高中数学《两条直线的平行与垂直》导学案教学设计

合集下载

数学《两条直线平行与垂直的判定》教案

数学《两条直线平行与垂直的判定》教案

数学《两条直线平行与垂直的判定》教案一、教学目标:1. 确定两条直线是否平行或垂直。

2. 掌握平行线和垂直线的特征和性质。

3. 培养学生观察、分析和判断的能力。

二、教学重难点:1. 两条直线平行与垂直的判定方法。

2. 如何运用这些方法来分析和解决实际问题。

三、教学步骤:1. 导入新知识:解释平行线和垂直线的概念,引导学生思考如何确定两条直线是否平行或垂直。

2. 学习重点:(1)两条直线平行的判定方法:①第一种方法:两条直线的斜率相等,且不相交。

②第二种方法:两条直线的两个任意向量相乘的内积等于 0。

(2)两条直线垂直的判定方法:两条直线的斜率的乘积等于 -1。

3. 学习难点:如何运用判定方法来解决实际问题。

4. 教学过程:(1)两条直线平行的判定例:如图所示,判断直线 AB 和直线 CD 是否平行。

分析:因为直线 AB 的斜率为 2,而直线 CD 的斜率也为 2,且两条直线不相交,所以直线 AB || 直线 CD。

(2)两条直线垂直的判定例:如图所示,判断直线 AB 和直线 CD 是否垂直。

分析:直线 AB 的斜率为 1/2,直线 CD 的斜率为 -2,而 1/2 ×(-2) = -1,因此直线 AB 和直线 CD 垂直。

5. 练习与拓展:(1)练习一:判断两条直线是否平行:①直线 y = 2x + 3 和直线 y = -2x - 1。

②直线 y = 3x + 1 和直线 y = -6x + 6。

(2)练习二:判断两条直线是否垂直:①直线 y = 2x + 3 和直线 y = -2x - 1。

②直线 y = 3x + 1 和直线 2x - y = 4。

6. 总结与归纳:对判定两条直线平行或垂直的方法进行总结归纳,帮助学生理清思路,掌握知识点。

四、教学板书设计:两条直线平行的判定方法:①两条直线的斜率相等,且不相交。

②两条直线的两个任意向量相乘的内积等于 0。

两条直线垂直的判定方法:两条直线的斜率的乘积等于 -1。

高二数学两条直线的平行与垂直教案

高二数学两条直线的平行与垂直教案

高二数学两条直线的平行与垂直教案第一篇:高二数学两条直线的平行与垂直教案高二数学两条直线的平行与垂直教案一、教学目标(一)知识教学点掌握两条直线平行与垂直的条件,会运用条件判断两直线是否平行或垂直,能运用条件确定两平行或垂直直线的方程系数.(二)能力训练点通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.(三)学科渗透点通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.二、教材分析1.重点:两条直线平行和垂直的条件是解析几何中的一个重点,要求学生能熟练掌握,灵活运用.2.难点:启发学生把研究两直线的平行与垂直问题转化为考查两直线的斜率的关系问题.3.疑点:对于两直线中有一条直线斜率不存在的情况课本上没有考虑,上课时要注意解决好这个问题.三、活动设计提问、讨论、解答.四、教学过程(一)特殊情况下的两直线平行与垂直这一节课,我们研究怎样通过两直线的方程来判断两直线的平行与垂直.当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)斜率存在时两直线的平行与垂直设直线l1和l2的斜率为k1和k2,它们的方程分别是l1:y=k1x+b1; l2: y=k2x+b2.两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征.我们首先研究两条直线平行(不重合)的情形.如果l1∥l2(图1-29),那么它们的倾斜角相等:α1=α2.∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等,k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.∵两直线不重合,∴l1∥l2.两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即eq x()要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立.现在研究两条直线垂直的情形.如果l1⊥l2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是l1与l2的交点在x轴上方;乙图的特征是l1与l2的交点在x轴下方;丙图的特征是l1与l2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为l1、l2的斜率是k1、k2,即α1≠90°,所以α2≠0°.可以推出α1=90°+α2.l1⊥l2.两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即eq x()(三)例题例1 已知两条直线l1: 2x-4y+7=0,L2: x-2y+5=0.求证:l1∥l2.证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合.证明:把l1、l2的方程写成斜截式:∴两直线不相交.∵两直线不重合,∴l1∥l2.例2求过点A(1,-4),且与直线2x+3y+5=0平等的直线方程.即 2x+3y+10= 0.解法2 因所求直线与2x+3y+5=0平行,可设所求直线方程为2x+3y+m=0,将A(1,-4)代入有m=10,故所求直线方程为2x+3y+10=0.例3 已知两条直线求证:l1⊥l2.l1: 2x-4y+7=0,l2: 2x+y-5=0.∴l1⊥l2.例4 求过点A(2,1),且与直线2x+y-10=0垂直的直线方程.解法1 已知直线的斜率k1=-2.∵所求直线与已知直线垂直,根据点斜式得所求直线的方程是就是x-2y=0.解法2 因所求直线与已知直线垂直,所以可设所求直线方程是x-2y+m=0,将点A(2,1)代入方程得m=0,所求直线的方程是x-2y=0.(四)课后小结(1)斜率存在的不重合的两直线平行的等价条件;(2)两斜率存在的直线垂直的等价条件;(3)与已知直线平行的直线的设法;(4)与已知直线垂直的直线的设法.五、布置作业1.(1.7练习第1题)判断下列各对直线是否平行或垂直:(1)y=3x+4和2x-6y+1=0;(2)y=x与3x十3y-10=0;(3)3x+4y=5与6x-8y=7;解:(1)平行;(2)垂直;(3)不平行也不垂直;(4)垂直.2.(1.7练习第2题)求过点A(2,3),且分别适合下列条件的直线方程:(1)平行于直线2x+5-5=0;(2)垂直于直线x-y-2=0;解:(1)2x+y-7=0;(2)x+y-5=0.3.(1.7练习第3题)已知两条直线l1、l2,其中一条没有斜率,这两条直线什么时候:(1)平行;(2)垂直.分别写出逆命题并判断逆命题是否成立.解:(1)另一条也没有斜率.逆命题:两条直线,其中一条没有斜率,如果这两条直线平行,那么另一条直线也没有斜率;逆命题成立.(2)另一条斜率为零.逆命题:两条直线,其中一条没有斜率,如果另一条直线和这一条直线垂直,那么另一条直线的斜率为零;逆命题成立.4.(习题三第3题)已知三角形三个顶点是A(4,0)、B(6,7)、C(0,3),求这个三角形的三条高所在的直线方程.也就是 2x+7y-21=0.同理可得BC边上的高所在直线方程为3x+2y-12=0. AC边上的高所在的直线方程为4x-3y-3=0.六、板书设计第二篇:两直线平行与垂直两条直线的平行与垂直导学案姓名班级主编:李潭潭审编:李平原学习目标1.掌握利用斜率判断两条直线平行和垂直的方法,感受用代数方法研究几何问题的思想;2.通过分类讨论、数形结合等数学思想的渗透,培养学生严谨、辩证的思维习惯.学习重点与难点本节课的重点是用斜率判断两直线平行与垂直的方法。

两条直线平行与垂直的判定 学案 导学案 说课稿 课件

两条直线平行与垂直的判定   学案 导学案 说课稿  课件

2《两条直线平行与垂直的判定》导学案一、教学目标:1. 掌握两条直线平行与垂直的充要条件2. 会判断两条直线是否平行、垂直二、教学重、难点:重点:两条直线平行与垂直的充要条件难点:斜率不存在时,两直线垂直情况的讨论三、使用说明及学法指导:1.引导学生课前做好预习,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

2.要求学生把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,用双色笔进行整理,便于复习记忆。

3.A 级是自主学习,B 级是合作探究,C 级是提升四、知识链接:1. 已知直线的倾斜角α(α≠90°),则直线的斜率为_________________;已知直线上两点A (x 1,y 1),B(x 2,y 2)且x 1≠x 2,则直线的斜率为_____________________.2. 已知直线l 过(—2,3)和(6,—5)两点,则直线l 的斜率为________,倾斜角为_____________.3. 已知1l 、2l 的斜率都不存在且1l 、2l 不重合,则两直线的位置关系是_________________4.已知一直线经过两点A(m,2),(﹣m,2m-1),且直线的倾斜角为600,则m=_______五、教学过程:探究1、特殊情况下的两条直线平行与垂直当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为_____,两直线的位置关系是____.(2)当另一条直线的斜率为0时,一条直线的倾斜角为______,另一条直线的倾斜角为_ , 两直线的位置关系是____________.探究2、两条直线的斜率都存在时, 两直线的平行与垂直设直线1l 、2l 的斜率分别为12k k 和(1)两条直线互相平行(不重合)的情形,如果1l ∥2l ,那么它们的倾斜角与斜率有怎样的关系?反过来成立吗?结论:两条直线有斜率且不重合,如果它们平行,那么它们的斜率__ __;反之,如果它们的斜率相等,那么它们平行,即________________________.注意:上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.判断:①如果12k k = , 那么一定有1l ∥2l ; ②如果1l ∥2l ,那么12k k =.(2)两条直线垂直的情形.如果1l ⊥2l ,那么它们的倾斜角与斜率是什么关系?反过来成立吗? 结论:两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为________;反之,如果它们的斜率互为负倒数,那么它们互相 __.即_________________________ _____.注意结论成立的条件.判断下列命题的真假:①如果121k k =-, 那么一定有1l ⊥2l ; ②如果1l ⊥2l ,那么121k k =-.知识巩固:A1、已知A(2,3), B (-4,0), P(-3,1), Q(-1,2), 试判断直线BA 与PQ 的位置关系, 并证明你的结论.A2、已知四边形ABCD 的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD 的形状,并给出证明.A3、已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB 与PQ 的位置关系B4、已知A(5,-1), B(1,1), C(2,3)三点, 试判断三角形ABC 的形状.能力提升C1已知点(1,1),(2,2),(3,0)A B C -三点,求点D 的坐标,使得直线CD AB ⊥,且//CB AD六、当堂检测:A1、过点(1,2)和点(3,2)-的直线与x 轴的位置关系是( )(A )相交 (B )平行 (C )重合 (D )以上都不对B2、已知直线l 与过点(的直线垂直,则直线的倾斜角是( )(A )060 (B )0120 (C )045 (D )0135七、小结1. 1l ∥2l ⇔12k k = 或 1l 、2l 的斜率都不存在且不重合2. 1l ⊥2l ⇔121k k =- 或 10k = 且2k 的斜率不存在 或 2k =0 且1k 的斜率不存在.。

213 两条直线的平行与垂直(1)导学案

213 两条直线的平行与垂直(1)导学案

2.1.3两条直线的平行与垂直(1)【学习目标】1、掌握利用斜率判定两条直线平行的方法,感受用代数方法研究几何问题的思想;2、通过分类讨论、数形结合等数学思想的渗透,培养学生严谨、辩证的思维习惯.【学习重点】用斜率判定两直线平行的方法.【学习难点】理解直线平行的解析刻画.【教学过程】一、课前预习导学:(一)情景创设求过点A(2,-3),且与直线2x+y-5=0平行的直线的方程.(二)引入课题本节课研究的问题是:如何利用直线的方程研究两条直线的位置关系,重点是平行.(三)建构数学两条直线平行,即倾斜程度相同,那么它们的斜率如何?如果倾斜程度相同,不妨设直线l1,l2(斜率存在)所对应的倾斜角分别为α1,α2,对应的斜率分别为k1,k2.因倾斜程度相同,则倾斜角相等,即α1α2.根据倾斜角与斜率的关系,知当倾斜角直角时,斜率存在,从而有k1=tanα1,k2=tanα2,于是有k1k2.此时,若两直线平行,则两直线的斜率.反之,如果两直线(不共线)的斜率相等,即k1=k2,根据倾斜角和斜率的关系以及正切函数的单调性可知倾斜角,从而说明它们互相平行.两条直线的平行设直线l1,l2(不共线,斜率存在)所对应的斜率分别为k1,k2,则l1∥l2⇔ k1k2.说明:(1)如果直线l1,l2的斜率都不存在,那么它们都与x轴,从而l1∥l2;(2)在利用以上结论判定两直线的位置关系时,一定要注意前提条件,即斜率,因此在讨论问题过程中一定要注意对斜率是否作分类讨论.(3)若直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,A2,B1,B2全不为零)平行,则l1∥l2⇔.(四)解决问题求过点A(2,-3),且与直线2x+y-5=0平行的直线的方程.在解答以上问题时,你遇到的疑难问题有二、课堂学习研讨(一)汇报交流两条直线的平行设直线l 1,l 2(不共线,斜率存在)所对应的斜率分别为k 1,k 2,则l 1∥l 2⇔ .(二)例题讲解例1 求证:顺次连结A (2,-3),B (5,27-),C (2,3),D (-4,4)四点所得的四边形是梯形.例2 求过点A (0,-3),且与直线2x +y -5=0平行的直线的方程.变式练习:1.若直线l 与直线2x +y -5=0平行,并且在两坐标轴截距之和为6.求直线l 的方程.2.若直线l 平行于直线2x +y -5=0,且与坐标轴围成的三角形面积为9,求直线l 的方程.例3 已知两条直线:(3+m )x +4y =5-3m 与2x +(5+m )y =8,m 为何值时,两直线平行.变式练习:直线l 1:2x +(m +1)y +4=0与l 2:mx +3y -2=0平行,求m 的值.三、课内练习巩固P82--1,2四、知识归纳小结: 两条直线平行的等价条件是什么?五、课后作业练习 P84 习题 1,5六、学后反思提升。

2.1.2 两条直线平行和垂直的判定导学案

2.1.2 两条直线平行和垂直的判定导学案

2.1.2 两条直线平行和垂直的判定班级 :高二班姓名:编号: 日期:09.07 【学习目标】1. 理解两条直线平行与垂直的条件.2. 能根据斜率判定两条直线平行或垂直.3. 能利用两直线平行或垂直的条件解决问题.【学习重点】两条直线平行或垂直的斜率关系【学习难点】两条直线平行或垂直的判定方法【学法指导】问题1:我们知道,平面中两条直线有两种位置关系:相交、平行.当两条直线l1与l2平行时,它们的斜率k1与k2满足什么关系?l1∥l2⇒____________.追问:这个结论成立的前提是什么?反之成立吗?问题2:如果两条直线的斜率有不存在的情形,如何判断这两条直线是否平行?__________【自主合作探究】例1已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线AB与PQ的位置关系,并证明你的结论.例2 已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.问题3当直线l1,l2垂直时,它们除了斜率不相等外,是否还有特殊的数量关系?结论:两条直线都有斜率,其斜率分别为k1,k2,则有l1⊥l2⇔________________.追问:对直线斜率不存在的情形,如何判断两直线是否垂直?例3已知A(-6,0),B(3,6),P(0,3),Q(6,-6),试判断直线AB与PQ的位置关系.例4已知A(5,-1),B(1,1),C(2,3).试判断ABC的形状,并给出证明;【堂堂清】1.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k等于_____________ 2.如果直线l1和l2的斜率分别是一元二次方程x2-4x-1=0的两根,那么l1和l2的位置关系是_______A.平行B.垂直C.重合D.无法判断3.若经过点(3,a),(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a的值为_______日日清 A 组9+1;B 组6+1 评价:基础题1.若直线l 1的倾斜角为135°,直线l 2经过点P (-2,-1),Q (3,-6),则直线l 1与l 2的位置关系是( )A .垂直B .平行C .重合D .平行或重合2.已知直线l 的倾斜角为20°,直线l 1∥l ,直线l 2⊥l ,则直线l 1与l 2的倾斜角分别是( )A .20°,110°B .70°,70°C .20°,20°D .110°,20°3.若直线l 1∥l 2,且l 1的倾斜角为45°,l 2过点(4,6),则l 2还过下列各点中的( )A .(1,8)B .(-2,0)C .(9,2)D .(0,-8)4.已知点A (m ,3),B (2m ,m +4),C (m +1,2),D (1,0),且直线AB 与直线CD 平行,则实数m 的值为( )A .1 B .0 C .0或2 D .0或15.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( )A .锐角三角形B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形6.[多选题]设平面内四点P (-4,2),Q (6,-4),R (12,6),S (2,12),下面四个结论正确的是( )A .PQ ∥SRB .PQ ⊥PSC .PS ∥QSD .PR ⊥QS 发展题7.若直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,则实数a 的值为( )A .1B .3C .0或1D .1或38.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b ,3-a ),则线段PQ 的垂直平分线的斜率为__ __.9.已知点A (-3,-2),B (6,1),点P 在y 轴上,且∠BAP =90°,则点P 的坐标是__ __.10.当m为何值时,过两点A(1,1),B(2m2+1,m-2)的直线:(1)倾斜角为135°.(2)与过两点(3,2),(0,-7)的直线垂直.(3)与过两点(2,-3),(-4,9)的直线平行.挑战题11.已知点M(1,-1),N(2,2),P(3,0).(1)若点Q满足PQ⊥MN,PN∥MQ,求点Q的坐标.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.。

两条直线平行与垂直的判定 学案 导学案 说课稿 课件

两条直线平行与垂直的判定   学案 导学案 说课稿  课件

两条直线平行与垂直的判定【使用说明与学法指导】1.先精读一遍教材P71-72,用红色笔对重点内容进行勾画;再针对导学案二次阅读并解决预习探究案中的问题;训练案在自习或自主时间完成。

2. 预习时可对合作探究部分认真审题,做不完或者不会的正课时再做,对于选做部分BC 层可以不做。

3.找出自己的疑惑和需要讨论的问题并记录下来,准备课上讨论质疑。

【学习目标】1.会判断两条直线是否平行.会判断两条直线是否垂直.2. 培养和提高学生联系、对应、转化等辩证思维能力.3 .解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.【学习重点】会判断两条直线是否平行、垂直【学习难点】斜率存在与否时两直线平行或垂直情况的讨论【知识链接】1.过两点直线的斜率公式【预习案】问题1、1.平面内不重合的两条直线的位置关系为_________________2.两条直线的倾斜角相等,这两条直线___________反过来是否成立?预习自测问题2、1.判断正误:(1)l1∥l2⇔k1=k2.()(2)l1⊥l2⇔k1k2=-1.()2.下列说法中正确的是( ).A. 平行的两条直线的斜率一定存在且相等B. 平行的两条直线的倾斜角一定相等C. 垂直的两直线的斜率之积为-1D. 只有斜率相等的两条直线才一定平行问题3、1.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),则直线AB 与PQ 的位置关系为______________.2..若(4,2),(6,4),(12,6),(2,12)A B C D --, 则下面四个结论:①//AB CD ;②AB CD ⊥;③//AC BD ;④AC BD ⊥. 其中正确的序号依次为( ).A. ①③B. ①④C. ②③D. ②④【探究案】探究1:例1 已知A (2,3),B (-4,0),P (-3,1),Q (-1,2),判断直线BA 与P Q的位置关系,并证明你的结论.探究2:例2 已知四边形ABCD 的四个顶点分别为A (0,0),B (2,-1),C(4,2),D(2,3),试判断四边形ABCD 的形状,并给出证明.【课堂小结】我的疑问:(至少提出一个有价值的问题) 今天我学会了什么?【训练案】1.若A(-2,3),B(3,-2),C(21,m)三点共线,则m 的值为( ) A. 21 B.-21 C.-2 D.2 2.直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0,它们的倾斜角及斜率依次分别为α1,α2,k1,k2.(1)a=_____________时,α1=150°;(2)a=_____________时,l2⊥x 轴;(3)a=_____________时,l1∥l2;(4)a=_____________时,l1、l2重合;(5)a=_____________时,l1⊥l2.3.过点A(m,1),B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线(1)平行时,m 的值为___________(2)垂直时,m 的值为______________4.已知A(5,-1),B(1,1),C(2,3)三点,则△ABC 的形状为_____________________.5.若直线12l l 、的倾斜角分别为12,αα、且12l l ⊥,则有( ).A. 1290αα-=B. 2190αα-=C. 2190αα-=D. 12180αα+=6.经过点(2,)P m -和(,4)Q m 的直线平行于斜率等于1的直线,则m 的值是( ).A .4B .1C .1或3D .1或47.直线12,l l 的斜率是方程2310x x --=的两根,则12l l 与的位置关系是 .。

高中数学选修一《两条直线平行和垂直的判定》教案与导学案和同步练习

高中数学选修一《两条直线平行和垂直的判定》教案与导学案和同步练习

《2.1.2 两条直线平行和垂直的判定》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习两条直线平行和垂直的判定。

直线的平行和垂直是两条直线的重要位置关系,它们的判定在初中运用几何法已经进行了学习,而在坐标系下,运用代数方法即坐标法,是一种新的观点和方法,需要学生理解和感悟。

两直线平行和垂直都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明.【教学目标与核心素养】课程目标学科素养A. 理解两条直线平行与垂直的条件.B.能根据斜率判定两条直线平行或垂直.C.能利用两直线平行或垂直的条件解决问题.1.数学抽象:两条直线平行与垂直的条件2.逻辑推理:根据斜率判定两条直线平行或垂直3.数学运算:利用两直线平行或垂直的条件解决问题4.直观想象:直线斜率的几何意义,及平行与垂直的几何直观【教学重点】:理解两条直线平行或垂直的判断条件【教学难点】:会利用斜率判断两条直线平行或垂直【教学过程】教学过程教学设计意图一、情境导学过山车是一项富有刺激性的娱乐项通过生活中的现实情境,提出问题,明确研究问题运用代数方法探究两直线判断两直线是否平行的步骤例2(1)直线l 1经过点A (3,2),B (3,-1),直线l 2经过点M (1,1),N (2,1),判断l 1与l 2是否垂直;(2)已知直线l 1经过点A (3,a ),B (a-2,3),直线l 2经过点C (2,3),D (-1,a-2),若l 1⊥l 2,求a 的值.思路分析:(1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条直线的斜率是否为0,若为0,则垂直. (2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.解:(1)直线l 1的斜率不存在,直线l 2的斜率为0,所以l 1⊥l 2.(2)由题意,知直线l 2的斜率k 2一定存在,直线l 1的斜率可能不存在. 当直线l 1的斜率不存在时,3=a-2,即a=5,此时k 2=0,则l 1⊥l 2,满足题意.当直线l 1的斜率k 1存在时,a ≠5,由斜率公式,得k 1=3-aa -2-3=3-a a -5,k 2=a -2-3-1-2=a -5-3.由l 1⊥l 2,知k 1k 2=-1,即3-aa -5×a -5-3=-1,解得a=0. 综上所述,a 的值为0或5.两直线垂直的判定方法两条直线垂直需判定k 1k 2=-1,使用它的前提条件是两条直线斜率都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两直线也垂直.跟踪训练1 已知定点A (-1,3),B (4,2),以AB 为直径作圆,与x 轴有交点P ,则交点P 的坐标是 . 解析:设以AB 为直径的圆与x 轴的交点为P (x ,0).∵k PB≠0,k PA≠0,∴k PA·k PB=-1,即0-3x+1·0-2x -4=-1,∴(x+1)(x-4)=-6,即x 2-3x+2=0,解得x=1或x=2.故点P 的坐标为(1,0)或(2,0). 答案:(1,0)或(2,0)例3 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t>0.试判断四边形OPQR 的形状.思路分析:利用直线方程的系数关系,或两直线间的斜率关系,判断两直线的位置关系.解:由斜率公式得k OP =t -01-0=t ,k RQ =2-(2+t )-2t -(1-2t )=-t -1=t ,k OR =2-0-2t -0=-1t , k PQ =2+t -t 1-2t -1=2-2t =-1t .所以k OP =k RQ ,k OR =k PQ ,从而OP ∥RQ ,OR ∥PQ.所以四边形OPQR 为平行四边形. 又k OP·k OR=-1,所以OP ⊥OR ,故四边形OPQR 为矩形.延伸探究1 将本例中的四个点,改为“A (-4,3),B (2,5),C (6,3),D (-3,0),顺次连接A ,B ,C ,D 四点,试判断四边形ABCD 的形状.” 由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12. 所以k AB=k CD,由图可知AB 与CD 不重合,所以AB ∥CD ,由k AD≠k BC,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.解:由题意A ,B ,C ,D 四点在平面直角坐标系内的位置如图, 延伸探究2 将本例改为“已知矩形OPQR 中四个顶点按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),试求顶点R 的坐标.” 解:因为OPQR 为矩形,所以OQ 的中点也是PR 的中点.设R (x ,y ),则由中点坐标公式知{0+1-2t2=1+x 2,0+2+t2=t+y 2,解得{x =-2t ,y =2.所以R 点的坐标是(-2t ,2).利用两条直线平行或垂直来判断图形形状的步骤 描点→在坐标系中描出给定的点 ↓猜测→根据描出的点,猜测图形的形状 ↓求斜率→根据给定点的坐标求直线的斜率 ↓结论→由斜率之间的关系判断形状点睛:利用平行、垂直关系式的关键在于正确求解斜率,特别是含参数的问题,必须要分类讨论;其次要注意的是斜率不存在并不意味着问题无解.金题典例 已知点A (0,3),B (-1,0),C (3,0),且四边形ABCD 为直角梯形,求点D 的坐标.思路分析:分析题意可知,AB 、BC 都不可作为直角梯形的直角边,所以要考虑CD 是直角梯形的直角边和AD 是直角梯形的直角边这两种情况;设所求点D 的坐标为(x ,y ),若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,根据已知可得k BC=0,CD 的斜率不存在,从而有x=3;接下来再根据k AD=k BC即可得到关于x 、y 的方程,结合x 的值即可求出y ,那么点D 的坐标便不难确定了,同理再分析AD 是直角梯形的直角边的情况.解:设所求点D 的坐标为(x ,y ),如图所示,由于k AB=3,k BC=0,则k AB·k BC=0≠-1,即AB 与BC 不垂直,故AB 、BC 都不可作为直角梯形的直角边.①若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,∵k BC=0,∴CD 的斜率不存在,从而有x=3.又∵k AD =k BC ,∴y -3x=0,即y=3.此时AB 与CD 不平行.故所求点D 的坐标为(3,3).②若AD 是直角梯形的直角边,则AD ⊥AB ,AD ⊥CD ,k AD =y -3x,k CD =yx -3.由于AD ⊥AB ,则y -3x·3=-1.又AB ∥CD ,∴y x -3=3.解上述两式可得{x =185,y =95,此时AD 与BC 不平行.故所求点D 的坐标为185,95.综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)或185,95.反思感悟:先由图形判断四边形各边的关系,再由斜率之间的关系完成求解.特别地,注意讨论所求问题的不同情况.四、小结【教学反思】本课通过探究两直线平行或垂直的条件,力求培养学生运用已有知识解决新问题的能力,以及数形结合能力.通过对两直线平行与垂直的位置关系的研究,培养了学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.组织学生充分讨论、探究、交流,使学生自己发现规律,自己总结出两直线平行与垂直的判定依据,教师要及时引导、及时鼓励. 教师的授课的想办法降低教学难度,让学生能轻易接受《2.1.2 两条直线平行和垂直的判定》导学案【学习目标】1.理解两条直线平行与垂直的条件.2.能根据斜率判定两条直线平行或垂直.3.能利用两直线平行或垂直的条件解决问题. 【重点和难点】重点:理解两条直线平行或垂直的判断条件 难点:会利用斜率判断两条直线平行或垂直 【知识梳理】 一、自主导学(一)、两条直线平行与斜率之间的关系设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:前提条件 α1=α2≠90° α1=α2=90°对应关系l 1∥l 2⇔k 1=k 2l 1∥l 2⇔两直线斜率都不存在图 示点睛:若没有指明l 1,l 2不重合,那么k 1=k 2⇔{l 1∥l 2,或l 1与l 2重合,用斜率证明三点共线时,常用到这一结论.(二)、两条直线垂直与斜率之间的关系对应关系l 1与l 2的斜率都存在,分别为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1l 1与l 2中的一条斜率不存在,另一条斜率为零,则l 1与l 2的位置关系是l 1⊥l 2.图示点睛:“两条直线的斜率之积等于-1”是“这两条直线垂直”的充分不必要条件.因为两条直线垂直时,除了斜率之积等于-1,还有可能一条直线的斜率为0,另一条直线的斜率不存在.二、小试牛刀1.对于两条不重合的直线l 1,l 2,“l 1∥l 2”是“两条直线斜率相等”的什么条件?2.已知直线l 1经过两点(-1,-2),(-1,4),直线l 2经过两点(2,1),(x ,6),且l 1∥l 2,则x= .3.思考辨析(1)若两条直线的斜率相等,则这两条直线平行.( ) (2)若l 1∥l 2,则k 1=k 2.( )(3)若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直.( )(4)若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.( )4.若直线l 1,l 2的斜率是方程x 2-3x-1=0的两根,则l 1与l 2的位置关系是 .【学习过程】 一、情境导学过山车是一项富有刺激性的娱乐项目.实际上,过山车的运动包含了许多数学和物理学原理.过山车的两条铁轨是相互平行的轨道,它们靠着一根根巨大的柱形钢筋支撑着,为了使设备安全,柱子之间还有一些小的钢筋连接,这些钢筋有的互相平行,有的互相垂直,你能感受到过山车中的平行和垂直吗?两条直线的平行与垂直用什么来刻画呢?二、典例解析例1 判断下列各小题中的直线l 1与l 2是否平行:(1)l 1经过点A (-1,-2),B (2,1),l 2经过点M (3,4),N (-1,-1);(2)l 1的斜率为1,l 2经过点A (1,1),B (2,2);(3)l 1经过点A (0,1),B (1,0),l 2经过点M (-1,3),N (2,0);(4)l 1经过点A (-3,2),B (-3,10),l 2经过点M (5,-2),N (5,5).延伸探究 已知A (-2,m ),B (m ,4),M (m+2,3),N (1,1),若AB ∥MN ,则m 的值为 . 判断两直线是否平行的步骤例2(1)直线l 1经过点A (3,2),B (3,-1),直线l 2经过点M (1,1),N (2,1),判断l 1与l 2是否垂直;(2)已知直线l 1经过点A (3,a ),B (a-2,3),直线l 2经过点C (2,3),D (-1,a-2),若l 1⊥l 2,求a的值.两直线垂直的判定方法条直线垂直需判定k 1k 2=-1,使用它的前提条件是两条直线斜率都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两直线也垂直.跟踪训练1 已知定点A (-1,3),B (4,2),以AB 为直径作圆,与x 轴有交点P ,则交点P 的坐标是 .例3 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0),P (1,t ),Q (1-2t ,2+t ),R (-2t ,2),其中t>0.试判断四边形OPQR 的形状.延伸探究1 将本例中的四个点,改为“A (-4,3),B (2,5),C (6,3),D (-3,0),顺次连接A ,B ,C ,D 四点,试判断四边形ABCD 的形状.”延伸探究2 将本例改为“已知矩形OPQR 中四个顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),试求顶点R的坐标.”利用两条直线平行或垂直来判断图形形状的步骤描点→在坐标系中描出给定的点↓猜测→根据描出的点,猜测图形的形状↓求斜率→根据给定点的坐标求直线的斜率↓结论→由斜率之间的关系判断形状点睛:利用平行、垂直关系式的关键在于正确求解斜率,特别是含参数的问题,必须要分类讨论;其次要注意的是斜率不存在并不意味着问题无解.金题典例已知点A(0,3),B(-1,0),C(3,0),且四边形ABCD为直角梯形,求点D的坐标.反思感悟:先由图形判断四边形各边的关系,再由斜率之间的关系完成求解.特别地,注意讨论所求问题的不同情况.【达标检测】1.下列说法正确的是( )A.若直线l1与l2倾斜角相等,则l1∥l2B.若直线l1⊥l2,则k1k2=-1C.若直线的斜率不存在,则这条直线一定平行于y轴D.若两条直线的斜率不相等,则两直线不平行2.若直线l1的斜率为a,l1⊥l2,则直线l2的斜率为()A.1a B.a C.-1aD.-1a或不存在3.已知直线l1的倾斜角为45°,直线l1∥l2,且l2过点A(-2,-1)和B(3,a),则a的值为.4.已知△ABC的三个顶点分别是A(2,2),B(0,1),C(4,3),点D(m,1)在边BC的高所在的直线上,则实数m= .5.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)四点,判断四边形ABCD 形状. 【课堂小结】【参考答案】 知识梳理 二、小试牛刀1.答案:必要不充分条件,如果两不重合直线斜率相等,则两直线一定平行;反过来,两直线平行,有可能两直线斜率均不存在.2.解析:由题意知l 1⊥x 轴.又l 1∥l 2,所以l 2⊥x 轴,故x=2. 答案:23.答案: (1)× 也可能重合.(2)× l 1∥l 2,其斜率不一定存在. (3)× 不一定垂直,只有另一条直线斜率为0时才垂直.(4)√ 4.解析:由根与系数的关系,知k 1k 2=-1,所以l 1⊥l 2. 答案:l 1⊥l 2 学习过程例1 思路分析: 斜率存在的直线求出斜率,利用l 1∥l 2⇔k 1=k 2进行判断,若两直线斜率都不存在,可通过观察并结合图形得出结论.解:(1)k 1=1-(-2)2-(-1)=1,k 2=-1-4-1-3=54,k 1≠k 2,l 1与l 2不平行. (2)k 1=1,k 2=2-12-1=1,k 1=k 2, 故l 1∥l 2或l 1与l 2重合.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,则有k 1=k 2.又k AM =3-1-1-0=-2≠-1,则A ,B ,M 不共线.故l 1∥l 2.(4)由已知点的坐标,得l 1与l 2均与x 轴垂直且不重合,故有l 1∥l 2.延伸探究 解析:当m=-2时,直线AB 的斜率不存在,而直线MN 的斜率存在,MN 与AB 不平行,不合题意;当m=-1时,直线MN 的斜率不存在,而直线AB 的斜率存在,MN 与AB 不平行,不合题意; 当m ≠-2,且m ≠-1时,k AB =4-mm -(-2)=4-mm+2,k MN =3-1m+2-1=2m+1.因为AB ∥MN ,所以k AB =k MN , 即4-m m+2=2m+1,解得m=0或m=1.当m=0或1时,由图形知,两直线不重合. 综上,m 的值为0或1. 答案:0或1例2思路分析:(1)若斜率存在,求出斜率,利用垂直的条件判断;若一条直线的斜率不存在,再看另一条直线的斜率是否为0,若为0,则垂直.(2)当两直线的斜率都存在时,由斜率之积等于-1求解;若一条直线的斜率不存在,由另一条直线的斜率为0求解.解:(1)直线l 1的斜率不存在,直线l 2的斜率为0,所以l 1⊥l 2.(2)由题意,知直线l 2的斜率k 2一定存在,直线l 1的斜率可能不存在.当直线l 1的斜率不存在时,3=a-2,即a=5,此时k 2=0,则l 1⊥l 2,满足题意.当直线l 1的斜率k 1存在时,a ≠5,由斜率公式,得k 1=3-a a -2-3=3-a a -5,k 2=a -2-3-1-2=a -5-3.由l 1⊥l 2,知k 1k 2=-1,即3-aa -5×a -5-3=-1,解得a=0.综上所述,a 的值为0或5.跟踪训练1 解析:设以AB 为直径的圆与x 轴的交点为P (x ,0).∵k PB≠0,k PA≠0,∴k PA·k PB=-1,即0-3x+1·0-2x -4=-1,∴(x+1)(x-4)=-6,即x 2-3x+2=0,解得x=1或x=2.故点P 的坐标为(1,0)或(2,0). 答案:(1,0)或(2,0)例3 思路分析:利用直线方程的系数关系,或两直线间的斜率关系,判断两直线的位置关系.解:由斜率公式得k OP =t -01-0=t ,k RQ =2-(2+t )-2t -(1-2t )=-t -1=t ,k OR =2-0-2t -0=-1t , k PQ =2+t -t 1-2t -1=2-2t =-1t .所以k OP =k RQ ,k OR =k PQ ,从而OP ∥RQ ,OR ∥PQ.所以四边形OPQR 为平行四边形. 又k OP·k OR=-1,所以OP ⊥OR ,故四边形OPQR 为矩形. 延伸探究1 由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12. 所以k AB=k CD,由图可知AB 与CD 不重合,所以AB ∥CD ,由k AD≠k BC,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形.解:由题意A ,B ,C ,D 四点在平面直角坐标系内的位置如图, 延伸探究2 解:因为OPQR 为矩形,所以OQ 的中点也是PR 的中点.设R (x ,y ),则由中点坐标公式知{0+1-2t2=1+x 2,0+2+t2=t+y 2,解得{x =-2t ,y =2.所以R 点的坐标是(-2t ,2).金题典例 思路分析:分析题意可知,AB 、BC 都不可作为直角梯形的直角边,所以要考虑CD 是直角梯形的直角边和AD 是直角梯形的直角边这两种情况;设所求点D 的坐标为(x ,y ),若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,根据已知可得k BC=0,CD 的斜率不存在,从而有x=3;接下来再根据k AD=k BC即可得到关于x 、y 的方程,结合x 的值即可求出y ,那么点D 的坐标便不难确定了,同理再分析AD 是直角梯形的直角边的情况. 解:设所求点D 的坐标为(x ,y ),如图所示,由于k AB=3,k BC=0,则k AB·k BC=0≠-1,即AB 与BC 不垂直,故AB 、BC 都不可作为直角梯形的直角边.①若CD 是直角梯形的直角边,则BC ⊥CD ,AD ⊥CD ,∵k BC=0,∴CD 的斜率不存在,从而有x=3.又∵k AD =k BC ,∴y -3x=0,即y=3.此时AB 与CD 不平行.故所求点D 的坐标为(3,3).②若AD 是直角梯形的直角边, 则AD ⊥AB ,AD ⊥CD ,k AD =y -3x,k CD =yx -3.由于AD ⊥AB ,则y -3x·3=-1.又AB ∥CD ,∴y x -3=3.解上述两式可得{x =185,y =95,此时AD 与BC 不平行.故所求点D 的坐标为185,95.综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)或185,95.达标检测1. 解析:A 中,l 1与l 2可能重合;B 中,l 1,l 2可能存在其一没斜率;C 中,直线也可能与y 轴重合;D 正确,选D.答案 D2. 解析:若a ≠0,则l 2的斜率为-1a ;若a=0,则l 2的斜率不存在.答案:D3.解析:由题意,得a -(-1)3-(-2)=1,即a=4. 答案:44.解析:设直线AD ,BC 的斜率分别为k AD ,k BC ,由题意,得AD ⊥BC , 则有k AD ·k BC =-1,所以有1-2m -2·3-14-0=-1,解得m=52. 答案:525.解:k AB =13,k BC =-12,k CD =13,k AD =-3, 所以直线AD 垂直于直线AB 与CD ,而且直线BC 不平行于任何一条直线,所以四边形ABCD 是直角梯形.《2.1.2 两条直线平行和垂直的判定 -基础练》同步练习一、选择题1.下列说法中正确的是( ) A .若直线与的斜率相等,则 B .若直线与互相平行,则它们的斜率相等C .在直线与中,若一条直线的斜率存在,另一条直线的斜率不存在,则与定相交D .若直线与的斜率都不存在,则2.过点和点的直线与轴的位置关系是( ) A .相交但不垂直B .平行C .重合D .垂直3.已知直线经过,两点,直线的倾斜角为,那么与( ) A .垂直B .平行C .重合D .相交但不垂直4.已知的三个顶点坐标分别为,,,则其形状为( ) A .直角三角形B .锐角三角形C .钝角三角形D .无法判断5.(多选题)下列说法错误..的是( ) A .平行的两条直线的斜率一定存在且相等 B .平行的两条直线的倾斜角一定相等 C .垂直的两条直线的斜率之积为一1 D .只有斜率都存在且相等的两条直线才平行6.(多选题)已知A(m ,3),B(2m ,m+4),C(m+1,2),D(1,0),且直线AB 与直线CD 平行,则m 的值为 ( )A .1B .0C .2D .-1 二、填空题7.已知直线l 1的斜率为3,直线l 2经过点A (1,2),B (2,a ),若直线l 1∥l 2,则a =_____;若直线l 1⊥l 2,则a =_______1l 2l 12l l //1l 2l 1l 2l 1l 2l 1l 2l 12l l //(1,2)A ()3,2B -x 1l ()3,4A -()8,1B --2l 1351l 2l ABC ∆()5,1A -()1,1B ()2,3C8.直线的倾斜角为,直线过,,则直线与的位置关系为______.9.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为 . 10.已知,,,点满足,且,则点的坐标为______ 三、解答题11.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 12.已知在平行四边形ABCD 中,. (1)求点D 的坐标;(2)试判断平行四边形ABCD 是否为菱形.《2.1.2 两条直线平行和垂直的判定 -基础练》同步练习答案解析一、选择题1.下列说法中正确的是( ) A .若直线与的斜率相等,则 B .若直线与互相平行,则它们的斜率相等C .在直线与中,若一条直线的斜率存在,另一条直线的斜率不存在,则与定相交D .若直线与的斜率都不存在,则 【答案】C【解析】对于A, 若直线与的斜率相等,则或与重合;对于B ,若直线与互相平行,则它们的斜率相等或者斜率都不存在;对于D ,若与的斜率都不存在,则1l 452l ()2,1A --()3,4B 1l 2l 1,0A ()3,2B ()0,4C D AB CD ⊥//AD BC D (1,2),(5,0),(3,4)A B C 1l 2l 12l l //1l 2l 1l 2l 1l 2l 1l 2l 12l l //1l 2l 12l l //1l 2l 1l 2l 1l 2l 12l l //或与重合.2.过点和点的直线与轴的位置关系是( ) A .相交但不垂直 B .平行C .重合D .垂直【答案】B【解析】两点的纵坐标都等于 直线方程为:直线与轴平行.3.已知直线经过,两点,直线的倾斜角为,那么与( ) A .垂直 B .平行C .重合D .相交但不垂直【答案】A 【解析】直线经过,两点 直线的斜率: 直线的倾斜角为 直线的斜率:,,.4.已知的三个顶点坐标分别为,,,则其形状为( ) A .直角三角形 B .锐角三角形C .钝角三角形D .无法判断【答案】A【解析】由题意得:;,, , 为直角三角形.5.(多选题)下列说法错误..的是( ) A .平行的两条直线的斜率一定存在且相等 B .平行的两条直线的倾斜角一定相等 C .垂直的两条直线的斜率之积为一1 D .只有斜率都存在且相等的两条直线才平行 【答案】ACD【解析】当两直线都与轴垂直时,两直线平行,但它们斜率不存在.所以A 错误.由直线倾斜角定义可知B 正确,当一条直线平行轴,一条平行轴,两直线垂直,但斜率之积不为-1,所以C 错误,当两条直线斜率都不存在时,两直线平行,所以D 错误,故选B . 6.(多选题)已知A(m ,3),B(2m ,m+4),C(m+1,2),D(1,0),且直线AB 与直线CD 平行,1l 2l (1,2)A ()3,2B -x ,A B 2∴AB 2y =∴AB x 1l ()3,4A -()8,1B --2l 1351l 2l 1l ()3,4A -()8,1B --∴1l 141138k +==-+2l 135∴2l 2tan1351k ==-121k k ∴⋅=-12l l ∴⊥ABC ∆()5,1A -()1,1B ()2,3C 111152AB k +==--31221BC k -==-1AB BC k k ∴⋅=-AB BC ∴⊥ABC ∆∴x x y则m 的值为 ( )A .1B .0C .2D .-1 【答案】AB【解析】 当AB 与CD 斜率均不存在时, 故得m=0,此时两直线平行;此时AB ∥CD ,当k AB =k CD 时,,得到m=1,此时AB ∥CD.故选AB . 二、填空题7.已知直线l 1的斜率为3,直线l 2经过点A (1,2),B (2,a ),若直线l 1∥l 2,则a =_____;若直线l 1⊥l 2,则a =_______ 【答案】5;. 【解析】直线l 2的斜率k==a ﹣2.(1)∵l 1∥l 2,∴a ﹣2=3,即a =5 (2)∵直线l 1⊥l 2,∴3k=﹣1,即3(a ﹣2)=﹣1,解得a=.8.直线的倾斜角为,直线过,,则直线与的位置关系为______.【答案】平行或重合【解析】倾斜角为, 的斜率,过点, , 的斜率,, 与平行或重合. 9.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为 . 【答案】(0,-6)或(0,7)【解析】设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,又k AP =,k BP =,k AP ·k BP =-1,所以·=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).10.已知,,,点满足,且,则点的坐标为______ 【答案】2,11m m m =+=12m m m+=53221a --531l 452l ()2,1A --()3,4B 1l 2l 1l 451l ∴11k =2l ()2,1A --()3,4B 2l ∴241132k +==+12k k =1l ∴2l 1,0A ()3,2B ()0,4C D AB CD ⊥//AD BC D ()10,6-【解析】设,则,,, ,,解得:,即: 三、解答题11.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 【解析】 (1)k 1=-10,k 2==,∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴,k 2==0,则l 2∥x 轴,∴l 1⊥l 2. (3)k 1==-1,k 2==-1,∴k 1=k 2.又k AM ==-2≠k 1,∴l 1∥l 2.(4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.12.已知在平行四边形ABCD 中,. (1)求点D 的坐标;(2)试判断平行四边形ABCD 是否为菱形.【解析】(1)设D (a ,b ),∵四边形ABCD 为平行四边形, ∴k AB =k CD ,k AD =k BC ,∴,解得.∴D (-1,6).(2)∵k AC ==1,k BD ==-1,∴k AC ·k BD =-1.∴AC ⊥BD .∴▱ABCD 为菱形.(),D x y 2131AB k ==-422033BC k -==--4CD y k x -=1AD y k x =-AB CD ∵⊥//AD BC 411213AB CD AD BCy k k xy k k x -⎧⋅=⨯=-⎪⎪∴⎨⎪===-⎪-⎩106x y =⎧⎨=-⎩()10,6D -(1,2),(5,0),(3,4)A B C《2.1.2 两条直线平行和垂直的判定 -提高练》同步练习一、选择题1.下列各对直线不互相垂直的是 ( )A .l 1的倾斜角为120°,l 2过点P(1,0),Q(4)B .l 1的斜率为-,l 2过点P(1,1),QC.l 1的倾斜角为30°,l2过点P(3,Q(4,D .l 1过点M(1,0),N(4,-5),l 2过点P(-6,0),Q(-1,3)2.已知,过A (1,1)、B (1,-3)两点的直线与过C (-3,m )、D (n,2)两点的直线互相垂直,则点(m ,n )有 ( ) A .1个B .2个C .3个D .无数个3.过点和点的直线与过点和点的直线的位置关系是( )A .平行B .重合C .平行或重合D .相交或重合4.已知的顶点,,其垂心为,则其顶点的坐标为( )A .B .C .D .5.(多选题)下列命题中正确的为( ) A.若两条不重合的直线的斜率相等,则它们平行; B.若两直线平行,则它们的斜率相等; C.若两直线的斜率之积为,则它们垂直; D.若两直线垂直,则它们的斜率之积为.6.(多选题)设点,给出下面四个结论,其中正确结论的是( )A. B. C. D. 二、填空题7.已知△ABC 的三个顶点坐标分别为A (2,4),B (1,2),C (-2,3),则BC 边上的高AD2310,2⎛⎫- ⎪⎝⎭(1,1)E (1,0)F -,02k M ⎛⎫- ⎪⎝⎭0,(0)4k N k ⎛⎫≠ ⎪⎝⎭ABC ∆()2,1B ()6,3C -()3,2H -A ()19,62--()19,62-()19,62-()19,621-1-(4,2),(6,4),(12,6),(2,12)P Q R S --//SR PQ PQ PS ⊥//PS QS RP QS ⊥所在直线的斜率为________.8.已知直线l 1经过点A (0,-1)和点B (-,1),直线l 2经过点M (1,1)和点N (0,-2),若l 1与l 2没有公共点,则实数a 的值为________.9.(1)已知点M(1,-3),N(1,2),P(5,y),且∠NMP=90°,则l og 8(7+y)=_________. (2)若把本题中“∠NMP=90°”改为“log 8(7+y)=”,其他条件不变,则∠NMP=_____. 10.若点,,点C 在坐标轴上,使,则点C 的坐标为__________.三、解答题11.已知,,三点,若直线AB 的倾斜角为,且直线,求点A ,B ,C 的坐标.12.已知四边形ABCD 的顶点A (m ,n )、B (5,-1)、C (4,2)、D (2,2),求m 和n 的值,使四边形ABCD 为直角梯形.《2.1.2 两条直线平行和垂直的判定 -提高练》同步练习答案解析一、选择题1.下列各对直线不互相垂直的是 ( )A .l 1的倾斜角为120°,l 2过点P(1,0),Q(4) B .l 1的斜率为-,l 2过点P(1,1),QC.l 1的倾斜角为30°,l2过点P(3,Q(4,D .l1过点M(1,0),N(4,-5),l 2过点P(-6,0),Q(-1,3) 【答案】C【解析】A .l 1的倾斜角为120°,l 2过点P(1,0),Q(4,,k PQ =B .l 2过点P(1,1),Q ,k PQ =。

两条直线平行与垂直的判定导学案

两条直线平行与垂直的判定导学案

§3.1.2两条直线平行与垂直的判定导学案高一数学◆必修2◆导学案 编写:刘励钧 2011-11-2 一、学习目标(1)明确直线平行于垂直的条件。

(2)利用直线的平行与垂直解决有关问题。

学习重点难点:两条直线的平行与垂直的判定方法。

二、学习过程1、直线平行的判定方法问题探究1:(1)、如何判定两条不重合直线的平行?(2)、当两条直线斜率不存在,位置关系如何?(3)、直线l 1和直线l 2的斜率k 1=k 2,两条直线可能重合的情况下:两条直线位置关系怎样?总结归纳直线与直线平行的判定方法例题1(课本87页的例题3)变式:判断下列各小题中的直线1l 与2l 是否平行。

(1)1l 经过点A (-1,-2),B(2,1), 2l 经过点M (3,4),N (-1,-1)(2)1l 经过点A (0,1),B(1,0), 2l 经过点M (-1,3),N (2,0) 例题2(课本87页的例题4)变式:判断下列各小题中的直线1l 与2l 是否平行。

(1)1l 经过点A (-1,-2),B(1,2), 2l 经过点M (-2,-1),N (2,1)(2)1l 经过点A (3,4),B(3,100), 2l 经过点M (-10,40),N (10,40)2、直线垂直的判定方法(1)、如何利用直线的斜率判定两条直线的垂直?(2)、两条垂直的直线斜率有怎样的关系?总结直线与直线垂直的判定方法:例题3(课本87页的例题5)变式:已知点A (-2,-5),B (6,6),点P 在x 轴上,且︒=∠90APB ,试求点P 的坐标。

分析:利用两直线的条件建立点p 的坐标满足的方程与关系式。

例题4(课本87页的例题6)变式:已知定点A(-1,3),B(4,2),以A、B为直径的端点,作圆与x轴有交点C,求交点C的坐标。

当堂达标检测:1、练习:教材89页练习第1题2、练习:教材89页练习第2题3、课本89页习题3.1 A组6,7课后巩固练习与提高1、 有如下几种说法:①若直线1l ,2l 都有斜率且斜率相等,则1l //2l ;②若直线1l ⊥2l ,则他们的斜率之积为-1③两条直线的倾斜角的正弦值相等,则两直线平行。

两条直线平行与垂直的导学案(优质课)

两条直线平行与垂直的导学案(优质课)

y x o a§3.1.2两条直线平行与垂直的判定第1课时:两条直线平行的判定审核人:****** 执笔人:******姓名: 班别:一、学习目标:1、掌握两条直线平行的判定条件,并会判断两条直线是否平行2、会利用直线平行的条件解决一些相关的简单问题3、理解两条直线平行的推导过程,注意解题思想的渗透和表述的规范性, 培养学生的自主探索和自我概括能力二、学习过程复习回顾:1、直线倾斜角的定义: 当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴 与直线l 方向之间所成的角α叫做直线l 的倾斜角。

直线倾斜角α的取值范围:2、已知直线的倾斜角(90)οαα≠,则直线的斜率k= ;3、已知直线上两点1122(,),(,)A x y B x y 且12x x ≠,则直线的斜率k= . 自主探究,合作交流知识探究:两条直线平行的判定(小组自主探究,并尝试推导结论 ) 问题:设两条不重合的直线1l ,2l 的斜率分别为21,k k 。

探究1:如果21//l l ,则它们的斜率1k 和2k 相等吗?1、由⇒21//l l = (两条直线平行,同位角相等)⇒ 1tan α= (相同角的正切值相等)⇒ = ()90(tan≠=ααk ) 结论1:探究2:若21k k =,直线1l ,2l 是否平行?2、由⇒=21k k = ()90(tan ≠=ααk )又 18001<α≤, 18002<α≤∴1α =⇒ (同位角相等,两直线平行)结论2:综上所述,对于两条不重合的直线1l ,2l ,其斜率分别为21,k k ,则⇔21//l l思考:当两条直线1l ,2l 重合时,它们的斜率21,k k 会怎样?因此,若直线1l ,2l 斜率存在时,21k k =⇔⎪⎩⎪⎨⎧__________________________________________例题分析例:已知)2,1(),1,3(),0,4(),3,2(---Q P B A , 试通过斜率判断直线AB 与PQ 的位置关系。

两条直线平行和垂直的判定(导学案) 高二上学期数学人教A版(2019)选择性必修第一册

两条直线平行和垂直的判定(导学案) 高二上学期数学人教A版(2019)选择性必修第一册

2.1.2 两条直线平行和垂直的判定 导学案一、明确目标(一)学习目标1. 通过阅读课本55-57页,理解两条直线平行与垂直的判断条件;2. 通过同伴互助,会利用斜率判断两条直线平行或垂直;3. 通过教师讲解,能利用两直线平行或垂直的条件解决有关问题,提升数学运算素养. (二)学习重点理解直线平行或垂直的判定条件 (三)学法指导1.归纳法:通过平面中直线位置的关系找到斜率关系; 2.类比法:类比向量平行垂直证明斜率关系.二、知识梳理阅读课本自学课本55-57页,完成下列填空题与思考题. 1.两条直线平行的判定前提条件 α1=α2 90° α1=α2=90°对应关系l 1∥l 2∥l 1∥l 2 ∥两条直线的斜率都不存在图示2.两条直线垂直的判定对应关系若l 1与l 2的斜率都存在,且分别为k 1,k 2,则l 1∥l 2∥若l 1与l 2中的一条斜率不存在,另一条斜率为零,则l 1与l 2的位置关系是图示思考题:(1)若两条直线平行,则这两条直线的斜率相等.( ) (2)若两条直线垂直,则它们的斜率的乘积一定等于-1.( ) (3)只有斜率之积为-1的两条直线才垂直.( )(4)若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直.( ) (5)已知过点A (-2,m ),B (m,4)的直线,直线l 的斜率为-2.若AB ∥l ,则m =________;若AB ∥l ,则m =________.(6)已知直线l 1的倾斜角为30°,直线l 2经过点A (0,5),B (3,2),则直线l 1与直线l 2的位置关系为________.三、典例探究题型一 两条直线平行的判定与应用例1 根据下列给定的条件,判断直线l 1与直线l 2是否平行. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3);(3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23)(4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).题型二 两条直线垂直的判定及应用例2 已知∥ABC 三个顶点的坐标分别为A (-2,-4),B (6,6),C (0,6),求此三角形三边的高所在直线的斜率.题型三 平行与垂直的综合应用例3已知A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接A,B,C,D四点,试判断图形ABCD的形状.四、课堂展示1.自由展示:展示“同伴互助”环节本组还没解决的问题,其他组代表给出方案,代表回答不完善的,本组同学优先补充,其他组可以质疑.2.预设展示:例3变式:已知四边形ABCD的四个顶点为A(0,0),B(3,-2),C(5,1),D(2,3),试判断四边形ABCD的形状五、总结提升判断两条不重合的直线是否平行的步骤:六、达标测评1.(多选)下列说法正确的有()A.若两条直线的斜率相等,则这两条直线平行或重合B.若l1∥l2,则k1=k2C.若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直D.若两条直线的斜率都不存在且这两条直线不重合,则这两条直线平行2.若过点A(2,-2),B(5,0)的直线与过点P(2m,1),Q(-1,m)的直线平行,则m的值为()A.-1 B.17C.2 D.123.经过点M(m,3)和N(2,m)的直线l与斜率为-4的直线互相垂直,则m的值为________.4.(多选)已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,则m的值为()A.1 B.0 C.2 D.-15.已知点A(0,3),B(-1,0),C(3,0),且四边形ABCD为直角梯形,求点D的坐标.6.已知A(1,-1),B(2,2),C(3,0)三点,求点D,使直线CD∥AB且CB∥AD.【课上选学】如图,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD为5 m,宽AB为3 m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路所在直线AC与DM互相垂直?。

高中数学二 3.1.2两条直线平行与垂直的判定 导学案

高中数学二 3.1.2两条直线平行与垂直的判定 导学案

3.1.2两条直线平行与垂直的判定学习目标:1、明确直线平行于垂直的条件。

2、利用直线的平行与垂直解决有关问题。

学习重点难点: 两条直线的平行与垂直的判定方法。

教学过程:一:回顾预习案:为了在平面直角坐标系内表示直线的倾斜程度,我们学习了直线的 ,进而学习了直线的斜率—-—- ,斜率的计算公式为: 。

即把 转化为 。

那平面直角坐标系中两条直线的平行或垂直时,它们的斜率什么关系呢?1:两条直线平行的条件(1) 如图:如果21//l l ,它们的斜率都存在,那么它们的倾斜角与斜率是怎么的关系? 21//l l 1α⇒ 2α⇒1tan α ⇒2tan α1k 2k上述结论反过来成立吗?所以:●当两条直线斜率都存在时当两条直线的斜率都为0时,上式也满足,请在坐标系中画出图(2)特殊情况下的两直线平行条件●当两条直线中有一条直线没有斜率时,若要平行,另一条直线的斜率 ,它们的倾斜角都为 .请在坐标系中画出图2:两条直线垂直的条件(1)两条直线都有斜率,如果它们互相垂直,则它们的斜率 ;反之,如果它们的斜率互为负倒数,则它们 互相垂直 。

(证明过程略)即12l l ⊥⇔121k k =-⇔121k k =-当两条直线的斜率有一个为0时成立吗?(2)当有一条直线的斜率为0时,这条直线的倾斜角为 ,若要垂直另一条直线的倾斜角为 ,斜率 请在坐标系中画出图(3)当有一条直线斜率不存在时,倾斜角为 ,若要垂直另一条直线的倾斜角和斜率如何呢?二、例题【例1】已知(2,3),(4,0),(3,1),(1,2)A B P Q ---,试判断直线BA 与PQ 的位置关系,并证明 你的结论.【例2】已知四边形ABCD的四个顶点0,0(DCBA-试判断四边形ABCD),,2()3,2(),2,4(),1的形状,并给出证明.【例3】已知平行四边形ABCD中,顶点(1,1)B,A--,(2,0) C,求顶点D的坐标.(3,2)【例4】已知)6,6(),3,0(),6,3(),0,6(-A,试判断直线AB与-QBPPQ的位置关系。

3.1.2两条直线平行与垂直的判定教案导学案

3.1.2两条直线平行与垂直的判定教案导学案

《两条直线平行与垂直的判定》 【教学目标】 1.理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.2.通过探究两直线平行或垂直的条件,培养学生运用正确知识解决新问题的能力,以及数形结合能力.【教学重点、难点】重点:两条直线平行和垂直的条件.难点:启发学生把研究两条直线的平行或垂直转化为研究两条直线的斜率的关系.【教学环节】~一、复习回顾如图,直线AB 在平面直角坐标系中:(1)直线AB 的倾斜角为 (填∠1或∠2);(2)若∠1=60°,则直线AB 的斜率为 ;(3)若A(1,0),B(0,1),则直线AB 斜率为 ;二、新课引入}以身高测量仪器为例,请同学们分析其中蕴藏的直线间的平行与垂直关系等数学问题。

除了初中学习的用几何方法去判断两条直线的位置关系外,这节课将它引入平面直角坐标系,学习如何运用代数方法(斜率法)去判断两条直线的位置关系。

三、 新课探知提出问题:若 21//l l ,则倾斜角 21,αα 有什么关系若21αα= 则21tan ,tan αα有什么关系若21tan tan αα=,则21,k k有什么关系(此过程可逆吗)用类似的方法分析:若21l l ⊥,则21,k k 有什么关系(此过程可逆吗)四、(五、例题精讲已知A(1,3),B(2,1),C(4,2),D(3,4):(1)试判断直线AB与CD、直线AD与BC的位置关系;(2)试判断直线AB与BC、直线AD与AB的位置关系;(3)试判断由A、B、C、D四点组成四边形是不是矩形。

六、:七、对点练习1.试确定m的值,使过点A(m,1),B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线(不重合)(1)平行(2)垂直2.已知A(0,1),B(1,4),C(2,7),试判断直线AB与AC的位置关系及A、B、C三点的位置关系。

,八、课堂总结1.在平面直角坐标系中,如何通过斜率的关系判断两条直线平行2.在平面直角坐标系中,如何通过斜率的关系判断两条直线垂直九、 课后作业 教材389T P。

312两条直线的平行与垂直(1)导学案.doc

312两条直线的平行与垂直(1)导学案.doc

两条直线的平行与垂直(1)导学案【学习目标】:1.掌握用斜率判定两条直线平行的方法,并会根据直线方程判断两条直线是否平行;2.通过分类讨论、数形结合等数学思想的应用,培养学生思维的严谨性和辨证性.【学习重点】:掌握用斜率判定两条直线平行的方法,并会根据直线方程判断两条直线是否平行.【学习难点】:掌握用斜率判定两条直线平行的方法,并会根据直线方程判断两条直线是否平行.【课前预习与疏理】:自主学习如果,、A斜率都不存在,那么两直线都垂直于X轴,故它们_______________________ ;定直线,与平行的前提是 ________________ . 如果«、A斜率都存在,则直线平行能得到反之,斜率相等也能得到.【课堂合作研习及展示】(探究、合作、展示与点评)例1:已知直线方程A: 2x-4y + 7 = 0, /2:x-2y + 5 = Q,证明:点评:(1)判定两直线平行的条件是直线的斜率和截矩,因此,要把方程化为斜截式;(2)判定两直线平行,首先判断斜率相等,若两直线斜率相等,则两直线可能平行也可能重合,还需再进一步判断截距不相等;如果两条直线斜率不存在,两条直线为x = %,x = a2,只需a2即可.(3)判定两直线重合,首先判断两条直线斜率相等,再判定截距相等.如果两条直线斜率都不存在,两直线x = a^x = a2,只需= «2即可.7例2:求证:顺次连结4(2,-3),5(5,-C(2,3),D(-4,4)四点所得的四边形是梯形.分析:判断一个四边形是梯形,不仅要判断一组对边平行,还要判断另一组对边不平行.点评:在判断哪组对边平行时,不妨先在坐标系中将各点画出,结合图形作判断,再进行证明.例3: ( 1)两直线2x-y + k =0和4.x - 2y + 1 = 0的位置关系是(2)若直线匕:a.x + 3y + l = 0与匕:2x + (a + l)y +1 = 0互相平行,则。

数学824两条直线平行和垂直的判定导学案

数学824两条直线平行和垂直的判定导学案

2.1.2两条直线平行和垂直的判定导学案学习目标 1.理解并掌握两条直线平行的条件及两条直线垂直的条件.2.会运用条件判定两直线是否平行或垂直3.运用两直线平行和垂直时的斜率关系解决相应的几何问题.一、两条直线平行的判定问题1在平面几何中,两条平行直线被第三条直线所截,形成的同位角、内错角、同旁内角有什么关系?提示两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.问题2平面中的两条平行直线被x轴所截,形成同位角相等,而倾斜角是一对同位角,因此可以得出什么结论?提示两直线平行,倾斜角相等.知识梳理对于斜率分别为k1,k2的两条直线l1,l2,有l1∥l2⇔.注意点:(1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)k1=k2⇒l1∥l2或l1与l2重合(斜率存在).(3)l1∥l2⇒k1=k2或两条直线的斜率都不存在.例1判断下列各题中的直线l1与l2是否平行:(1)l1经过点A(-1,-2),B(2,1),l2经过点M(3,4),N(-1,-1);(2)l1的斜率为1,l2经过点A(1,1),B(2,2);(3)l1经过点A(0,1),B(1,0),l2经过点M(-1,3),N(2,0);(4)l1经过点A(-3,2),B(-3,10),l2经过点M(5,-2),N(5,5).延伸探究已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若AB∥MN,则m的值为. 反思感悟判断两条不重合的直线是否平行的方法跟踪训练1(1)已知l1经过点A(0,3),B(5,3),l2经过点M(2,5),N(6,5),判断直线l1与l2是否平行.(2)试确定m的值,使过点A(m+1,0),B(-5,m)的直线与过点C(-4,3),D(0,5)的直线平行.二、两条直线垂直的判定问题3平面中,两条直线l1,l2的斜率分别为k1,k2,则两条直线的方向向量分别为a=(1,k1),b=(1,k2),当两条直线互相垂直时,可以得出什么结论?知识梳理对应关系l1与l2的斜率都存在,分别为k1,k2,则l1⊥l2⇔k1·k2=-1l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是l1⊥l2图示注意点:(1)l1⊥l2⇔k1k2=-1成立的条件是两条直线的斜率都存在.(2)当直线l1⊥l2时,有k1k2=-1或其中一条直线垂直于x轴,另一条直线垂直于y轴;而若k1k2=-1,则一定有l1⊥l2.(3)当两条直线的斜率都存在时,若有两条直线的垂直关系,则可以用一条直线的斜率表示另一条直线的斜率.例2已知△ABC的顶点为A(5,-1),B(1,1),C(2,m),若△ABC为直角三角形,求m的值.反思感悟判断两条直线是否垂直的方法在这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可;若有一条直线与x 轴垂直,另一条直线与x 轴平行或重合时,这两条直线也垂直.跟踪训练2 (多选)下列各对直线互相垂直的是( )A .l 1过点M (1,1),N (1,2),l 2过点P (1,5),Q (3,5)B .l 1的斜率为-23,l 2过点P (1,1),Q ⎝⎛⎭⎫0,-12 C .l 1的倾斜角为30°,l 2过点P (3,3),Q (4,23)D .l 1过点M (1,0),N (4,-5),l 2过点P (-6,0),Q (-1,3)三、平行与垂直的综合应用例3 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.反思感悟 利用两条直线平行或垂直判定图形形状的步骤跟踪训练3 已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 为直角梯形(A ,B ,C ,D 按逆时针方向排列).1.知识清单:(1)两直线平行的判定.(2)两直线垂直的判定.2.方法归纳:分类讨论、数形结合.3.常见误区:研究两直线平行、垂直关系时忽略直线斜率为0或斜率不存在的情况.1.若过点P (3,2m )和点Q (-m ,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A.13 B .-13C .2D .-2 2.(多选)已知直线l 1的斜率为a ,l 1⊥l 2,则l 2的斜率可以为( )A.1aB .-1aC .aD .不存在3.若直线l 1的倾斜角为135°,直线l 2经过点P (-2,-1),Q (3,-6),则直线l 1与l 2的位置关系是( )A .垂直B .平行C .重合D .平行或重合4.已知△ABC 的三个顶点分别是A (2,2),B (0,1),C (4,3),点D (m ,1)在边BC 的高所在的直线上,则实数m = .。

两条直线平行与垂直的判定学案(精选五篇)

两条直线平行与垂直的判定学案(精选五篇)

两条直线平行与垂直的判定学案(精选五篇)第一篇:两条直线平行与垂直的判定学案《两条直线平行与垂直的判定》导学案学习目标:1.探究两条直线平行的充要条件,并会判断两条直线是否平行.2.探究两条直线垂直的充要条件,并会判断两条直线是否垂直.重点:两直线平行、垂直的充要条件,会判断两直线是否平行、垂直.难点:斜率不存在时两直线垂直情况讨论.导入新课:1.倾斜角和斜率的概念.2.倾斜角的范围.3.已知直线上两点坐标,求直线的斜率.学习过程:一.自主学习(阅读教材P86----89)探究问题一:1.回想初中所学平面内两条直线的位置关系有哪些?2.设两条直线l1、l2的斜率分别为k1、k2,当l1∥l2时,k1与k2有什么关系?例1.已知A(2,3),B(–4,0),P(–3,1),Q(–1,2),试判断直线BA与PQ的位置关系,并证明你的结论.例2.已知四边形ABCD 的四个顶点分别为A(0,0),B(2, –1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.探究问题二:1.设两条直线l1、l2的斜率分别为k1、k2,当l1 l2时,k1与k2有什么关系?2.两直线垂直的判定条件.例3.已知A(–6,0),B(3,6),P(0,3),Q(–2,6),试判断直线AB与PQ的位置关系.例4.已知A(5, –1),B(1,1),C(2,3),试判断三角形ABC的形状.二.课堂检测1.判断下列各题中直线l1与l2的位置关系.(1)l1的斜率为1,l2经过点A(2,2)、B(3,3).(2)l1经过点A(0,2)、B(2,0),l2经过点M(2,3)、N(3,2).(3)l1的斜率为-5,l2经过点A(10,4)、B(20,6).(4)l1经过点A(4,3)、B(4,100),l2经过点M(-1,4)、N(1,4).2.已知过A(—2,m)和B(m,4)的直线与斜率为—2的直线平行,则m的值是()A、—8B、0C、2D、103.已知A(a,2)、B(3,b+1)且直线AB的倾斜角为90度,则a,b的值为_________________4.已知平行四边形ABCD中,A(1,1)B(-2,3)C(0,-4),求点D坐标三.课堂小结:1.两直线平行与垂直的条件.2.在运用两直线平行与垂直的条件时应注意的问题.四.课堂反思:第二篇:两直线平行与垂直的判定[推荐]3.1.2 两条直线平行与垂直的判定授课时间:第八周一、教学目标1.知识与技能理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.2.过程与方法通过探究两直线平行或垂直的条件,培养学生运用正确知识解决新问题的能力,以及数形结合能力.3.情感、态度与价值观通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.二、教学重点、难点重点:两条直线平行和垂直的条件.难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.三、教学方法尝试指导与合作交流相结合,通过提出问题,观察实例,引导学生理解掌握两条直线平行与垂直的判定方法.教学设想第三篇:两直线平行与垂直的判定课题:两直线平行与垂直的判定一、学习目标:1.掌握用直线的斜率来判定两直线的平行。

2两条直线平行与垂直的判定教案导学案

2两条直线平行与垂直的判定教案导学案

2两条直线平行与垂直的判定教案导学案主题:平行与垂直直线的判定目标:1.学习如何判断两条直线平行2.学习如何判断两条直线垂直3.巩固并应用平行和垂直概念导入活动:1.导入前,让学生查看一些图片或对象,找出哪些是平行的,哪些是垂直的,并解释出他们的理由。

2.与学生讨论结果,并引导学生思考如何判断直线的平行性和垂直性。

步骤:一、平行线的判定方法(重点)1.提醒学生直线的定义:一条直线可以由两个点确定,或者可以由一个点和一组平行于该直线的向量来确定。

2.解释平行线的定义:当两条直线的斜率相等且不相交时,这两条直线是平行线。

3.提示学生两条平行直线之间没有交点。

4.提供几个示例问题,由学生思考并应用判定平行线的定义。

二、垂直线的判定方法(重点)1.提醒学生直线的定义:只需要有一个点和直线上的两个不同的点来确定一条直线。

2.解释垂直线的定义:两条直线相交且相互垂直时,这两条直线是垂直线。

3.提示学生可以利用两条直线的斜率关系来判断直线的垂直性。

4.提供几个示例问题,由学生思考并应用判定垂直线的定义。

三、实践应用(重点)1.利用刚刚学到的平行线的判定方法和垂直线的判定方法,在纸上完成一些练习题。

2.对学生的答案进行讨论和纠正。

3.鼓励学生应用这些方法解决实际生活中遇到的问题。

导出活动:让学生分享他们在日常生活中应用平行和垂直概念的例子,如建筑物、道路、图形设计等。

评估方式:1.通过观察学生在课堂练习中的答题表现来评估他们对平行和垂直概念的掌握情况。

2.对学生分享的现实生活中的例子进行评估,看他们是否能正确应用平行和垂直概念。

延伸活动:组织学生参观一些建筑物或其他实物场景,让他们观察并记录平行和垂直关系,以加深他们对这些概念的理解。

可以让学生画草图或拍照片,回到教室后和同学们分享他们的观察结果。

总结:通过本次课程的学习,学生应该掌握如何使用斜率来判断两条直线是否平行和垂直的方法,并能够应用这些概念解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两条直线的平行与垂直
一、教学目标
(一)知识教学点
掌握两条直线平行与垂直的条件,会运用条件判断两直线是否平行或垂直,能运用条件确定两平行或垂直直线的方程系数.
(二)能力训练点
通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.
(三)学科渗透点
通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.
二、教材分析
1.重点:两条直线平行和垂直的条件是解析几何中的一个重点,要求学生能熟练掌握,灵活运用.
2.难点:启发学生把研究两直线的平行与垂直问题转化为考查两直线的斜率的关系问题.
3.疑点:对于两直线中有一条直线斜率不存在的情况课本上没有考虑,上课时要注意解决好这个问题.
三、活动设计
提问、讨论、解答.
四、教学过程
(一)特殊情况下的两直线平行与垂直
这一节课,我们研究怎样通过两直线的方程来判断两直线的平行与垂直.当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.
(二)斜率存在时两直线的平行与垂直
设直线l1和l2的斜率为k1和k2,它们的方程分别是
l1: y=k1x+b1; l2: y=k2x+b2.
两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征.
我们首先研究两条直线平行(不重合)的情形.如果l1∥l2(图1-29),那么它们的倾斜角相等:α1=α2.
∴tgα1=tgα2.
即 k1=k2.
反过来,如果两条直线的斜率相等,k1=k2,那么tgα1=tgα2.
由于0°≤α1<180°, 0°≤α<180°,
∴α1=α2.
∵两直线不重合,
∴l1∥l2.
两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即
eq \x( )
要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立.
现在研究两条直线垂直的情形.
如果l1⊥l2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是l1与l2的交点在x轴上方;乙图的特征是l1与l2的交点在x轴下方;丙图的特征是l1与l2的交点在x轴上,无论哪种情况下都有
α1=90°+α2.
因为l1、l2的斜率是k1、k2,即α1≠90°,所以α2≠0°.
可以推出α1=90°+α2.
l1⊥l2.
两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即
eq \x( )
(三)例题
例1 已知两条直线
l1: 2x-4y+7=0, L2: x-2y+5=0.
求证:l1∥l2.
证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合.证明:把l1、l2的方程写成斜截式:
∴两直线不相交.
∵两直线不重合,
∴l1∥l2.
例2求过点 A(1,-4),且与直线2x+3y+5=0平等的直线方程.
即 2x+3y+10= 0.
解法2 因所求直线与2x+3y+5=0平行,可设所求直线方程为2x+3y+m=0,将A(1,-4)代入有m=10,故所求直线方程为
2x+3y+10=0.
例3 已知两条直线
l1: 2x-4y+7=0, l2: 2x+y-5=0.
求证:l1⊥l2.
∴l1⊥l2.
例4 求过点A(2,1),且与直线2x+y-10=0垂直的直线方程.
解法1 已知直线的斜率k1=-2.
∵所求直线与已知直线垂直,
根据点斜式得所求直线的方程是
就是 x-2y=0.
解法2 因所求直线与已知直线垂直,所以可设所求直线方程是x-2y+m=0,将点A(2,1)代入方程得m=0,所求直线的方程是
x-2y=0.
(四)课后小结
(1)斜率存在的不重合的两直线平行的等价条件;
(2)两斜率存在的直线垂直的等价条件;
(3)与已知直线平行的直线的设法;
(4)与已知直线垂直的直线的设法.
五、布置作业
1.(1.7练习第1题)判断下列各对直线是否平行或垂直:
(1)y=3x+4和2x-6y+1=0;
(2)y=x与3x十3y-10=0;
(3)3x+4y=5与6x-8y=7;
解:(1)平行;(2)垂直;(3)不平行也不垂直;(4)垂直.
2.(1.7练习第2题)求过点A(2,3),且分别适合下列条件的直线方程:
(1)平行于直线2x+5-5=0;
(2)垂直于直线x-y-2=0;
解:(1)2x+y-7=0;(2)x+y-5=0.
3.(1.7练习第3题)已知两条直线l1、l2,其中一条没有斜率,这两条直线什么时候:(1)平行;(2)垂直.分别写出逆命题并判断逆命题是否成立.解:(1)另一条也没有斜率.逆命题:两条直线,其中一条没有斜率,如果这两条直线平行,那么另一条直线也没有斜率;逆命题成立.
(2)另一条斜率为零.逆命题:两条直线,其中一条没有斜率,如果另一条直线和这一条直线垂直,那么另一条直线的斜率为零;逆命题成立.4.(习题三第3题)已知三角形三个顶点是A(4,0)、B(6,7)、C(0,3),求这个三角形的三条高所在的直线方程.
也就是 2x+7y-21=0.
同理可得BC边上的高所在直线方程为3x+2y-12=0.
AC边上的高所在的直线方程为
4x-3y-3=0.
六、板书设计。

相关文档
最新文档