朝时期,________是著名的航海家,他七次下西洋,开辟了海上丝绸之路。

三、简答题1. 请简述秦始皇统一六国后实行的郡县制对中国古代政治制度的影响。

2. 请简述唐朝时期“开元盛世”的主要表现及其历史意义。

3. 请简述明朝时期郑和下西洋的历史背景及其对中国和世界的影响。

四、论述题1. 论述中国古代科举制度的起源、发展及其对中国古代社会的影响。

2. 论述明朝时期“永乐大典”编纂的历史背景、过程及其对中国古代文化的贡献。

五、材料分析题1. 阅读以下材料,分析唐朝时期“贞观之治”的特点及其对唐朝历史发展的影响。

材料:唐朝贞观年间,唐太宗李世民采取了一系列政策,如减轻赋税、整顿吏治、推行科举等,使得国家政治清明,经济繁荣,社会安定,被称为“贞观之治”。

2. 阅读以下材料,分析明朝时期“永乐大典”编纂的意义及其对中国古代文化的影响。

材料:明朝永乐年间,明成祖朱棣下令编纂《永乐大典》,该书收录了大量古代文献,是中国古代最大的一部百科全书,对后世的学术研究和文化传承产生了深远的影响。

精品 七年级数学上册 有理数综合复习题

精品 七年级数学上册 有理数综合复习题

x 2 ( a b cd ) x ( a b) 2010 ( cd ) 2011 的值。
10.已 知 有 理 数 ( 1) 求
在数轴上的位置如图所示且 ( 2)
24.数轴上表示整数的点称为整点,一数轴规定单位长度为 1 厘米,若在这条数轴上随意画出一条 10 厘 米长的线段 AB,则线段 AB 盖住的整点有( A.8 个或 9 个 B.9 个或 10 个 ) C.10 个或 11 个 ) D.±7 或±3 D.11 个或 12 个
25.已知│m│=5,│n│=2,│m-n│=n-m,则 m+n 的值是( A.-7 B.-3 C.-3 或-7
2 2 2 2
2
5.计算下列各题: (1)
11 7 3 13 (48) 12 6 4 24
1 5 5 1 1 5 (2) 1 2 2 7 7 2 2 7
4
1 1 1 1 6 (3) 32 5 3 5 2 3 4 7 4 7
1 1 小且比 大,则这个分数是 4 3
10 小的所有整数的和是 3
3
11.已知 a 2 ,且 | a 2 | 4 ,则 a 的倒数的相反数是_________ 12.若 x 与 z 互为倒数,|y|=7,则 xz+y= 13.已知有理数 a, b, c 满足
|a| |b| |c| abc 1 ,则 _________ a b c | abc |

2y = 3
(2)添括号后整理: ① 6
2 x 3 x = 2 3
② 12
6 x 24 3 x = 24 3

七年级上册历史复习题

七年级上册历史复习题

七年级上册历史复习题一、选择题1. 我国古代四大发明之一的造纸术,最早出现在哪个朝代?A. 秦朝B. 汉朝C. 三国时期D. 唐朝2. 下列哪位历史人物不属于春秋五霸?A. 齐桓公B. 晋文公C. 楚庄王D. 秦始皇3. 我国历史上第一个统一的封建王朝是:A. 秦朝B. 汉朝C. 唐朝D. 宋朝4. “丝绸之路”的开通,促进了中西方的交流,其主要路线是:A. 从长安出发,经过河西走廊,到达西域B. 从长安出发,经过四川,到达印度C. 从长安出发,经过云南,到达东南亚D. 从长安出发,经过山东,到达朝鲜5. 我国古代著名的水利工程都江堰,是由谁主持修建的?A. 李冰B. 张骞C. 司马迁D. 王羲之二、填空题1. 公元前221年,________统一六国,建立了秦朝。

2. 我国古代四大发明包括造纸术、印刷术、指南针和__________。

3. 唐朝时期,日本派遣的使节被称为__________,他们学习了唐朝的文化和技术。

4. 明朝时期,郑和下西洋,最远到达了__________。

5. 清朝时期,康熙皇帝在位期间,进行了__________,加强了对西藏地区的统治。

三、简答题1. 简述秦始皇统一六国后,采取了哪些措施巩固统一?2. 描述一下唐朝时期的对外交流情况。

3. 明朝时期,郑和下西洋的主要目的是什么?4. 清朝时期,康熙皇帝对西藏地区实施了哪些政策?四、论述题1. 论述春秋战国时期,各国争霸的历史背景及其对后世的影响。

2. 分析唐朝盛世的原因及其对中国历史发展的贡献。

五、材料分析题阅读以下材料,回答问题:材料一:《史记·秦始皇本纪》记载:“始皇二十六年,秦并天下,为三十六郡。

”材料二:《资治通鉴》记载:“唐太宗贞观年间,国力强盛,四夷宾服。

”问题:根据材料一和材料二,分析秦朝和唐朝在统一和对外关系方面的特点及其对后世的影响。

七年级数学(上)期末高频能力提升必杀(22题)

七年级数学(上)期末高频能力提升必杀(22题)

七年级数学(上)期末高频能力提升必杀(22题)一.选择题1.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99!C.9900D.2!二.填空题2.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.3.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f(2008)=.4.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.5.已知+=0,则的值为.6.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n=.(用含n的代数式表示)所剪次数1234…n471013…a n正三角形个数7.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.8.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.三.解答题9.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?10.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?11.某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.12.某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时.其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100152000汽车8020900(1)如果选择汽车的总费用比选择火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是A市水果批发部门的经理,要想将这种水果运往其他地区销售.你将选择哪种运输方式比较合算呢?13.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?14.在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为(1﹣).(2)请你利用下图,再设计一个能求的值的几何图形.15.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款530元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?16.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.17.如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数12345正方形个数(2)如果剪了100次,共剪出多少个小正方形?(3)如果剪了n次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?18.数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+=﹣.拓广应用:计算+++…+.19.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.20.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.21.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.22.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板AOB (∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线DE上方.将直角三角板绕着点O按每秒10⁰的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间有何数量关系?并说明理由.(2)若射线OC的位置保持不变,且∠COE=140°.①则当旋转时间t=秒时,边AB所在的直线与OC平行?②在旋转的过程中,是否存在某个时刻,使得射线OA,OC与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值.若不存在,请说明理由.③在旋转的过程中,当边AB与射线OE相交时(如图3),求∠AOC﹣∠BOE的值.。

人教版七年级数学上册直线、射线、线段专题复习

人教版七年级数学上册直线、射线、线段专题复习

人教版七年级数学上册直线、射线、线段专题复习一.选择题1.如图,从A地到B地有三条路线,由上至下依次记为路线a、b、c,则从A地到B地的最短路线是c,其中蕴含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.经过一点有无数条直线D.直线比曲线短2.如图,延长线段AB到点C,使BC=2AB,D是AC的中点,若AB=6,则BD的长为()A.2 B.2.5 C.3 D.3.53.如图,已知点C把线段AB从左至右依次分成1:2两部分,点D是AB的中点,若DC=4,则线段AB的长是()A.18 B.20 C.22 D.244.如图一共有几条线段()A.4条B.6条C.8条D.10条5.平面上有任意三点A、B、C,经过其中两点共可以画出直线的条数是()A.1条B.3条C.1条或3条D.无数条6.已知A,B,C三点在同一直线上,AB=21,BC=9,点E、F分别为线段AB、BC的中点,那么EF等于()A.15 B.12或15 C.6或12 D.6或15二.填空题7.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是.8.在墙壁上固定一根横放的木条,则至少需要枚钉子.9.过平面上A,B,C三点中的任意两点作直线,可作条.10.已知点C在线段AB上,且AC=5CB,则CB:AB=.11.直线l上有三点A、B、C,其中AB=8cm,BC=6cm,M、N分别是AB、BC的中点则MN的长是.12.下列语句中:①画直线AB=3cm;②直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;③延长直线OA;④若AM=BM,则M为线段AB的中点;⑤若M是线段AB的中点,则AM=BM.正确的有个.三.解答题13.已知A,B,C,D四点(如图):(1)画线段AB,射线AD,直线AC;(2)连BD,BD与直线AC交于点E;(3)连接BC,并延长线段BC与射线AD交于点F;(4)连接CD,并延长线段CD与线段AB的反向延长线交于点G.14.如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=15,求CM和AD的长.15.如图,在同一直线上,有A、B、C、D四点.已知DB=AD、AC=CD,CD=4cm,求线段AB的长.16.如图,已知线段AB的长为a,延长线段AB至点C,使BC=.(1)求线段AC的长(用含a的代数式表示);(2)取线段AC的中点D,若DB=3,求a的值.17.如图,已知线段AB=24cm,延长AB至C,使得BC=AB,(1)求AC的长;(2)若D是AB的中点,E是AC的中点,求DE的长.18.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.若AB=18,DE=8,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长.参考答案一.选择题1.解:从A地到B地的最短路线是c,其中蕴含的数学道理是两点之间线段最短,故选:B.2.解:∵AB=6,BC=2AB=12,∴AC=AB+BC=6+12=18,∵D是AC的中点,∴AD=AC==9,∴BD=AD﹣AB=9﹣6=3.故选:C.3.解:设AC=x,则BC=2x,∴AB=AC+BC=3x,∵点D是AB的中点,∴AD=AB=1.5x,∴CD=AD﹣AC=1.5x﹣x=0.5x,∵DC=4,∴0.5x=4,∴x=8,∴AB=3x=24,故选:D.4.解:图中的线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,一共有10条线段,故选:D.5.解:当三点在同一直线上时,只能作出一条直线;三点不在同一直线上时,每两点可作一条,共3条;平面上有任意三点A、B、C,经过其中两点共可以画出直线的条数是1条或3条.故选:C.6.解:如图1,当点B在线段AC上时,∵AB=21,BC=9,E、F分别为AB,BC的中点,∴EB=AB=10.5,BF=BC=4.5,∴EF=EB+FB=10.5+4.5=15;如图2,当点C在线段AB上时,∴EF=EB﹣FB=10.5﹣4.5=6,故选:D.二.填空题7.解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短.故答案为:两点之间,线段最短.8.解:正确解释这一现象的数学知识是两点确定一条直线,故答案为:2.9.解:①此时可画一条.②此时可画三条直线.故答案为:1或3.10.解:∵C在线段AB上,且AC=5CB,∴AB=AC+BC=5BC+BC=6BC,∴CB:AB=BC:6BC=1:6.故答案为1:6.11.解:第一种情况:B在AC内,则MN=AB+BC=7cm;第二种情况:B在AC外,则MN=AB﹣BC=1cm.答:线段MN的长是7cm或1cm.12.解:①画直线AB=3cm,说法错误,直线没有长度;②直线AB与直线BA是同一条直线,射线AB与射线BA不是同一条射线,故此说法错误;③延长直线OA,直线向两方无限延伸,不能延长,故此说法错误;④若AM=BM,则M为线段AB的中点,M可能没有在直线AB上,故此说法错误;⑤若M是线段AB的中点,则AM=BM,正确.故答案为:1.三.解答题13.解:(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示.14.解:AB=2x,BC=5x,CD=3x,则AD=AB+BC+CD=10x,∵M为AD的中点,∴AM=DM=AD=5x,∵BM=AM﹣AB=15,∴5x﹣2x=15,解得x=5,即AD=10x=50,∴CM=DM﹣CD=5x﹣3x=2x=10.15.解:∵AC=CD,CD=4cm,∴AC=5cm,∴AD=AC+CD=4+5=9cm,∴DB=AD=6cm,∴AB=AD﹣DB=9﹣6=3cm.16.解:(1)∵AB=a,BC=AB,∴BC=a,∵AC=AB+BC,∴AC=a+a=a.(2)∵AD=DC=AC,AC=a,∴DC=a,∵DB=3,BC=a,∵DB=DC﹣BC,∴3=a﹣a,∴a=12.17.解:(1)∵BC=AB,AB=24cm,∴BC=×24cm=12cm,∴AC=AB+BC=36cm;(2)∵D是AB的中点,E是AC的中点,∴AD=AB=12cm,AE=AC=18cm,∴DE=18cm﹣12cm=6cm.18.解:①AC=2BC,AB=18,∴BC=6,AC=12,如图1,∵E为BC中点,∴CE=BE=3,∵DE=8,∴BD=DE+BE=8+3=11,∴AD=AB﹣DB=18﹣11=7;②Ⅰ、当点E在点F的左侧,如图2,或∵CE+EF=3,BC=6,∴点F是BC的中点,∴CF=BF=3,∴AF=AB﹣BF=18﹣3=15,∴AD=AF=5;∵CE+EF=3,故图2(b)这种情况求不出;Ⅱ、如图3,当点E在点F的右侧,或∵AC=12,CE+EF=CF=3,∴AF=AC﹣CF=9,∴AF=3AD=9,∴AD=3.∵CE+EF=3,故图3(b)这种情况求不出;综上所述:AD的长为3或5.。

人教版七年级数学上册复习训练题(含答案)

人教版七年级数学上册复习训练题(含答案)

人教版七年级数学上册复习训练题(复习范围:七上全部内容)一.选择题1.若|x|=3,则()A.x=3B.x=﹣3C.x=±3D.x=92.下列代数式中,不是整式的是()A.﹣3x2B.C.D.﹣2005 3.用四舍五入法把4.7973精确到百分位得到的近似数是()A.4.79B.4.70C.4.8D.4.804.已知某物体的质量约为24400000万亿吨,用科学记数法表示为()千克.A.0.244×108B.2.44×107C.0.244×1020D.2.44×1019 5.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°6.下列说法正确的个数是()①一个数的绝对值的相反数一定是负数②正数和零的绝对值都等于它本身③只有负数的绝对值是它的相反数④互为相反数的两个数的绝对值一定相等⑤任何一个有理数一定不大于它的绝对值⑥任何数的偶数次幂都是正数A.5个B.4个C.3个D.2个7.下列说法中,正确的是()A.单项式3πxy的系数是3B.单项式5×103x2的次数为5C.多项式3x﹣2x2y+8xy是三次三项式D.多项式x2+y2﹣1的常数项是1 8.下列计算正确的是()A.3a+a=3a2 B.2a+3b=5ab C.3a﹣a=3 D.﹣3ab+2ab=﹣ab 9.方程2x+a=4的解是x=﹣2,则a=()A.﹣8B.0C.2D.810.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.x﹣1=x+3变形得4x﹣6=3x+3 C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.3x=2变形得x=11.钟表上12时15分时,时针和分针的夹角是()A.120°B.90°C.82.5°D.60°12.延长线段AB到C,使BC=AB,若AC=15,点D为线段AC的中点,则BD的长为()A.4.5B.3.5C.2.5D.1.513.已知a、b互为相反数,c、d互为倒数,则代数式2020(a+b)﹣cd的值为()A.2020B.2019C.﹣1D.014.若a﹣3b﹣2=0,则代数式2a﹣6b+1的值为()A.5B.﹣3C.4D.﹣415.方程去分母得()A.2﹣2(2x﹣4)=﹣(x﹣7)B.12﹣2(2x﹣4)=﹣x﹣7C.12﹣2(2x﹣4)=x﹣7D.12﹣4x﹣8=﹣(x﹣7)16.若x=﹣1,则x+x2+x3+x4+…+x2020的值为()A.0B.1C.﹣1D.202017.如图所示的是一个正方体的平面展开图,若将平面展开图折叠成正方体后,相对面上的两个数字之和均为7,期x+y+z的值为()A.7B.8C.9D.1018.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A.8x﹣3=7x+4B.8x+3=7x+4C.8x﹣3=7x﹣4D.8x+3=7x﹣419.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()A.65°B.25°C.90°D.115°20.在数轴上,表示数x的点的位置如图所示,则化简|x+1|﹣|x﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x二.填空题21.如果一个棱柱共有15条棱,那么它一定是棱柱.22.如果电梯上升3层记作+3层,那么﹣6层表示.23.﹣的相反数是,倒数是.24.有理数5.692精确到百分位的近似数为.25.多项式3x2y﹣7x4y2﹣xy3+26是次项式,最高次项的系数是.26.48°39′的余角是.27.已知5x m+2+3=1是关于x的一元一次方程,则m=.28.已知5x2y|m|﹣(m﹣2)y+3是四次三项式,则m=.29.已知C是线段AB中点,若AB=5cm,则BC=cm.30.如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有对.31.如果数轴上点A表示3,将点A向左移动6个单位长度;再向右移动4个单位长度,那么终点表示的数是.32.若单项式2x2y m与﹣x n y3是同类项,则m+n=.33.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a=.34.代数式与互为相反数,则x的值为.35.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.36.班长给本班同学分笔记本,如果每人分3本还差3本,如果每人分2本又多2本.若设本班同学共有x个,则可建立方程为.37.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.38.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,AD=AC,DE=AB,若AB=24cm,则线段CE的长为.39.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.40.对于任意有理数a,b,c,d,我们规定=ad﹣bc,如=1×4﹣2×3.若=﹣2,则可列方程为.三.解答题41.计算:(1)(﹣4)﹣(+3)+(﹣5);(2)﹣81÷(﹣2)×÷(﹣16);(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3;(4)(﹣24)×(+﹣0.75).42.先化简,再求值:(1)2(2x﹣3y)﹣(3x+2y+3),其中x=2,y=﹣;(2)4x﹣2(x﹣3)﹣3[x﹣3(4﹣2x)+8],其中x=2.43.解下列方程:(1)﹣2=x+1;(2)5(x﹣5)﹣2(x﹣12)=2;(3)﹣=1;(4)(3x+7)=2﹣x.44.如图,O为直线DA上一点,∠AOB=130°,OE为∠AOB的平分线,∠COB=90°,求∠AOC和∠EOC的度数.45.北大登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,﹣35,﹣40,+210,﹣32,+20,﹣18,﹣5,+20,+85,﹣25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.05升,则他们共耗氧多少升?46.如图所示,已知线段AB=4cm,BC=3cm,M,N分别是AB和BC上两点.(1)求线段AC的长.(2)若M为AC中点,BN=BC,求线段MN的长.47.已知∠α=76°42',∠β=41°41'.求:(1)∠β的余角;(2)∠α与∠β的2倍的和.48.为庆祝元旦,学校准备举行七年级合唱比赛,现由各班班长统一购买服装,服装每套60元,服装制造商给出的优惠方案是:30套以上的团购有两种优惠方案可选择,方案一:全部服装可打8折;方案二:若打9折,有5套可免费.(1)七年(1)班有46人,该选择哪个方案更划算?(2)七年(2)班班长思考一会儿,说:“我们班无论选择哪种方案,要付的钱是一样的.”你知道七年(2)班有多少人吗?49.已知,如图1,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若MOC=28°,求∠BON的度数;(2)若将三角形MON绕点O旋转到如图2所示的位置,若∠BON=100°,则∠MOC的度数为;(3)若将三角形MON绕点O旋转到如图3所示的位置,试写出∠BON和∠MOC之间的数量关系,并说明理由.50.如图,数轴上有三个点A、B、C表示的数分别是﹣4,﹣2,3.(1)①点B和点C之间的距离是个单位长度;②若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位长度.(2)点A、B、C开始在数轴上运动,若点A以每秒a个长度单位的速度向左运动,同时,点B以每秒2个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,设运动时间为t秒.①点A、B表示的数分别是、(用含有a、t的代数式表示);②若点B、C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,2d1﹣3d2的值不会随着时间的变化而改变,并求此时2d1﹣3d2的值.参考答案一.选择题1.解:∵|x|=3,∴x=±3,故选:C.2.解:A、﹣3x2是整式,不合题意;B、是整式,不合题意;C、不是整式,符合题意;D、﹣2005是整式,不合题意;故选:C.3.解:4.7973精确到百分位得到的近似数是4.80.故选:D.4.解:24400000万亿吨=24400000000000000000千克=2.44×1019千克.故选:D.5.解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.6.解:①一个数的绝对值的相反数不一定是负数,如0,不符合题意;②正数和零的绝对值都等于它本身,符合题意;③0和负数的绝对值是它的相反数,不符合题意;④互为相反数的两个数的绝对值一定相等,符合题意;⑤任何一个有理数一定不大于它的绝对值,符合题意;⑥0的偶数次幂是0,不符合题意.故选:C.7.解:A.单项式3πxy的系数是3π,故本选项不符合题意;B.单项式5×103x2的次数是2,故本选项不符合题意;C.多项式3x﹣2x2y+8xy是三次三项式,故本选项符合题意;D.多项式x2+y2﹣1的常数项是﹣1,故本选项不符合题意;故选:C.8.解:A、3a+a=4a,故本选项不合题意;B、2a与3b不是同类项,所以不能合并,故本选项不合题意;C、3a﹣a=2a,故本选项不合题意;D、﹣3ab+2ab=﹣ab,故本选项符合题意;故选:D.9.解:把x=﹣2代入方程得:﹣4+a=4,解得:a=8,故选:D.10.解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,故本选项不符合题意.B、x﹣1=x+3变形得4x﹣6=3x+18,故本选项不符合题意.C、3(x﹣1)=2(x+3)变形得3x﹣3=2x+6,故本选项不符合题意.D、3x=2变形得x=,故本选项符合题意.故选:D.11.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角90°﹣7.5°=82.5°.故选:C.12.解:设CB=x,则AB=4x,∴AC=AB+BC=x+4x=5x,∵AC=15,∴x=3,∴AB=12,∵D是AC的中点,∴AD=AC=×15=7.5,∴BD=AB﹣AD=12﹣7.5=4.5.故选:A.13.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴2020(a+b)﹣cd=2020×0﹣1=0﹣1=﹣1.故选:C.14.解:∵a﹣3b﹣2=0,∴a﹣3b=2,则2a﹣6b+1=2(a﹣3b)+1=2×2+1=5,故选:A.15.解:方程去分母得:12﹣2(2x﹣4)=x﹣7.故选:C.16.解;因为x=﹣1,所以x2=1,x3=﹣1,x4=1…,即x+x2=0,x3+x4=0…,则x+x2+x3+x4+…+x2020=0+0+…0=0.故选:A.17.解:根据正方体展开图的“相间、Z端是对面”的特征可知,“﹣2”与“y”相对,“3”与“z”相对,“x”与“10”相对,又∵相对面上的两个数字之和均为7,∴x=﹣3,y=9,z=4,∴x+y+z=﹣3+9+4=10,故选:D.18.解:由题意可得,设有x人,可列方程为:8x﹣3=7x+4.故选:A.19.解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∵∠AOB+∠BOC=∠AOC=90°∴∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.20.解:由数轴可得:﹣1<x<0,则x+1>0,x﹣2<0,故|x+1|﹣|x﹣2|=x+1﹣[﹣(x﹣2)]=x+1+x﹣2=2x﹣1.故选:C.二.填空题21.解:15÷3=5,所以是五棱柱,故答案为:五.22.解:如果电梯上升3层记作+3层,那么﹣6层表示下降6层.故答案为:下降6层.23.解:﹣的相反数是;倒数是﹣.故答案为:,﹣.24.解:有理数5.692精确到百分位的近似数为5.69,故答案为:5.69.25.解:多项式3x2y﹣7x4y2﹣xy3+26是六次四项式,最高次项的系数是﹣7,故答案为:六,四,﹣7.26.解:48°39′的余角为:90°﹣48°39′=89°60′﹣48°39′=41°21′.故答案为:41°21′.27.解:由题意得:m+2=1,解得:m=﹣1,故答案:﹣1.28.解:∵5x2y|m|﹣(m﹣2)y+3是四次三项式,∴|m|=2且﹣(m﹣2)≠0,解得:k=﹣2,故答案为:﹣229.解:∵C是线段AB中点,AB=5cm,∴BC=AB=5=(cm),故答案为:.30.解:∵∠BOC=90°,∴∠AOC=∠BOC=90°,∴∠AOC与∠BOC互为补角;∵∠BOD+∠AOD=180°,∴∠AOD与∠BOD互为补角;∵∠COD=45°,∴∠BOD=45°,∴∠AOD与∠COD互为补角;∴图中互为补角的角共有3对,故答案为:3.31.解:根据题意得:3﹣6+4=1,则终点表示的数是2,故答案是:1.32.解:由同类项的定义可知m=3,n=2,则m+n=3+2=5.故答案为:5.33.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.∴+=0,解得x=.故答案为.35.解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.36.解:设这个班共有x名学生,根据题意,得:3x﹣3=2x+2故答案是:3x﹣3=2x+2.37.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.38.解:∵AD=AC,而C是线段AB的中点,∴AC=AB,∴DC=AB=AB,又∵CE=DE﹣DC,∴CE=AB﹣AB=AB=×24=10.4(cm),故线段CE的长为10.4cm,故答案为:10.4cm.39.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.40.解:∵=ad﹣bc,=﹣2,∴﹣4x﹣3×(﹣2)=﹣2.故答案为:﹣4x﹣3×(﹣2)=﹣2.三.解答题41.解:(1)(﹣4)﹣(+3)+(﹣5)=﹣4﹣3﹣5=﹣12;(2)﹣81÷(﹣2)×÷(﹣16)=﹣81×(﹣)××(﹣)=﹣1;(3)6﹣3.3﹣(﹣6)﹣(﹣3)+3.3=(6+3)+(﹣3.3+3.3)+6=10+0+6=16;(4)(﹣24)×(+﹣0.75)=(﹣24)×+(﹣24)×﹣(﹣24)×0.75=﹣33﹣56+18=﹣71.42.解:(1)原式=4x﹣6y﹣3x﹣2y﹣3=x﹣8y﹣3,当x=2,y=﹣时,原式=2+4﹣3=3;(2)原式=4x﹣2x+6﹣3x+36﹣18x﹣24=﹣19x+18,当x=2时,原式=﹣38+18=﹣20.43.解:(1)﹣2=x+1,去分母得:9x﹣24=4x+12,移项得:9x﹣4x=12+24,合并同类项得:5x=36,解得:x=7.2.(2)5(x﹣5)﹣2(x﹣12)=2,去括号得:5x﹣25﹣2x+24=2,移项得:5x﹣2x=2+25﹣24,合并同类项得:3x=3,解得:x=1.(3)﹣=1,去分母得:3(3x+5)﹣4(4x﹣2)=12去括号得:9x+15﹣16x+8=12,移项得:9x﹣16x=12﹣15﹣8,合并同类项得:﹣7x=﹣11,解得:x=.(4)(3x+7)=2﹣x,去分母得:4(3x+7)=28﹣21x,去括号得:12x+28=28﹣21x44.解:因为∠AOB=130°,OE是∠AOB的平分线,所以∠BOE=,因为∠COB=90°,所以∠COE=90°﹣65°=25°,所以∠AOC=∠AOE﹣∠COE=65°﹣25°=40°.45.解:(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.05)=640×0.25=160(升).答:他们共耗氧气160升.46.解:(1)∵AB=4cm,BC=3cm,∴AC=AB+BC=7(cm);(2)∵AC=7cm,M为AC中点,∴CM=AC=7=(cm),∵BN=BC,∴BN=3=1(cm),∴CN=BC﹣BN=2(cm),∴MN=CM﹣CN=﹣2=(cm).47.解:(1)∵∠β=41°41',∴∠β的余角=90°﹣∠β=90°﹣41°41′=48°19′;(2)∵∠α=76°42',∠β=41°41',∴∠α+2∠β=76°42'+2×41°41′=76°42'+82°82′=158°124'=160°4'.方案一的花费为:60×46×0.8=2208(元),方案二的花费为:60×0.9×(46﹣5)=2214(元),∵2208<2214,∴七年(1)班有46人,该选择方案一更划算,即七年(1)班有46人,该选择方案一更划算;(2)设七年(2)班x人,60×0.8x=60×0.9×(x﹣5),解得x=45,答:七年(2)班有45人.49.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°;(2)∵∠BON=100°,∴∠AON=80°,∴∠AOM=90°﹣∠AON=10°,∠AOC=40°,∴∠MOC=∠AOM+∠AOC=50°.故答案为:50°;(3)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∠BON=2∠MOC.50.解:(1)①点B和点C之间的距离是3﹣(﹣2)=5个单位长度.故答案为:5;②由数轴可知:B点、C点表示的数分别为:﹣2、3,因为AB=|﹣2﹣(﹣4)|=2,故答案是:1或9;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2﹣2t.故答案是:﹣4﹣at;﹣2﹣2t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=|(3+5t)﹣(﹣2﹣2t)|=|7t+5|,d2=|(﹣2﹣2t)﹣(﹣4﹣at)|=|at﹣2t+2|,∵t>0,∴d1=7t+5,当at﹣2t+2>0时,d2=at﹣2t+2,2d1﹣3d2=2(7t+5)﹣3(at﹣2t+2)=14t+10﹣3at+6t﹣6=(20﹣3a)t+4,∵2d1﹣3d2的值不会随着时间的变化而改变,∴20﹣3a=0,∴当a=时,2d1﹣3d2的值不会随着时间的变化而改变.当at﹣2t+2<0时,d2=﹣at+2t﹣2,2d1﹣3d2=2(7t+5)﹣3(﹣at+2t﹣2)=14t+10+3at﹣6t+6=(8+3a)t+16,∵a>0,∴8+3a≠0,∴2d1﹣3d2的值会随着时间的变化而改变.综上所述,当a=时,2d1﹣3d2的值不会随着时间的变化而改变.。

七年级英语上册选词填空单元测试题(含答案)

七年级英语上册选词填空单元测试题(含答案)

七年级英语上册选词填空单元测试题(含答案)一、七年级英语上册选词填空专项目练习(含答案解析)1.用方框中所给词或短语的适当形式填空。

(2)Look at the man ________. He is Mr. White.(3)—How many girls are there in your class?—________.(4)I go to the ________ to buy some drink.(5)There is no food in the ________. Let's buy something.【答案】(1)would like(2)over there(3)Twenty(4)corner store(5)fridge【解析】【分析】 Twenty20 fridge冰箱 would like想要 corner store小商店 over there那边(1)句意:我想要面包。

我饿了。

由于饿了,所以想吃面包,用would like想要,would 是情态动词,故填would like。

(2)句意:看那边的那个男人。

他是怀特先生。

分析句子可知句子缺少状语,用over there,那边,作状语,故填over there。

(3)句意:——你班上有多少个女孩?——20。

询问女孩的数量,用twenty,20,回答,故填Twenty。

(4)句意:我去那个小商店买些饮料。

买饮料,去商店,用Corner store小商店,此处用其单数形式,故填corner store。

(5)句意:冰箱里没有食物。

我们一起去买一些来。

分析句子可知句子缺少地点状语,用fridge冰箱,in the fridge冰箱里,此处用其单数形式,故填fridge。

【点评】考查选词填空。

本题考查单词在语境中的运用需要根据单词在语境中的词性进行必要的变形,同时熟记固定搭配和基本句型。

2.从方框中选择正确的单词填空。

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)

2022-2023学年人教版七年级数学上册期末综合复习训练题(附答案)一.选择题1.下列各组式子中,属于同类项的是()A.ab与a B.ab与ac C.xy与﹣2yx D.a与b2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2B.3C.4D.53.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是()A.30°B.60°C.120°D.150°4.下列说法中正确的是()A.射线AB和射线BA是同一条射线B.延长线段AB和延长线段BA的含义是相同的C.延长直线ABD.经过两点可以画一条直线,并且只能画一条直线5.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城6.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误的是()A.CD=DE B.AB=DE C.CE=CD D.CE=2AB7.如图,O是直线AB上一点,∠AOC=46°,OD是∠COB的角平分线,则∠DOB等于()A.46°B.60°C.67°D.76°8.如图,点O在直线AB上,射线OC、OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM、ON分别平分∠BOC和∠AOD,则∠MON的度数为()A.135°B.140°C.152°D.45°9.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是()A.3x﹣20=4x﹣25B.3x+20=4x+25C.3x﹣20=4x+25D.3x+20=4x﹣2510.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD =n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n二.填空题11.已知|a+2|=0,则a=.12.数轴上与原点的距离等于2个单位的点表示的数是.13.已知﹣5x m y3与4x3y n能合并,则m n=.14.若方程(m﹣1)x|m|+1+2mx﹣3=0是关于x的一元二次方程,则m=.15.已知∠A=100°,则∠A的补角等于°.16.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)17.如图,射线OA的方向是北偏东27°35',那么∠α=.三.解答题18.计算:(1)6×(1﹣)﹣32÷(﹣9).(2)﹣22+|5﹣8|+24÷(﹣3)×.19.先化简再求值:2(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.20.补全解题过程:如图,已知线段AB=6,延长AB至C,使BC=2AB,点P、Q分别是线段AC和AB的中点,求PQ的长.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=+=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP==×18=9AQ==×6=3∴PQ=﹣=9﹣3=621.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求的值.22.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.如图,已知线段a和线段AB,(1)延长线段AB到C,使BC=a(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=5,BC=3,点O是线段AC的中点,求线段OB的长.24.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.25.如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.(1)填空:与∠COD互余的角有;(2)若∠COE=30°,求∠AOE的度数;(3)求证:OD是∠AOC的平分线.26.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.27.已知m,x,y满足:(1)(x﹣5)2+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求代数式(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)的值.28.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠.(1)若用x(元)表示商品价格,请你用含x的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)若某人计划在该超市购买价格为2700元的一台电脑,请分析选择哪种优惠更省钱?29.(1)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点,求线段MN的长;(2)若C为线段上任一点,满足AC+CB=acm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.30.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=CQ.设运动的时间为t(t>0)秒.①数轴上点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?参考答案一.选择题1.解:xy与﹣2yx属于同类项,故选:C.2.解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.解:∵∠A=60°,∠A与∠B互余,∴∠B=90°﹣∠A=90°﹣60°=30°,∵∠B与∠C互补,∴∠C=180°﹣∠B=180°﹣30°=150°.故选:D.4.解:A、射线用两个大写字母表示时,端点字母写在第一个位置,所以射线AB和射线BA不是同一条射线,此选项错误;B、延长线段AB是按照从A到B的方向延长的,而延长线段BA是按照从B到A的方向延长的,意义不相同,故此选项错误;C、直线本身就是无限长的,不需要延长,故此选项错误;D、根据直线的公理可知:两点确定一条直线,故此选项正确.故选:D.5.解:这是一个正方体的平面展开图,共有六个面,其中与“筑”字所在面相对的面上的汉字是疫.故选:B.6.解:∵点D恰好为CE的中点,∴CD=DE,∵CD=AB,∴AB=DE=CE,即CE=2AB=2CD,故A,B,D选项正确,C选项错误,故选:C.7.解:∵∠AOC=46°,∴∠BOC=180°﹣46°=134°,∵OD是∠COB的角平分线,∴∠DOB=∠COB=×134°=67°,故选:C.8.解:易知:∠COD=180°﹣∠AOD﹣∠BOC=90°,∵OM、ON分别平分∠BOC和∠AOD,∴∠NOD=∠AOD=20°,∠COM=∠BOC=25°,∴∠MON=20°+25°+90°=135°故选:A.9.解:设这个班有学生x人,由题意得,3x+20=4x﹣25.故选:D.10.解:由题意得,EC+FD=m﹣n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF﹣CD=m﹣n又∵AB=AE+FB+EF∴AB=m﹣n+m=2m﹣n故选:C.二.填空题11.解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为:±2.13.解:∵﹣5x m y3与4x3y n能合并,∴﹣5x m y3与4x3y n是同类项,∴m=3,n=3,∴m n=27.故答案为:27.14.解:由题意得:,解得:m=﹣1.15.解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.16.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.17.解:∵射线OA的方向是北偏东27°35',∴∠α=90°﹣27°35′=62°25′,故答案为:62°25°.三.解答题18.解:(1)6×(1﹣)﹣32÷(﹣9)=6×﹣9÷(﹣9)=4+1=5;(2)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3+(﹣8)×=﹣1﹣=﹣.19.解:原式=6x2y﹣2xy2﹣3x2y+6xy2=3x2y+4xy2,把x=﹣1,y=﹣2代入,原式=3×(﹣1)2×(﹣2)+4×(﹣1)×(﹣2)2=﹣6﹣16=﹣22.20.解:∵BC=2AB,AB=6∴BC=2×6=12∴AC=AB+BC=6+12=18∵点P、Q分别是线段AC和AB的中点∴AP=AC=×18=9AQ=AB=×6=3∴PQ=AP﹣AQ=9﹣3=6,故答案为:AB;BC;AC;AB;AP;AQ.21.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2;故答案为:0,1,±2;(2)当m=2时,原式=2+1=3;当m=﹣2时,原式=﹣2+1+0=﹣1,则原式=3或﹣1.22.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.23.解:(1)如图:(2)∵AB=5,BC=3,∴AC=8,∵点O是线段AC的中点,∴AO=CO=4,∴BO=AB﹣AO=5﹣4=1,∴OB长为1.24.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.25.解:(1)∵OE平分∠BOC,∴∠COE=∠BOE,∵∠COD+∠COE=∠DOE=90°,∴∠COD+∠BOE=90°,与∠COD互余的角有∠BOE、∠COE;故答案为:∠BOE、∠COE;(2)∵OE平分∠BOC,∴∠COE=∠BOE=30°,∴∠AOE=180°﹣30°=150°;(3)证明:∵OE是∠BOC的平分线,∴∠COE=∠BOE,∵∠DOE=90°,∴∠COD+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°,∴∠DOC+∠COE=∠DOA+∠BOE,所以∠DOC=∠DOA,所以OD是∠AOC的平分线.26.解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.27.解:∵(x﹣5)2+|m|=0,∴(x﹣5)2≥0|m|≥0,∴x=5,m=0,∵﹣2ab y+1与4ab3是同类项,∴y+1=3,∴y=2,∴(2x2﹣3xy+6y2)﹣m(3x2﹣xy+9y2)=2x2﹣3xy+6y2=2×52﹣3×5×2+6×22=50﹣30+24=44.28.解:(1)由题意可得:优惠一:付费为:0.9x,优惠二:付费为:200+0.8x;(2)当两种优惠后所花钱数相同,则0.9x=200+0.8x,解得:x=2000,答:当商品价格是2000元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:200+0.8x=2360,答:优惠二更省钱.29.解:(1)∵AC=8cm,点M是AC的中点,∴CM=0.5AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm,(2)MN=a,由M,N分别是AC,BC的中点,得MC=AC,NC=BC.MN=MC+NC=AC+BC=(AC+BC)=a,∴当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:,则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.30.解析(1)点A、C表示的数分别是﹣9、15.(2)①点M、N表示的数分别是t﹣9、15﹣4t,故答案为:t﹣9、15﹣4t.②当点M,点N分别在原点两侧时,由题意可知9﹣t=15﹣4t.解这个方程,得t=2.此时点M在原点左侧,点N在原点右侧.当点M、N在原点同侧时,由题意可知t﹣9=15﹣4t.解这个方程,得t=.此时点M、N同时在原点左侧.所以当t=2或 时,M、N两点到原点的距离相等.。

【英语】 七年级英语上册选词填空练习题(含答案)

【英语】 七年级英语上册选词填空练习题(含答案)

【英语】七年级英语上册选词填空练习题(含答案)一、七年级英语上册选词填空专项目练习(含答案解析)1.选词填空(2)I believe we ________ live on the moon one day.(3)Andy is a ________ boy. We all like him.(4)Lily and Nick are twins. ________ mother is a doctor.(5)—Excuse me, where is the reading room?—It's on the ________ floor of Building A.【答案】(1)swimming(2)can(3)helpful(4)Their(5)first【解析】【分析】⑴句意:明天星期天,我们去游泳吧。

Go swimming 去游泳。

故填swimming。

⑵句意:我相信有一天我们可以去月球居住。

故填can。

⑶句意:Andy是个有帮助的人,我们大家都喜欢他。

故填helpful。

⑷句意:Lily和Nick是双胞胎,他们的妈妈是名医生。

故填their。

⑸句意:打扰一下,阅览室在哪?在一楼。

故填first。

2.选择下列短语并用其正确形式填空。

(2)The weather is sunny and a little windy, it's good time to________.(3)I want some noodles, ________you, Danny?(4)In winter, they often________on the river.(5)The students often play sports on the playground________.【答案】(1)having a good time(2)fly a kite(3)what about(4)go skating(5)after school【解析】【分析】go skating去滑冰,what about怎么样,fly a kite放风筝,after school 放学后, have a good time过得愉快(1)句意:今天是星期天,我们现在玩得高兴。

人教版七年级数学上册期末复习第1-2章基础必刷题 含答案

人教版七年级数学上册期末复习第1-2章基础必刷题    含答案

人教版七年级数学上册期末复习第1-2章基础必刷题一.选择题1.﹣的倒数是()A.﹣B.﹣C.D.2.﹣是一个数的相反数,则这个数是()A.﹣B.﹣7C.D.73.﹣的绝对值是()A.﹣2020B.﹣C.D.20204.在四个数0,﹣2,﹣3,2中,最小的数是()A.0B.﹣2C.﹣3D.25.在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有()A.3个B.4个C.5个D.6个6.2018年7月份,我国居民消费价格同比上涨2.1%,记作+2.1%,其中水产品价格下降0.4%,应记作()A.0.4%B.﹣0.4%C.0.4D.﹣0.47.下列计算正确的是()A.(﹣3)﹣(﹣3)=﹣6B.(﹣18)﹣(+9)=﹣9C.|5﹣2|=﹣(5﹣2)D.0﹣(﹣7)=78.据统计,某城市去年接待旅游人数约为89 000 000人,89 000 000这个数据用科学记数法表示为()A.8.9×106B.8.9×105C.8.9×107D.8.9×108 9.按括号内的要求用四舍五入法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.02(精确到0.01)D.0.0136≈0.014(精确到0.0001)10.下列说法中,正确的为()A.两数之差一定小于被减数B.对任意有理数,若a+b=0,则|a|=|b|C.若两个有理数的和是负数,则这两个有理数都是负数D.0减去任何一个数,都得负数11.数a,b在数轴上的位置如图所示,下列式子中错误的是()A.a<b B.﹣a<b C.a+b<0D.b﹣a>0 12.单项式﹣3πa2的系数是()A.3B.﹣3C.3πD.﹣3π13.下列各项是同类项的是()A.1与﹣2B.xy与2y C.ab2与a2b D.5ab与6ab2 14.下列运算正确的是()A.2a﹣a=1B.2a+b=3abC.2a+3a=5a D.3a2+2a2=5a415.下列说法中正确的是()A.单项式πx2的系数是,次数是3B.多项式x2﹣2x﹣1的项是x2,2x,1 C.单项式的系数是﹣2D.多项式y﹣x2y+5xy2是三次三项式16.下列计算正确的是()A.43=4×3B.﹣=﹣C.4﹣4÷2=4﹣2=2D.32÷6×=9×1=917.下面去括号正确的是()A.2n+(﹣m﹣n)=2n+m﹣n B.a﹣2(3a﹣5)=a﹣6a+10C.n﹣(﹣m﹣n)=n+m﹣n D.x2+2(﹣x+y)=x2﹣2x+y18.现规定一种新运算“*”:a*b=4ab﹣(a+b),如6*2=4×6×2﹣(6+2)=48﹣8=40,则(﹣4)*(﹣2)=()A.﹣8B.C.38D.19.若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0B.﹣2C.2D.120.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.0.5+π或0.5﹣πB.0.25+π或0.25﹣πC.1+π或1﹣πD.2+π或2﹣π二.填空题21.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.22.1﹣|﹣2|=.23.比较大小:﹣﹣.(填“>”或“<”)24.计算(﹣48)÷÷(﹣12)×的结果是.25.数轴上的A点表示的数是2,则距A点5个单位的B点表示的数是.26.用四舍五入法把1.8049精确到0.01为.27.去括号:﹣3(a+3b)=.28.代数式系数为;多项式3x2y﹣7x4y2﹣xy4的最高次项是.29.若整式a2+a的值为7,则整式a2+a﹣3的值为.30.12a x﹣1b3与﹣5a5b y+1是同类项,则x y=.31.若关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,则m=.32.已知|x|=3,|y|=5,且x>y,则2x+y的值为.三.解答题33.把下列各数填在相应的表示集合的括号内.﹣1,,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).整数:{…};非负整数:{…};非正数:{…};有理数:{…}.34.计算:(1)(+3)﹣(﹣9)+(﹣4)﹣(+2)(2)22﹣5×+|﹣2|;(3)﹣22×÷(﹣)2×(﹣2)3 (4)(﹣1)100×5+(﹣2)4÷4.35.把下列各数在数轴上表示出来,并用“<”号连接起来:3,﹣(+2),﹣|﹣4|,0,1.5,(﹣1)336.先去括号,再合并同类项.(1)3a﹣(4b﹣2a+1)(2)2(5a﹣3b)﹣3(a2﹣2b).37.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.38.先化简,再求值:2(3a2b﹣ab2)﹣3(2a2b+4ab2),其中a=﹣1,b=.39.x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)是多少?40.已知a、b互为相反数,x、y互为倒数,m到原点距离2个单位.(1)根据题意,m=;(2)求m2++(﹣xy)2020的值.41.已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?42.仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,﹣1,+1.2,+1.3,﹣1.3,﹣1.2,+1.8,+1.1.(1)这10袋小麦总计超过或不足多少千克?(2)若每千克小麦的售价为25元,估计这100袋小麦总销售额是多少元?参考答案一.选择题1.解:的倒数是.故选:A.2.解:∵﹣是一个数的相反数,∴这个数是:.故选:C.3.解:|﹣|=.故选:C.4.解:因为﹣3<﹣2<0<2,所以在四个数0,﹣2,﹣3,2中,最小的数是﹣3.故选:C.5.解:在1、﹣2、﹣5.6、﹣0、、﹣、π中负数有﹣2、﹣5.6、﹣共3个,故选:A.6.解:若上涨记作“+”,那么下降就记作“﹣”.所以下降0.4%应记作“﹣0.4%”.故选:B.7.解:A、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项不合题意;B、(﹣18)+(﹣9)=﹣27,故本选项不合题意;C、|5﹣2|=5﹣2,故本选项不合题意;D、0﹣(﹣7)=7,故本选项符号题意;故选:D.8.解:89 000 000这个数据用科学记数法表示为8.9×107.故选:C.9.解:A、403.53≈404(精确到个位),所以A选项错误;B、2.604≈2.6(精确到十分位),所以B选项错误;C、0.0234≈0.02(精确到0.01),所以C选项正确;D、0.0136≈0.0136(精确到0.0001),所以D选项错误.故选:C.10.解:A、两数之差不一定小于被减数,如1﹣(﹣1)=2,所以原说法错误,故本选项不合题意;B、对任意有理数,若a+b=0,则|a|=|b|,说法正确,故本选项符合题意;C、若两个有理数的和是负数,则这两个有理数不一定都是负数,如(﹣2)+1=﹣1,所以原说法错误,故本选项不合题意;D、0减去任何一个数,不一定都得负数,如0﹣(﹣1)=1,所以原说法错误,故本选项不合题意;故选:B.11.解:由数轴可得,a<0<b,|a|>|b|,则a<b,﹣a>b,a+b<0,b﹣a>0,错误的是B.故选:B.12.解:单项式﹣3πa2的系数是:﹣3π.故选:D.13.解:A、1和2是同类项,故本选项符合题意;B、xy与2y,所含字母不尽相同,不是同类项,故本选项不合题意;C、ab2与a2b,所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;D、5ab与6ab2,所含字母相同,但相同字母的指数不尽相同,不是同类项,故本选项不合题意;故选:A.14.解:A、2a﹣a=a,故本选项不合题意;B、2a与b不是同类项,所以不能合并,故本选项不合题意;C、2a+3a=5a,故本选项符合题意;D、3a2+2a2=5a2,故本选项不合题意;故选:C.15.解:A.单项式x2的系数是,次数是2,故本选项不符合题意;B.多项式x2﹣2x﹣1的项是x2,﹣2x,﹣1,故本选项不符合题意;C.单项式﹣的系数是﹣,故本选项不符合题意;D.多项式y﹣x2y+5xy2是三次三项式,故本选项符合题意;故选:D.16.解:43=4×4×4,故选项A错误;=﹣,故选项B错误;4﹣4÷2=4﹣2=2,故选项C正确;32÷6×=9×=,故选项D错误;故选:C.17.解:2n+(﹣m﹣n)=2n﹣m﹣n,因此选项A不符合题意;a﹣2(3a﹣5)=a﹣6a+10,因此选项B符合题意;n﹣(﹣m﹣n)=n+m+n,因此选项C不符合题意;x2+2(﹣x+y)=x2﹣2x+2y,因此选项D不符合题意;故选:B.18.解:∵a*b=4ab﹣(a+b),∴(﹣4)*(﹣2)=4×(﹣4)×(﹣2)﹣[(﹣4)+(﹣2)]=32﹣(﹣6)=38.故选:C.19.解:∵x2+ax﹣(bx2﹣x﹣3)=x2+ax﹣bx2+x+3=(1﹣b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1﹣b=0,a+1=0,解得:a=﹣1,b=1,则a﹣b=﹣1﹣1=﹣2,故选:B.20.解:∵半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,∴A点与1之间的距离是:2×π×0.5=π,当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π,故选:C.二.填空题21.解:6810万=68100000=6.81×107.故选:6.81×107.22.解:1﹣|﹣2|=1﹣2=1+(﹣2)=﹣1.故答案为:﹣1.23.解:∵|﹣|==,||==,,∴.故答案为:>.24.解:原式=(﹣48)×=4.故答案为:4.25.解:当B点在A点的左边时,点B表示的数为2﹣5=﹣3,当B点在A点的右边时,点B表示的数为2+5=7.故点B表示的数为7或﹣3.故答案为:7或﹣3.26.解:用四舍五入法把1.8049精确到0.01为1.80.故答案为:1.80.27.解:﹣3(a+3b)=﹣3a﹣9b.故答案为:﹣3a﹣9b.28.解:系数为﹣;多项式3x2y﹣7x4y2﹣xy4的最高次项是﹣7x4y2.故答案为:,﹣7x4y2.29.解:∵a2+a=7,∴a2+a﹣3=7﹣3=4.故答案为:4.30.解:根据题意得:x﹣1=5,y+1=3,解得x=6,y=2,∴x y=62=36.故答案是:36.31.解:x3﹣4x2﹣2+2x3+mx2﹣3=3x3+(m﹣4)x2﹣5,∵关于x的多项式x3﹣4x2﹣2与2x3+mx2﹣3的和不含二次项,∴m﹣4=0.解得,m=4.故答案为:4.32.解:∵|x|=3,|y|=5,∴x=±3,y=±5,∵x>y,∴y必小于0,y=﹣5.当x=3或﹣3时,均大于y.所以当x=3时,y=﹣5,代入2x+y=2×3﹣5=1.当x=﹣3时,y=﹣5,代入2x+y=2×(﹣3)﹣5=﹣11.所以2x+y=1或﹣11.故答案为:1或﹣11.三.解答题33.解:整数:{﹣1,﹣|﹣3|,0,﹣(﹣2)…};非负整数:{0,﹣(﹣2)…};非正数:{﹣1,﹣,﹣|﹣3|,0,﹣0.3…};有理数:{﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2)…}.故答案为:﹣1,﹣|﹣3|,0,﹣(﹣2);0,﹣(﹣2);﹣1,﹣,﹣|﹣3|,0,﹣0.3;﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,﹣(﹣2).34.解:(1)原式=3+9﹣4﹣2=12﹣6=6;(2)原式=4﹣1+2=5;(3)原式=﹣4××4×(﹣8)=32;(4)原式=1×5+16÷4=5+4=9.35.解:如图所示:,﹣|﹣4|<﹣(+2)<(﹣1)3.36.解:(1)原式=3a﹣4b+2a﹣1=5a﹣4b﹣1;(2)原式=10a﹣6b﹣3a2+6b=10a﹣3a2.37.解:(1)∵a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,|a﹣b|+|a+b|﹣|c﹣a|=b﹣a﹣a﹣b﹣c+a=﹣a﹣c;(2)∵|﹣a|=21,|+b|=27,∴a=±21,b=±27,∵|a+b|=a+b,∴a+b≥0,∴①a=﹣21,b=27,则a﹣b=﹣21﹣27=﹣49;②a=21,b=﹣27,则a﹣b=21+27=49;③a=21,b=27,则a﹣b=21﹣27=﹣6.故a﹣b的值为﹣49或49或﹣6.38.解:原式=6a2b﹣2ab2﹣6a2b﹣12ab2=﹣14ab2,当a=﹣1,b=时,原式=﹣14ab2=﹣14×(﹣1)×()2=14×=.39.解:∵x※y=6x+5y,x△y=3xy,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=[(﹣12)+15]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36.40.解:(1)∵m到原点距离2个单位,∴m=2或﹣2,故答案为:2或﹣2;(2)根据题意知a+b=0,xy=1,m=2或﹣2,当m=2时,原式=22+0+(﹣1)2020=4+1=5;当m=﹣2时,原式=(﹣2)2+0+(﹣1)2020=4+1=5;综上,m2++(﹣xy)2020的值为5.41.解:(1)∵A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5,∴A+B﹣(A﹣C)=﹣3x2﹣5x﹣1﹣(﹣2x+3x2﹣5),∴B+C=﹣3x2﹣5x﹣1+2x﹣3x2+5,∴B+C=﹣6x2﹣3x+4,(2)把x=﹣1代入﹣6x2﹣3x+4,得,B+C=﹣6×1﹣3×(﹣1)+4=1.42.解:(1)+1+1+1.5+(﹣1)+1.2+1.3+(﹣1.3)+(﹣1.2)+1.8+1.1=5.4(千克).答:这10袋小麦总计超过5.4千克;(2)总质量:(90+5.4÷10)×100=9054(千克),9054×25=226350(元).答:这100袋小麦总销售额是226350元.。

苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)

苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)

第二章《有理数》选择、填空专题练习一.选择题1.下面几个数中,属于正数的是()A.3 B.﹣0.5 C.﹣10 D.02.上升5cm,记作+5cm,下降6cm,记作()A.6cm B.﹣6cm C.+6cm D.负6cm3.下列数是无理数的是()A.πB.C.D.04.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个5.﹣8的相反数是()A.﹣8 B.C.8 D.﹣6.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣7.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣8.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣19.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1 B.3 C.﹣1 D.﹣310.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和11.若a≠0,b≠0,则代数式的取值共有()A.2个B.3个C.4个D.5个12.若|a﹣b|=1,|b+c|=1,|a+c|=2,则|a+b+2c|等于()A.3 B.2 C.1 D.013.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣314.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)15.计算+++++……+的值为()A.B.C.D.16.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大17.﹣|﹣|的负倒数是()A.B.C.D.18.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×10619.遗爱湖有5400亩,15亩=10000平方米,用科学记数法表示遗爱湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米20.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A.4.07×105元B.4.07×106元C.4.07×107元D.4.07×108元21.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201822.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入﹣1,并将所显示的结果再次输入,这时显示的结果应当是()A.2 B.3 C.4 D.523.定义一种运算:C=,则C=()A.10 B.C.D.2024.定义运算a⊗b=a(1﹣b),则下面的结论正确的是()A.2⊗(﹣2)=﹣2 B.a⊗b=b⊗aC.若a+b=0,则(a⊗a)+(b⊗b)=2ab D.若a⊗b=0,则a=025.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元二.填空题26.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.27.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.28.﹣2018的绝对值是.29.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.30.若x是实数,则y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为.31.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c ﹣d|+|d﹣a|的最大值是.32.计算:|﹣3|﹣1=.33.计算1+4+9+16+25+…的前29项的和是.34.从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有个.35.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.36.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.37.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.38.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.39.按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)40.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.答案与解析一.选择题1.【分析】根据正数和负数的定义可直接解答.【解答】解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选:A.【点评】此题考查的知识点是正数和负数,解答此题要熟知正数和负数的概念:大于0的数叫正数,小于0的数为负数,0既不是正数也不是负数.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可知上升为+,则下降为﹣,所以下降6cm,记作﹣6cm.故选答案B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,关键是能够根据一个数的平方正确估算无理数的大小,结合数轴确定两点之间的整数.5.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.6.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.7.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.8.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.9.【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.10.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11.【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.【点评】本题主要考查了绝对值的运用,绝对值都为非负数.这一点必须牢记.12.【分析】把a+c写成a﹣b+b+c,然后根据绝对值的性质求出a﹣b、b+c,再求出a+c,然后代入代数式根据绝对值的性质解答即可.【解答】解:|a+c|=|a﹣b+b+c|=2,∵|a﹣b|=1,|b+c|=1,∴a﹣b=b+c=1或a﹣b=b+c=﹣1,①a﹣b=b+c=1时,a+c=2,所以,|a+b+2c|=|a+c+b+c|=|1+2|=3,②a﹣b=b+c=﹣1时,a+c=﹣2,所以,|a+b+2c|=|a+c+b+c|=|﹣1﹣2|=3,故|a+b+2c|=3.故选:A.【点评】本题考查了绝对值,熟记性质并观察已知条件的特征求出a﹣b=b+c=1或a﹣b=b+c=﹣1是解题的关键.13.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.16.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.17.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.19.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400÷15×10000=3600000=3.6×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.22.【分析】先根据显示屏的结果总等于所输入有理数的平方与1之和这个条件,由此得出显示屏的结果,即可得出正确结论.【解答】解:∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,∴若输入﹣1,则显示屏的结果为(﹣1)2+1=2,再将2输入,则显示屏的结果为22+1=5.故选:D.【点评】本题主要考查了有理数的混合运算,在解题时要注意这个计算程序的条件.23.【分析】根据题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:==10,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】根据定义的运算方法逐一运算,【解答】解:A、2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,此选项不正确;B、a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b=b⊗a只有在a=b时成立,此选项不正确;C、a+b=0,a=﹣b,(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2=2ab,此选项正确;D、a⊗b=0,a(1﹣b)=0,a=0或b=1,此选项不正确.故选:C.【点评】此题主要考查了有理数的混合运算,理解和掌握新运算的计算方法是解决问题的关键.25.【分析】认真分析表格,弄清返购物券的标准与使用购物券的条件,从而确定最佳方案.【解答】解:∵买化妆品不返购物券,∴先购买鞋,利用所得购物券再买衣服,需要现金(280+220)元,得到200购物券,利用购物券,现金100元,购买化妆品即可.张阿姨购买这三件物品实际所付出的钱的总数为:280+220+100=600元.故选:B.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.二.填空题26.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.28.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.29.【分析】分三种情况:x<﹣1;﹣1≤x≤4;x>4;去绝对值后解方程即可求解.【解答】解:x<﹣1时,﹣x﹣1﹣x+4=7,解得x=﹣2;﹣1≤x≤4时,x+1﹣x+4=7,方程无解;x>4时,x+1+x﹣4=7,解得x=5.故答案为:﹣2或5.【点评】考查了绝对值,注意分类思想的运用,是中档题型.30.【分析】分6个区域:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55;比较最小值,即可求得答案.【解答】解:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5,则y没有最小值;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55,则y没有最小值;故当x=4时,|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为15.故答案为:15.【点评】此题考查了绝对值的最值问题.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.31.【分析】若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,再代入计算即可求解.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值=0+0+8+8=16.故答案为:16.【点评】此题考查了绝对值,要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1,再根据低位上的数字不小于高位上的数字解答.32.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.33.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.34.【分析】两个数相加最小的和是1+4=5,最大的和是295+298=593,和也是隔3的自然数,根据等差数列通项公式求出项数即可求解.【解答】解:1+4=5,295+298=593,和是隔3的自然数,n=(593﹣5)÷3+1=588÷3+1=197.故答案为:197.【点评】考查了有理数的加法,等差数列通项公式,关键是求出两个数相加最小的和,以及最大的和.35.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.36.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.37.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x 的一元一次方程是解题的关键.39.【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.40.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.。

人教版数学七年级上册第1章有理数单元复习题(一)(含答案)

人教版数学七年级上册第1章有理数单元复习题(一)(含答案)

七年级上册第1章单元复习题(一)一.选择题1.一个数在数轴上对应的点与它的相反数在数轴上对应的点的距离是6个单位长度,则这个数是()A.6或﹣6B.﹣3或3C.6或3D.﹣6或﹣32.若|x|=|y|,则x与y的关系是()A.相等或互为相反数B.都是零C.互为相反数D.相等3.若a的相反数是2,|b|=3,且a,b异号,求a﹣b的值()A.﹣1B.5C.1D.﹣54.下列计算正确的是()A.1÷=B .÷2=C .÷=2D .÷=15.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.4第1页(共1页)6.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.47.如果a>0,b<0,|a|<|b|,则a,b,﹣a,﹣b的大小关系是()A.﹣b>a>﹣a>b B.a>b>﹣a>﹣b C.﹣b>a>b>﹣a D.b>a>﹣b>﹣a 8.如果比例的两个外项互为倒数,那么比例的两个内项成()A.正比例B.反比例C.不成比例D.无法确定9.有两个正数a,b,且a<b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,610.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的效字序号对应(如图),如字母Q与效字序号0对应,当明文中的字母对应的序号为a时,将a+7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X”对应密文“W”.按上述规定,将密文“TKGDFY”解密成明文后是()第1页(共1页)A.DAISHU B.TUXING C.BAIYUN D.SHUXUE二.填空题11.若a=1,b是2的相反数,则|a﹣b|的值为.12.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是﹣1℃,乙此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.6℃,那么这个山峰的高度大约是米.13.在数轴上A、B两点分别表示的数是2和8,在数轴上,点A右侧有另外一点P到A、B的距离和是10,则点P表示的数是.14.如果abc>0且ab<0,那么+﹣=.15.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.三.解答题16.计算:(1)20﹣11+(﹣10)﹣(﹣11)(2)(﹣1)6×4+8÷(﹣)第1页(共1页)17.对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.18.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?第1页(共1页)19.某出租车一天下午某时间段以广场为出发点,在东西方向的大道上营运,规定向东为正,向西为负,单次行车里程依先后顺序记录如下:+9,﹣3,﹣5,+4,﹣8,+7,﹣2,﹣5,+8,﹣4(单位:km)(1)该出租车司机将最后一名乘客送到目的地后,出租车在广场的什么方向?距广场多远?(2)若每千米耗油0.08升,该出租车这个时间段共耗油多少升?20.规定一种新的运算△:a△b=a(a+b)+a﹣b.例如,1△2=1×(1+2)+1﹣2=2.(1)10△12=.(2)若x△3=﹣7,求x的值.(3)求代数式﹣2x△4的最小值.第1页(共1页)参考答案一.选择题1.解:因为互为相反数的两数的绝对值相等,设这个数为a,则|a|+|﹣a|=6,所以a=±3.故选:B.2.解:∵|x|=|y|,∴x=y或x=﹣y,∴x与y的关系是相等或互为相反数.故选:A.3.解:∵a的相反数是2,∴a=﹣2,∵|b|=3,且a,b异号,∴b=3,∴a﹣b=﹣2﹣3=﹣5.故选:D.4.解:A、1÷=1×=,故A错误;B 、÷2=×=,故B错误;第1页(共1页)C 、÷=×3=2,故C正确;D 、÷=×4=,故D错误.故选:C.5.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.6.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.7.解:∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>a,第1页(共1页)∴﹣b>a>﹣a>b.故选:A.8.解:如果比例的两个外项互为倒数,那么比例的两个内项成反比例.故选:B.9.解一:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴的一切值中属于整数的有=2,=3,=4,=5,=6.故选:B.解二:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴≤≤,即≤≤6,∴的一切值中属于整数的有2,3,4,5,6.故选:B.10.解:由“明文”与“密文”的转换规则可得:故选:C.第1页(共1页)11.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.12.解:[5﹣(﹣1)]÷0.6×100=(5+1)÷0.6×100=6÷0.6×100=10×100=1000(米),即这个山峰的高度大约是1000米,故答案为:1000.13.解:∵数轴上A、B两点分别表示的数是2和8,∴AB=|8﹣2|=6,又∵点A右侧有另外一点P到A、B的距离和是10,∴点P在点B的右侧,设点P所表示的数为x,则(x﹣2)+(x﹣8)=10,解得x=10,故答案为:10.14.解:∵abc>0且ab<0,第1页(共1页)对a的值分类讨论如下:①设a>0,∵ab<0,∴b<0,bc>0,∴+﹣=++=1﹣2﹣=﹣;②设a<0,∵ab<0,∴b>0,bc<0,∴+﹣=++=﹣1+2+=;故答案为:﹣或.15.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.三.解答题16.解:(1)20﹣11+(﹣10)﹣(﹣11)=20+(﹣11)+(﹣10)+11=10;(2)(﹣1)6×4+8÷(﹣)=1×4+8×(﹣)第1页(共1页)=4+(﹣14)=﹣10.17.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.18.解:(1)线段AB=﹣2﹣(﹣11)=9.(2)∵M是线段AB的中点,∴点M在数轴上对应的数为(﹣2﹣11)÷2=﹣6.5.(3)设AB′=x,因为AB ′=B′C,则B′C=5x.所以由题意BC=B′C=5x,所以AC=B′C﹣AB′=4x,所以AB=AC+BC=AC+B′C=9x,即9x=9,所以x=1,所以由题意AC=4,又因为点A表示的数为﹣2,﹣2﹣4=﹣6,第1页(共1页)所以点C在数轴上对应的数为﹣6.故答案为:9;﹣6.5.19.解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣8)+(+7)+(﹣2)+(﹣5)+(+8)+(﹣4)=9﹣3﹣5+4﹣8+7﹣2﹣5+8﹣4=(9+4+7+8)﹣(3+5+8+2+5+4)=28﹣27=1(km).所以出租车司机将最后一名乘客送到目的地后,出租车在广场的东面,距广场1km;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+7|+|﹣2|+|﹣5|+|+8|+|﹣4|=9+3+5+4+8+7+2+5+8+4=55千米.55×0.08=4.4升.所以该出租车这个时间段共耗油4.4升.20.解:(1)∵a△b=a(a+b)+a﹣b,∴10△12=10×(10+12)+10﹣12=218.(2)∵x△3=﹣7,∴x(x+3)+x﹣3=﹣7,第1页(共1页)∴x2+4x+4=0,解得x=﹣2.(3)∵a△b=a(a+b)+a﹣b,∴﹣2x△4=﹣2x(﹣2x+4)﹣2x﹣4=4x2﹣10x﹣4=(2x﹣2.5)2﹣10.25∴2x﹣2.5=0,即x=1.25时,﹣2x△4的最小值是﹣10.25.故答案为:218.第1页(共1页)。

人教版数学七年级上册第四章复习题带答案

人教版数学七年级上册第四章复习题带答案

4.1几何图形一.选择题1.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm3,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm2.某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“厉”字所在面相对的面上的汉字是()A.国B.了C.的D.我3.如图是一个正方体纸盒的表面展开图,折成正方体后,相对面上的两个数互为相反数,则A、B、C表示的数分别为()A.0,﹣5,3B.0,3,﹣5C.3,0,﹣5D.﹣5,3,04.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是()A.共B.山C.绿D.建5.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,与“美”字相对的面上的字是()A.的B.利C.川D.市6.一圆柱形桶内装满了水,已知桶的底面直径和高都为m,另一长方体形容器的长为m,宽为m,若把圆柱形桶中的水倒入长方体形容器中刚好倒满,则长方体形容器的高为()A.2mπB.mπC.mπD.4mπ7.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于()A.16B.18C.26D.328.下列图形中能折叠成棱柱的是()A.B.C.D.9.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.10.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.二.填空题11.将一个直角三角形ABC绕它的一边旋转,旋转后所得的几何体可能是下面图中的哪个.12.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.13.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=.14.如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体的2号面的对面是号面.15.如图,在长方体ABCD﹣A1B1C1D1中,已知AB=4,AD=3,AA1=2.则三棱锥C1﹣A1DB的体积为.三.解答题16.把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为4cm,宽为3cm的长方形绕它的一条边所在的直线旋转一周后,得到的圆柱体的体积是多少?(结果保留π)17.求下列图形中阴影部分的面积.(用字母表示)18.(1)三棱锥有6条棱,4个面,四棱锥有条棱,个面;(2)棱锥有30条棱;(3)有没有一个多棱锥,其棱数是2006,若有求出有多少个面;若没有,说明理由.19.如图所示,图①~图④都是平面图形(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间有什么关系.图序顶点数边数区域数①463②③④参考答案与试题解析一.选择题1.【解答】解:设长方体的宽为xcm,则高是xcm,长是2xcm,根据题意,得2x3=54000,x3=27000,x=30,所以这个音箱的长是60cm.故选:B.2.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面;故选:B.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣3是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=3.故选:A.4.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“水”字一面的相对面上的字是“建”.故选:D.5.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“美”字相对的面上的字是市.故选:D.6.【解答】解:==.所以长方体形容器的高为.故选:B.7.【解答】解:将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m﹣2)2=12×12(m﹣2),解得m1=26,m2=2(舍去),故选:C.8.【解答】解:A、不能折叠成棱柱,缺少一个侧面,故A不符合题意;B、能折叠成四棱柱,故B符合题意;C、不能折叠成四棱柱,有两个面重叠,故C不符合题意;D、不能折叠成六棱柱,底面缺少一条边,故D不符合题意;故选:B.9.【解答】解:三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选:B.10.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.二.填空题(共5小题)11.【解答】解:以AC边所在的直线为轴,旋转一周所形成的图(2)的圆锥体,以BC边所在的直线为轴,旋转一周所形成的图(3)的圆锥体,以AB边所在的直线为轴,旋转一周所形成的图(4)的圆锥体,故答案为:(2)(3)(4).12.【解答】解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.13.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“﹣2”相对.因为相对面上两个数都互为相反数,所以a=﹣1,b=﹣3,故a+b=﹣4.14.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“1”与面“4”相对,面“3”与面“5”相对,“2”与面“6”相对.故填6.15.【解答】解:在长方体ABCD﹣A1B1C1D1中,三棱锥C1﹣A1DB的体积V=V﹣(V+V+V+V)=V﹣(S△ABD ×AA1+S△CBD×CC1+S×BB1+S×DD1)=S ABCD×AA1﹣(S ABCD×AA1+S×AA1)=S ABCD×AA1=V=×AB×AD×AA1=×4×3×2=8.∴三棱锥C1﹣A1DB的体积为8;故答案为:8.三.解答题(共4小题)16.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36π(cm3),绕宽所在的直线旋转一周得到圆柱体积为:π×42×3=48π(cm3),答:得到的圆柱体的体积是36πcm3或者48πcm3.17.【解答】解:左图:阴影部分的长为(a﹣x),宽为b,因此S=b(a﹣x)=ab﹣阴影部分bx,=R2﹣=.右图:S阴影部分18.【解答】解:(1)四棱锥有8条棱,5个面;(2)十五棱锥有30条棱;(3)一个多棱锥的棱数是2006,则这个多面体的面数是2006÷2+1=1004.故有1004个面.故答案为:8,5;十五.19.【解答】解:(1)填表如下:图序顶点数边数区域数①463②8125③694④10156(2)由(1)中的结论得:边数﹣顶点数+1=区域数.4.2直线射线线段一、选择题1.下列说法中正确的是A. 延长射线OA到点BB. 线段AB为直线AB的一部分C. 射线OM与射线MO表示同一条射线D. 一条直线由两条射线组成2.如图,在下列说法中,错误的是A. 点P为直线AB外一点B. 直线AB不经过点PC. 直线AB与直线BA是同一条直线D. 点P在直线AB上3.如图,对于直线AB,线段CD,射线EF,其中能相交的是A. B.C. D.4.如图,点B,C,D依次在射线AP上,则下列线段长度错误的是A. B. C. D.5.小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定A. 1根B. 2根C. 3根D. 4根6.如图,C是线段AB的中点,D是线段BC的中点,下列等式不正确的是A. B.C. D.7.有三个点A,B,C,过其中每两个点画直线,可以画出直线A. 1条B. 2条C. 1条或3条D. 无法确定8.如图所示,C是线段AB的中点,D在线段CB上,,,则A. 20B. 12C. 10D. 89.在线段MN的延长线上取一点P,使,再在MN的延长线上截取,那么线段MP的长是线段NQ的长的A. B. C. D.10.将一根绳子对折以后用线段AB表示,现从一点P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP PB,则这条绳子的原长为A. 100cmB. 150cmC. 100cm或150cmD. 120cm或150cm二、填空题(本大题共6小题,共18.0分)11.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.12.如图,A,B,C是直线l上的三个点,图中共有条线段.13.如图,已知C、D是AB上两点,且,,M是AD的中点,N是BC的中点,则线段MN的长为_______________.14.线段,点C在线段AB上,且,M为BC的中点,则AM的长为______cm.15.如图,数轴上A、B两点之间的距离,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为.16.线段,是AB的中点,是的中点,是的中点,是的中点,依此类推,线段的长为_____.三、计算题(本大题共2小题,共12.0分)17.如图,已知线段,M为AB的中点,P在MB上,N为PB的中点,且,求MB的长;求PB的长;求PM的长.18.已知:如图,点C、D是线段AB上的两点,线段AC:CD::3:4,点E、F分别是线段AC、DB的中点,且线段,求线段AB的长.四、解答题(本大题共4小题,共32.0分)19.如图,在平面内有A,B,C三点.画直线AC,线段BC,射线AB;在线段BC上任取一点不同于B,,连接线段AD;请直接写出图中的线段条数.20.已知,点C在直线AB上,如果,D是线段AC的中点,求线段BD的长度.下面是马小虎同学的解题过程:解:根据题意可画出如图所示的图形.由图可得.因为D是线段AC的中点,所以.所以.若你是老师,会判马小虎满分吗若会,请说明理由若不会,请将马小虎的错误指出,并给出你认为正确的解法.21.A,B两点在数轴上的位置如图所示,其中点A表示的有理数为,且点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为秒.当时,AP的长为,点P表示的有理数为.当时,求t的值.为线段AP的中点,N为线段PB的中点在点P运动的过程中,线段MN 的长度是否发生变化若发生变化,请说明理由若不发生变化,请你画出图形,并求出线段MN的长.22.如图,在射线OM上有三点A、B、C,满足,,如图所示,点P从点O出发,沿OM方向以的速度匀速运动,点Q从点C出发在线段CO上向点O以的速度匀速运动点Q运动到点O时停止运动,两点同时出发.若关于m、n的单项式与的和仍为单项式,请直接写出:_____,_____;当,时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;点E、F分别是线段OA、OC的中点,当AB以的速度向右运动t秒时,是否存在某一时刻恰好点F是线段BE的中点?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】本题主要考查的是直线,射线,线段的有关知识,利用直线、射线、线段的特征判定即可.【解答】解:延长射线OA到点B,射线OA是无限延伸的,故选项错误;B.线段AB为直线AB的一部分是正确的;C.射线OM与射线MO表示两条射线,故选项错误;D.一条直线不一定由两条射线组成,故选项错误.故选B.2.【答案】D【解析】【分析】考查直线、射线和线段的意义.注意图形结合的解题思想结合图形,对选项一一分析,选出正确答案.【解答】解:A、点P为直线AB外一点,符合图形描述,选项正确;B、直线AB不经过点P,符合图形描述,选项正确;C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;D、点P在直线AB上应改为点P在直线AB外一点,选项错误.故选D.3.【答案】B【解析】【分析】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键,根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.4.【答案】C【解析】【分析】本题主要考查的是两点间的距离的有关知识,直接根据数轴结合两点间的距离公式对给出的各个选项进行逐一分析即可.【解答】解:,,故本选项正确;B.,,,故本选项正确;C.由图示可知,,故本选项错误;D.,,,故本选项正确.故选C.5.【答案】B【解析】【分析】本题考查直线的性质.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.根据直线的性质求解,判定正确选项.【解答】解:根据直线的性质,小红至少需要2根钉子使细木条固定.只有B符合.故选B.6.【答案】D【解析】【分析】此题主要考查线段的中点定义及线段和差问题,根据线段的中点定义求解【解答】解:是线段AB的中点,D是线段BC的中点,,故A选项正确,,故B选项正确,故C选项正确,故D选项错误故选D7.【答案】C【解析】【分析】此题考查直线的基本性质:两点确定一条直线,分当三点在同一条直线上时,当三点不在同一条直线上时讨论求解即可.【解答】解:当三点在同一条直线上时,只能画一条;当三点不在同一条直线上时可以画3条;故选C.8.【答案】D【解析】【分析】此题考查的知识点是线段的和差,由已知得,又由C是线段AB的中点可求出,从而求得.【解答】解:,是线段AB的中点,,.故选D.9.【答案】C【解析】【分析】本题主要考查了两点间的距离和线段的和差.根据题意设,则,,,然后得到,进而得到MP:::4,问题得到解决.【解答】解:线段MN的延长线上取一点P,,如图,设,则,,,,,MP :::4,故选C.10.【答案】C【解析】【分析】本题考查了两点间的距离,分类讨论是解题关键.根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得,,,这条绳子的原长为;当AP的2倍最长时,得,,,,这条绳子的原长为.故选C.11.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.根据线段的性质,可得答案.本题考查了线段的性质,熟记线段的性质是解题关键.12.【答案】3【解析】【分析】本题考查了线段,记住线段是直线上两点及其之间的部分是解题的关键,写出所有的线段,然后再计算条数【解答】解:图中线段有:线段AB、线段AC、线段BC,共三条.故答案为3.13.【答案】7cm【解析】【试题解析】【分析】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.设,则,再用x表示出各线段的长度,再根据即可得出结论.【解答】解:,,,设,则,是AD的中点,N是BC的中点,,,,,.故答案为7cm.14.【答案】【解析】解:如图,点C在线段AB上,,即,即为BC的中点,.故答案为.根据点C在线段AB上,且,可得,再根据M为BC的中点,即可求得AM的长.本题考查了两点间的距离,解决本题的关键是利用线段中点定义.15.【答案】21或【解析】【分析】本题主要考查了数轴与分类讨论思想的综合,关键是要运用分类讨论思想的方法设MN的长度为m,根据点M对应的数据利用分类讨论思想得出结果.【解答】解:设MN的长度为m.当点N与点A重合时,此时点M对应的数为9,则点N对应的数为.当点N到AB中点时,点N此时对应的数为,则点M对应的数为当点N与点B重合时,同理可得点M对应的数为.故答案为21或.16.【答案】【解析】【试题解析】【分析】本题主要考查了线段中点的概念,图形的变化规律,有理数乘方的意义解答本题的关键是发现图形的变化规律首先根据线段中点的概念得出线段的长,然后根据线段AB的长,求出的长,即可求解.【解答】解:,是AB的中点,是的中点,是的中点,是的中点,,,,,,.故答案为.17.【答案】解:是AB的中点,;为PB的中点,且,;,,.【解析】【试题解析】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.根据线段,M为AB的中点可直接得出结论;根据N为PB的中点,且可直接得出PB的长;根据MB与PB的长可直接得出结论.18.【答案】解:设,则线段,,、F分别是线段AC、DB的中点,,,,,.【解析】【试题解析】首先设,则线段,,然后根据E、F分别是线段AC、DB的中点,分别用x表示出EC、DF,根据,求出x的值,即可求出线段AB的长是多少.此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.19.【答案】解:如图,直线AC,线段BC,射线AB即为所求;如图,线段AD即为所求;图中的线段条数为6.【解析】本题主要考查了直线、射线、线段的定义,线段和直线的关系:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段或线段.依据直线、射线、线段的定义,即可得到直线AC,线段BC,射线AB;依据在线段BC上任取一点不同于B,,连接线段AD即可;根据图中的线段为AB,AC,AD,BD,CD,BC,即可得到图中线段的条数.20.【答案】解:不会判马小虎同学满分点C可能在线段AB的延长线上,也可能在线段AB 上,有两种情况,而马小虎只考虑了一种情况.应分两种情况讨论:第一种情况同马小虎同学的解题过程,可求得第二种情况根据题意画图如下:由图可得.因为D是线段AC的中点,所以.所以.综上可得,线段BD的长度为3cm或7cm.【解析】本题主要考查了线段的和差、线段的中点的定义等知识,需要注意的是不要将“点C在直线AB上”与“点C在线段AB上”混为一谈.由于,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC 与BC的和或差,就可解决问题.21.【答案】解:,;当点P在点B左侧时,,,,由题意得:,解得:;当点P在点B右侧时,由题意可得,解得:;综上,或6;如图1,当点P在线段AB上时,;如图2,当点P在AB延长线上时,;综上所述,线段MN的长度不发生变化,其值为5.【解析】【分析】本题考查了一元一次方程的应用和数轴,解题关键是根据题目给出的条件,找出合适的等量关系列出方程,再求解.根据题意知,点P表示的有理数为,将代入即可求得;由、知,根据得出关于t的方程,解之即可得;分类讨论:当点P在点A、B两点之间运动时,当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.【解答】解:设运动时间为t秒,则,点P表示的有理数为,当时,,点P表示的有理数为,故答案为:2,;见答案;见答案.22.【答案】;2;以O未原点,以OM方向为正方向,以作单位长度建立数轴,则O:0,A:20,B:80,C:100,设ts时有,Q为AB的三等分点,:2t,,,,由,即,当时,,得舍去,当时,,得,当时,,得,的三等分点为40或60,当时,或,解得:或;当时,或,解得:或;由建立数轴,A:,B:,O:0,,为OC的中点,,即F表示50,为OA的中点,,当t秒时,F为BE的中点,即,解得:.【解析】【试题解析】【分析】本题主要考查了合并同类项的定义,线段的和差,解题的关键是注意分情况讨论.根据同类项的定义进行解答即可;根据,当P在AB上和P在AB延长线上时,求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是两个点,分别是时,时,由此就可求出它的速度;需要正确找准点F随AB的移动而移动,得出BE、BF的大小即可解决.【解答】解:单项式与的和仍为单项式,,,故答案为1;2;见答案;见答案.4.3《角》一、选择题:1、下列说法中,正确的是( )A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形2、如图,点O在直线AB上,则在此图中小于平角的角有( )A.4个B.5个C.6个D.7个3、∠ACB的两边是()A.射线AC、BCB.射线CA、CBC.线段AC、BCD.线段CA、CB4、用量角器量∠MON 的度数,下列操作正确的是( )A B C D5、下列各式中,角度互化正确的是( )A.63.5°=63°50″B.23°12′36″=25.48°C.18°18′18″=3.33°D.22.25°=22°15′6、下列说法错误的是()A.角的大小与角的边画出部分的长短无关B.角的大小与它们度数的大小是一致的C.角的平分线是一条线段D.角的和、差、倍、分的度数与它们度数的和、差、倍、分相等7、若∠A+∠B=180°,∠A与∠C互补,则∠B与∠C的关系是()A.相等B.互补C.互余D.不能确定8、如图,∠1=∠2,∠3=∠4,则下列结论正确的有( )①AD平分∠BAE;②AF平分∠EAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE平分∠BAC. A.4个B.3个C.2个D.1个二、填空题:9、如图,∠1,∠2表示的角可分别用大写字母表示为 , ;∠A也可表示为,还可以表示为 .10、把15°30′化成度的形式,则15°30′=度.11、8点整,时针与分针之间的夹角是 .12、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB的度数为 .13、一个角补角比它的余角的2倍多30°,则这个角的度数为.14、如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB= .三、解答题:15、计算:(1)153°29′42″+26°40′32″(2)110°36′-90°37′32″16、如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).17、如图,∠AOB=124°,OC是∠AOB的平分线,∠1与∠2互余,求∠1和∠BOD的度数.18、如图1所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将等腰的三角尺绕点O旋转到如图2的位置.①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD的以上关系还成立吗?说明理由.参考答案一、选择题:1、C2、B3、 B4、C5、D6、C7、A8、C二、填空题:9、∠ABC,∠BCN ∠BAC ∠MAN.10、15.511、120°12、28°13、30°14、180°三、解答题:15、(1)180°10′14″(2)19°58′32″16、(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.17、∠1=28°.∠BOD=34°18、(1)①∠AOD=∠BOC.②∠AOC和∠BOD互补.(2)①∠AOD=∠BOC.②∠AOC和∠BOD互补.4.2直线、射线、线段一.选择题1.如图,点C在线段AB上,点D是AC的中点,如果CD=3,AB=10,那么BC长度为()A.3B.3.5C.4.5D.42.已知线段AB,在AB的延长线上取一点C,使BC=2AB,若AC=9cm,则线段AB的长度为()A.4.5cm B.4cm C.3cm D.2cm3.如图,已知AB=10cm,M是AB中点,N在AB的延长线上,若NB=MB,则MN的长为()A.7.5cm B.10cm C.5cm D.6cm4.已知线段AB=6cm,点C在直线AB上,且线段AC=1cm,则线段BC的长为()A.5cm B.7cm C.5cm或7cm D.以上均不对5.如图,下列说法错误的是()A.直线AC与射线BD相交于点AB.BC是线段C.直线AC经过点AD.点D在直线AB上6.如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短7.已知点C在线段AB上,下列各式中:①AC=AB;②AC=CB;③AB=2AC;④AC+CB=AB,能说明点C是线段AB中点的有()A.①B.①②C.①②③D.①②③④8.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间9.判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④两点之间,线段最短.正确的有几个()A.1B.2C.3D.410.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做的依据是()A.直线比曲线短B.两点之间,线段最短C.两点确定一条直线D.垂线段最短二.填空题11.点M是线段AB上一点,且AM:MB=2:3,MB比AM长2cm,则AB长为.12.把一根木条钉在墙上使其固定,至少需要个钉子,其理由是.13.如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF 长为cm.14.如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为.15.已知A、B、C三站在一条东西走向的马路边,小马现在A站,小虎现在B站,两人分别从A、B两站同时出发,约定在C站会面商议事宜.若小马的行驶速度是小虎的行驶速度的,两人同时到达C站,且A、B两站之间的距离为8km,求C站与A、B两站之间的距离之和是.三.解答题16.如图,点C是线段AB上一点,点M、N、P分别是线段AC、BC、AB的中点,AC=3cm,CP=1cm,求:(1)线段AM的长;(2)线段PN的长.17.如图,点P是线段AB上的一点,点M、N分别是线段AP、PB的中点.(1)如图1,若点P是线段AB的中点,且MP=4cm,求线段AB的长;(2)如图2,若点P是线段AB上的任一点,且AB=12cm,求线段MN的长.18.已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.19.如图,已知线段AB=60,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长.解:设AC=3x,则CD=4x,DB=,∵AB=AC+CD+DB=60∴AB=(用含x的代数式表示)=60.∴x=.∵点K是线段CD的中点.∴KD==.∴KB=KD+DB=.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6,∴BC=AB﹣AC=10﹣6=4.故选:D.2.【解答】解:如图,∵BC=2AB、AC=9cm,∴AB=AC=3cm,故选:C.3.【解答】解:∵AB=10cm、M为AB的中点,∴AM=MB=AB=5cm,又∵NB=MB,∴NB=2.5cm,则MN=MB+BN=5+2.5=7.5(cm),故选:A.4.【解答】解:①点C在A、B中间时,BC=AB﹣AC=6﹣1=5(cm).②点C在点A的左边时,BC=AB+AC=6+1=7(cm).∴线段BC的长为5cm或7cm.故选:C.5.【解答】解:A、直线AC与射线BD相交于点A,说法正确,故本选项错误;B、B、C是两个端点,则BC是线段,说法正确,故本选项错误;C、直线AC经过点A,说法正确,故本选项错误;D、如图所示,点D在射线BD上,说法错误,故本选项正确.。

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。

人教版七年级数学上册阶段(第1-3章)复习训练卷 (含详解)

人教版七年级数学上册阶段(第1-3章)复习训练卷   (含详解)

七年级数学上册阶段(第1-3章)复习训练卷一.选择题1.﹣2020的倒数是()A.2020B.±C.﹣D.2.﹣8的相反数是()A.B.﹣8C.8D.﹣3.我市某日的最高气温是10℃,最低气温是﹣2℃,那么当天的日温差是()A.12℃B.﹣12℃C.8℃D.﹣8℃4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为()A.0.358×105B.3.58×104C.35.8×103D.358×1025.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1D.x2y﹣2x2y=﹣x2y6.单项式﹣x3y2的系数与次数分别为()A.﹣1,5B.﹣1,6C.0,5D.1,57.多项式x2y+3xy﹣1的次数与项数分别是()A.2,3B.3,3C.4,3D.5,38.用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2 (m﹣n)2C.2m﹣n2D.(m﹣2n)2 9.方程3x+2=8的解是()A.x=3B.x=C.x=2D.x=10.根据等式的性质,下列变形正确的是()A.如果2x=3,那么B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=311.已知关于x的方程ax﹣2=x的解为x=﹣1,则a的值为()A.1B.﹣1C.3D.﹣312.解方程时,去分母得()A.2(x+1)﹣3(2x﹣1)=6B.3(x+1)﹣2(2x﹣1)=1C.3(x+1)﹣2(2x﹣1)=6D.3(x+1)﹣2×2x﹣1=613.一艘船从甲码头到乙码头顺流而行,全程需7个小时,逆流航行全程需要9小时,已知水流速度为每小时3千米.若设两个码头间的路程为x千米,则所列方程为()A.B.C.D.14.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地.设A、B两地间的路程是xkm,由题意可得方程()A.70x﹣60x=1B.60x﹣70x=1C.﹣=1D.﹣=1 15.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32019的个位数字是()A.3B.9C.7D.116.一元一次方程+++=4的解为()A.30B.24C.21D.12二.填空题17.如果水库水位上升2m记作+2m,那么水库水位下降6m记作.18.在数轴上与表示﹣4的数相距4个单位长度的点对应的数是.19.如果实数a,b满足(a﹣3)2+|b+1|=0,那么b a等于.20.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为个.三.解答题(共10小题)21.计算:(﹣1)2018÷2×(﹣)3×16﹣|﹣2|22.计算:|﹣2|+(﹣1)2019+×(﹣3)223.解方程:24.解方程:.25.先化简,再求值:a2+(5a2﹣2a)﹣2(a2﹣3a),其中a=﹣5.26.先化简,后求值:(a2﹣6a﹣1)﹣2(5a2﹣3a+2),其中,a=﹣.27.先化简,再求值:6x2﹣3(2x2﹣4y)+2(x2﹣y),其中,x=﹣1,y=.28.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?29.甲、乙两站间的路程为480km,一列慢车从甲站开出,速度为48km/h,一列快车从乙站开出,速度为72km/h.(1)两车同时开出相向而行,多少小时相遇?(2)快车先开25min,两车相向而行,慢车行驶了多少小时后两车相遇?30.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为40个单位长度?参考答案一.选择题1.解:﹣2020的倒数是.故选:C.2.解:﹣8的相反数是8,故C符合题意,故选:C.3.解:10﹣(﹣2),=10+2,=12℃.故选:A.4.解:35800=3.58×104,故选:B.5.解:A、原式=2x2,错误;B、原式不能合并,错误;C、原式=x,错误;D、原式=﹣x2y,正确,故选:D.6.解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.7.解:多项式x2y+3xy﹣1的次数与项数分别是:3,3.故选:B.8.解:m的2倍与n平方的差表示为2m﹣n2.故选:C.9.解:移项、合并得,3x=6,解得x=2,∴原方程的解为x=2,故选:C.10.解:A、如果2x=3,那么,(a≠0),故此选项错误;B、如果x=y,那么x﹣5=y﹣5,故此选项错误;C、如果x=y,那么﹣2x=﹣2y,正确;D、如果x=6,那么x=12,故此选项错误;故选:C.11.解:将x=﹣1代入ax﹣2=x,可得﹣a﹣2=﹣1,解得a=﹣1,故选:B.12.解:方程两边同时乘以6,得:3(x+1)﹣2(2x﹣1)=6,故选:C.13.解:若设A、B两个码头问的路程为x千米,根据题意得:﹣3=+3,故选:A.14.解:设A、B两地间的路程为xkm,根据题意得,故选:C.15.解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴这些数字的个位数字依次出现3,9,7,1,∵2019÷4=504…3,∴32019的个位数字是7,故选:C.16.解:+++=4,﹣+﹣+﹣+﹣=4,﹣=4,4x=4×21,x=21,故选:C.二.填空题17.解:∵“正”和“负”相对,水位上升2m,记作+2m,∴水位下降6m,记作﹣6m.故答案为:﹣6m.18.解:在﹣4的左边时,﹣4﹣4=﹣8,在﹣4右边时,﹣4+4=0.所以点对应的数是﹣8或0.故答案为:﹣8和0.19.解:由题意得,a﹣3=0,b+1=0,解得a=3,b=﹣1,所以,b a=(﹣1)3=﹣1.故答案为:﹣1.20.解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+2.三.解答题(共10小题)21.解:原式=1××(﹣)×16﹣2=1××(﹣)×16﹣2=﹣1﹣2=﹣3.22.解:原式=2﹣1+×9=1+1=2.23.解:去分母,得:2(5x+7)﹣(x+17)=12,去括号,得:10x+14﹣x﹣17=12,移项,得:10x﹣x=12﹣14+17,合并同类项,得:9x=15,系数化为1,得:x=.24.解:去分母,得:3(2x﹣1)+2=4x,去括号,得:6x﹣3+2=4x,移项,得:6x﹣4x=3﹣2,合并同类项,得:2x=1,系数化为1,得:x=0.5.25.解:原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a,当a=﹣5时,原式=100﹣20=80.26.解:原式=a2﹣6a﹣1﹣10a2+6a﹣4=﹣9a2﹣5,当a=﹣时,原式=﹣9×(﹣)2﹣5=﹣9×﹣5=﹣1﹣5=﹣6.27.解:原式=6x2﹣6x2+12y+2x2﹣2y=2x2+10y,当x=﹣1,y=时,原式=2×1+10×=2+5=7.28.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.29.解:(1)设两车行驶了x小时相遇,根据题意,得48x+72x=480,解得:x=4.答:两车行驶了4小时相遇;(2)慢车行驶了y小时两车相遇,根据题意,得:48y+72(y+)=480,解得y=,答:慢车行驶了小时后两车相遇.30.解:(1)M点对应的数是(100﹣20)÷2=40,答:点M所对应的数是40;(2)设t秒后相遇,由题意得:5t+3t=120,解得:t=15,所以点C对应的数为﹣20+3×15=25,答:C点对应的数是25;(3)设当它们运动x秒两只蚂蚁间的距离为40个单位长度,相遇前:5x﹣3x=120﹣40,解得:x=40,相遇后:5x﹣3x=120+40,解得:x=80,答:当它们运动40秒或80秒两只蚂蚁间的距离为40个单位长度.。

2024年七年级上册语文第七单元基础练习题(含答案)

2024年七年级上册语文第七单元基础练习题(含答案)

2024年七年级上册语文第七单元基础练习题(含答案)试题部分一、选择题:10道1. 下列词语中,加点字的注音全都正确的一项是()A. 咄咄逼人(duō)B. 惟妙惟肖(xiào)C. 纷至沓来(tà)D. 强词夺理(qiǎng)2. 下列句子中,成语使用不正确的一项是()A. 他学习成绩优异,在班级里鹤立鸡群。

B. 这部电影情节跌宕起伏,引人入胜。

C. 老师在课堂上循循善诱,让我们受益匪浅。

D. 他做事总是拖泥带水,让人无法忍受。

3. 下列诗句中,出自《诫子书》的是()A. 非淡泊无以明志,非宁静无以致远B. 知之者不如好之者,好之者不如乐之者C. 不愤不启,不悱不发D. 学而时习之,不亦说乎4. 下列句子中,没有语病的一项是()A. 通过这次活动,使同学们增长了知识。

B. 他的成绩不仅在全校排名第一,而且在全市也名列前茅。

C. 老师要求我们不仅要认真完成作业,还要及时复习。

D. 春天来了,校园里百花齐放,鸟语花香。

5. 下列文学常识表述正确的一项是()A. 《西游记》是吴承恩所著的神魔小说。

B. 《水浒传》讲述了宋江等108位好汉聚义梁山的故事。

C. 《红楼梦》的作者是曹雪芹和施耐庵。

D. 《三国演义》是一部描写三国时期历史的小说。

6. 下列句子中,加点词的解释不正确的一项是()A. 鸡鸣桑树颠(颠:顶端)B. 但少闲人如吾两人者耳(但:只)C. 晓雾将歇(歇:消散)D. 投箸不能食(箸:筷子)7. 下列句子中,句式不相同的一项是()A. 问渠那得清如许B. 始一反焉C. 鸢飞戾天者D. 此则岳阳楼之大观也8. 下列句子中,翻译不正确的一项是()A. 山川之美,古来共谈。

(山川景色的美丽,自古以来就是文人雅士共同谈赏的。

)B. 好之者不如乐之者。

(懂得它的人,不如爱好它的人;爱好它的人,又不如以它为乐的人。

)C. 而世之奇伟、瑰怪、非常之观,常在于险远。

(但是世上奇妙雄伟、珍异奇特、非同寻常的景象,常常在那险阻、僻远的地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级生物上册复习专题训练一、选择题1、要了解校园内的生物种类,首先要用到的方法是()A、调查法B、探究法C、实验法D、资料分析法2、下列哪项为生物的共同特征()A.都能运动 B都有细胞结构 C都能繁殖 D都生活在水中3.下列哪项不是桂花树、蕨类植物和金鱼共有的基本特征()A呼吸 B反射 C需要营养物质 D生长繁殖4.在做“光对鼠妇生活的影响”实验时,每小组用10只鼠妇做实验,并算出全班同学实验的平均值,主要目的是()A、有利于观察B、重复实验,减少实验误差C、容易确定变量D、不同小组进行对照5.“人间四月芳菲尽,山寺桃花始盛开”,造成这一差异的环境因素是()A湿度 B温度 C光 D水6.香蕉不宜在北方种植,这主要与哪种环境因素有关()A湿度 B温度 C光 D水7.从山脚到山顶植被分布一般为:热带雨林、常绿阔叶林、针叶林、高山草甸。

对此起决定作用的生态因素是()A光照 B土壤 C水 D温度8.“春兰秋菊”,这主要与哪种环境因素有关()A湿度 B温度 C光 D水9.农民给庄稼松土的目的主要是给农作物根部提供()A营养物质 B水分 C空气 D生活空间10.树木在秋天落叶,这种现象属于()A.环境对生物的适应 B环境对生物的影响C生物对环境的适应 D生物对环境的影响11.“大树底下好乘凉“说明了什么样的科学道理()A生物对环境的适应 B生物对环境的影响C环境影响了生物 D生物生存必须依赖一定的环境12、众多蚂蚁把食物搬回巢,它们之间的关系是()A捕食关系 B合作关系 C竞争关系 D寄生关系13.“千里之堤,溃于蚁穴”说明()A生物适应环境 B环境适应生物C环境影响生物 D生物影响环境14.下列现象中,属于与水分变化相适应的现象是()A候鸟迁徙 B仙人掌的叶变成刺 C旗形树 D蛾夜间活动15.早春播种,采用“地膜覆盖”的方法可以促进早出苗,其原因是()A、种子萌发需要遮光B、避免了害虫的破坏C、阻挡了鸟类取食种子D、保温、保湿、有利于萌发16下列属于生态系统的是()A、黄河中的鲤鱼B、洞庭湖中的所有生物C、内蒙古草原上的全部羊D、泰山林区17.在生态系统中,各种生物的数量和所占的比例总是相对稳定的,这是因为()A、生物与生物之间相互制约B、生态系统具有一定的自动调节能力C、生产者总是数量最多的D、人工控制的结果18、在一个生态系统中,对各种生物数量起决定作用的是()A、生产者B、消费者C、分解者D、食肉动物19、草原中存在着“牧草→兔→狐→狼”的食物链,如果牧草受到DDT的污染,那么下列生物中,DDT含量最多的是() A、牧草B、兔 C、狐 D、狼20.下列能正确表示一个生态系统组成的是()A生产者、消费者、分解者 B食物链、食物网C阳光、光、空气和生产者、消费者D非生物部分和植物、动物、微生物21.绿色植物固定的太阳能沿着食物链的单向传递叫做()A能量流动 B能量输入 C能量输出 D能量交换22、被称为“绿色水库”的生态系统是()被称为“地球之肺”的生态系统是()被称为“地球之肾”的生态系统是()A森林生态系统 B草原生态系统C海洋生态系统 D湿地生态系统23.在一个草原生态系统中,数量最多的是()A绿色植物 B羊 C狼 D鼠24.生态系统中,猫和老鼠的关系是()A竞争关系 B捕食关系 C合作关系 D寄生关系25.地球上最大的生态系统是() A、陆地生态系统B、海洋生态系统C、森林生态系统D、生物圈26.制作临时装片时应尽可能地避免产生气泡,关键步骤()A、撕取的洋葱表皮要尽量的薄B、将撕下的材料平展在载玻片的水滴中C、在载玻片的中央滴清水时,大小要适宜D、先用盖玻片的一侧接触载玻片上的水滴,再平稳放下盖玻片27.下列关于显微镜使用的有关叙述中,错误的是()A、光线较暗时用大光圈,并用凹镜对光B、观察物象一般用左眼,同时要求右眼睁开C、欲将物象从视野左上方移到中央,装片应向左上方移动D、低倍物镜换用高倍物镜后,视野中观察到的细胞数目增多,视野变暗28.下列有关显微镜对光部分操作,正确的是()A转动转换器,将高倍物镜对准通光孔,转动反光镜B转动高倍物镜,将高倍物镜对准通光孔,调节细准焦螺旋C转动转换器,将低倍物镜对准通光孔,转动反光镜D上升转换器,将高倍物镜对准通光孔,转动反光镜29.下列哪台显微镜下观察到的细胞数目最多()A目镜5X 物镜25X B目镜16X 物镜25XC目镜20X 物镜10X D目镜16X 物镜40X30.操作显微镜时,转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止,为时,眼睛一定要看着()A目镜 B物镜 C反光镜 D遮光器31.在光线比较暗的实验室内使用显微镜时,做法是()A调大光圈,用凹面反光镜 B调小光圈,用凹面反光镜C调大光圈,用平面反光镜 D调小光圈,用平面反光镜32.用显微镜观察时,转动目镜和物镜都不能把视野中的污点移走,那么可以断定污点在()如果移动目镜和玻片标本污点都不动说明污点在哪里()A目镜上 B物镜上 C玻片上 D反光镜上33.观察动物细胞,细胞的放大倍数是()A目镜的放大倍数 B目镜与物镜的放大倍数之和C物镜的放大倍数 D目镜和物镜的放大倍数的乘积34.在植物细胞中能够把光能转变为有机物的能量,并称为能量转换器的结构是()动物细胞和植物细胞中都存在的能量转换器是()A线粒体 B细胞核 C叶绿体 D细胞质35.制作人口腔上皮细胞装片在洁净的载玻片中央滴一滴()A生理盐水 B清水 C碘液 D染料36.切西瓜时会流出许多红色的汁水,这些汁水是西瓜的()这些果汁主要来自细胞的哪一部分? ()A细胞质 B液泡 C细胞液 D细胞核37.制作人口腔上皮细胞临时装片时,滴0.9%的生理盐水的目的是()A利于染色 B利于盖盖玻片 C杀灭细菌 D维持细胞的形态38.控制细胞与外界环境之间进行物质交换的细胞结构()人体细胞与番茄细胞相比,最主要的区别是人体细胞没()A细胞壁 B细胞膜 C细胞质 D细胞核39.制作临时装片时,必须让盖玻片一边先接触水滴,再轻轻盖上,目的是()A防止损坏材料 B防止水溢出 C防止气泡产生 D增加透明度40.遗传物质的载体是一种叫DNA的有机物,DNA主要存在于下列哪个结构里面? ()A、细胞壁B、细胞膜C、细胞质D、细胞核41.克隆羊多莉长得像()A.代孕的母羊 B.供无核卵细胞的母羊C.供细胞核的母羊D. ABC三只羊的一部分42.“麻雀虽小,五脏俱全”,生物体内存在着不同的结构是由于细胞的()人体的神经细胞与肌肉细胞在形态上完全不一样,这主要是因为细胞的()A分化 B生活 C生长 D分裂43.现在的你比童年长高了,原因是()植物体由小长大的主要原因()A细胞分裂的结果 B细胞分裂和生长的结果C细胞分化的结果 D细胞之间物质交换的结果44.人的皮肤细胞分裂后,新生成的细胞中染色体数目与原来的细胞相比()A减少了一半 B增加了一倍 C不变 D有的变多,有的变少45.下列有关病毒的说法,不正确的是()A病毒必须寄生生活B病毒比细胞小得多C病毒对人类都是有害的D病毒没有细胞结构46.寄生在烟草里的病毒是()A植物病毒 B动物病毒 C噬菌体 D人体病毒47.下列关于病毒的叙述不正确的是()A病毒比细菌小得多 B病毒有球形、杆形、蝌蚪形等C病毒都没有细胞结构 D病毒对人类都有害48.生物界中没有细胞结构,不能独立生活,必须寄生在其他细胞内的一类生物是()A细菌 B放线菌 C真菌 D病毒49.蕨类植物不同于苔藓植物的主要特点是()A是多细胞生物 B用孢子生殖C主要生活在潮湿处 D有根、茎、叶分化,有输导组织50.人们常把什么植物当作空气监测的指示植物()A藻类植物 B苔藓植物 C蕨类植物 D种子植物51.下列不产生种子的植物是()A桃树 B向日葵 C玉米 D葫芦藓52.海带和紫菜与下列哪种植物属于同一类呢()A衣藻 B葫芦藓 C白菜 D满江红53.把碘酒滴在玉米种子的纵切面上,染成蓝色的部分是()我们吃的大米和小麦主要来自种子结构中的()我们吃的花生油主要是从花生种子中哪一结构中榨出来()A、种皮B、胚乳C、胚D、子叶54.被子植物不同于裸子植物的特点是()A生殖时受精作用已完全脱离了水 B种子由果皮包被着C种子的胚由种皮包被着 D茎内有导管55.现在地球上分布最广、种类最多的植物类群是()在生物的进化树中,最高等的植物是()在生物的进化树中,最低等的植物是()A藻类植物 B苔藓植物 C裸子植物 D被子植物56.素有“裸子植物故乡”美称的国家是()A美国 B日本 C中国 D韩国57.将正在萌发的绿豆种子装在保温瓶内,温度情况是()A升高 B降低 C不变 D高低交替出现58.发育成果皮和果实的结构分别是()A胚珠和种子 B种子和子房壁 C子房壁和子房 D子房和子房59.一朵花中的主要部分是()A雌蕊和雄蕊 B花冠 C花瓣 D花序60.每个西瓜里都有许多种子,是因为()A卵细胞与许多精子受精 B胚珠里有许多卵细胞C子房里有许多胚珠 D雌蕊里有许多子房61.剪取一段带叶的大叶黄杨的茎,插入红墨水中,被染成红色的是()A形成层 B筛管 C导管 D表皮62.土壤中的水进入根毛细胞的途径是()A细胞壁→细胞膜→细胞质→液泡B细胞壁→细胞质→细胞膜→液泡C细胞质→细胞膜→细胞壁→液泡D细胞膜→细胞壁→细胞质→液泡63.下列说法正确的是()A植物的蒸腾失水是一种浪费B植树造林会消耗大量的地下水,会加重旱情C植物的气孔很小,因此,通过气孔散失的水分很少D在植物体内,水往高处运输64.移栽植物时,总是保留根部的土坨,这样做的目的()A促进根毛生长 B减少土壤中无机盐的丢失C减少水分的蒸发 D防止秧苗的幼根和根毛受损伤65.王伯伯在植树过程中,为了提高树苗成活率,应()A带土移栽 B不去掉叶片移栽C在烈日炎炎的中午移栽 D将根部去掉进行移栽66.移栽植物的时候,适当剪除一些叶片有利于被移栽植物的成活,其主要原因是()A、呼吸作用对有机物的消耗B、避免蒸腾作用过多失水C、避免大风吹倒新栽的植物D、使移栽更加方便67.绿色植物要吸收大量的水分,这些水分主要用于()A光合作用 B蒸腾作用 C呼吸作用 D果实生长68.在移栽植物时在叶面喷一种二氧化碳可以通过而水分不能通过的物质,能大大提高成活率,这主要是因为()A增强了光合作用 B增强了蒸腾作用C减弱了蒸腾作用 D减弱了呼吸作用69、下列四个选项中,正确表示食物链的是:()A、阳光→草→牛→虎B、鼠→蛇→鹰C、鹰→蛇→青蛙→昆虫D、草→兔→鹰二、填空题:1、一定地域内,与所形成的统一整体叫做生态系统。

2、生态系统中各种生物的_ 和所占的_ 总是维持在相对稳定的状态,这种现象叫做。

相关文档
最新文档