第六讲_分数裂项求和
六年级上册数学竞赛试题分数裂项求和方法总结_通用版
分数裂项求和方法总结(一) 用裂项法求1(1)n n +型分数求和分析:因为 111n n -+=11(1)(1)(1)n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1n n n n =-++ 【例1】 求111 (101111125960)+++⨯⨯⨯的和。
(二) 用裂项法求1()n n k +型分数求和:分析:1()n n k +型。
(n,k 均为自然数)因为 11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++所以1111()()n n k k n n k =-++【例2】 计算11111577991111131315++++⨯⨯⨯⨯⨯(三) 用裂项法求()k n n k +型分数求和:分析:()k n n k +型(n,k 均为自然数) 11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k -+ 【例3】 求2222 (1335579799)++++⨯⨯⨯⨯的和 (四) 用裂项法求2()(2)k n n k n k ++型分数求和: 分析:2()(2)k n n k n k ++ (n,k 均为自然数)211()(2)()()(2)k n n k n k n n k n k n k =-+++++【例4】 计算:4444......135357939597959799++++⨯⨯⨯⨯⨯⨯⨯⨯ (五) 用裂项法求1()(2)(3)n n k n k n k +++型分数求和分析:1()(2)(3)n n k n k n k +++(n,k 均为自然数)【例5】 计算:111......1234234517181920+++⨯⨯⨯⨯⨯⨯⨯⨯⨯(六) 用裂项法求3()(2)(3)k n n k n k n k +++型分数求和: 分析:3()(2)(3)k n n k n k n k +++(n,k 均为自然数) 【例6】 计算:333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【例7】计算:71+83+367+5629+6337+7241+7753+8429+883 【分析与解】解答此题时,我们应将分数分成两类来看,一类是把5629、6337、7241、7753这四个分数,可以拆成是两个分数的和。
分数裂项计算
分数裂项计算本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 知识点拨教学目标1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
六年级+分数裂项
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b形式的,这里我们把较小分数裂项计算教学目标知识点拨的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
第六讲_分数裂项求和
分数裂项求和分数裂项知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
分数裂项是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
【知识概述】实质:将一个分数裂项,分成几个分数的和与差的形式。
例 3121232361-=⨯-= 41314343127+=⨯+= 目的:将一串分数中的每一个分数适当地裂项,出现一对一对可以抵消的数,从而简化计算。
减法裂项:分母分成两数之积,分子为两数之差。
直接裂项加法裂项:分母分成两数之积,分子为两数之和。
变形裂项:先变形为直接裂项。
【典型例题】例1 计算:3012011216121++++ 观察:直接裂项211121121-=⨯= 312132161-=⨯= 4131431121-=⨯= (201))()=⨯1( )-( ) ()()=⨯=1301( )-( ) 解:原式 =651541431321211⨯+⨯+⨯+⨯+⨯ = 1-615151414131312121-+-+-+-+ = 1-61 = 65例2 计算:7217561542133011209127651-+-+-+-观察:直接裂项3121323265+=⨯+= 41314343127+=⨯+= 920==⨯+54545141+ ............... ()()115630+==⨯( )+( )()()136742+==⨯( )+( )解:原式)()()()()()()(91818171716161515141413131211+-+++-+++-+++-= 91818171716161515141413131211--++--++--++--= 911-= 98=例3.+⨯+⨯+⨯752532312……+1192⨯ 变形裂项:)3121(21311-⨯=⨯ 3111312-=⨯ )5131(21531-⨯=⨯ 5131532-=⨯ .............. 解:原式)11191()7151()51313111-++-+-+-=Λ()( 11191715151313111-++-+-+-=Λ 11111-= 1110=例4 1111111248163264128++++++ 观察前一个数是后一个数的2倍,“补一退一” 解:原式128112811281641321161814121-+++++++=)(1281641641321161814121-++++++=)( 1281321321161814121-+++++=)( 1281161161814121-++++=)( 1281221-⨯= 128127=例5110118116114112122222-+-+-+-+- 由)()(22b a b a b a +⨯-=-知,可以将原式变形为: 解:原式1191971751531311⨯+⨯+⨯+⨯+⨯=[]21)11191()7151()51313111⨯-++-+-+-=Λ()( 2111191715151313111⨯-++-+-+-=)(Λ 2111111⨯-=)( 115=【我能行】1.+⨯+⨯+⨯199919981199819971199719961……+200220011⨯+200212.521⨯+851⨯+1181⨯+……+29261⨯ 3.7217561542133011209127311+-+-+-+4.34313312831073743413⨯+⨯+⨯+⨯+⨯Λ 5. 11011216121+⋅⋅⋅⋅⋅⋅+++6.3512214152127653221---+-+ 7. 256112816413211618141211--------【我试试】1.1431119919631735151513311+++++ 2. 152403187632145245---++3.6432168421214181161321641++++++++++++4.11231631431232222-+⋅⋅⋅+-+-+-。
分数裂项求和方法总结
分数裂项求和方法总结(一) 用裂项法求1(1)n n +型分数求和 分析:因为111n n -+=11(1)(1)(1)n n n n n n n n +-=+++(n 为自然数) 所以有裂项公式:111(1)1n n n n =-++ (二) 用裂项法求1()n n k +型分数求和 分析:1()n n k +型。
(n,k 均为自然数) 因为11111()[]()()()n k n k n n k k n n k n n k n n k +-=-=++++ 所以1111()()n n k k n n k =-++(三) 用裂项法求()k n n k +型分数求和 分析:()k n n k +型(n,k 均为自然数)11n n k -+=()()n k n n n k n n k +-++=()k n n k + 所以()k n n k +=11n n k-+(四) 用裂项法求2()(2)k n n k n k ++型分数求和 分析:2()(2)k n n k n k ++(n,k 均为自然数)211()(2)()()(2)k n n k n k n n k n k n k =-+++++(五) 用裂项法求1()(2)(3)n n k n k n k +++型分数求和 分析:1()(2)(3)n n k n k n k +++(n,k 均为自然数) 1111()()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-++++++++ (六) 用裂项法求3()(2)(3)k n n k n k n k +++型分数求和 分析:3()(2)(3)k n n k n k n k +++(n,k 均为自然数)311()(2)(3)()(2)()(2)(3)k n n k n k n k n n k n k n k n k n k =-++++++++记忆方法:1.看分数分子是否为1;2.是1时,裂项之后需要整体×首尾之差分之一;3.不是1时不用再乘;4.裂项时首尾各领一队分之一相减。
分数裂项课件
CONTENTS
目录
• 分数裂项简介 • 分数裂项的技巧 • 分数裂项的实例解析 • 分数裂项的练习题及解析 • 分数裂项的总结与展望
CHAPTER
01
分数裂项简介
分数裂项的定义
01
分数裂项是一种数学技巧,用于 将一个分数拆分成两个或多个分 数的和或差,以便于计算或简化 表达式的形式。
绩。
分数裂项在数学竞赛和高考中具 有广泛应用,是数学学习的重要
内容之一。
分数裂项的未来发展方向
随着数学教育的不断发展和改革,分数裂项技巧的教学方法和手段也需要不断更新 和完善。
未来可以探索更多分数裂项在实际问题中的应用,例如在物理、化学等其他学科中 的应用。
可以通过开展跨学科的研究,将分数裂项与其他数学技巧和方法进行结合,以更好 地解决各种复杂的数学问题。
解析:这道题是分数裂项的基础题, 通过将两个分数相乘,得到一个新的
分数。
答案:$frac{1}{4}$
题目:计算 $frac{3}{4} times frac{4}{3}$
解析:这道题同样是分数裂项的基础 题,通过将两个分数相乘,得到一个 新的分数。
答案:$1$
进阶练习题
题目
计算 $frac{1}{2} times frac{3}{5} + frac{2}{3} times frac{4}{7}$
分数裂项在日常生活中的应用
分数裂项不仅仅在数学题目中有应用,在日常生活中也有广泛的应用。
例如,在购物时经常会遇到折扣和优惠券的问题,这时可以通过分数裂项来计算 最优的购买方案。例如,对于折扣$frac{3}{10}$,可以将其拆分为$frac{1}{3} + frac{2}{10}$,分别代表直接折扣和满额折扣,从而帮助消费者更好地理解优惠 方案。
分数裂项六种题型
分数裂项六种题型一、整数裂项整数裂项是一种常见的数学问题,通过将整数拆分成两个整数之和或之差,从而简化计算或证明某些数学关系式。
以下是一些常见的整数裂项例子:1.将整数拆分成两个相邻整数之和或之差,例如:5=2+3,10=3+7。
2.将整数拆分成两个绝对值相等的数之和或之差,例如:10=3+(-3),20=7+(-7)。
二、分数裂项分数裂项是将分数拆分成两个或多个分数的和或差,以便于计算或证明某些数学关系式。
以下是一些常见的分数裂项例子:1.将分数拆分成两个同分母的分数的和或差,例如:1/2=1/(4)+1/(4),2/3=1/(3)+1/(3)。
2.将分数拆分成两个异分母的分数的和或差,例如:2/5=3/(15)+(-4)/(15),4/7=3/(21)+4/(21)。
三、混合数裂项混合数裂项是指将整数、分数等不同类型的数拆分成两个或多个数之和或差。
以下是一些常见的混合数裂项例子:1.将混合数拆分成一个整数和一个分数的和或差,例如:3/2=2+(1/2),5=3+(2/2)。
2.将混合数拆分成两个分数之和或差,例如:4/3=1/(2)+3/(4),7/6=1/(3)+1/(2)。
四、裂项相消法裂项相消法是一种常见的数学方法,用于简化分数的计算。
其基本思想是将一个分数拆分成两个或多个分数的和或差,以便于约简分数。
以下是一个裂项相消法的例子:求和:1/2+1/6+1/12+1/20+...的值。
解答:原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...通过约简,我们得到原式=1-1/n(当n趋于无穷大时)。
五、分式裂项相消法分式裂项相消法是一种将分式拆分成多个分式的和或差,然后约简的方法。
以下是一个分式裂项相消法的例子:求分式:(a^2-b^2)/(a^2+b^2)的值。
解答:原式=(a^2-b^2)/(a^2+b^2)=(a-b)(a+b)/(a^2+b^2)=(a-b)/(a+b)+(a+b) /(a-b)。
裂项计算
裂项法在上一学期的第一讲,我们提到古埃及人很喜欢使用单位分数,除了32以外,他们将所有的分数都用若干个分母不同的单位分数和的形式来表达。
以81为例,你能将其分成4个不同的单位分数和的形式吗?在解决这个问题之前,我们先学习和探讨一些分数和整数求和的方法与技巧。
对于某些有一定规律的分数(整数)求和,我们往往使用“裂项”的方法来求解。
所谓“裂项”是指把所需求值的每个数或部分数拆成两个或以上的数和或差的形式。
如:4131121-=。
这样就为后面的相抵消创造了条件。
如:⎪⎭⎫ ⎝⎛-⨯=⨯31121311;⎪⎭⎫ ⎝⎛⨯-⨯⨯=⨯⨯431321214321等等。
而这种方法的实质是分数通分的逆运用,我们在验证式子是否正确的时候,也可以通分后再看两边是否相等。
常见的方法有如下两种:1.直接裂项即一般而言先直接裂项,然后才开始计算前面应该乘以多少。
如:6421⨯⨯ ①先确定分成两个数差的形式,641421⨯-⨯;②再确定是否需要在括号⎪⎭⎫⎝⎛⨯-⨯641421前,乘上某个数; 4816421=⨯⨯,641421⨯-⨯=12124181=-,显然⎪⎭⎫ ⎝⎛⨯-⨯≠⨯⨯6414216421,但是48141241=⨯。
所以,⎪⎭⎫ ⎝⎛⨯-⨯⨯=⨯⨯641421416421; ③最后看看这种形式的分数是否都可以这么拆。
如:10861⨯⨯,按上面的规律应该是⎪⎭⎫ ⎝⎛⨯-⨯⨯=⨯⨯10818614110861; 验证,480110861=⨯⨯,480112014180148141108186141=⨯=⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛⨯-⨯⨯,满足。
于是,我们就可以说,我们上面的拆法是正确的。
当然还可以更一般的证明。
运用上面的三步走,我们还可以写出:⎪⎭⎫ ⎝⎛+-⨯=+⨯d k k d d k k 111)(1;⎪⎪⎭⎫ ⎝⎛+⨯+-+⨯⨯=+⨯+⨯)2()1(1)1(121)2()1(1k k k k k k k ; ⎪⎪⎭⎫ ⎝⎛+⨯⋯⨯+⨯+⨯+--+⋯++⨯=+⨯⋯⨯+⨯+⨯)()3()2()1(1)1()2)(1(11)()2()1(1n k k k k n k k k k n n k k k k2.利用通项裂项对于那些不易直接裂项的求值问题,可以试试通项法。
分数裂项的知识点总结
分数裂项的知识点总结一、分数裂项的定义在数学中,分数裂项指的是将一个分数表达成若干个较小的分数之和的形式。
通俗来讲,就是把一个分数分解成几个更小的分数相加的形式。
分数裂项有两种常见的形式,一种是分母为线性函数的形式,另一种是分母为二次函数的形式。
1. 分母为线性函数的分数裂项当分数的分母为线性函数的形式时,我们可以使用部分分式分解的方法将其分解成若干个较小的分数相加的形式。
具体的步骤如下:首先,对分母进行因式分解,得到一些线性因式和重数为1的线性因式。
然后,将这些线性因式和重数为1的线性因式分别拆分成若干个较小的分数。
最后,将分解后的各个较小的分数相加,就得到了原来的分数。
例如,对于分数$\frac{1}{(x-1)(x-2)}$,我们可以进行部分分式分解,得到$\frac{1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$的形式,再将其相加即可还原原来的分数。
2. 分母为二次函数的分数裂项当分数的分母为二次函数的形式时,我们可以使用平方配方法将其分解成若干个较小的分数相加的形式。
具体的步骤如下:首先,对分母进行平方配,得到一些平方项。
然后,将这些平方项拆分成若干个较小的分数。
最后,将分解后的各个较小的分数相加,就得到了原来的分数。
例如,对于分数$\frac{1}{x^2-1}$,我们可以进行平方配,得到$\frac{1}{x^2-1} =\frac{1/2}{x-1} - \frac{1/2}{x+1}$的形式,再将其相加即可还原原来的分数。
二、常见的分数裂项技巧在分数裂项的过程中,我们常常会遇到一些特殊的情况,这时需要灵活运用一些分数裂项的技巧来处理。
下面列举一些常见的分数裂项技巧:1. 使用齐次化简:当分母中含有根式或者复杂的二次函数时,我们可以使用齐次化简的方法,将其化为一般的二次函数,便于进行分数裂项。
2. 对待定系数进行适当取值:在进行部分分式分解时,我们可以通过适当取值来简化未知数的计算,例如取特殊值或者代入简单的方程组。
小学奥数裂项公式汇总
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:? ? ? ? (2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有: 二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)a b b a b b a a b a b a 11+=⨯+⨯=⨯+? ? ? ? ? ?(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222 ? ? ?? ? ?裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1)?)1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n ? ? ? ? (2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n 证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
分数裂项PPT课件
4/5。
练习题二及答案
练习题二
计算1/3+1/15+1/35+1/63的值。
计算过程
首先将每个分数进行裂项,得到1/3=1/1-1/3, 1/15=1/3-1/5, 1/35=1/5-1/7, 1/63=1/7-1/9。然后将这些分数相加,得到原式 =1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9=1-1/9=8/9。
裂项的局限性
分数裂项法虽然可以化简一些复杂的分 数,但是其适用范围有限,不能解决所
有数学问题。
在实际应用中,需要根据具体问题选择 合适的数学方法,综合考虑各种方法的
优缺点。
另外,裂项法在处理一些特殊情况时可 能会遇到困难,例如分子中含有未知数
的情况,需要谨慎处理。
05
分数裂项的练习题与答案
练习题一及答案
答案
5/6。
THANKS
感谢观看
其次,要确保分子经过裂项后能 够相互抵消,留下非零常数。
最后,要确保整个等式在裂项后 仍然成立,可以通过代入法进行
验证。
裂项的适用范围
分数裂项法适用于有理函数的计算,特别是有理函数求极限、求积分等 问题。
对于一些难以直接化简的复杂有理函数,分数裂项法可以将其转化为容 易处理的形式,简化计算过程。
需要注意的是,裂项法并不适用于所有函数,特别是无理函数、三角函 数等。
答案
8/9。
练习题三及答案
练习题三
计算(2^2)/(2^2+4^2)+(3^2)/(3^2+4^2)+(4^2)/(4^2+4^2)的值。
计算过程
首先将每个分数进行裂项,得到(2^2)/(2^2+4^2)=2/(2+4), (3^2)/(3^2+4^2)=3/(3+4), (4^2)/(4^2+4^2)=4/(4+4)。然后将这些分数相加,得到 原式=2/(2+4)+3/(3+4)+4/(4+4)=5/6。
六年级数学分数裂项求和
六年级数学分数裂项求和考试要求(1)通过利用通项归纳法简化计算;(2)能运用变换方法计算复杂裂项型运算。
知识结构一、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
重难点(1)通过利用通项归纳法简化计算;(2)能运用变换方法计算复杂裂项型运算。
例题精讲【例 1】计算:22222222 12232004200520052006 12232004200520052006 ++++ ++++⨯⨯⨯⨯【考点】分数裂项【难度】☆☆☆【题型】解答【解析】(法1):可先来分析一下它的通项情况,2222(1)(1)1(1)(1)(1)1n n n n n n n a n n n n n n n n++++==+=+⨯+⨯+⨯++原式=213243542005200420062005()()()()()()122334452004200520052006++++++++++++ 2005200522006=⨯+200540102006= (法2):22222(1)2211122(1)(1)n n n n n a n n n n n n n n ++++===+=+⨯+++⨯+【答案】200540102006。
分数裂项法总结
裂项法的注意事项
在使用裂项法时,需要注意以下几点:首先,要确保拆分 的分数是正确的,即拆分后的分数之差或商等于原分数; 其次,要注意运算的优先级,确保计算的准确性;最后, 要注意简化计算过程,尽可能减少计算的复杂度。
此外,对于一些特殊的分数,如分母为平方数或立方数的 分数,可以使用特定的裂项法进行计算,以简化计算过程 。
分数裂项法之立方差法
立方差法的概念
立方差法是一种将分数拆分成易于计算的形式的方法。通过将一个分数拆分成两个或多个分数的立方差,可以简化计 算过程。
立方差法的应用
立方差法在数学和工程等领域中都有广泛的应用。例如,在解决几何问题时,立方差法可以帮助我们更好地理解和计 算立体图形的体积。
立方差法技巧
在使用立方差法时,需要注意选择合适的拆分方式,以使计算过程更加简便。同时,还需要注意保持拆 分后的分数与原分数相等,以避免出现计算错误。
平方差法是一种将分数拆分成易于计算的形式的方法。通过将一个分数拆分成两个或多个 分数的平方差,可以简化计算过程。
平方差法的应用
平方差法在数学和物理等领域中都有广泛的应用。例如,在解决代数问题时,平方差法可 以帮助我们更好地理解和计算表达式的值。
平方差法的技巧
在使用平方差法时,需要注意选择合适的拆分方式,以使计算过程更加简便。同时,还需 要注意保持拆分后的分数与原分数相等,以避免出现计算错误。
分数裂项法在日常生活中的应用
在日常生活中,我们也会遇到许多涉及到分 数的问题,如时间、金钱等。通过运用分数 裂项法,我们可以更好地理解和处理这些问 题。
例如,在时间管理中,可以将一天的时间拆 分成小时、分钟等部分,以便更好地安排工 作和休息时间;在理财中,可以将一笔钱拆 分成不同的用途和投资方式,以便更好地实
裂项法在分数计算中的应用
裂项法在分数计算中的应用裂项法是分数运算中常用的简便方法之一,而且运用裂项法往往会使繁杂的分数计算简单化,所以掌握裂项法的解题要求和思想是十分重要的。
裂项法的原理:我们在进行分数计算使运用了,我们将此运算逆向思维,则可以得到。
即当一个分数的分母是两个正整数的乘积,而分子是这两个正整数的差或和,则我们可以将这个分数写成两个分数的和或差。
裂项法的原理比较简单,但是分数计算中所涉及到的题型的变化和其他数学思想的渗入、结合,使有些问题变得复杂、棘手。
下面就有关于裂项法所涉及到的一些题型和变化进行一番探索。
例1、计算分析:此题是运用裂项法进行分数计算的最基本的运用,分母是两个正整数的乘积,而分子是这两个正整数的差,所以我们可以将每一个分数分裂成两分数的差,即小结:通过以上的介绍可以看到在分数计算中,有的计算如果运用通分等思想,由于题目过于复杂,不容易计算,而使用裂项法就使解题变得十分的简单。
例2、计算分析:此题好象不符合裂项法的要求,但是我们仔细分析,发现分母上的,而分子恰好是这两个正整数的和:3+4=7,4+5=9,…,所以可以运用裂项法的原理来解。
例3、计算分析:此题是分数运用裂项法计算的最基本的变化,但是从题中可以看出,此种类型的题目还是没有脱离裂项法的基本题型:分母是两个正整数的乘积,分子是这两个正整数的差。
小结;通过以上几题的分析,可以看出裂项法在分数计算中的运用主要是题中的项数较多,不容易进行通分,而且通过分析可以看到运用裂项法后存在首尾相抵消的运算,使分数运算简单化。
例4、计算分析:此题的变化让人感觉裂项法在此计算中是不能运用的,分母还是两个正整数的乘积,而分子不是我们熟悉的这两个正整数的差。
我们在运用此题时,进行了自行的构造条件,分子没有满足裂项法的要求,而分子的差应该是4,那么我们运用分数的基本性质,将分子、分母同时乘上4,因为这题中的每一项都含有,我们将其提取,使剩下的部分满足裂项法的要求。
小学六年级数学竞赛讲座 第6讲 裂项计算综合
第六讲裂项计算综合模块一、分数裂项分数裂项的技巧分数裂项实质上是异分母加减法的逆运算,关键找分母上数和分钟上数的和差倍关系。
第一类:“裂差”型运算:当分母是两数乘积的形式,分子可表示为分母上两数的差(基本型),则可以进行裂差。
11b a b a a b a b a b a b-=-=-⨯⨯⨯。
两项的裂差非常常见,一定要熟练掌握。
第二类:“裂和”型运算当分母是两数乘积形式,分子可表示为分母上两数的和(基本型),这可以进行裂和。
11b a b a a b a b a b a b+=+=+⨯⨯⨯例1.(1)计算:333101*********+++⨯⨯⨯ ; (2)111111447710101397100+++++⨯⨯⨯⨯⨯ 。
解:(1)原式=1111113[()()()]101111125960⨯-+-++- =113()1060⨯-=14。
(2)原式=11111111[(1)()()()]344771097100⨯-+-+-++- =11(1)3100⨯-=33100。
例2.(1)计算:4812162024133557799111113-+-+-⨯⨯⨯⨯⨯⨯=。
(2)计算:1122426153577++++=。
解:(1)原式=11111111111(1)()()()()()33557799111113+-+++-+++-+ =11211313-=。
(2)原式=111111111()()()()2233557711+-+-+-+- =11011111-=。
模块二、整数裂项:整数裂项的常见形式:1(1)[(1)(1)(2)(1)]3n n n n n n n n -⨯=-⨯⨯+--⨯-⨯; 1(2)(1)[(2)(1)(1)(3)(2)(1)]4n n n n n n n n n n n -⨯-⨯=-⨯-⨯⨯+--⨯-⨯-⨯。
整数裂项的计算:(适用条件:从1开始,连续相乘)(1)1×2+2×3+3×4+……+(n −1)×n =(1)(1)3n n n -⨯⨯+; (2)1×2×3+2×3×4+3×4×5+……+(n −2)×(n −1)×n =(2)(1)(1)4n n n n -⨯-⨯⨯+;例3.(1)计算:1×3+3×5+5×7+……+17×19=。
专题3:分数的裂项求和
题目
1/3+1/15+1/35+1/63
解析
这道题同样是分数的裂项求和基础练习题,可以通过将每个 分数拆分成两个分数之差的形式,然后进行求和。具体来说, 可以将1/3拆分为1-1/3,将1/15拆分为1/3-1/5,以此类推, 最后得到结果为5/9。
总结
这道题同样考察了分数的裂项求和基础方法,需要掌握如 何将分数拆分成两个分数之差的形式。
分数裂项的局限性
虽然分数裂项求和是一种有效的解题方法,但它并不是万能的。有些分数无法通过简单的裂项求和得到解决,需要采用其他 方法。
在使用分数裂项求和方法时,需要注意其适用范围和局限性,避免在不适合的情况下使用该方法导致错误的结果。
05
分数的裂项求和的练习题 及解析
分数的裂项求和基础练习题
题目
将分数$frac{1}{3}$分别与$a$、$b$和$c$相乘,得到$frac{1}{3}a$、$frac{1}{3}b$和 $frac{1}{3}c$。
$frac{1}{2}timesfrac{1}…
将分数$frac{1}{2}$和$frac{1}{3}$相乘,得到$frac{1}{6}$,再将$frac{1}{6}$分别与 $a$和$b$相乘,得到$frac{1}{6}a$和$frac{1}{6}b$。
VS
可以通过化简或计算验证来确认分数 裂项的正确性,例如,将裂项后的分 数进行加减运算,看是否能够得到原 分数的值。
分数裂项的适用范围
分数裂项求和适用于一些具有特定形式的分 数,如形如1/n(n+d)或1/(n1^2)(n2^2)等 。
对于一些复杂的分数形式,可能需要通过观 察、归纳或演绎等方法来确定其裂项形式。
例如,在排序算法、图算法等领域中,分数裂项可以帮助优化算法性能,提高程 序的执行效率。同时,在处理大数据时,分数裂项也可以帮助减少内存占用和计 算时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数裂项求和
分数裂项知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
分数裂项是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
【知识概述】
实质:将一个分数裂项,分成几个分数的和与差的形式。
例 3121232361-=⨯-= 4
1314343127+=⨯+= 目的:将一串分数中的每一个分数适当地裂项,出现一对一对可以抵消的数,从而简化计算。
减法裂项:分母分成两数之积,分子为两数之差。
直接裂项
加法裂项:分母分成两数之积,分子为两数之和。
变形裂项:先变形为直接裂项。
【典型例题】
例1 计算:
30
12011216121++++ 观察:直接裂项2
11121121-=⨯= 312132161-=⨯= 4
131431121-=⨯= ............. =201()()
=⨯1( )-( ) (
)()=⨯=1301( )-( ) 解:原式 =6
51541431321211⨯+⨯+⨯+⨯+⨯ = 1-6
15151414131312121-+-+-+-+ = 1-6
1 = 6
5 例2 计算:7217561542133011209127651-+-+-+-
观察:直接裂项
3121323265+=⨯+= 4
1314343127+=⨯+= 920==⨯+54545
141+ ............... ()()115630+==⨯( )+( )
()()136742+==⨯( )+( )
解:原式)()()()()()()(91818
1
71716161515141413131211+-+++-+++-+++-= 9
1818171716161515141413131211--++--++--++--= 9
11-= 9
8=
例3.+⨯+⨯+⨯752532312……+11
92⨯ 变形裂项:
)3121(21311-⨯=⨯ 3
111312-=⨯ )5131(21531-⨯=⨯ 5131532-=⨯ .............. 解:原式)1119
1
()7151()51313111-++-+-+-= ()( 11
191715151313111-++-+-+-= 11
111-= 11
10=
例4 1111111248163264128
++++++ 观察前一个数是后一个数的2倍,“补一退一” 解:原式128
112811281641321161814121-+++++++=
)( 128
1641641321161814121-++++++=)( 1281321321161814121-+++++=)(
128
1161161814121-++++=
)( 128
1221-⨯= 128127=
例5
110118116114112122222-+-+-+-+- 由)()(22
b a b a b a +⨯-=-知,可以将原式变形为: 解:原式11
91971751531311⨯+⨯+⨯+⨯+⨯=
[]2
1)11191()7151()51313111⨯-++-+-+-= ()( 2
111191715151313111⨯-++-+-+-=)( 2
111111⨯-=)( 115=
【我能行】
1.
+⨯+⨯+⨯199919981199819971199719961……+200220011⨯+20021
2.
521⨯+851⨯+1181⨯+……+29261⨯ 3.7217561542133011209127311+-+-+-+
4. 34313312831073743413⨯+⨯+⨯+⨯+⨯ 5. 110
11216121+⋅⋅⋅⋅⋅⋅+++
6.
3512214152127653221---+-+ 7. 256112816413211618141211--------
【我试试】
1.1431119919631735151513
311+++++ 2. 152403187632145245---++
3.
64321684212
14181161321641++++++++++++
4.1
1231631431232222-+⋅⋅⋅+-+-+-。