六年级数学上圆的知识点讲解和练习题
六年级数学上册圆知识点总结及练习题
六年级数学上册圆知识点总结及练习题《圆》知识点一、圆的特征1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C 表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π = 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
北师大版六年级上册数学第一章-圆的知识点+练习
北师大版六年级上册数学第一章-圆的知识点+练习第一单元圆圆概念总结1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
六年级上册数学第一单元圆知识点及练习(北师大版)
第一单元圆一、考点1:圆的基本概念,圆心、半径、直径。
判断:1、通过圆心的线段是半径。
(×)2、通过圆心的线段是直径。
(×)3、两端都在圆上的线段是直径. (×)4、两端都在圆上并且经过圆心的线段是直径。
( √)5、所有的直径都相等,所有的半径都相等。
(×)6、旋转式水龙喷头的射程是8m,8m就是指圆的直径。
(×)二、考点2:圆心决定圆的位置,半径(直径)决定圆的大小.填空:1、(圆心)确定圆的位置,(半径)确定圆的大小.2、()决定圆的大小,( )决定圆的位置.3、圆内最长的线段是(直径),圆规两脚之间的距离是( ).4、圆有(无数)条半径,圆有( 无数)条直径。
判断:1、圆心决定圆的位置,半径决定圆的大小。
(√)2、半径决定圆的位置,圆心决定圆的大小。
( ×)3、圆心决定圆的大小,半径决定圆的位置. (×)4、半径决定圆的大小,圆心决定圆的位置。
(√)5、直径3厘米的圆大于半径2厘米的圆。
()6、半径3分米的圆大于直径5分米的圆。
()三、考点3:半径与直径的关系。
1、在同一个圆中,直径的长度是半径的(),半径的长度是直径的()。
2、在同一个圆中,半径的长度是直径的(),直径的长度是半径的( ).3、半径的长度是直径的().4、直径的长度是半径的2倍,半径的长度是直径的(50%).6、在同一个圆中,直径是半径的( 2倍)。
7、在同一个圆中,直径是半径的2倍,半径是直径的( 50% )。
8、在同一个圆中,半径是直径的( ),直径是半径的()。
9、一个圆的半径是3厘米,它的直径是().10、圆规两脚间的距离是10厘米,画成的圆的直径是( )。
11、直径是5厘米的圆,它的半径是()。
12、画一个直径为8厘米的圆,圆规两脚间是距离应是( )。
四、考点4:正方形、长方形与圆的关系。
1、在边长为6cm的正方形中画一个最大的圆,这个圆的直径是(3cm )。
六年级上学期数学圆知识点
数学圆知识点(六年级上学期)一、圆的定义和性质1.圆的定义:平面内所有到圆心距离相等的点的集合,称为圆。
2.圆的元素:圆心、半径、弦、直径、弧。
3.圆的性质:-圆心到圆上任意一点的距离相等,即半径相等。
-直径是连接圆上任意两点的线段,并且经过圆心,直径是半径的两倍。
-弦是连接圆上任意两点的线段,弦的长度小于等于直径。
-弧是圆上的一段连续的弧线,弧的长度小于等于圆周长。
二、圆周角和圆心角1.圆周角:是圆上的两个相邻弧所对的圆心角。
-圆周角的度数等于所对弧的度数。
-圆周角的度数是360度。
-两个互补的圆周角的度数之和等于360度。
2.圆心角:是以圆心为顶点的角。
-圆心角对应的弧是该圆心角所在的圆周弧。
-圆心角的度数等于所对弧的度数的两倍。
-两个互补的圆心角的度数之和等于360度。
三、圆的周长和面积1.圆的周长:圆的周长等于圆的直径乘以π,其中π约等于3.14-周长=直径×π或者周长=2×半径×π。
2.圆的面积:圆的面积等于半径平方乘以π,其中π约等于3.14-面积=半径×半径×π或者面积=π×半径×半径。
四、圆的位置关系1.相切:两个圆的外切,表示两个圆相切。
2.相离:两个圆不相交,表示两个圆相离。
3.相交:两个圆有公共部分,表示两个圆相交。
4.重合:两个圆完全一样,表示两个圆重合。
五、圆的综合运用1.判断点和圆的位置关系:如果点在圆上,则点到圆心的距离等于半径,即点满足条件(x-a)²+(y-b)²=r²;如果点在圆内,则点到圆心的距离小于半径;如果点在圆外,则点到圆心的距离大于半径。
2.判断两个圆的位置关系:计算两个圆心之间的距离,如果圆心距离大于等于两个圆的半径之和,则两个圆相离;如果圆心距离小于等于两个圆的半径之差,则一个圆在另一个圆内部;其他情况下,两个圆相交。
3.圆与直线的位置关系:圆与直线之间的位置关系取决于直线与圆的距离和半径的关系,如果直线与圆的距离等于半径,则直线切圆;如果直线与圆的距离大于半径,则直线与圆相离;如果直线与圆的距离小于半径,则直线与圆相交。
六年级数学上册圆形知识点
六年级数学上册圆形知识点六年级数学上册圆形的学习,我们要学会用字母表示圆心、半径、直径;理解并掌握在同圆〔或等圆〕中直径与半径的关系.下面就是给大家带来的六年级数学上册圆形知识点及练习题,希望能帮助到大家!六年级数学上册圆形知识点一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形.2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心.一般用字母O表示.它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径.一般用字母r表示.把圆规两脚分开,两脚之间的距离就是圆的半径.4、直径:通过圆心并且两端都在圆上的线段叫做直径.一般用字母d表示.直径是一个圆内最长的线段.5、圆心确定圆的位置,半径确定圆的大小.6、在同一个圆内或等圆内,有无数条半径,有无数条直径.所有的半径都相等,所有的直径都相等.7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2.用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的这条直线叫做对称轴.9、长方形、正方形和圆都是对称图形,都有对称轴.这些图形都是轴对称图形.10、只有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆.只有2条对称轴的图形是:长方形;只有3条对称轴的图形是:等边三角形;只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环.11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点.二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长.用字母C表示.2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长.或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法).发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示.3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.用字母π(pai) 表示.世界上第一个把圆周率算出来的人是我国的数学家祖冲之.(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数.圆周率π是一个无限不循环小数.在计算时,一般取π ≈ 3.14.(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍.4、圆的周长公式:圆的周长等于圆周率乘直径用字母表示C= πd(1)、圆的周长求直径用圆的周长除以圆周率,用字母表示d = C ÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr(2)、圆的周长求半径用圆的周长除以圆周率的2倍,用字母表示r = C ÷ 2π(r = C / 2π)5、在一个正方形里画一个的圆,圆的直径等于正方形的边长.在一个长方形里画一个的圆,圆的直径等于长方形的宽.6、区分周长的一半和半圆的周长:(1)、周长的一半:等于圆的周长÷2计算方法:2π r ÷ 2 即C半= π r(2)半圆的周长:等于圆的周长的一半加直径. 计算方法:半圆的周长=5.14 r (推导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)六年级数学上册圆形练习题一、填空(16分)1.圆的位置是由( )确定的,圆的大小决定于( )的长短.2.圆周率表示同一圆内( )和( )的倍数关系,它用字母( )表示,保存两位小数取近似值是( ).3.在同一个圆内可以画( )条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是( )厘米.4.在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是( ),面积是( ).5.一个圆环,外圆直径是6分米,圆环宽1分米,圆环的面积是( ).6.甲圆直径长8厘米,是乙圆直径的40%.乙圆的周长是( ).7.大圆的半径等于小圆直径,则大圆面积是小圆面积的( )倍,小圆周长是大圆周长的( ).8.在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画( )个,这些圆的面积和是( ).二、判断题.(8分)1.圆的周长是它的直径的π倍.( )2.圆的直径扩大4倍,圆的面积也扩大4倍.( )3.半径为1厘米的圆的周长是3.14厘米.( )4.一个圆的周长是12.56厘米,面积是12.56平方厘米.( )5.圆的半径由6分米增加到9分米,圆的面积增加了45平方分米.( )6.圆内最长的线段是直径.( )7.圆是轴对称图形,它有无数条对称轴.( )8.半个圆的周长就是圆周长的一半.( )三、选择(9分)1.3.14( )π2.当周长相等时,面积的是( )A. 平行四边形B. 长方形C.正方形D. 圆六年级数学上册圆形练习题一、选择1、用圆规画圆,圆规两脚的距离就是所画圆额( )A、圆心B、半径C、直径2、圆中两端都在圆上的线段()A、一定是圆的半径B、一定是圆的直径C、无法确定3、在日常生活中,我们所见的下水井盖一般都制成( ).A、正方形B、长方形C、圆形4、在同一个圆中最长的一条线段是( ).A、半径B、直径C、直线5、画一个直径为5厘米的圆,圆规两脚之间的距离是( )二、判断并改错.1、所有的半径都相等,所有的直径都相等. ( )2、圆的半径越长,这个圆就越大. ( )3、画图时,圆规两脚尖之间的距离就是圆的半径. ( )4、圆沿一条直线滚动时,圆心在一条直线上运动. ( )5、两个圆的大小一样,它们的半径一定相等. ( )6、一条直径可以分成两条半径,两条半径也就是一条直径. ( )7、平行四边形、长方形、正方形、圆形都是平面图形中的直线图形.( )8、经过一点可以画无数个圆. ( )9、经过圆心的线段一定是直径. ( )10、圆心相同的圆,大小也相等. ( )三、按要求画图.1、画一个半径为1厘米的圆.2、以点O为圆心,分别画两个大小不同的圆.3、用你喜欢的方法画一个半圆,并标出它的圆心,半径和直径.4、在下面长方形和正方形中各画一个的圆.r=( ) d=( )四、填空.1、图中已学过的图形有( )、( )、( )、( ).2、正方形的周长是( ),小圆的直径是( ),半径是( ).3、直角梯形的高与上底都是( ),下底是( ),面积是( ).4、大三角形的底边长是( ),高是( ),面积是( ).五、解决问题1、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?2、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?。
六年级上册数学圆的知识点
六年级上册数学圆的知识点圆是数学中的一个重要概念,广泛应用于几何学和数学中的其他分支。
在六年级上册数学课程中,学生将学习和掌握与圆相关的一些基本知识和技能。
本文将介绍六年级上册数学圆的主要知识点,包括圆的定义、圆的要素、圆的性质以及与圆相关的测量和计算等内容。
一、圆的定义圆是由一个平面内离一个定点距离相等的所有点构成的集合。
该定点称为圆心,距离称为半径。
圆可以由圆心和半径唯一确定,记作⦁O(r),其中⦁O表示圆心,r表示半径。
二、圆的要素圆的要素主要包括圆心、半径和直径等。
1. 圆心(O):圆中心点的位置,圆的位置关系和性质与圆心有关。
2. 半径(r):圆心到圆上任意一点的距离,用来确定圆的大小。
3. 直径(d):通过圆心并且两端都在圆上的线段,它的两倍就是圆的直径,在圆上任意两点之间线段的最大长度。
三、圆的性质1. 圆的对称性:圆具有轴对称性,任意一条通过圆心的直线都是圆的对称轴。
2. 圆的直径性质:任意一条直径平分圆,即将圆分为两个面积相等的半圆。
3. 圆的切线性质:与圆相切的直线只有且仅有一条,并且切点在圆的切线上。
四、与圆相关的测量和计算1. 圆的周长:圆的周长是圆上所有点到圆心的距离之和,可以用公式C = 2πr计算,其中C表示圆的周长,r表示半径。
2. 圆的面积:圆的面积是圆内的所有点组成的部分,可以用公式A = πr²计算,其中A表示圆的面积,r表示半径。
五、圆的应用圆的知识在生活中有着广泛的应用,例如:1. 自行车的车轮、手表等圆形零件的设计与制造。
2. 古代建筑中圆形窗户或天花板的构造。
3. 饼、蛋糕等甜点的形状是圆的,制作时需要对圆的周长和面积进行计算。
通过对六年级上册数学圆的知识点的学习,学生将能够准确理解圆的定义和要素,掌握圆的性质和相关测量计算,培养对圆的应用能力。
同时,通过实际生活中的例子和问题,帮助学生理解和运用圆的知识,提高解决问题的能力。
六年级上册数学圆的知识点详细且全面地介绍了圆的定义、要素、性质以及与圆相关的测量和计算。
小学六年级数学圆知识练习题
小学六年级数学圆知识练习题1. 圆是什么?圆是由平面上到定点的距离等于定长的点的集合。
这个定点叫做圆心,定长叫做半径。
2. 圆的特点有哪些?(1) 圆上的点到圆心的距离都相等。
(2) 圆周上的任意两点与圆心的连线都是半径。
(3) 圆周是由无数个弧组成的。
3. 圆与直径的关系是什么?直径是连接圆上任意两点并且过圆心的线段,直径的两倍等于圆的周长。
4. 如何计算圆的周长和面积?(1) 圆的周长公式:C = 2πr,其中C代表周长,π约等于3.14,r代表半径。
(2) 圆的面积公式:S = πr²,其中S代表面积,π约等于3.14,r代表半径。
5. 计算题:(1) 已知一个圆的半径为5cm,求其周长和面积。
解答:周长C = 2πr = 2 × 3.14 × 5 ≈ 31.4cm (保留一位小数)面积S = πr² = 3.14 × 5² ≈ 78.5cm² (保留一位小数)(2) 一个圆形公园的周长为50m,求其半径和面积。
解答:已知周长C = 50m根据周长公式C = 2πr,可得:50 = 2 × 3.14 × r解方程可得:r ≈ 7.96m (保留两位小数)面积S = πr² = 3.14 × (7.96)² ≈ 199.1m² (保留一位小数)6. 圆的应用举例:(1) 钟面和圆盘多采用圆形设计,因为圆形美观且均匀。
(2) 轮胎、圆桌等物体也常采用圆形设计,圆轮能更好地保持平衡。
(3) 浑身绕圆形跑道,这样跑的路程最短。
通过以上练习题,我们加深了对小学六年级数学圆知识的理解与应用。
掌握圆的定义、特点以及计算周长和面积的方法,能够更好地解决与圆相关的问题。
在实际生活中,我们会经常遇到圆形物体,明确圆的性质和用途,有助于我们更好地认知和应用数学知识。
希望大家通过不断练习和实践,提高数学水平,更好地应用数学知识解决实际问题。
六年级上册数学重点《圆》知识点,附练习题!
六年级上册数学重点《圆》知识点,附练习题!一、圆的特征1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
3、半圆周长=圆周长一半+直径= πr+d二、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
六年级数学上册圆的周长常用公式知识点测试题练习精选
六年级数学上册圆的周长常用公式知识点测试题练习精选一、圆的周长公式:二、填空(19分)1、一个圆的半径是5厘米,这个圆的直径是()厘米,这个圆的周长是()厘米,如果半径增加2厘米,这个圆的半径是()厘米,直径是()厘米,周长是()厘米。
2、一个圆的直径是6厘米,周长是()厘米,如果直径扩大到原来的3倍,周长是()厘米。
如果直径缩小的原来的1/3,周长是()厘米。
3、一个圆的周长是28.26分米,这个圆的半径是()分米。
一个圆的周长是25.12米,这个圆的直径是()米。
4、甲圆的半径是3厘米,乙圆的半径是8厘米,甲圆直径和乙圆直径的比是():(),乙圆周长和甲圆周长的比是(:)。
5、一张长方形纸,长8分米,宽6分米。
如果在上面剪出一个最大的圆,这个圆的半径是()分米,周长是()。
6、一个半圆的半径是8分米,这个半圆的周长是()分米,一个半圆的直径是12厘米,这个半圆的周长是()厘米。
7、一个时钟的分针转一圈是()个小时,分针针尖转动一圈形成一个圆。
一个时钟的分针长5厘米,这个时钟在半小时时间内,走了()厘米。
三、操作题。
(15分)1、画一个直径是3厘米的圆,计算出圆的周长。
2、计算出下面图形的周长。
四、解决问题。
(66分)1、圆的半径为6米,①求直径;②求周长。
2、已知圆的直径为4dm,①求半径;②求周长3、一个圆的周长为31.4cm,①求半径;②求直径。
4、一个直径为16米的圆形操场, ①它的周长是多少米?②在它的周围每隔6.28米栽一棵树,一共可栽多少棵?5、一种汽车轮胎的外直径是2米,它每分钟可以转动125周。
这辆汽车4分钟可以走多少千米?6、一辆车的车轮半径是25cm,每分钟转100圈,要通过3140米的桥,大约需要几分钟?7、一棵大树半径1.5米,用一根绳子绕树干2周,绳子还剩下1.16米,这根绳子多少米?8、用30米长的绳子绕大树的树干2周,绳子还差1.4米,这棵大树树干的半径是多少米?9、小明和小华沿着一个半径是250米的圆形湖边同时从同一点相背而行。
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)一、知识梳理1、圆心:圆中心一点叫做圆心。
用字母“O ”来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示。
直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示。
2、圆心确定圆的位置,半径确定圆的大小。
3、在同一个圆内,所有的半径都相等,所有的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:r d 2= d r 21= 4、圆的周长:围成圆的曲线的长度叫做圆的周长。
5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取14.3π≈。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
6、圆的周长公式:πd C = 或πr 2C =7、圆的面积:圆所占平面的大小叫圆的面积。
8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积2πr r ×r ×π==9、圆的面积公式:22)÷π(d S = 或者2πr S = 或者22)÷π÷π(C S =10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
圆的面积和正方形面积的比是π:4。
在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。
11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是22πr πR S -=或 )r π(R S 22-=(其中R =r +环的宽度.)13、环形的周长=外圆周长+内圆周长14、半圆的周长等于圆的周长的一半加直径。
六年级《圆》知识点归纳
六年级《圆》知识点归纳圆是数学中的一个重要概念,它在几何学和代数学中都有广泛运用。
本文将对六年级学生应该掌握的圆的知识点进行归纳总结,以帮助学生更好地理解和应用这些概念。
一、圆的定义和性质1. 圆的定义:圆是由平面上距离一个固定点的距离相等的点所组成的图形。
2. 圆心和半径:圆的中心点称为圆心,圆心到圆上任意点的距离称为半径。
3. 直径和周长:直径是通过圆心的两个点之间的距离,周长是圆的边界长度。
4. 弧和扇形:圆的一部分称为弧,圆心角对应的弧称为扇形。
5. 弦和切线:弦是圆上两点间的线段,切线是与圆只有一个交点的直线。
二、圆的计算公式1. 圆的周长计算:周长等于直径乘以π(pi)或者直径乘以2。
2. 圆的面积计算:面积等于半径的平方乘以π。
三、圆的重要定理1. 圆的直径是最长的弦,半径是弦中垂线的中线,且直径等于两倍的半径。
2. 半径垂直于弦,且半径和切线之间的夹角为直角。
3. 圆的内接四边形的对角线相互垂直,且交点在圆心上。
4. 在同一个圆中,圆心角相等的弧相等,弧对应的圆心角相等。
5. 在同一个圆中,圆心角与其所对应的弧的关系为弧度制的定义:圆心角等于弧长与半径的比值。
四、圆的相关练习题1. 求圆的周长和面积的练习题。
2. 判断给定的图形是不是圆或圆的一部分的练习题。
3. 计算给定圆的直径、半径或者弦的长度的练习题。
4. 根据给定的条件,画出符合要求的圆和弧的练习题。
5. 判断给定的两个圆是相交、相切还是相离的练习题。
通过学习和理解上述圆的知识点,六年级的学生可以更好地掌握圆的定义、性质、计算公式和重要定理,能够灵活运用这些知识解决与圆相关的问题。
同时,通过做相关的练习题,能够提高对圆的理解和应用能力。
希望本文对学生们的学习有所帮助。
六年级数学上册 《圆的周长和面积知识点附习题》
六年级数学上册《圆的周长和面积知识点附习题》S:面积C:周长π:圆周率d:直径r:半径(π是圆周率,是个常量,通常题目中圆周率取3.14,如果题目有特殊要求就按题目的具体要求取值。
)1、圆的周长公式:C=πd或C= 2πr2、半圆的周长公式:C=πd+d3、四分之一圆的周长公式:C=πd+d4、圆的面积公式:S =π5、四分之一圆的面积公式:S =π6、半圆的面积公式:S =π7、圆环的面积公式:S =πR -π =π(R -1 )1、一个底面周长47.1米的圆形沙堆,占地面积多少平方米?解:47.1÷2÷3.14=7.5(米)3.14×7.5²=176.625(平方米)答:占地面积176.625平方米。
2、一块手表的分针长1.8厘米,它的针尖一昼夜走多少米?解:2×3.14×1.8=11.304(厘米)24×60=1440(圈)11.304×1440÷100=162.7776(米)答:它的针尖一昼夜走162.7776米。
3、菜地中间装有一个自动喷水器,最远能喷5米。
能喷灌的面积最多是多少?解:3.14×5²=78.5(平方米)答:能喷灌的面积最多是78.5平方米。
4、一根钢管的横截面是环形。
内圆半径4厘米,外圆直径10厘米。
钢管的横截面积多少平方厘米?解:10÷2=5(cm) 3.14×5²=78.5(cm²)3.14×4²=50.24(cm²)78.5-50.24=28.26(cm²)答:钢管的横截面积是28.26平方厘米。
5、一个圆形喷水池的周长62.8米,在离水池边0.5米的外面围上栏杆。
栏杆长多少米?解:62.8÷2÷3.14=10(米)10+0.5=10.5(米) 2×3.14×10.5=65.94(米)答:栏杆长65.94米。
数学六年级上册《圆的认识》练习题(含答案)
第五单元圆第1课时圆的认识(1)【过基础关】教材知识巩固练1.我会填。
(1)()决定圆的位置,()决定圆的大小。
(2)在同一个圆里,所有的半径(),所有的()都相等,直径等于半径的()。
(3)用圆规画一个直径20cm的圆,圆规两脚间的距离是()cm。
2.我会判。
(1)从圆心到圆周上任意一点的距离都相等。
()(2)圆内有无数条直径,只有8条半径。
( )(3)直径永远等于半径的2倍。
( )(4)直径是一个圆中最长的线段。
( )(5)直径为5厘米的圆比半径为3厘米的圆大。
()3.我会选。
(1)半径是2厘米的圆,直径是( )。
A.2cm B.4cm C.6cm(2)以一个点为圆心,可以画( )个圆。
A.1 B.2 C.无数(3)在一个边长为10cm 的正方形中,画一个最大的圆,圆的半径是( )。
A.10cm B.5cm C.15cm(4)如右图,正方形内有4个同样大小的圆,每个圆的半径是()厘米。
A.10B.5C.2.54.画一个半径为2厘米的圆,并用字母标出它的圆心、半径和直径。
5.看图计算。
(1)(2)d= r=大圆的直径是小圆的半径是【过能力关】思维拓展提升练6.如下图,这个长方形的周长和面积分别是多少?参考答案1.(1)圆心半径(2)都相等直径 2倍(3)102.(1)√(2)×(3)×(4)√(5)×3.(1)B (2)C (3)B (4)C4.略5.(1)8cm 4cm (2)6cm 4.5cm6. 4×6=24(cm) 4×2=8(cm)周长:(24+8)×2=64(cm)面积:24×8=192(cm2)。
六年级数学圆知识点
六年级数学圆知识点在六年级数学课程中,圆是一个重要的几何形状,它具有许多独特的性质和特征。
下面将介绍六年级学生需要了解的圆的知识点。
一、圆的定义和要素圆是由平面上与一个固定点的距离相等的所有点构成的集合。
这个固定的点被称为圆心,而与圆心距离相等的距离称为圆的半径。
圆的直径是通过圆心的两个点,并且是圆上任意两点的最长直线距离。
二、圆的性质1. 圆的半径相等性质:一个圆上任意两点之间的距离都相等,即圆的所有半径长度相等。
2. 圆的直径性质:圆的直径是圆的最长线段,它的长度是圆的半径长度的两倍。
3. 圆的圆心角性质:当两条从圆心出发的线段分别与圆上的两条弧相交时,它们所夹的角叫做圆心角。
在同一个圆上,圆心角对应的弧长相等。
4. 圆的切线性质:切线是与圆相交于一个点的直线。
切线与圆的切点处的切线与半径的夹角是直角。
5. 圆的弦性质:弦是圆上两点之间的线段,其两端点在圆上。
弦的中点与圆心连线垂直。
三、圆的计算1. 圆的周长:圆的周长是圆上一周的长度。
周长可以通过公式C = 2πr计算,其中r是圆的半径,π是一个常数,约等于3.14。
2. 圆的面积:圆的面积可以通过公式A = πr²计算,其中A表示圆的面积。
四、圆与其他几何图形的关系1. 圆的位置关系:一个圆可以与其他几何图形有不同的位置关系,比如圆与直线的关系,圆与三角形的关系等。
2. 圆的扇形和扇形面积:扇形是圆上以圆心为顶点的两条边所围成的部分。
扇形的面积可以通过圆的面积乘以扇形的圆心角的比例来计算。
3. 圆的切线和切线长:切线是与圆相切于一个点的直线。
切线的长度可以通过勾股定理来计算,其中圆的半径是斜边,切线与半径的垂直距离是直角边。
五、解决问题在数学学习中,我们经常需要运用圆的知识来解决各种问题。
有几个常见的问题类型如下:1. 根据圆的半径或直径求周长或面积。
2. 根据圆的周长或面积求半径或直径。
3. 根据给定的两点求弧长或圆心角。
4. 配合其他几何图形来解决复杂问题,比如通过圆来求解三角形的面积、周长等。
北师大版六年级上册数学第一章-圆的知识点+练习
第一单元圆圆概念总结1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d÷2)² 或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
六年级数学圆的知识点
六年级数学圆的知识点六年级数学:圆的知识点一、圆的基本概念1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(Center):圆心是圆的中心点,通常用符号O表示。
3. 半径(Radius):圆心到圆上任意一点的距离,用符号r表示。
4. 直径(Diameter):通过圆心的最长弦,是半径的两倍长,用符号d表示。
5. 弦(Chord):圆上任意两点间的线段。
6. 弧(Arc):圆上两点间的圆周部分。
7. 优弧(Major Arc):大于半圆的弧。
8. 劣弧(Minor Arc):小于半圆的弧。
9. 半圆(Semicircle):圆的一半,由直径所界定。
10. 切线(Tangent):与圆只有一个交点的直线。
二、圆的性质1. 所有半径长度相等。
2. 直径是半径的两倍。
3. 圆周角(Circumferential Angle)定理:同弧或等弧所对的圆周角相等,都等于该弧的圆心角的一半。
4. 切线与半径定理:圆的切线垂直于过切点的半径。
5. 圆的内接四边形对边之积相等。
6. 圆的外切四边形对角线互相平分。
三、圆的计算1. 圆的周长(Circumference)计算公式:C = 2πr 或C = πd其中,C 表示周长,r 表示半径,d 表示直径,π(Pi)约等于3.14159。
2. 圆的面积(Area)计算公式:A = πr²其中,A 表示面积,r 表示半径。
3. 扇形面积(Sector Area)计算公式:S_sector = (θ/360) × πr²其中,θ 表示扇形的中心角(单位:度),r 表示半径。
4. 弓形面积(Bow Area)计算公式:S_bow = S_sector - S_triangle其中,S_sector 表示扇形面积,S_triangle 表示由弦和两条半径围成的三角形面积。
5. 圆柱体积(Cylinder Volume)计算公式:V_cylinder = πr²h其中,V_cylinder 表示体积,r 表示底面圆的半径,h 表示圆柱的高。
第5讲 圆-六年级上册数学讲义(含答案)
第5讲圆(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:圆的认识1.圆心、半径、直径用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
在任意一个圆中都可以画出无数条半径和无数条直径。
2.同圆或等圆中半径、之间的关系在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的2倍;圆心相同,半径不同的圆叫做同心圆;圆是轴对称图形,它有无数条对称轴。
3.用圆规画圆用圆规画圆的方法:先定好两脚之间的距离,再把带有针尖的脚固定在一点上,最后把装有铅笔的脚旋转一周,就画出了一个圆。
知识点二:圆的周长1.意义:围成圆的曲线的长叫做圆的周长,周长一般用字母C来表示。
2.测量方法:滚动法、绕绳法、直接测量法。
3.圆周率:圆的周长总是它的直径的3倍多一些,这个固定的比值叫做圆周率,用字母Π来表示,Π是一个无线不循环小数。
C=Πd或2Πr。
已知圆的半径,求周长时,用C=2Πr进行计算;已知圆的直径,求周长时,用C=Πd进行计算。
知识点三:圆的面积1.意义:圆所占平面的大小叫做圆的面积,圆的面积一般用S表示。
2.已知圆的半径为r,S=Πr2已知直径或周长求面积时,都要先求出半径,再求出面积。
3.圆环:两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。
S=ΠR2-Πr23.圆与正方形组合的面积问题的应用(1)“外方内圆”图形中,圆的直径等于正方形的边长。
如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。
(2)“外圆内方”图形中,这个正方形的对角线等于圆的直径。
如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。
知识点四:扇形1.意义:圆上两点之间的部分叫做弧;一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
注意:扇形的大小由圆心角的度数和半径的长短决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学上圆的知识点讲解和练习题一、圆的认识1、日常生活中的圆2、画图.感知圆的基本特征(1)实物画图(2)系绳画图3、对比,感知圆的特征:我们以前学过的长方形.正方形.平行四边形.梯形.三角形等,都是曲线段围成的平面图形,而圆是由曲线围成的一种平面图形.【归纳】:圆是由一条曲线围成的封闭图形二、圆的各部分名称1、圆心:用圆规画出圆以后,针尖固定的一点就是圆心,通常用字母O表示,圆心决定圆的位置2、半径:连接圆心到圆上任意一点的线段叫做半径.一般用字母r表示.把圆规两脚分开,两脚之间的距离就是圆的半径.3、直径:通过圆心并且两端都在圆上的线段叫做直径.一般用字母d表示.直径是一个圆内最长的线段三、圆的主要特征1、在同圆或等圆内,有无数条半径,有无数条直径.所有的半径都相等,所有的直径都相等.2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2.d用字母表示为:用字母表示为:d=2r r =12用文字表示为:直径=半径×2 半径=直径÷23、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.圆是轴对称图形且有无数条对称轴一、圆的周长的认识1、围成圆的曲线的长叫做圆的周长2、周长与圆的直径有关,圆的直径越长,圆的周长就越大二、圆周率的意义及圆的周长公式1、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长.发现一般规律,就是圆周长与它直径的比值是一个固定数(π).3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.用字母π(pai) 表示.4、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数.圆周率π是一个无限不循环小数.在计算时,一般取π≈ 3.14.5、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍.世界上第一个把圆周率算出来的人是我国的数学家祖冲之.6、圆的周长公式:知道直径d:圆周长=π×直径:C=πd知道半径r:圆周长=2×π×半径:C=2πr7、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即π r(2)半圆的周长:等于圆的周长的一半加直径. 计算方法:πr+2r 即 5.14 r8.正方形里最大的圆.两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆.9.长方形里最大的圆.两者联系:宽=直径画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆.10.常用的3.14的倍数:3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.73.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.263.14×12=37.68 3.14×14=43.96 3.14×16=50.24 3.14×18=56.523.14×24=75.36 3.14×25=78.5 3.14×36=113.04 3.14×49=153.863.14×64=200.96 3.14×81=254.34四、 圆的面积与以它的半径为边长的正方形的面积的关系以正方形的边长为半径画的圆,正方形的面积实际就是这个圆半径的平方,因此得出“圆的面积是它半径平方的3倍多一些”圆的面积大约等于半径半径 3五、 圆的面积公式1、 把圆拼成近似的长方形,知识形状改变了,图形的大小并没有发生变化,因此圆的面积=拼成的近似长方形的面积2.圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S 长方形=S 圆); 长方形的宽是圆的半径(即b =r );长方形的长是圆周长的一半(即a =C ÷2=πr ).即:S 长方形= a × b↓ ↓S 圆= πr × r= πr 2 所以,S 圆 = π r 2求圆面积的公式:1.已知r 时:2S r π=2.已知d 时:()22S d π=÷ 3.已知C 时:先求出半径(r= C ÷π÷2),然后用第一条公式或者直接用公式:()22S C ππ=÷÷注意:切拼后的长方形的周长比圆的周长多了两条半径.C长方形=2πr+2r =C圆+d一、圆环的意义及面积的计算1、圆环的意义:以同一点为圆心,半径不相等的两个圆组成的图形,两元之间的部分就是圆环.2、圆环中半径较大的圆叫做外圆,半径较小的圆叫做内圆.外圆半径与内圆半径的差叫做环宽,两圆中间的部分大大小叫做圆环的面积3、外圆的半径=内圆半径+1个环宽;外圆的直径=内圆直径+2个环宽求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律、4进行简便计算.S圆环=S外圆—S内圆=πR2-πr2= π(R2-r25.几个直径和为n的圆的周长=直径为n的圆的周长(如图)几个直径和为n的圆的面积<直径为n的圆的周长n6.常用的平方数:112=121 122=144 132=169 142=196 152=225162=256 172=289 182=324 192=361 202=4007.周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短.8.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数.而面积扩大或缩小以上倍数的平方倍.例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍.二、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.有1条对称轴的图形有:角.等腰三角形.等腰梯形.扇形.半圆.有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆综合练习:圆的周长一. 填空1.圆规两脚之间的距离是1.5厘米,画出圆的直径是( )厘米.一个圆的直径是8厘米,画圆时,圆规两脚之间的距离是( )厘米.要画一个周长是37.68厘米的圆,圆规两脚之间的距离是( )厘米.2.通过圆心并且两端都在圆上的线段,叫做圆的( ),一般用字母( )来表示.3.在一个圆里,有( )条半径,这些半径的长度( ),有( )条直径,这些直径的长度( ).4.在同一个圆里,直径和半径的关系可以表示为( )或( ).5.用( )可以画出一个精确的圆.( )决定圆的大小,( )决定圆的位置.6.把圆沿一条直线对折,两侧的图形能够完全重合,说明圆是( ),圆有( )条对称轴.半圆有( )条对称轴,只有一条对称轴的四边形是( ).7.围成圆曲线的长叫做圆的( ),圆周长的计算公式是( ).8.一个圆的半径是6厘米,这个圆的周长是( )厘米,如果半径增加3厘米,直径是( )厘米,周长是( )厘米.9.一个圆的直径是12厘米,周长是( )厘米,如果直径扩大到原来的3倍,周长是( )厘米.如果直径缩小的原来的31,周长是( )厘米. 10.一个圆的周长是18.84分米,这个圆的半径是( )分米.一个圆的周长是25.12米,这个圆的直径是( )米.11.一个半圆的半径是6分米,这个半圆的周长是( )分米,一个半圆的直径是15厘米,这个半圆的周长是( )厘米,一个半圆的周长是37.68厘米,这个半圆的直径是( )厘米.12.甲圆的半径是4厘米,乙圆的半径是6厘米,甲圆直径和乙圆直径的比是( ),乙圆周长和甲圆周长的比是( ).13.在一个边长是10厘米的正方形内剪一个最大的圆,圆的周长是( )厘米.14.一张长方形纸,长6分米,宽4分米.如果在上面剪出一个最大的圆,这个圆的半径是( )分米,周长是().如果在上面剪出半径是1分米的圆,最多可以剪出()个.15.一个圆的半径扩大5倍,周长扩大()倍.一个圆的半径增加2厘米,周长增加()厘米,一个圆的直径减少13厘米,周长减少()厘米.16.用铁丝把2根横截面直径都是20厘米的圆木捆在一起,如果接头处铁丝长5厘米,那么捆一周至少需要()厘米的铁丝.二.判断题1.如果两个圆的周长相等,那个这两个圆的直径也一定相等. ( )2.甲圆直径是乙圆的半径,乙圆的周长是甲圆周长的2倍. ( )3.在一个正方形内画一个最大的圆,圆的直径等于正方形的边长. ( )4.直径越大,这个圆的周长就越大. ( )5.半圆的周长就是圆周长的一半. ( )6.圆的周长是直径的3.14倍. ( )7.圆的直径是半径的两倍. ()8.圆的直径就是圆的对称轴. ( )三.操作题.1.画一个直径是4厘米的圆,计算出圆的周长.2.在圆中画一个最大的正方形,保留作图轨迹.3.下面是一个长6厘米,宽5厘米的长方形,在长方形中画一个最大的半圆,并计算出半圆的周长.四.计算出下面图形的周长.五.画出下面图形的一条对称轴,并在下面的括号里写明这个图形有多少条对称轴.六.解决问题.1.在一块直径为40米的圆形操场周围栽树,每隔6.28米栽一棵,一共可栽多少棵?2.一根铁丝可以围成一个直径是12分米的圆,如果把它围成一个最大的正方形,它的边长是多少?3. 一张长30厘米,宽20厘米的长方形纸,在纸上剪一个最大的圆.这个圆的周长是多少厘米?4.一种汽车轮胎的外直径是1米,它每分钟可以转动400周.这辆汽车通过一座长5.652千米的大桥需要多少分钟?有( )条对称轴 有( )条对称轴 有( )条对称轴 有( )条对称轴圆的面积1、一种钟表的分针长5厘米,3小时分针扫过的面积是多少?2、一个花坛,直径8米,在它的周围有一条宽1米的环形小路,小路的面积是多少平方米?3、一个圆桶的底面周长是62.8厘米,它的底面面积是多少平方厘米?4.如图学校操场(单位:米)操场的周长是多少米?面积是多少平方米?.草场上有一个木屋,木屋是边长3m的正方形,A是木屋一角,在A点有一木桩,用6m长的绳子拴一匹马在木桩上,这匹马的活动范围有多大?求各图的周长和面积:(单位:米)1.2.求阴影部分面积(单位:厘米)1.2.3.。