2016年高考山东卷理数试题(含答案)
2016山东省高考数学理科试题及完美解析
俯视图俯(左)视图正(主)视图2016年普通高等学校招生全国统一考试(山东卷)理科数学第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若复数z 满足232z z i +=-,其中i 为虚数单位,则z =(A) 12i + (B) 12i - (C) 12i -+ (D) 12i -- (2)设集合{}{}22,,10,xA y y x RB x x ==∈=-<,则A B U =(A) (-1,1) (B) (0,1) (C) (-1,+) (D) (0,+) (3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,期中自习时间的范围是[]17.5,30,样本数据分组为[)[)[)[)[)17.5,20,20,22.5,22.5,25,25,27.5,27.5,30,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A)56 (B) 60 (C) 120 (D) 140(4)若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是(A) 4 (B)9 (C) 10 (D)12 (5)一个由半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为 (A)1233π+(B) 13(C) 136+(D) 16+(6)已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)函数())cos sin f x x xx x =+-的最小正周期是(A )2π(B )π (C )32π(D )2π (8)已知非零向量m ,n 满足43m n = ,1cos ,3m n = ,()n tm n ⊥+,则实数t 的值为(A )4 (B )4-(C )94 (D )94-(9)已知函数()f x 的定义域为R .当0x <是,()2=1f x x -;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =(A )2- (B )1-(C )0 (D )2(10)若函数()y f x =的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 (A )sin y x = (B )ln y x = (C )x y e = (D )3y x =二、填空题:本大题共5小题,每小题5分,共25分 (11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________. (12)若25(ax+的展开式中5x 的系数是80-,则 实数a =_______.(13)已知双曲线E 1:22221x y a b-=()0,0a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率是_______.(14)在[]1,1-上随机地取一个数k ,则事件“直线y kx =与圆()2259x y -+=相交”发生的概率为 .(15)已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是________.三、解答题:本大题共6小题,共75分。
2016年高考理科数学山东卷及答案解析
数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(上海卷)理科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内,直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x ∈R ,则不等式|3|1x -<的解集为 .2.设32i iz +=,其中i 为虚数单位,则Imz= .3.已知平行直线1l :210x y +-=,2l :210x y ++=,则1l 与2l 的距离是 .4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米).5.已知点(3,9)在函数()1x f x a =+的图象上,则()f x 的反函数1()f x -= .6.如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为2arctan 3,则该正四棱柱的高等于 .7.方程3sin 1cos2x x =+在区间[]0,2π上的解为 .8.在2)n x的二项展开式中,所有项的二项式系数之和为256,则常数项等于 .9.已知ABC △的三边长分别为3,5,7,则该三角形的外接圆半径等于 .10.设0a >,0b >.若关于x ,y 的方程组1,1,ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是 .11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意的*n ∈N ,{23}n S ∈,,则k 的最大值为 .12.在平面直角坐标系中,已知(1,0)A ,(0,1)B -,P是曲线y =上一个动点,则·BP BA 的取值范围是 .13.设,a b R ∈,[)0,2c π∈,若对任意实数x 都有2sin(3)sin()3x a bx c π-=+,则满足条件的有序实数组(,,)a b c 的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形128A A A 的中心,1(1,0)A .任取不同的两点i A ,j A ,点P 满足i j OP OA OA ++=0,则点P 落在第一象限的概率是 .二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设a ∈R ,则“1a >”是“21a >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件16.下列极坐标方程中,对应的曲线为如图所示的是( )A .65cos ρθ=+B .65sin ρθ=+C .65cos ρθ=-D .65sin ρθ=-17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=.下列条件中,使得2()n S S n N *<∈恒成立的是( )A .10a >,0.60.7q <<B .10a <,0.70.6q -<<-C .10a >,0.70.8q <<D .10a <,0.80.7q -<<-18.设)(f x ,()g x ,()h x 是定义域为R 的三个函数.对于命题:①若)(()x f g x +,)()(x f h x +,)()(x g h x +均是增函数,则)(f x ,()g x ,()h x 中至少有一个增函数;②若(())x f g x +,)(()f x h x +,)()(x g h x +均是以T 为周期的函数,则)(f x ,()g x ,()h x 均是以T 为周期的函数,下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本小题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形11AAO O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧.(Ⅰ)求三棱锥111C O A B -的体积;(Ⅱ)求异面直线1B C 与1AA 所成的角的大小.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)20.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(Ⅰ)求菜地内的分界线C 的方程;(Ⅱ)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为83.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的“经验值”.21.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A ,B两点.(Ⅰ)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(Ⅱ)设b =.若l 的斜率存在,且11()0F A F B AB +=,求l 的斜率.22.(本小题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x=+.(Ⅰ)当5a =时,解不等式()0f x >;(Ⅱ)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰有一个元素,求a 的取值范围;(Ⅲ)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (Ⅰ)若{}n a 具有性质P ,且11a =,22a =,43a =,52a =,67821a a a ++=,求3a ; (Ⅱ)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(Ⅲ)设{}n b 是无穷数列,已知1sin ()n n n a b a n +=+∈*N .求证:“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1cos,3m n<>=,21||||||043t n n n∴+=,104∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数【考点】平面向量数量积的运算【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)22232b c a =,即为a2b24,x mx m x m-+>⎩x m >时,程(f 3m >(Ⅱ)2a b +=22)b a =+号,231122c ab -≥G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∥且平面GQH GH ⊂面GH ∴∥平面数学试卷 第13页(共18页) 数学试卷 第15页(共18页)(Ⅱ)AB BC =AC ⊥,又OO '⊥面为原点,OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,2CB =,由题意可知面的法向量为(0,0,OO '=,设(,,n x y z FCB 的法向量,00n FC n CB ⎧=⎪⎨=⎪⎩,即,取0x 则1,2,n ⎛=-- ⎝7,7||||OO n OO n OO n ''<>==-'二面角--F BC A 的平面角是锐角,的余弦值为77n n a b =+1n n a b -∴=11a b =+1112b =+14b ∴=,4n b ∴=+1)2n , 126[2232(1)2]n n ++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]1)2)232n n n n n n n +++++++-+=-…,232n n +.【提示】(Ⅰ)求出数列{}a 的通项公式,再求数列(Ⅱ)求出数列{c 22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为2232113⎛⎫-= ⎪⎝⎭22332322101111443433144⎤⎛⎫⎛⎫⎛⎫⎛⎫--+--=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦3232323232323232111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭23322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示:x 1)2x数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)1a =21)1x x+-++--()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭22022)(41)1)x x x ++,令11)x +21111140001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时。
数学-2016年高考真题——山东卷(理)(word版含答案)
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z +=-其中i 为虚数单位,则z =( )(A )1+2i(B )1-2i(C )12i -+(D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56(B )60(C )120(D )140(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïï-?íïï³ïïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12π33+ (B)1π33+ (C)13+(D)1+(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )π2(B )π (C )π23 (D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4(B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)=( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是()(A )y =sin x (B )y =ln x(C )y =e x(D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________. (12)若(ax 2)3的展开式中x 3的系数是-80,则实数a =_______.(13)已知双曲线E 1:22221x y a b-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. (14)在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为 .(15)已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.三、解答题:本答题共6小题,共75分. (16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值.(17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =AB =BC .求二面角F BC A --的余弦值.(18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)另1(1).(2)n n n nn a c b ++=+求数列{}n c 的前n 项和T n .(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I )“星队”至少猜对3个成语的概率;(II )“星队”两轮得分之和为X 的分布列和数学期望E X.(20)(本小题满分13分)已知()221()ln ,x f x a x x a x -=-+∈R . (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.(21)本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的 (1)【答案】B考点:注意共轭复数的概念. (2)【答案】C 【解析】试题分析:,,则,选C. 考点:本题涉及求函数值域、解不等式以及集合的运算. (3)【答案】D考点:频率分布直方图 (4)【答案】C 【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为,故选C. 考点:线性规划求最值 (5)【答案】C考点:根据三视图求几何体的体积. (6)【答案】A 【解析】}0|{>=y y A }11|{<<-=x x B A B =∞(-1,+)22x y +210OC=试题分析:直线a 与直线b 相交,则一定相交,若相交,则a ,b 可能相交,也可能平行,故选A.考点:直线与平面的位置关系;充分、必要条件的判断. (7)【答案】B 【解析】试题分析:,故最小正周期,故选B. 考点:三角函数化简,周期公式 (8)【答案】B考点:平面向量的数量积 (9)【解析】 试题分析:当时,,所以当时,函数是周期为 的周期函数,所以,又函数是奇函数,所以,故选D.考点:本题考查了函数的周期性、奇偶性 (10)【答案】A考点:函数求导,注意本题实质上是检验函数图像上是否存在两点的导数值乘积等于-1. 二、填空题:本大题共5小题,每小题5分,共25分. (11)【答案】3 【解析】,αβ,αβ()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22T ππ==12x >11()()22f x f x +=-12x >()f x 1(6)(1)f f =()f x ()3(1)(1)112f f ⎡⎤=--=---=⎣⎦试题分析:第一次循环:;第二次循环:;第三次循环:;满足条件,结束循环,此时,. 考点:循环结构的程序框图 (12)【答案】-2 【解析】试题分析:因为,所以由,因此考点:二项式定理 (13)【答案】2考点:双曲线的几何性质,把涉及到的两个线段的长度表示出来是做题的关键. (14)【答案】 【解析】试题分析:直线y =kx 与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P =.考点:直线与圆位置关系;几何概型 (15)【答案】 【解析】试题分析:由题意画出函数图像如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则,解得,故m 的取值范围是.考点:分段函数,函数图像,能够准确画出函数的图像是解决本题的关键. 三、解答题:本答题共6小题,共75分. (16)(本小题满分12分)a 1,b 8==a 3,b 6==a 6,b 3==i 3=5102552155()rrrrr rr T C ax C ax---+==510522r r -=⇒=252580 2.C a a -=-⇒=-3422(5)9x y -+=d 3=<33k 44-<<[1,1]k ?33224=(3,)+∞24m m m -<m 3>(3,)+∞【答案】(Ⅰ)见解析;(Ⅱ)由知, 所以 , 当且仅当时,等号成立. 故 的最小值为. 考点:两角和的正弦公式、正切公式、正弦定理、余弦定理及基本不等式. (17)(本小题满分12分) 【答案】(Ⅰ)见解析;(Ⅱ)12()∏()I 2a bc +=2222222cos 22a b a b a b c C ab ab+⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭a b =cos C 127(II )解法一:连接,则平面,又且是圆的直径,所以'OO 'OO ⊥ABC ,AB BC =AC O .BO AC⊥可得平面的一个法向量 因为平面的一个法向量 所以. 所以二面角的余弦值为. 解法二:考点:空间平行判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力(18)(本小题满分12分)【答案】(Ⅰ);(Ⅱ).BCF (m =-ABC (0,0,1),n =7cos ,7||||m n m n m n ⋅<>==F BC A --713+=n b n 223+⋅=n n n T(Ⅱ)由(Ⅰ)知,又,得,,两式作差,得所以考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法 (19)(本小题满分12分) 【答案】(Ⅰ)(Ⅱ)分布列见解析,11(66)3(1)2(33)n n n nn c n n +++==+⋅+n n c c c c T +⋅⋅⋅+++=32123413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅223+⋅=n n n T 23236=EX(Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得,,,,,.可得随机变量X 的分布列为()1111104343144P X ==⨯⨯⨯=()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯== ⎪⎝⎭()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯=()3231321260542=4343434314412P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭()32321643434P X ==⨯⨯⨯=所以数学期望.考点:独立事件的概率公式和互斥事件的概率加法公式;分布列和数学期望(20)(本小题满分13分)【答案】(Ⅰ)见解析;(Ⅱ)见解析当,时,,单调递增;,单调递减.当时,.综上所述,01234614472144121246EX=⨯+⨯+⨯+⨯+⨯+⨯= 0≤a)1,0(∈x0)(/>xf)(xf/(1,),()0x f x∈+∞<时)(xf>a/3(1)()(a xf x x xx-=当时,函数在内单调递增,在内单调递减;当时,在内单调递增,在内单调递减,在内单调递增;当时,在内单调递增;当,在内单调递增,在内单调递减,在内单调递增. (Ⅱ)由(Ⅰ)知,时,考点:利用导函数判断函数的单调性;分类讨论思想. (21)(本小题满分14分)【答案】(Ⅰ);(Ⅱ)(i )见解析;(ii )的最大值为,此时点的坐标0≤a )(x f )1,0(),1(+∞20<<a )(x f )1,0()2,1(a ),2(+∞a 2=a )(x f ),0(+∞2>a )(x f )2,0(a )1,2(a),1(+∞1=a /22321122()()ln (1)x f x f x x x x x x x --=-+---+1422=+y x 12S S 49P为)41,22(所以, , 所以, 令,则, 当,即时,取得最大值,此时,满足, 所以点的坐标为,因此的最大值为,此时点的坐标为.考点:椭圆方程;直线和抛物线的关系;二次函数求最值;运算求解能力.)1(41||2121+==m m m GF S )14(8)12(||||2122202++=-⋅=m m m x m PM S 222221)12()1)(14(2+++=m m m S S 122+=m t 211)1)(12(2221++-=+-=t tt t t S S 211=t 2=t 21S S 4922=m 0>∆P )41,22(12S S 49P )41,22(。
(完整版)2016年山东省高考数学试卷(理科解析)
2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求. 1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=( )A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1) B.(0,1) C.(﹣1,+∞)D.(0,+∞)解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17。
5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22。
5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0。
16+0.08+0。
04)×2。
5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+π C.+π D.1+π解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当“直线a和直线b相交"时,“平面α和平面β相交”成立,当“平面α和平面β相交"时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC. D.2π解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin(2x+),∴T=π,故选:B8.已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T性质的是( )A.y=sinx B.y=lnx C.y=e x D.y=x3解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分。
2016年高考山东卷理数试题(解析版)
绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B );如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的(1)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( ) (A )1+2i (B )1-2i (C )12i -+ (D )12i --【答案】B 【解析】试题分析:设bi a z +=,则i bi a z z 2332-=+=+,故2,1-==b a ,则i z 21-=,选B.考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56(B )60(C )120(D )140【答案】D【解析】试题分析:由频率分布直方图知,自习时间不少于22.5小时为后三组,有200(0.160.080.04) 2.5140⨯++⨯=(人),选D. 考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C 【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3,-1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值为210OC =,故选C.考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力. (5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+ 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等. (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【答案】A 【解析】试题分析:“直线a 和直线b 相交”⇒“平面α和平面β相交”,但“平面α和平面β相交”⇒“直线a 和直线b 相交”,所以“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件,故选A .考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.(7)函数f (x )=x +cos x )x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:1.和差倍半的三角函数;2.三角函数的图象和性质.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4(B )–4(C )94(D )–94【答案】B 【解析】试题分析:由43m n = ,可设3,4(0)m k n k k ==> ,又()n tm n ⊥+,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+= 所以4t =-,故选B. 考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()n tm n ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2【答案】D 【解析】 试题分析:当12x >时,11()(22f x f x +=-,所以当12x >时,函数()f x 是周期为1 的周期函数,所以(6)(1)f f =,又函数()f x 是奇函数,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. (10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.【答案】3 【解析】试题分析:第一次循环:a 1,b 8==;第二次循环:a 3,b 6==;第三次循环:a 6,b 3==;满足条件,结束循环,此时,i 3=.考点:循环结构的程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握,本题能较好的考查考生应用知识分析问题解决问题的能力等. (12)若(a x 25的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 【解析】试题分析:因为5102552155()rrrrr rr T C ax C ax---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=-考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.(13)已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2 【解析】试题分析:假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a-,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.(14)在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为 . 【答案】34考点:1.直线与圆的位置关系;2. 几何概型.【名师点睛】本题是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,几何概型概率的计算问题,涉及圆心距的计算,与弦长相关的问题,往往要关注“圆的特征直角三角形”,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. (15)已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 【答案】()3,+∞ 【解析】 试题分析:画出函数图象如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >考点:1.函数的图象与性质;2.函数与方程;3.分段函数【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.三、解答题:本答题共6小题,共75分.(16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+(Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明; (Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值. 试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=,故 cos C 的最小值为12. 考点:1.和差倍半的三角函数;2. 正弦定理、余弦定理;3. 基本不等式.【名师点睛】此类题目是解三角形问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到证明目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题覆盖面较广,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.(17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II )已知EF =FB =12AC =,AB =BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)7【解析】试题分析:(Ⅰ)根据线线、面面平行可得与直线GH 与平面ABC 平行;(Ⅱ)立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,其中解法一建立空间直角坐标系求解;解法二则是找到FNM ∠为二面角F BC A --的平面角直接求解. 试题解析:(I )证明:设FC 的中点为I ,连接,GI HI ,在CEF △,因为G 是CE 的中点,所以,GI F //E又,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC ,又HI GI I ⋂=,所以平面//GHI 平面ABC ,因为GH ⊂平面GHI ,所以//GH 平面ABC .(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得B ,(C -,过点F 作FM OB 垂直于点M ,所以3,FM ==可得F故((0,BC BF =--= .设(,,)m x y z = 是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩解法二:连接'OO ,过点F 作FM OB ⊥于点M ,则有//'FM OO ,又'OO ⊥平面ABC ,所以FM ⊥平面ABC,可得3,FM ==过点M 作MN BC 垂直于点N ,连接FN ,考点:1.平行关系;2. 异面直线所成角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.(18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式; (Ⅱ)令1(1).(2)n n n n n a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .【解析】试题分析:(Ⅰ)根据1--=n n n S S a 及等差数列的通项公式求解;(Ⅱ)根据(Ⅰ)知数列{}n c 的通项公式,再用错位相减法求其前n 项和.试题解析:(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ,所以56+=n a n .设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b d b 321721111,可解得3,41==d b , 所以13+=n b n . (Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n n n c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”.【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等.(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I )“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和为X 的分布列和数学期望EX .【答案】(Ⅰ)23(Ⅱ)分布列见解析,236=EX 【解析】试题分析:(Ⅰ)找出“星队”至少猜对3个成语所包含的基本事件,由独立事件的概率公式和互斥事件的概率加法公式求解;(Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4, 6.由事件的独立性与互斥性,得到X 的分布列,根据期望公式求解.试题解析:(Ⅰ)记事件A:“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”. 由题意,.E ABCD ABCD ABCD ABCD ABCD =++++由事件的独立性与互斥性, ()()()()()()P E P ABCD P ABCD P ABCD P ABCD P ABCD =++++()()()()()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P P A P B P C P D C P D =++++ 323212323132=24343434343432.3⎛⎫⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯ ⎪⎝⎭= , 所以“星队”至少猜对3个成语的概率为23. (Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4,6.由事件的独立性与互斥性,得()1111104343144P X ==⨯⨯⨯= , ()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯== ⎪⎝⎭,()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= , ()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯= ,考点:1.独立事件的概率公式和互斥事件的概率加法公式;2.随机变量的分布列和数学期望.【名师点睛】本题主要考查独立事件的概率公式和互斥事件的概率加法公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用独立事件的概率公式和互斥事件的概率加法公式求解.本题较难,能很好的考查考生数学应用意识、基本运算求解能力等.(20) (本小题满分13分)已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【答案】(Ⅰ)见解析;(Ⅱ)见解析【解析】试题分析:(Ⅰ)求()f x 的导函数,对a 进行分类讨论,求()f x 的单调性;(Ⅱ)要证()3()'2f x f x +>对于任意的[]1,2x ∈成立,即证23)()(/>-x f x f ,根据单调性求解.试题解析:(Ⅰ))(x f 的定义域为),0(+∞;3232/)1)(2(22)(x x ax x x x a a x f --=+--=. 当0≤a , )1,0(∈x 时,0)(/>x f ,)(x f 单调递增;/(1,),()0x f x ∈+∞<时,)(x f 单调递减.当0>a 时,/3(1)()(a x f x x x x -=. (1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a 时,0)(/>x f ,)(x f 单调递增; 当x ∈)2,1(a时,0)(/<x f , )(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,120<<a , 当)2,0(ax ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增; 当x ∈)1,2(a 时,0)(/<x f ,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增;当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,/22321122()()ln (1)x f x f x x x x x x x --=-+---+23312ln 1x x x x x=-++--,]2,1[∈x , 令1213)(,ln )(32--+=-=x x x x h x x x g ,]2,1[∈x . 则)()()()(/x h x g x f x f +=-, 由01)(/≥-=xx x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24326'()x x h x x--+=, 设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减,考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;(ii )12S S 的最大值为49,此时点P 的坐标为41,22( 【解析】试题分析:(Ⅰ)根据椭圆的离心率和焦点求方程;(Ⅱ)(i )由点P 的坐标和斜率设出直线l 的方程和抛物线联立,进而判断点M 在定直线上;(ii )分别列出1S ,2S 面积的表达式,根据二次函数求最值和此时点P 的坐标.试题解析:(Ⅰ)由题意知2322=-a b a ,可得:b a 2=. 因为抛物线E 的焦点为)21,0(F ,所以21,1==b a , 所以椭圆C 的方程为1422=+y x . (Ⅱ)(i )设)02,(2>m m m P ,由y x 22=可得x y =/, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0>∆,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y , 因为mx y 4100-=,所以直线OD 方程为x m y 41-=.所以)1(41||2121+==m m m GF S , )14(8)12(||||2122202++=-⋅=m m m x m PM S , 所以222221)12()1)(14(2+++=m m m S S , 令122+=m t ,则211)1)(12(2221++-=+-=tt t t t S S , 当211=t ,即2=t 时,21S S 取得最大值49,此时22=m ,满足0>∆, 所以点P 的坐标为)41,22(,因此12S S 的最大值为49,此时点P 的坐标为)41,22(. 考点:1.椭圆、抛物线的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e 的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.。
数学-2016年高考真题--山东卷(理)(精校解析版)
2016年普通高等学校招生全国统一考试 (山东卷)理科数学第Ⅰ卷一、选择题(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2016·山东理,1)若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z 等于( ) A .1+2i B .1-2i C .-1+2i D .-1-2i2.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( ) A .(-1,1) B .(0,1) C .(-1,+∞) D .(0,+∞)3.(2016·山东理,3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140 4.(2016·山东理,4)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .125.(2016·山东理,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 6.(2016·山东理,6)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.(2016·山东理,7)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2D .2π8.(2016·山东理,8)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-949.(2016·山东理,9)已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)等于( ) A .-2 B .-1 C .0 D .210.(2016·山东理,10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A .y =sin x B .y =ln x C .y =e xD .y =x 3第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分.11.(2016·山东理,11)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.12.(2016·山东理,12)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数为-80,则实数a =________. 13.(2016·山东理,13)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________. 14.(2016·山东理,14)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.15.(2016·山东理,15)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m , 其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 三、解答题:本答题共6小题,共75分.16.(2016·山东理,16)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan A cos B +tan Bcos A .(1)证明:a +b =2c ; (2)求cos C 的最小值.17.(2016·山东理,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角F-BC-A 的余弦值.18.(2016·山东理,18)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .19.(2016·山东理,19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ). 20.(2016·山东理,20)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.21.(2016·山东理,21)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M . ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.答案解析1.解析 设z =a +b i(a ,b ∈R ),则z =a -b i ,∴2(a +b i)+(a -b i)=3-2i ,整理得3a +b i=3-2i ,∴⎩⎪⎨⎪⎧ 3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴z =1-2i ,故选B.答案 B2.解析 ∵A ={y |y >0},B ={x |-1<x <1},∴A ∪B =(-1,+∞),故选C. 答案 C3.解析 设所求人数为N ,则N =2.5×(0.16+0.08+0.04)×200=140,故选D. 答案 D4.解析 满足条件⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如下图阴影部分(包括边界),x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然,当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.答案 C5.解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 答案 C6.解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. 答案 A7.解析 ∵f (x )=2sin x cos x +3(cos 2x -sin 2x )=sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3,∴T =π,故选B. 答案 B8.解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B.答案 B9.解析 当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ),∴f (2)=f (1)=-f (-1)=2,故选D. 答案 D10.解析 对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2;对函数y =ln x 求导,得y ′=1x 恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=e x 恒大于0,斜率之积不可能为-1;对函数y =x 3,得y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A. 答案 A11.解析 第1次循环:i =1,a =1,b =8,a <b ; 第2次循环:i =2,a =3,b =6,a <b ;第3次循环:i =3,a =6,b =3,a >b ,输出i 的值为3. 答案 3 12.解析∵T r +1=C r 5(ax 2)5-r⎝⎛⎭⎫1x r =a 5-r C r 5x 5102r -,∴10-52r =5,解得r =2,∴a 3C 35=-80,解得a =-2. 答案 -213.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a =3×2c ,又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a -2=0,即2e 2-3e -2=0,解得e =2或e =-1(舍去). 答案 214.解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝⎛⎭⎫-341-(-1)=34.答案 3415.解析 如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3.答案 (3,+∞) 16.(1)证明 由题意知2⎝⎛⎭⎫sin A cos A +sin B cos B =sin A cos A cos B +sin Bcos A cos B .化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B ,因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c .(2)解 由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝⎛⎭⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.17.(1)证明 设FC 中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B (0,23,0),C (-23,0,0).过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3,可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎫-1,1,33, 因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m ||n |=77.所以二面角F-BC-A 的余弦值为77. 18.解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3,所以b n =3n +1. (3)由(1)知,c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2,所以T n =3n ·2n +2.19.解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D . 由事件的独立性与互斥性,P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝⎛ 14×23×34×23+34×13⎭⎫×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=60144=512. P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.20.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ③a >2时,0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. (2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎝⎛⎭⎫1-1x -2x 2+2x 3 =x -ln x +3x +1x 2-2x3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x ≥0,可得g (x )≥g (1)=1,当且仅当x =1时取得等号.又h ′(x )=-3x 2-2x +6x 4. 设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减.由h (1)=1,h (2)=12,可得h (x )≥h (2)=12, 当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立. 21.(1)解 由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎝⎛⎭⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝⎛⎭⎫m ,m 22(m >0),由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ).即y =mx -m 22. 设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22, 得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5).(*) 且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m.所以直线OD 方程为y =-14m x ,联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14, 所以点M 在定直线y =-14上.②解 由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎫0,-m 22,又P ⎝⎛⎭⎫m ,m 22,F ⎝⎛⎭⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2. 设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12,即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝⎛⎭⎫22,14.因此S 1S 2的最大值为94,此时点P 的坐标为⎝⎛⎭⎫22,14.。
2016山东高考理科数学试卷及问题详解
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案卸载试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足i -z z 232=+,其中i 为虚数为单位,则=z (A )i 21+ (B )i -21 (C )i -21+(D )i --21【解析】 设 )∈,(,+=R b a bi a z ,则i -bi a a bi a z z z z z 23322=+=++=)+(+=+, 所以21-b a =,=,故选(B )(2)已知集合{}{}0122<=,∈,==A -x x B R x y y x ,则=B A(A )),(11- (B )),(10 (C ))+∞,(1- (D ))+,(∞0【解析】 由题意),(),(11=,∞+0=A -B ,所以=B A )+∞,(1-,故选(C )(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140【解析】 由图可知组距为2.5,每周的自习时间少于22.5小时的频率为0.30=2.5×)0.1+0.02(所以,每周自习时间不少于22.5小时的人数是 140=0.301×200)(-人,故选D .(4)若变量y x ,满足⎪⎩⎪⎨⎧≥≤-≤+09322x y x y x ,则22y x +的最大值是(A )4 (B )9 (C )10 (D )12 【解析】 由22y x +是点),(y x 到原点距离的平方, 故只需求出三直线的交点),(),,(),,(133020--, 所以),(13-是最优解,22y x +的最大值是10,故选C(5)有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为(A )π32+31 (B )π32+31 (C )π62+31 (D )π62+1【解析】 由三视图可知,半球的体积为π62, 四棱锥的体积为31,所以该几何体的体积为π62+31,故选C .(6)已知直线b a ,分别在两个不同的平面βα、内,则“直线a 和直线b 相交”是“平面α和平面α相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【解析】 由直线a 和直线b 相交,可知平面βα、有公共点,所以平面α和平面β相交. 又如果平面α和平面β相交,直线a 和直线b 不一定相交.故选A .(7)函数)sin cos )(cos +sin (=)(x x -x x x f 33的最小正周期是(A )2π (B )π (C )2π3 (D )π2 【解析】 由)(33π+2sin 2=2cos +cos sin 2=)(x x x x x f 所以,最小正周期是π,故选B(8)已知非零向量n m ,满足313>=,<cos ,=4n m n m ,若)+(⊥n tm n 则实数t 的值为(A )4(B )—4(C )49 (D )—49 【解析】 因为241n n m n m nm >=,<cos •=,由)+(⊥n tm n ,有02=+=)+(n tmn n tm n ,即0142=)+(n t ,所以=t —4,故选B(9)已知函数)(x f 的定义域为R ,当0<x 时,1-x x f 3=)(;当11≤≤x -时,)(—=)(x f -x f ;当21>x 时,)(=)+(2121x -f x f ,则=)(6f(A )—2 (B )—1(C )0 (D )2【解析】由)(=)+(2121x -f x f ,知当21>x 时,)(x f 的周期为1,所以)(=)(16f f . 又当11≤≤x -时,)x (f )x (f -=-,所以)(—=)(11-f f . 于是2111163=---=--==])[()()()(f f f .故选D .(10)若函数)(=x f y 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称)(=x f y 具有T 性质.下列函数具有T 性质的是(A )x y sin = (B )x y ln = (C )xe y = (D )3x y = 【解析】 因为函数x y ln =,xe y =的图象上任何一点的切线的斜率都是正数; 函数3x y =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质.故选A .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)执行右边的程序框图,若输入的的值分别为0和9, 则输出i 的值为【解析】1=i 时,执行循环体后81=,=b a ,b a >不成立;2=i 时,执行循环体后63=,=b a ,b a >不成立;3=i 时,执行循环体后36=,=b a ,b a >成立;所以3=i ,故填 3.(12)若5)+xax 1(2的展开式中5x 的系数是80-,则实数=a【解析】由553252322580C )1C x -x a xax ==()(, 得2-a =,所以应填2-.(13)已知双曲线)>,>(=:0012222b a by -a x E ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=b c -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2.(14)在],[11-上随机的取一个数k ,则事件“直线kx y =与圆9522=+)(y x -相交”发生的概率为【解析】首先k 的取值空间的长度为2,由直线kx y =与圆9522=+)(y x -相交,得事件发生时k 的取值空间为]43,43[-, 其长度为23,所以所求概率为43=223,应填43.(15)在已知函数=)(x f ,其中0>m ,若存在实数b ,使得关于x 的方程b x f =)(有三个不同的根,则m 的取值范围是【解析】因为m mx -x x g 422+=)(的对称轴为m x =,所以m x >时m mx -x x f 422+=)(单调递增,只要b 大于m mx -x x g 422+=)(的最小值24m m —时,关于x 的方程b x f =)(在m x >时有一根;又x x h =)(在m x ≤,0>m 时,存在实数b ,使方程b x f =)(在m x ≤时有两个根,只需m b ≤<0;故只需m m m <—24即可,解之,注意0>m ,得3>m ,故填),(∞+3.三、解答题:本答题共6小题,共75分. (16)(本小题满分12分)在AB C ∆中,角C B,A,的对边分别为a,b,c ,已知cosAtanB+cosB tanA =tanB)+2(tanA (Ⅰ)证明:c b a 2=+; (Ⅱ)求C cos 的最小值. 【解析】(Ⅰ)由cosAtanB+cosB tanA =tanB)+2(tanA 得 cosAcosBsinBcosAcosB sinA cosAcosB sinC 2+=⨯,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos211231223123222=-=-+≥-=)(b a c ab c .所以C cos 的最小值为21.(17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(Ⅰ)已知H G,分别为FB EC,的中点,求证:GH//平面ABC ;(Ⅱ)已知BC =AB ,32=AC 21=FB =EF ,求二面角A -BC -F 的余弦值. 【解析】(Ⅰ)连结FC ,取FC 的中点M ,连结HM GM,, 因为GM//EF ,EF 在上底面内,GM 不在上底面内, 所以GM//上底面,所以GM//平面ABC ; 又因为MH//B C ,⊂BC 平面ABC ,⊄MH 平面ABC ,所以MH//平面ABC ; 所以平面GHM//平面ABC ,由⊂GH 平面GHM ,所以GH//平面ABC . (Ⅱ) 连结OB ,B C AB = OB A ⊥∴O以为O 原点,分别以O O OB,OA,'为z y,x,轴, 建立空间直角坐标系.BC AB ,32AC 21FB EF ==== ,3)(22=--='FO BO BF O O ,于是有)0,0,3A(2,)0,0,3C(-2,)0,3B(0,2,)3,3F(0,, 可得平面FBC 中的向量)3,(30,-BF =,)0,,(3232CB =, 于是得平面FBC 的一个法向量为)1,3,3(1-=n , 又平面ABC 的一个法向量为)1,0,0(2=n , 设二面角A -BC -F 为θ,则7771cos ===θ. 二面角A -BC -F 的余弦值为77. (18)(本小题满分12分)已知数列{}n a 的前n 项和n n S n 832+=,{}n b 是等差数列,且1++=n n n b b a .(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+.求数列{}n c 的前n 项和n T . 【解析】(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=,所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21. 当1=n 时,d b -=1121;当2=n 时,d b -=1722, 解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T ,两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T2222)33(21)21(2323+⋅+---⋅+⋅=n n n222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(Ⅰ) “星队”至少猜对3个成语的概率;(Ⅱ) “星队”两轮得分之和X 的分布列和数学期望EX .【解析】(Ⅰ) “至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”. 设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1253232414331324343)(1212=⋅⋅⋅⋅+⋅⋅⋅⋅=C C B P ; 4132324343)(=⋅⋅⋅=C P .所以3241125)()()(=+=+=C P B P A P . (Ⅱ) “星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6 于是144131413141)0(=⋅⋅⋅==X P ; 725144103143314131413241)1(1212==⋅⋅⋅+⋅⋅⋅==C C X P ;14425313243413131434332324141)2(12=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅==C X P ; 1211441231413243)3(12==⋅⋅⋅==C X P ; 12514460)31433241(3243)4(12==⋅+⋅⋅⋅==C X P ;411443632433243)6(==⋅⋅⋅==X P ;X 的分布列为:X 的数学期望62314455264141253121214425172501441==⨯+⨯+⨯+⨯+⨯+⨯=EX .(20)(本小题满分13分) 已知.,12)ln ()(2R a xx x x a x f ∈-+-=(Ⅰ) 讨论)(x f 的单调性;(Ⅱ) 当1=a 时,证明23)()(+'>x f x f 对于任意的]2,1[∈x 成立. 【解析】(Ⅰ) 求导数322)11(=)(′x x xa x f --- 322)(1(=x ax x )--当0≤a 时,(0,1)∈x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;当0>a 时,3322+(2)(1(=2)(1(=)(′x ax a x x a x ax x x f ))--)--(1) 当<2<a 0时,1>2a, (0,1)∈x 或),(∈+∞2ax ,0>)(′x f ,)(x f 单调递增, )(1,∈ax 2,0<)(′x f ,)(x f 单调递减;(2) 当2=a 时,1=2a , )(0,∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2<0a, )(0,∈ax 2或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(∈ax 2,0<)(′x f ,)(x f 单调递减;(Ⅱ) 当1=a 时,212+ln =)(x x x x x f --,32322+11=2)(1(=)(′x x x x x x x f 2--)-- 于是)2+1112+ln =)(′)(322xx x x x x x x f x f 2---(---, -1-1-322+3+ln =x x x x x ,]2,1[∈x 令x x x ln =)g(- ,322+3+=)h(xx x x -1-1,]2,1[∈x , 于是)(+(g =)(′)(x h x x f x f )-, 0≥1=1=)(g ′xx x x -1-,)g(x 的最小值为1=g(1); 又42432+=+=)(h ′x x x x x x x 6-2-362-3- 设6+23=)(θ2x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且 0<<1x x 时,0>)(θx ,)(x h 单调递增;2<<0x x 时,0<)(θx ,)(x h 单调递减;又1=)1(h ,21=)2(h ,所以)(x h 的最小值为21=)2(h . 所以23=21+1=)2(+1(g >)(+(g =)(′)(h x h x x f x f ))-. 即23)()(+'>x f x f 对于任意的]2,1[∈x 成立.(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆)0>>(1=+:2222b a b y a x C 的离心率是23,抛物线y x E 2=:2的焦点F 是C 的一个顶点.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点B A ,,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求21S S 的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x . (Ⅱ) (i )设P 点坐标为)0>(),2m m ,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y , 设),(),,(2211y x B y x A ,),(00y x D , 将2=2m mx -y 代入1=4+22y x ,得 0=1+4)4+12322-m x m -x m (. 于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y , 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-.所以点M 在定直线41=y -上. (ii )在切线l 的方程为2=2m mx -y 中,令0=x ,得2m =y 2-, 即点G 的坐标为)2m G (0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ; 再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t 时,即2=t 时,21S S 取得最大值49. 此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.。
2016年高考理科数学山东卷-答案
【考点】双曲线的简单性质
14.【答案】
【解析】直线 与圆 相交,所以圆心 到直线 距离小于半径 ,
, , , , .
【提示】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的 ,最后根据几何概型的概率公式可求出所求.
(ⅱ)由直线 的方程为 ,令 ,可得 ,运用三角形的面积公式,可得 , ,化简整理,再 ,整理可得 的二次方程,进而得到最大值及此时 的坐标.
【考点】椭圆的简单性质
【提示】求得函数的周期为1,再利用当 时, ,得到 ,当 时, ,得到 ,即可得出结论.
【考点】抽象函数及其应用
10.【答案】A
【解析】(A)函数的特征是存在两点切线垂直,既存在两点导数值相乘为 ;
(B)选项中 的导数是 恒大于 ,斜率成绩不可能为 ;
(C)选项中 的导函数 恒大于 ,斜率成绩不可能为 ;
【考点】并集及其运算
3.【答案】D
【解析】由频率分布直方图可知:组距为2.5,故这200名学生中每周的自பைடு நூலகம்时间不少于22.5小时的频率为: , 人数是 人.
【提示】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.
【考点】频率分布直方图
4.【答案】C
.
(Ⅱ) ,
, ,且 ,当且仅当 时取等号,
又 , , ,
由余弦定理 ,
的最小值为 .
【提示】(Ⅰ)由切化弦公式 , ,带入 并整理可得 ,这样根据两角和的正弦公式即可得到 ,从而根据正弦定理便可得出 ;
山东省2016年高考理科数学试题及答案(Word版)
2016年山东省高考理科数学试题与答案本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足i -z z 232=+,其中i 为虚数为单位,则=z(A )i 21+ (B )i -21 (C )i -21+ (D )i --21(2)已知集合{}{}0122<=,∈,==A -x x B R x y y x ,则=B A(A )),(11- (B )),(10 (C ))+∞,(1- (D ))+,(∞0 (3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )1400.040.08 0.100.16(4)若变量y x ,满足⎪⎩⎪⎨⎧≥≤-≤+09322x y x y x ,则22y x +的最大值是(A )4 (B )9 (C )10 (D )12 (5)有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为(A )π32+31 (B )π32+31 (C )π62+31 (D )π62+1 (6)已知直线b a ,分别在两个不同的平面βα、内,则“直线a 和直线b 相交”是“平面α和平面α相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数)sin cos )(cos +sin (=)(x x -x x x f 33的最小正周期是(A )2π (B )π (C )2π3 (D )π2(8)已知非零向量n m ,满足313>=,<cos ,=4n m n m ,若)+(⊥n tm n 则实数t 的值为 (A )4 (B )—4(C )49 (D )—49(9)已知函数)(x f 的定义域为R ,当0<x 时,1-x x f 3=)(;当11≤≤x -时,)(—=)(x f -x f ;当21>x 时,)(=)+(2121x -f x f ,则=)(6f (A )—2 (B )—1(C )0 (D )2(10)若函数)(=x f y 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称)(=x f y 具有T 性质.下列函数具有T 性质的是(A )x y sin = (B )x y ln = (C )xe y = (D )3x y =.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. (11)执行右边的程序框图,若输入的的值分别为0和9则输出i 的值为(12)若5)+xax 1(2的展开式中5x 的系数是80-,则实数=a (13)已知双曲线)>,>(=:0012222b a by -a x E ,若矩形ABCD 的四个顶点在E 上,CD AB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为(14)在],[11-上随机的取一个数k ,则事件“直线kx y =与圆9522=+)(y x -相交”发生的概率为(15)在已知函数=)(x f ,其中0>m ,若存在实数b ,使得关于x 的方程b x f =)(有三个不同的根,则m 的取值范围是 三、解答题:本答题共6小题,共75分. (16)(本小题满分12分)在ABC 中,角C B,A,的对边分别为a,b,c ,已知cosAtanB+cosB tanA =tanB)+2(tanA (Ⅰ)证明:c b a 2=+; (Ⅱ)求C cos 的最小值. (17)(本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(Ⅰ)已知H G,分别为FB EC,的中点,求证:GH//平面ABC ;(Ⅱ)已知BC =AB ,32=AC 21=FB =EF ,求二面角A -BC -F 的余弦值.(18)(本小题满分12分)已知数列{}n a 的前n 项和n n S n 832+=,{}n b 是等差数列,且1++=n n n b b a .(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+.求数列{}n c 的前n 项和n T .(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是43,乙每轮猜对的概率是32;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(Ⅰ) “星队”至少猜对3个成语的概率;(Ⅱ) “星队”两轮得分之和X 的分布列和数学期望EX . (20)(本小题满分13分) 已知.,12)ln ()(2R a xx x x a x f ∈-+-= (Ⅰ) 讨论)(x f 的单调性;(Ⅱ) 当1=a 时,证明23)()(+'>x f x f 对于任意的]2,1[∈x 成立. (21)(本小题满分14分)平面直角坐标系xOy 中,椭圆)0>>(1=+:2222b a b y a x C 的离心率是23,抛物线y x E 2=:2的焦点F 是C 的一个顶点.(Ⅰ) 求椭圆C 的方程;(Ⅱ) 设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点B A ,,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求21S S 的最大值及取得最大值时点P 的坐标.参考答案:1、B2、C3、D4、C5、C6、A7、B8、B9、D 10、A 11、 3 12、2- 13、2 14、4315、),(∞+316、(Ⅰ)由cosAtanB+cosB tanA =tanB)+2(tanA 得 cosAcosBsinBcosAcosB sinA cosAcosB sinC 2+=⨯,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos211231223123222=-=-≥-=)(c ab c .所以C cos 的最小值为21. 17、(Ⅰ)连结FC ,取FC 的中点M ,连结HM GM,, 因为GM//EF ,EF 在上底面内,GM 不在上底面内, 所以GM//上底面,所以GM//平面ABC ; 又因为MH//BC ,⊂BC 平面ABC ,⊄MH 平面ABC ,所以MH//平面ABC ; 所以平面GHM//平面ABC ,由⊂GH 平面GHM ,所以GH//平面ABC . (Ⅱ) 连结OB ,BC AB = OB A ⊥∴O以为O 原点,分别以O O OB,OA,'为z y,x,轴, 建立空间直角坐标系.BBC AB ,32AC 21FB EF ==== , 3)(22=--='FO BO BF O O ,于是有)0,0,3A(2,)0,0,3C(-2,)0,3B(0,2,)3,3F(0,, 可得平面FBC 中的向量)3,(30,-BF =,)0,,(3232CB =, 于是得平面FBC 的一个法向量为)1,3,3(1-=n , 又平面ABC 的一个法向量为)1,0,0(2=n , 设二面角A -BC -F 为θ,则7771cos ===θ. 二面角A -BC -F 的余弦值为77.18、(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=, 所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21. 当1=n 时,d b -=1121;当2=n 时,d b -=1722, 解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T ,两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T2222)33(21)21(2323+⋅+---⋅+⋅=n n n222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .19、(Ⅰ) “至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”. 设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1253232414331324343)(1212=⋅⋅⋅⋅+⋅⋅⋅⋅=C C B P ; 4132324343)(=⋅⋅⋅=C P . 所以3241125)()()(=+=+=C P B P A P . (Ⅱ) “星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6 于是144131413141)0(=⋅⋅⋅==X P ; 725144103143314131413241)1(1212==⋅⋅⋅+⋅⋅⋅==C C X P ;14425313243413131434332324141)2(12=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅==C X P ; 1211441231413243)3(12==⋅⋅⋅==C X P ; 12514460)31433241(3243)4(12==⋅+⋅⋅⋅==C X P ; 411443632433243)6(==⋅⋅⋅==X P ; X 的分布列为:X 的数学期望62314455264141253121214425172501441==⨯+⨯+⨯+⨯+⨯+⨯=EX .20、(Ⅰ) 求导数322)11(=)(′x x x a x f --- 322)(1(=x ax x )--当0≤a 时,(0,1)∈x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;当0>a 时,3322+(2)(1(=2)(1(=)(′x ax a x x a x ax x x f ))--)--(1) 当<2<a 0时,1>2a, (0,1)∈x 或),(∈+∞2ax ,0>)(′x f ,)(x f 单调递增, )(1,∈ax 2,0<)(′x f ,)(x f 单调递减; (2) 当2=a 时,1=2a, )(0,∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2<0a, )(0,∈ax 2或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(∈ax 2,0<)(′x f ,)(x f 单调递减;(Ⅱ) 当1=a 时,212+ln =)(x x x x x f --,32322+11=2)(1(=)(′x x x x x x x f 2--)--于是)2+1112+ln =)(′)(322x x x x x x x x f x f 2---(---,-1-1-322+3+ln =xx x x x ,]2,1[∈x令x x x ln =)g(- ,322+3+=)h(xx x x -1-1,]2,1[∈x , 于是)(+(g =)(′)(x h x x f x f )-, 0≥1=1=)(g ′xx x x -1-,)g(x 的最小值为1=g(1);又42432+=+=)(h ′x x x x x x x 6-2-362-3-设6+23=)(θ2x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且0<<1x x 时,0>)(θx ,)(x h 单调递增; 2<<0x x 时,0<)(θx ,)(x h 单调递减;又1=)1(h ,21=)2(h ,所以)(x h 的最小值为21=)2(h . 所以23=21+1=)2(+1(g >)(+(g =)(′)(h x h x x f x f ))-. 即23)()(+'>x f x f 对于任意的]2,1[∈x 成立. 21、(Ⅰ) 由离心率是23,有224=b a ,又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x . (Ⅱ) (i )设P 点坐标为)0>(),2m m,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m m x -y , 设),(),,(2211y x B y x A ,),(00y x D , 将2=2m m x -y 代入1=4+22y x ,得 0=1+4)4+12322-m x m -x m (. 于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y , 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-. 所以点M 在定直线41=y -上. (ii )在切线l 的方程为2=2m m x -y 中,令0=x ,得2m =y 2-, 即点G 的坐标为)2m G(0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t 时,即2=t 时,21S S 取得最大值49. 此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.。
16年高考真题——理科数学(山东卷)
2016年普通高等学校招生全国统一考试(山东卷)理科数学一.选择题:本大题共12小题,每小题5分,共计60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足i z z 232-=+,其中i 为虚数单位,则=z ( ) (A )i 21+(B )i 21-(C )i 21+-(D )i 21--2.设集合{}R x y y A x∈==,2|,{}01|2<-=x x B ,则=B A Y ( ) (A )()1,1-(B )()1,0(C )()+∞-,1(D )()+∞,03.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]30,5.17,样本数据分组为[),20,5.17[)[)[)[]30,5.27,5.27,25,25,5.22,5.22,20。
根据直方图,这200名学生中每周的自习时间不少于5.22小时的人数是( ) (A )56 (B )60 (C )120(D )1404.若变量y x ,满足⎪⎩⎪⎨⎧≥≤-≤+09322x y x y x ,则22yx +的最大值是( )(A )4 (B )9(C )10(D )12 5.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( ) (A )π3231+ (B )π3231+ (C )π6231+ (D )π621+ 6.已知直线b a ,分别在两个不同的平面βα,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 7.函数()()()x x xx x f sin cos 3cos sin 3-+=的最小正周期是( )(A )2π (B )π (C )23π (D )π28.已知非零向量,m n u r r满足4||3||m n =u r r ,cos ,13m n =u r r 。
完整word2016年山东省高考数学试卷理科解析
2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.2z+=3﹣2i,其中i为虚数单位,则z=(1.若复数z满足)A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2z+=3﹣2iz满足,解:复数设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.x2﹣1<0},则A∪B=()2.设集合A={y|y=2B={x|x,x∈R},A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)x,x∈R}=(0,+∞)解:∵A={y|y=2,2﹣1<0}=(﹣1,1)B={x|x,∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D22满足,y 4.若变量x,则x+y 的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,第1页(共12页)),(0,2(∵A0,﹣3),C |OC|,∴|OA|>).3,﹣1联立,解得B(,∵22x∴.的最大值是10+y .故选:C ).一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(51+D.πCπ.+πA.π+ B.+ 解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,.2R=,可得由棱锥的底底面棱长为1πR=,故半球的体积为:,故= ,1棱锥的底面面积为:,高为1,V=故棱锥的体积,故组合体的体积为:+π122第页(共页)故选:C6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A(cosx﹣sinx)的最小正周期是((sinx+cosx))x7.函数f()=.D.2πB.πCA .()(sinx+cosx数f(x()x+)=2sin(=2x+),cosx﹣sinx)=2sin(解:x+)?2cos ,∴T=πB 故选:+),则实数⊥(,cost<t,>8的值为.已知非零向量,满足=4|.若|=3||().﹣.﹣4 CD.A.4B+),⊥<(,>=t解:∵,4||=3||,cos222++)∴?(=tt?=0,)? +|||==t||?|||(解得:t=﹣4,故选:B.3﹣1;当﹣1≤x≤1时,f(﹣x.当)的定义域为Rx<0时,f(x)=x)=9.已知函数f(x﹣).则f(6)=(时,f(x+)=f(x)﹣f(x);当x>A.﹣2 B.﹣1 C.0D.2﹣),=f)(当xx>时,f(x+解:∵>时,f(x+1)=f(x),即周期为1.∴当x∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),3=xx)时,f(x∵当<0﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.第3页(共12页))的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则xy=f(10.若函数)称y=f(x)具有T性质.下列函数中具有T性质的是(3x y=x.y=lnx C.y=e D.A.y=sinx B x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,解:函数y=f(1,则函数y=f (x)的导函数上存在两点,使这点的导函数值乘积为﹣=cosx,满足条件;当y=sinx时,y′′y=lnx时,y恒成立,不满足条件;=>0当xx时,y′=e恒成立,不满足条件;>当y=e023 y′=3x恒成立,不满足条件;>当y=x0时,A故选:小题,每小题5分,共25分.二、填空题:本大题共5,则输出的i的值为011.执行如图的程序框图,若输入的a,b的值分别为和9解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,故答案为:3255的系数是﹣80,则实数a= )的展开式中x .12.若(ax+2525r5r﹣﹣,==)的展开式的通项公式解:(ax+T(ax)a r+1=5﹣10.,解得r=2令552ax∵(80)+的展开式中x的系数是﹣3a∴=﹣80,第4页(共12页)﹣2.得a=CDAB,b>0),若矩形ABCD的四个顶点在E13.已知双曲线E上,:=1﹣(a>0,,则E 的离心率是的中点为E的两个焦点,且2|AB|=3|BC|±,y=±b=解:令x=c,代入双曲线的方程可得),(c,(c,﹣),D,c由题意可设A(﹣,),B(﹣c,﹣)C ,可得由2|AB|=3|BC|2 2b,=3ac?2=3?2c,即为2222,3e﹣e=,可得2e由b2=0=ca﹣﹣,.解得e=2(负的舍去).故答案为:222=9相交”5)发生的概+y上随机地取一个数]k,则事件“直线y=kx与圆(x﹣14.在[﹣1,1率为22=9的圆心为(5,0)5)+y,半径为3.解:圆(x﹣圆心到直线y=kx的距离为,22=9相交,则<3,解得﹣<k<.)要使直线y=kx与圆(x﹣5 +y22)5y=kx与圆(x﹣,使直线[∴在区间﹣1,1]上随机取一个数k=9+y相交相交的概率为=.故答案为:.15.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是第5页(共12页)=的图象如下:f(x)0解:当m>时,函数2222=x)(x∵x>m时,f,m >4m﹣m)﹣+4m﹣m ﹣2mx+4m=(x∴y要使得关于x的方程f(x)=b有三个不同的根,2<m(m>04m﹣m),必须2>3m(m>即m0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.+.tanA+tanB)=,的对边分别为a,bc,已知2(,16.在△ABC中,角AB,C Ⅰ)证明:a+b=2c;()求cosC的最小值.(Ⅱ)证明:由得:解:(Ⅰ;=sinA+sinB;(sinAcosB+cosAsinB)得,∴两边同乘以cosAcosB2 ;A+B)=sinA+sinB∴2sin(1);即sinA+sinB=2sinC(根据正弦定理,;;,带入(∴1)得:∴a+b=2c;(Ⅱ)a+b=2c;2222)a+b∴(;=a+2ab=4c+b2222a∴≥4ab,当且仅当a=b时取等号;+b=4c2ab﹣,且4c又a,b>0;第6页(共12页);∴由余弦定理,=;∴.的最小值为∴cosC是圆台FB′的直径,O的直径,EF是上底面圆O17.在如图所示的圆台中,AC是下底面圆的一条母线.;平面ABCFB的中点,求证:GH∥G(I)已知,H分别为EC,的余弦值.﹣A,求二面角F(Ⅱ)已知﹣EF=FB=BCAC=2AB=BCQH,Q,连结GQ、证明:(Ⅰ)取FC中点FB的中点,H为EC、∵G、∥GQ,QH∴,GQBOBO,∴,又∵EFABC,GQH∥平面∴平面.ABCGH∥平面GH?面GQH,∴∵,BO⊥ACⅡ)∵AB=BC,∴解:(,⊥面ABC又∵OO′轴,建立空间直角坐标系,为z为y轴,OO′轴,∴以O为原点,OA 为xOB,,,33,),F(0)(),B0,,2,0)O′(0,00,A则0(,,0)C(﹣2,0,0),﹣,﹣3),=(,2,2=(﹣,2)3,0,0,由题意可知面ABC的法向量为=(的法向量,FCB,z)为面,设=(xy000则,,即),﹣1,,﹣=1取x(,则=10==.﹣cos∴<,>=127第页(共页)∵二面角F﹣BC﹣A的平面角是锐角,的余弦值为.﹣A ∴二面角F﹣BC2+8n,{b}是等差数列,且a=b+b.n18.已知数列{a}的前项和S=3n n+1nnnnn(Ⅰ)求数列{b}的通项公式;n=,求数列{c}的前n项和T.(Ⅱ)令c nnn2+8n,=3n (Ⅰ)S解:n∴n≥2时,a=S﹣S=6n+5,1nnn ﹣n=1时,a=S=11,∴a=6n+5;n11∵a=b+b,n+1nn∴a=b+b,nn1n1﹣﹣∴a﹣a=b﹣b.1n+1nn1n﹣﹣∴2d=6,∴d=3,∵a=b+b,211∴11=2b+3,1∴b=4,1∴b=4+3(n﹣1)=3n+1;nn,?2=6(n+1(Ⅱ)c)==n2n T∴]①,2)?2+32?+…+(n+1=6[2?n23nn+12T∴]②,22+(n+1)=6[2?2?+32?+…+n?nn+1n+13n22)?﹣6(]=12+6n+1×=?)2+2T①﹣②可得﹣=6[2?2+2+…+2﹣(n+1nn+1n+2,?2)?23n=﹣(﹣6n n+2T∴.2 =3n?n19.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人第8页(共12页),乙每轮猜对的概率是;每轮活分.已知甲每轮猜对的概率是“星队”得0都没猜对,则动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率+++=P=+,= ,,63)“星队”两轮得分之和为X可能为:0,1,2,,4(II,则P(X=0)==]+X=1)=2×,[=(P)(X=2P++=+,=)(X=3=2=×,P=P(X=4)=2×[]+= =P(X=6)X的分布列如下图所示:故2 34X 0 1 6P==+6×+3∴数学期望EX=0×+1×××+4×+2+,a∈)R.x.已知f()=a(x﹣lnx20 )的单调性;(I)讨论f(x+对于任意的x∈[1,2]x)>时,证明II)当a=1f(xf′()成立.(+,lnx﹣)x=axfⅠ()解:由()(第9页(共12页)+)1 ﹣f′(x)=a(得=(x>0)=.2﹣2<0恒成立,若a≤0,则ax∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;)和(,+∞)时,f′(x)>0,10,f(x)为增函数,∈当a>0,若0<a<2,当x ()时,f′(当x∈(1x,)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;,)和(1,+∞)时,f′(x)>0,f(若a>2,当x∈(0x)为增函数,,1)时,f′(x)<0,f(x)为减函数;当x∈((Ⅱ)解:∵a=1,lnx+﹣.﹣lnx 1=x)﹣(x)=f(xf′(x)=x﹣令F x e∵1+x,>,∴x>ln(1+x)1x e∴﹣>,1>lnxx,则x﹣=.)>∴F(x=(x∈[1,2]=,则φ′(x)).(令φx)上为减函数,则2]x)在[1,,∴φ()>恒成立.F(x∴+对于任意的x∈[1),2]成立.f即f(x)>′(x)的离心率是,抛物线E:>b>.平面直角坐标系xOy中,椭圆C0:+=1(a212=2y的焦点F 是C的一个顶点.x(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;第10页(共12页),求的最大值的面积为S的面积为S,△PDM△(ii)直线l与y轴交于点G,记PFG21的坐标.及取得最大值时点P2,),的焦点F为(e=,抛物线=E:x0=2y解:(I)由题意可得22 b=,﹣即有c=a,c=解得a=1,,22=1;x可得椭圆的方程为+4y2=2y,y),可得x)(i)证明:设P(x,(Ⅱ00002的导数为y′=x,即有切线的斜率为x由xy=,0则切线的方程为y﹣y=x(x﹣x),000可化为y=xx﹣y,代入椭圆方程,00222﹣1=0x+4y,)x ﹣8x可得(1+4xy0000设A(x,y),B(x,y),2112,﹣),,即有中点D (可得x+x=21﹣.,可令x=x,可得y=直线OD的方程为y=x﹣0﹣上;即有点M在定直线y=(ii)直线l的方程为y=xx﹣y,令x=0,可得G(0,﹣y),0002);(=x|x=|FG|?1+x|=x?(+y)则S000001?,)+x??S=|PM||x﹣y|=(=0200=,则2=,则=)≥(1+2x令=tt10第11页(共12页)2﹣(+﹣)==2+=﹣,时,,t=2则当,即x=取得最大值0.的坐标为(,)此时点P1212第页(共页)。
[山东卷]2016年山东卷理科数学(全解析)
输入a, b i = 1 a=a+i,b=b i i=i+1
非负,不符合题意.
第Ⅱ卷(非选择题 共 100 分) 二、填空题:本大题共 5 小题,每小题 5 分,满分 25 分. 11.执行右边的程序框图,若输入的 a, b 的值分别为 0 和 9 ,则输出的 i 的值为_______.
【解析】 3 ;第一次 循环: a = 1, b = 8 ;第二次循环: a = 3, b = 6 ;第三次循环:
以 f (1) = - f ( -1) = - é( -1) - 1ù = 2 .
3
ë
û
10.若函数 y = f ( x ) 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称 y = f ( x ) 具有
T 性质.下列函数中具有 T 性质的是(
A. y = sin x B. y = ln x
分是底面积为1 ,高为 1 的四棱锥,体积 V2 =
æ 2ö 2 ´ç ç 2 ÷ ÷ = 6 p ,下半部 è ø
2
1 1 1 2 ´ 1 ´ 1 = ,故该几何体的体积为 + p. 3 3 3 6 6. 已知直线 a , b 分别在两个不同的平面 a , b 内.则“直线 a 和直线 b 相交”是“平面 a 和平面 b 相
( ax )
2
5 - k
5 10 - k 5 æ 1 ö 5 - k k 2 ,令 10 - k = 5 ,得 k = 2 ,因此 C52 a 3 = ç ÷ = a C5 x 2 è xø
k
-80 ,解得 a = -2 .
13.已知双曲线 E :
x 2 y 2 = 1 ( a > 0 , b > 0 ),若矩形 ABCD 的四个顶点在 E 上, AB, CD 的中点为 E a 2 b 2
2016年高考理科数学山东卷-答案
(Ⅱ)“星队”两轮得分之和为 可能为:0,1,2,3,4,6,则 ,
,
,
,
,
,
故 的分布列如下图所示:
X
0
1
2
3
4
6
P
数学期望 .
【提示】(Ⅰ)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;
(Ⅱ)由已知可得:“星队”两轮得分之和为 可能为:0,1,2,3,4,6,进而得到 的分布列和数学期望.
【考点】几何概型
15.【答案】
【解析】当 时,函数 的图象如下:
时, , 要使得关于 的方程 有三个不同的根,必须 ,即 ,解得 , 的取值范围是 .
【提示】作出函数 的图象,依题意,可得 ,解之即可.
【考点】根的存在性及根的个数判断
三、解答题
16.【答案】(Ⅰ)由 得: ,
两边同乘以 得, ,
,即 ①,根据正弦定理, , , , ,带入①得 ,
2016年普通高等学校招生全国统一考试(山东卷)
理科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】B
【解析】设 , ,则 , , , , .
【提示】设出复数 ,通过复数方程求解即可.
【考点】复数代数形式的乘除运算
2.【答案】C
【解析】 , , , , .
【提示】求解指数函数的值域化简 ,求解一元二次不等式化简 ,再由并集运算得出答案.
【提示】求得函数的周期为1,再利用当 时, ,得到 ,当 时, ,得到 ,即可得出结论.
【考点】抽象函ห้องสมุดไป่ตู้及其应用
10.【答案】A
2016年高考理科数学试题山东卷答案
2016年普通高等学校招生全国统一考试(山东卷)理科数学答案(1)【解析】通解设z a bi =+(,)a b R ∈,则z a bi =-.故22()z z a bi a bi +=++-=3a bi +=3-2i ,所以错误!未找到引用源。
,解得错误!未找到引用源。
,所以12z i =-.故选B . 光速解法:设z a bi =+(,)a b R ∈,由复数的性质可得2z z a +=,故2()z z z z z +=++,故2z z +的虚部就是z 的虚部,实部是z 的实部的3倍.故12z i =-,选B .(2)【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .(3)【解析】由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D .(4)【解析】作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则22x y +表示2||OP .显然,当点P 与点A 重合时,2||OP 即22x y +取得最大值.由2239x y x y +=⎧⎨-=⎩错误!未找到引用源。
,解得31x y =⎧⎨=-⎩,错误!未找到引用源。
故A (3,-1).所以22x y +的最大值为32+2(1)-=10.故选C .(5)【解析】由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积21111133V =⨯⨯=.设半球的半径为R ,则22R =2R =,所以半球的体积32142326V π=⨯⨯=.故该几何体的体积12136V V V =+=+.故选C . (6)【解析】若直线,a b 相交,设交点为P ,则,P a P b ∈∈,又,a b αβ⊂⊂,所以,P P αβ∈∈,故,αβ相交.反之,若,αβ相交,则,a b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A . (7)【解析】由题意得()2sin()2cos()2sin(2)663f x x x x πππ=+⨯+=+,故该函数的最小正周期22T ππ==.故选B . (8)【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以222||31|cos |||3||t |||<,>|||=-=-=-=-⋅⋅⨯⨯n n n n m n m n m n m m n 4343=-⨯=-.故选B . (9)【解析】当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=,所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .(10)【解析】设函数()y f x =的图象上两点11(,)P x y ,22(,)Q x y ,则由导数的几何意义可知,点P ,Q 处切线的斜率分别为11()k f x '=,22()k f x '=若函数具有T 性质,则12k k ⋅=1()f x '2()f x '=-1.对于A 选项,()cos f x x '=,显然12k k ⋅=12cos cos x x =-1有无数组解,所以该函数具有T 性质;对于B 选项,1()(0)f x x x'=>,显然12k k ⋅=1211x x ⋅=-1无解,故该函数不具有T 性质;对于C 选项,()x f x e '=>0,显然12k k ⋅=12x x e e ⋅=-1无解,故该函数不具有T 性质;对于D 选项,2()3f x x '=≥0,显然12k k ⋅=221233x x ⋅=-1无解,故该函数不具有T 性质.故选A .(11)【解析】输入a =0,b =9,第一次循环:a =0+1=1,b =9-1=8,i =1+1=2;第二次循环:a =1+2=3,b =8-2=6,i =2+1=3;第三次循环:a =3+3=6,b =6-3=3,a >b 成立,所以输出i 的值为3.(12)【解析】(ax 2+x错误!未找到引用源。
2016年高考理科数学山东卷及答案
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z = ( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10x A y y x B x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A. 12+33πB. 1+3C. 13D. 1 6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12.若25ax (的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ; (Ⅱ)已知12EF =FB =AC ==BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,21||||||043t n n n∴+=,104∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数【考点】平面向量数量积的运算【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i(B )1-2i(C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140 (4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B)13+(C)13+(D)1+(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 (7)函数f (x )=sin x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
(11)执行右边的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.(12)若(a x 2)3的展开式中x 3的系数是—80,则实数a=_______. (13)已知双曲线E 1:22221x y a b-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. (14)在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为 .(15)已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f(x )=b 有三个不同的根,则m 的取值范围是________________.三、解答题:本答题共6小题,共75分。
(16)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值.17.在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (II )已知EF =FB =12AC=AB =BC .求二面角F BC A --的余弦值.(18)(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)另1(1).(2)n n n nn a c b ++=+求数列{}n c 的前n 项和T n .(19)(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分。
已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响。
各轮结果亦互不影响。
假设“星队”参加两轮活动,求:(I )“星队”至少猜对3个成语的概率;(II )“星队”两轮得分之和为X 的分布列和数学期望EX (20)(本小题满分13分) 已知()221()ln ,x f x a x x a R x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立(21)本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的,抛物线E :22x y 的焦点F 是C 的一个顶点。
(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M. (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普听高等学校招生全国统一考试(山东卷)理科数学试题参考答案一、选择题 (1)【答案】B (2)【答案】C (3)【答案】D (4)【答案】C (5)【答案】C (6)【答案】A (7)【答案】B (8)【答案】B (9)【答案】D (10)【答案】A第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)【答案】3 (12)【答案】-2 (13)【答案】2 (14)【答案】34(15)【答案】(3,)+∞ 三、解答题 (16)解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭,当且仅当a b =时,等号成立. 故 cos C 的最小值为12. 考点:两角和的正弦公式、正切公式、正弦定理、余弦定理及基本不等式. (17)(I )证明:设FC 的中点为I ,连接,GI HI , 在CEF △,因为G 是CE 的中点,所以,GI F //E又,F E //OB 所以,GI //OB在CFB △中,因为H 是FB 的中点,所以//HI BC ,又HI GI I ⋂=,所以平面//GHI 平面ABC ,因为GH ⊂平面GHI ,所以//GH 平面ABC .(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥ 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得(0,B,(C -,过点F 作FM OB 垂直于点M ,所以3,FM ==可得F故(23,23,0),(0,BC BF =--=-. 设(,,)m x y z =是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩可得0,30z ⎧--=⎪⎨+=⎪⎩可得平面BCF的一个法向量(m =- 因为平面ABC 的一个法向量(0,0,1),n = 所以7cos ,||||m n m n m n ⋅<>==. 所以二面角F BC A --. 解法二:连接'OO ,过点F 作FM OB ⊥于点M , 则有//'FM OO ,又'OO ⊥平面ABC ,所以FM ⊥平面ABC, 可得3,FM ==过点M 作MN BC 垂直于点N ,连接FN , 可得FN BC ⊥,从而FNM ∠为二面角F BC A --的平面角. 又AB BC =,AC 是圆O 的直径,所以6sin 45MN BM ==从而FN =,可得cos FNM ∠= 所以二面角F BC A --. 考点:空间平行判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力 (18)(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a , 所以56+=n a n . 设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b d b 321721111,可解得3,41==d b ,所以13+=n b n .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法 (19)(Ⅰ)记事件A:“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”. 由题意,.E ABCD ABCD ABCD ABCD ABCD =++++ 由事件的独立性与互斥性,()()()()()()P E P ABCD P ABCD P ABCD P ABCD P ABCD =++++()()()()()()()()()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D P A P B P P A P B P C P D C P D =++++323212323132=24343434343432.3⎛⎫⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯ ⎪⎝⎭= , 所以“星队”至少猜对3个成语的概率为23. (Ⅱ)由题意,随机变量X 的可能取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得()1111104343144P X ==⨯⨯⨯=, ()31111211105124343434314472P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯==⎪⎝⎭, ()31313112123112122524343434343434343144P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=, ()32111132134343434312P X ==⨯⨯⨯+⨯⨯⨯= ,()3231321260542=4343434314412P X ⎛⎫==⨯⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭ ,()32321643434P X ==⨯⨯⨯=.可得随机变量X 的分布列为所以数学期望01234614472144121246EX =⨯+⨯+⨯+⨯+⨯+⨯=. 考点:独立事件的概率公式和互斥事件的概率加法公式;分布列和数学期望(20)(Ⅰ))(x f 的定义域为),0(+∞;3232/)1)(2(22)(x x ax x x x a a x f --=+--=. 当0≤a , )1,0(∈x 时,0)(/>x f ,)(x f 单调递增;/(1,),()0x f x ∈+∞<时,)(x f 单调递减.当0>a 时,/3(1)()(a x f x x x x -=+. (1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a 时,0)(/>x f ,)(x f 单调递增; 当x ∈)2,1(a时,0)(/<x f ,)(x f 单调递减; (2)2=a 时,12=a,在x ∈),0(+∞内,0)(/≥x f ,)(x f 单调递增; (3)2>a 时,120<<a , 当)2,0(ax ∈或x ∈),1(+∞时,0)(/>x f ,)(x f 单调递增; 当x ∈)1,2(a 时,0)(/<x f ,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增;当2=a 时,)(x f 在),0(+∞内单调递增; 当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,/22321122()()ln (1)x f x f x x x x x x x --=-+---+23312ln 1x x x x x=-++--,]2,1[∈x ,令1213)(,ln )(32--+=-=x x x x h x x x g ,]2,1[∈x .则)()()()(/x h x g x f x f +=-, 由01)(/≥-=x x x g 可得1)1()(=≥g x g ,当且仅当1=x 时取得等号. 又24326'()x x h x x --+=,设623)(2+--=x x x ϕ,则)(x ϕ在x ∈]2,1[单调递减,因为10)2(,1)1(-==ϕϕ,所以在]2,1[上存在0x 使得),1(0x x ∈ 时,)2,(,0)(0x x x ∈>ϕ时,0)(<x ϕ, 所以函数()h x 在),1(0x 上单调递增;在)2,(0x 上单调递减, 由于21)2(,1)1(==h h ,因此21)2()(=≥h x h ,当且仅当2=x 取得等号, 所以23)2()1()()(/=+>-h g x f x f , 即23)()(/+>x f x f 对于任意的]2,1[∈x 恒成立。