_圆的切线性质与判定定理

合集下载

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)
1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
4.
如图,△ABC 内接于⊙O,点 D 在 OC 的延长线上,sin B 1 = ,∠D=30° . 2 (1)求证:AD 是⊙O 的切线. (2)若 AC=6,求 AD 的长.
解:(1)证明:如图,连接 OA, 1 ∵sin B= ,∴∠B=30° , 2 ∵∠AOC=2∠B,∴∠AOC=60° , ∵∠D=30° , ∴∠OAD=180° -∠D-∠AOC=90° , ∴AD 是⊙O 的切线. (2)∵OA=OC,∠AOC=60° , ∴△AOC 是等边三角形,∴OA=AC=6, ∵∠OAD=90° ,∠D=30° , ∴AD= 3AO=6 3.
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
要证明某直线是圆的切线,主要是运用切线的判
6. 如图,正方形ABCD是⊙O的内接正方形,延长BA
到 E,使AE=AB,连接ED.
(1)求证:直线ED是⊙O的切线; (2)连接EO交AD于点F,求证: EF=2FO.
解:(1)证明:连接 OD. ∵四边形 ABCD 为正方形, AE=AB, ∴AE=AB=AD, ∠EAD=∠DAB=90° . ∴∠EDA=45° ,∠ODA=45° . ∴∠ODE=∠ADE+∠ODA=90° . ∴直线 ED 是⊙O 的切线. (2)作 OM⊥AB 于 M. ∵O 为正方形的中心,∴M 为 AB 的中点. ∴AE=AB=2AM,AF∥OM. EF AE ∴FO=AM=2,∴EF=2FO.

圆的切线的性质及判定定理

圆的切线的性质及判定定理

A
O
B
D
练习3 若Rt△ABC内接于⊙O,∠A=30°. 延长斜边AB到D,使BD等于⊙O的半径, 求证:DC是⊙O的切线.
分析:如图
C
300600
. A
300 1200 600 600
O
B
D
练习1.如图A是⊙O外的一点,AO的延长线交 ⊙O于C,直线AB经过⊙O上一点B,且AB=BC, ∠C=30°. 求证:直线AB是⊙O的切线.
证明:连结OB,
∵OB=OC,AB=BC,∠C=30°
B
∴∠OBC=∠C=∠A=30° ∴∠AOB=∠C+∠OBC=60°
C O
A
∴∠ABO=180°-(∠AOB+∠A)
O
l
根据作图,直线l是⊙O切线满足两个条件: A B
1.经过半O的半径 OA⊥l于A
l是⊙O的切线.
定理说明:在此定理中,题设是“经过半径的外端” 和“垂直于这条半径”,结论为“直线是圆的切 线”, 两个条件缺一不可,否则就不是圆的切线. 下面两个反例说明只满足其中一个条件的直线不是圆的切线:
例2 如图,AB是⊙O的直径, C为⊙O上一点, AD和过点C的切线互相垂直,垂足为D. 求证: AC平分∠DAB.
证明:连接OC.
∵CD 是⊙O的切线, ∴OC⊥CD.
D C
又∵AD⊥CD , ∴OC//AD. A
∴∠ACO= ∠CAD .
O
B
又∵OC=OD, ∴∠CAO= ∠ACO
∴∠CAD= ∠CAO , 故AC平分∠DAB.
O.
A
l
O.
A
l
B
3.应用:
例1 如图,AB是⊙O的直径,⊙O过BC的中点D,

专题复习与圆的切线有关的证明

专题复习与圆的切线有关的证明
经过半径外端且垂直这条半径
是圆的切线
5、常用的添加辅助线的方法
(1)直线与圆的公共点已知时,作出过公共点的 半径,再证半径垂直于该直线。 有切点,连半径,证垂直 (2)直线与圆的公共点不确定时,过圆心作直线 的垂线段,再证明这条垂线段为圆的半径 无切点,作垂直,证半径
切线的性质
如图,⊙O的切线PC交直径AB的延长线于点P,C为切点, 若∠P=30°,⊙O的半径为1,则PB的长为_______
无交点,作垂直,证半径
例:如图 ,已知:O 为 BAC 角平分线上一点,
OD AB 于 D ,以 O 为圆心, 为半径作圆。
求证:AC 是⊙ O 的切线。
E
数学解答题P7 数学解答题P9
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
切线的性质
垂直 于经过切点的半径. 定理:圆的切线________ 技巧:圆心与切点的连线是常用的辅助线.
垂直 于这条半径的直线是圆 定理: 经过半径的外端并且________ 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
切线的判定
作业:《数学解答题》 P7-10第一问
专题复习 与圆的切线有关的证明
1、圆的切线性质定理
圆的切线垂直于经过切点的半径.
2、辅助线: 连接圆心与切点
连半径,得垂直
半径与切线垂直
3、切线判定
定理:经过半径的外端并且垂直于这条半径的 直线是圆的切线。

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)

圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引入圆的切线概念,讲解切线的定义和特点展示圆的切线示意图,让学生理解切线与圆的关系1.2 圆的切线判定条件讲解圆的切线的判定条件通过示例和练习,让学生掌握如何判断一条直线是否为圆的切线第二章:圆的切线性质2.1 圆的切线性质介绍圆的切线的性质,如切线与半径垂直、切线与圆心连线垂直等展示切线性质的示意图,让学生理解并记忆这些性质2.2 圆的切线定理讲解圆的切线定理,如切线定理、切线长定理等通过示例和练习,让学生掌握切线定理的应用和证明方法第三章:圆的切线方程3.1 圆的切线方程的定义和特点讲解圆的切线方程的定义和特点展示切线方程的示意图,让学生理解切线方程的形式和含义3.2 圆的切线方程的求法讲解如何求解圆的切线方程通过示例和练习,让学生掌握求解切线方程的方法和技巧第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切讲解圆的切线与圆相切的情况和特点展示切线与圆相切的示意图,让学生理解切线与圆的切点、切线与半径的关系4.2 圆的切线与圆相离讲解圆的切线与圆相离的情况和特点通过示例和练习,让学生掌握如何判断切线与圆的位置关系第五章:圆的切线应用5.1 圆的切线与圆的切点应用讲解如何利用切点性质解决问题,如求解切线长度、切线与半径的关系等通过示例和练习,让学生掌握切点性质的应用方法5.2 圆的切线与圆的方程应用讲解如何利用切线方程解决问题,如求解切线方程、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线方程的应用方法第六章:圆的切线与圆的交点应用6.1 圆的切线与圆的交点性质讲解圆的切线与圆的交点的性质,如切线与圆的交点与圆心连线垂直、交点到圆心的距离等于半径等展示切线与圆的交点性质的示意图,让学生理解并记忆这些性质6.2 圆的切线与圆的交点应用讲解如何利用切线与圆的交点解决问题,如求解交点坐标、判断交点与圆的关系等通过示例和练习,让学生掌握切线与圆的交点的应用方法第七章:圆的切线与圆的切线应用7.1 圆的切线与圆的切线相交讲解圆的切线与圆的切线相交的情况和特点展示切线与切线相交的示意图,让学生理解切线与切线的交点、切线与半径的关系7.2 圆的切线与圆的切线平行讲解圆的切线与圆的切线平行的情况和特点通过示例和练习,让学生掌握如何判断切线与切线的位置关系第八章:圆的切线与圆的切线综合应用8.1 圆的切线与圆的切线相切讲解圆的切线与圆的切线相切的情况和特点展示切线与切线相切的示意图,让学生理解切线与切线的切点、切线与半径的关系8.2 圆的切线与圆的切线综合应用讲解如何利用切线与切线综合解决问题,如求解切线与切线的交点、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线与切线综合的应用方法第九章:圆的切线与圆的应用实例9.1 圆的切线与圆的切割应用实例讲解圆的切线与圆的切割应用实例,如切割线段、切割角度等展示切割应用实例的示意图,让学生理解切割原理和应用9.2 圆的切线与圆的轨迹应用实例讲解圆的切线与圆的轨迹应用实例,如轨迹方程、轨迹图形等通过示例和练习,让学生掌握切线与圆的轨迹的应用方法第十章:圆的切线综合练习10.1 圆的切线综合练习题提供一系列圆的切线综合练习题,让学生巩固所学知识通过解答练习题,让学生提高解题能力和综合运用能力10.2 圆的切线综合练习解答提供练习题的解答和解析,帮助学生理解和掌握解题方法通过练习解答,让学生巩固知识,提高学习效果重点和难点解析一、圆的切线定义和判定(第一章)重点关注内容:圆的切线的定义和特点,以及如何判断一条直线是否为圆的切线。

中考与切线有关的定理

中考与切线有关的定理

1与切线有关的定理一、切线的性质及判定 1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定:定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.①切线的判定定理设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线.l AlAl证明一直线是圆的切线有两个思路:(1)连接半径,证直线与此半径垂直;(2)作垂线,证垂足在圆上②切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径. 二、内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.P22. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3.直角三角形的内切圆半径与三边关系OF ED C BACBA CBAcbacba(1) (2)图(1)中,设a b c ,,分别为ABC ∆中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p=,其中()12pa b c =++;图(2)中,90C∠=︒,则()12r a b c =+-cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长例2. 如图所示,已知:AB是⊙O的直径,BC是⊙O的切线,切点为B。

圆的切线的性质及判定定理

圆的切线的性质及判定定理

圆的切线的性质及判定定理圆的相切的定义:直线和圆只有一个公共点,即圆心到直线的距离等于半径,这条直线叫圆的切线。

切线的性质定理:圆的切线垂直于经过切点的半径。

推论1:经过圆心且垂直于切线的直线必经过切点;推论2:经过切点且垂直于切线的直线必经过圆心。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

直线与圆的位置关系:相离:直线和圆没有公共点,即圆心到直线的距离大于半径;相交:直线和圆有两个公共点,即圆心到直线的距离小于半径,这条直线叫圆的割线;相切:直线和圆只有一个公共点,即圆心到直线的距离等于半径,这条直线叫圆的切线。

圆内接四边形的性质与判定定理圆内接四边形的概念:如果一个多边形的所有顶点都在一个圆上,这个多边形就叫做圆内接多边形,这个圆就是多边形的外接圆。

圆内接四边形的性质:圆内接四边形对角互补;圆内接四边形的外角等于它的内角的对角。

圆内接四边形的判定:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

推论:如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。

方法总结:1、在解决与圆内接四边形有关的问题时,要注意观察图形,分清四边形的外角和内对角的位置,正确应用性质.2、当两圆相交时,常常通过连结两圆的公共弦,构建出圆内接四边形,进一步解决问题.圆周角定理圆周角的定义:顶点在圆上,它们的两边在圆内的部分分别是圆的弦•一条弧所对的圆周角等于它所对的圆心角的一半。

圆心角定理:圆心角的度数等于它所对弧的度数。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

圆周角的特点:(1) 角的顶点在圆上;(2) 角的两边在圆内的部分是圆的弦.圆周角和圆心角相对于圆心与直径的位置关系有三种:A A A解题规律:解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.。

圆的切线知识点总结

圆的切线知识点总结

圆的切线知识点总结一、切线的定义在欧式几何中,对圆的切线有以下几种定义:1. 如果一条直线与圆相交于两点,那么这条直线就被称为圆的切线。

2. 一条直线与圆相交于圆上的一点,那么这条直线就是圆的切线。

3. 一条直线与圆相切于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的切线。

这三种定义表达了切线与圆的位置关系,指出了切线与圆的相交情况以及位置特征。

二、切线的性质1. 切线与半径垂直圆的半径与切线的交点处相互垂直。

2. 切线定理若直线l与圆相切于点P,直线l与直径所夹的角为直角。

3. 切线长度相等过圆外一点作一切线与圆相交于A、B两点,连接线A、B,若CA=CB,则线段CA与线段CB构成圆的切线。

4. 切线的判定若直线l经过圆外一点,分别与圆上两点A、B相连,若线段AB的中点恰好是圆心O,那么直线l即为圆的切线。

5. 切线的唯一性圆外一点到圆的切线唯一。

以上是切线的主要性质,这些性质在解题时常常起到重要的作用,特别是在证明几何问题时,能够帮助我们理解和应用切线的知识。

三、切线与圆的位置关系1. 内切线如果一条直线与圆相交于圆上的一点,但直线上的其他点都在圆的内部,那么这条直线就是圆的内切线。

2. 外切线如果一条直线与圆相交于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的外切线。

3. 相切线如果一条直线与圆相切于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的相切线。

切线与圆的位置关系在解题时十分重要,通过分析切线和圆的位置关系,可以帮助我们求解许多几何问题。

四、切线的判定方法1. 切线与圆的位置关系我们可以通过切线与圆的位置关系来判断一条直线是否为圆的切线,如切线的定义所述,可以分析直线与圆的相交情况以及位置特征来判定切线。

2. 对于圆外一点到圆的切线的判定,我们可以利用中位线作图,利用几何思维判定出直线是否为圆的切线。

3. 切线定理的应用切线定理是判定切线的重要原理之一,通过利用切线定理,可以判定一条直线是否为圆的切线。

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)
1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2

圆的切线的性质及判定定理 课件

圆的切线的性质及判定定理 课件

【典例训练】
1.在Rt△ABC中,∠C=90°,AC=3 cB的关系为( )
(A)相切
(B)相离
(C)相交
(D)无法判断
2.如图所示,CB为⊙O的直径,P是CB的延
长线上一点,且OB=BP,∠AOC=120°,
则PA与⊙O的位置关系是_____.
圆的切线的性质
圆的切线的性质 (1)已知一条直线是圆的切线时,常作出过切点的半径,则该半 径垂直于切线,从而出现了直角. (2)从圆外一点引圆的两条切线,这点与圆心的连线平分这两条 切线的夹角,这点到切点的切线长相等. (3)连接圆的两条平行切线的切点的线段是圆的直径.
【典例训练】 1.如图所示,DB,DC是⊙O的两条切线,A是圆上一点,已知 ∠D=46°,则∠A=_____.
DO AD
AD
2.如图,已知EB是半圆O的直径,A是BE延长线上的一点,AC是 半圆O的切线,D为切点,BC⊥AC于C,若BC=6,AC=8,则 AE=_______.
【解析】1.如图所示,连接OB,OC,
则OB⊥BD,OC⊥CD,
则∠DBO+∠DCO=90°+90°=180°,
则四边形OBDC内接于一个圆,
则有∠BOC=180°-∠D=180°-46°=134°,
【解析】连接OC,∵OA=OB,AC=CB,OC=OC, ∴△OAC≌△OBC, ∴∠OCA=∠OCB=90°, ∴直线AB与⊙O相切. 答案:相切
1.圆的切线的其他相关性质 (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)过圆心且过切点的直线与过该点的切线垂直.
2.切线的判定定理 在切线的判定定理中要分清定理的题设和结论,“经过半径外 端”和“垂直于这条半径”这两个条件缺一不可,否则就不是 圆的切线,如图①②中的例子就不同时满足这两个条件,所以 都不是圆的切线.

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

(2)数量关系:到圆心距离等于半径的直线是圆的切线.
(3)定理:过半径外端点且与这条半径 垂直 的直线是圆 的切线. 其中(2)和(3)是由(1)推出的,(2)是用数量关系来判定, 而(3)是用位置关系加以判定的.
[例1]
如图,已知∠C=90°,点O在AC上,CD
为⊙O的直径,⊙O切AB于E,若BC=5,AC=12.求⊙O
的半径. [思路点拨] ⊙O切AB于点E,
由圆的切线的性质,易联想到连接 OE构造Rt△OAE,再利用相似三角
形的性质,求出⊙O的半径.
[解] 连接 OE, ∵AB 与⊙O 切于点 E, ∴OE⊥AB,即∠OEA=90° . ∵∠C=90° ,∠A=∠A, ∴Rt△ACB∽Rt△AEO, OE AO ∴BC = AB. ∵BC=5,AC=12,∴AB=13, OE 12-OE ∴ = , 5 13 10 ∴OE= . 3 10 即⊙O 的半径为 . 3
要证明某直线是圆的切线,主要是运用切线的判
定定理,除此以外,还其 中过圆心作直线的垂线是常用辅助线.
3.本例中,若将已知改为“∠ABD=∠C”,怎样证明: AB是△BCD的外接圆的切线. 证明:作直径BE,连接DE, ∵BE是⊙O的直径,
对圆的切线的性质与判定的综合考查往往是热
点,其解答思路常常是先证明某直线是圆的切线, 再利用切线的性质来求解相关结果.
5.如图, 已知两个同心圆 O, 大圆的直径 AB 交 小圆于 C、 大圆的弦 EF 切小圆于 C, D, ED 交小圆于 G,若小圆的半径为 2,EF=4 3, 试求 EG 的长.
[例 2]
已知 D 是△ABC 的边 AC 上的一点,AD∶DC
=2∶1,∠C=45° ,∠ADB=60° ,求证:AB 是△BCD 的外 接圆的切线. [思路点拨] 连接OB,OC,OD → ∠BOD=90° → ∠OBC=∠OCB=30° ∠ABO=90° 结论 . → →

圆的切线性质与判定

圆的切线性质与判定
小试牛刀
例2:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F, (1)求证:DF是⊙O的切线;
证明:连结OD, ∵OB=OD,∴∠ODB=∠B 又∵AB=AC,∴∠C=∠B ∴∠ODB=∠C ∴OD∥AC 又∵DF⊥AC ∴∠DFC=90° ∴∠ODF=∠DFC=90° ∴DF⊥OD ∴DF为⊙O的切线
注意:确定唯一公共点,可证明直线和圆相切
例1:直线l和⊙O的公共点的个数为m,且m满足方程 m2+2m- 3=0, 试判断直线l和⊙ O的位置关系,并 说明理由.
例3.如图,直线y=- x+4与y轴交于点A,与x轴交于 点B,以点C( ,0)为圆心,OC的长为半径作⊙C, 证明:AB是⊙C的切线。 M 分析:由于不知AB和⊙C是否有公共点,故考虑过C作CM⊥AB于M,再证CM为⊙C的半径即可
小结一
确定唯一公共点,证切线
无交点,作垂直,证半径
有交点,连半径,证垂直
证明切线的一般方法简单表述为:
小试牛刀
例3:如图,已知:AB=AC,点O在AB上,⊙O过点B,分别与边BC、AB交于D、E两点,过D点作DF⊥AC于F,
(2)连结OP ∵AC与⊙O相切于点P,∴OP⊥AC 由(1)可知OD∥AC,且DF⊥AC, 故四边形ODFP为正方形 ∴PF=OD=OB=3 设AC=x,则在Rt△APO中有 AP2+OP2=OA2 即(x-4)2+32=(x-3)2 解得x=8 ∴AC=8
是圆的切线
是圆的切线
是圆的切线
3、圆的切线性质定理:圆的切线垂直于经过切点的半径。 辅助线作法:连接圆心与切点可得半径与切线垂直。 即“连半径,得垂直”。

圆的切线判定定理

圆的切线判定定理

圆的切线判定定理
圆的切线判定定理是一个用于判断一条直线是否为圆的切线的准则。

根据该定理,当一条直线与圆相切时,该直线与圆的切点之间的线段与圆的半径垂直。

具体来说,如果一条直线与圆相交,且通过与圆的切点,与圆的半径垂直相交,那么这条直线就是圆的切线。

换句话说,这条直线切到了圆的边界,只与圆相交于切点。

这个定理可以用一个简单的几何证明来解释。

假设有一个圆和一条直线,直线通过圆的切点,并且与圆的半径垂直相交。

我们可以证明这条直线是圆的切线,因为根据几何定理,直线与圆的边界只能相交于两个点,而这两个点中的一个就是切点。

因此,这条直线与圆的边界只有一个交点,这就是切点,所以这条直线是圆的切线。

总之,圆的切线判定定理告诉我们,当一条直线与圆相交,且通过切点与圆的半径垂直相交时,这条直线就是圆的切线。

圆的切线的性质及判定定理

圆的切线的性质及判定定理
直线作垂线,再证明此垂线段是圆的半径,即用距离法证明;通常不
用定义法证明.
题型一
题型二
题型一
圆的切线性质的应用
【例1】 如图,在△ABC中,AB=AC,以AB为直径的☉O交BC于点D,
过点D作☉O的切线交AC于E.
求证:DE⊥AC.
分析:由DE是☉O的切线,知OD⊥DE,故要证明DE⊥AC,只需要证
证:CD是☉O的切线.
分析:只需证明OE⊥CD即可.
题型一
题型二
证明:如图,连接OE.
∵OA=OE,∴∠1=∠2.
又∵AE平分∠BAF,
∴∠2=∠3.∴∠1=∠3.
∴OE∥AD.
∵AD⊥CD,∴OE⊥CD.
∴CD与☉O相切于点E.
反思根据圆的切线性质判定圆的切线是平面几何中最常用的方
法.这种方法的步骤是:①连接圆心和公共点;②转化为证明直线过
∴∠ODC=∠OBC=90°.
又∵点D在圆上,∴DC是☉O的切线.
公共点且垂直于所连线段.由此看出,证明圆的切线可转化为证明
直线垂直.
题型一
题型二
【变式训练2】 如图,AB是☉O的直径,BC是☉O的切线,切点为
B,OC平行于弦AD.求证:DC是☉O的切线.
证明:如图,连接OD.
∵OC∥AD,∴∠1=∠3,∠2=∠4.
又∵∠1=∠2,∴∠4=∠3.
∵OD=OB,OC=OC,∴△ODC≌△OBC.

圆的切线的性质及判定定理
1.理解切线的性质定理及其两个推论,并能解决相关的计算或证
明问题.
2.掌握切线的判定定理,会判定直线与圆相切.
判定切线的方法
剖析:判定切线通常有三种方法:(1)定义法:和圆有唯一一个公共

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

圆的十八个定理

圆的十八个定理

圆的十八个定理圆的十八个定理包括:1.圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。

2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

3.垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

4.切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

5.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。

6.公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。

如果他们相交,那么交点一定在两圆的连心线上。

7.相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。

8.切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。

9.割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

10.切线的性质定理:圆的切线垂直于经过切点的半径。

11.弦切角定理:弦切角等于它所夹的弧对的圆周角。

12.定理:相交两圆的连心线垂直平分两圆的公共弦。

13.把圆分成n(n≥3)个等分:依次连结各分点所得的多边形是这个圆的内接正n边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

14.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

15.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

16.圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

17.两圆的半径分别为R、r,圆心距为d:两圆外离d>R+r;两圆外切d=R+r;两圆相交R-r<dr);两圆内切d=R-r(R>r);两圆内含d<R-r(R>r)。

18.圆锥曲线:圆是一种特殊的圆锥曲线,它是由一个固定点(焦点)和一个固定直线(准线)上的所有点的轨迹组成的。

圆的切线的性质及判定定理

圆的切线的性质及判定定理

三圆的切线的性质及判定定理[对应学生用书P25]1.切线的性质(1)性质定理:圆的切线垂直于经过切点的半径. 如图,已知AB 切⊙O 于A 点,则OA ⊥AB .(2)推论1:经过圆心且垂直于切线的直线必经过切点. (3)推论2:经过切点且垂直于切线的直线必经过圆心. 2.圆的切线的判定方法(1)定义:和圆只有一个公共点的直线是圆的切线. (2)数量关系:到圆心距离等于半径的直线是圆的切线. (3)定理:过半径外端点且与这条半径垂直的直线是圆的切线.其中(2)和(3)是由(1)推出的,(2)是用数量关系来判定,而(3)是用位置关系加以判定的.[说明] 在切线的判定定理中要分清定理的题设和结论,“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则该直线就不是圆的切线.[对应学生用书P25]圆的切线的性质[例1] 如图,已知∠C =90°,点O 在AC 上,CD 为⊙O 的直径,⊙O 切AB于E ,若BC =5,AC =12.求⊙O 的半径.[思路点拨] ⊙O 切AB 于点E ,由圆的切线的性质,易联想到连接OE 构造Rt △OAE ,再利用相似三角形的性质,求出⊙O 的半径.[解] 连接OE ,∵AB 与⊙O 切于点E , ∴OE ⊥AB ,即∠OEA =90°. ∵∠C =90°,∠A =∠A , ∴Rt △ACB ∽Rt △AEO , ∴OE BC =AOAB. ∵BC =5,AC =12,∴AB =13, ∴OE 5=12-OE 13,∴OE =103.即⊙O 的半径为103.利用圆的切线的性质来证明或进行有关的计算有时需添加辅助线,其中连接圆心和切点的半径是常用辅助线,从而可以构造直角三角形,利用直角三角形边角关系求解,或利用勾股定理求解,或利用三角形相似求解等.1.如图,AB 切⊙O 于点B ,延长AO 交⊙O 于点C ,连接BC .若∠A =40°,则∠C =( )A .20°B .25°C .40°D .50°解析:连接OB ,因为AB 切⊙O 于点B ,所以OB ⊥AB ,即∠ABO =90°,所以∠AOB =50°.又因为点C 在AO 的延长线上,且在⊙O 上, 所以∠C =12∠AOB =25°.答案:B2.如图,已知P AB 是⊙O 的割线,AB 为⊙O 的直径.PC 为⊙O 的切线,C 为切点,BD ⊥PC 于点D ,交⊙O 于点E ,P A =AO =OB =1.(1)求∠P 的度数; (2)求DE 的长. 解:(1)连接OC .∵C 为切点,∴OC ⊥PC ,△POC 为直角三角形. ∵OC =OA =1,PO =P A +AO =2, ∴sin ∠P =OC PO =12.∴∠P =30°.(2)∵BD ⊥PD ,∴在Rt △PBD 中, 由∠P =30°,PB =P A +AO +OB =3, 得BD =32.连接AE .则∠AEB =90°,∴AE ∥PD . ∴∠EAB =∠P =30°,∴BE =AB sin 30°=1,∴DE =BD -BE =12.圆的切线的判定[例2] 已知D 是△ABC ADB =60°,求证:AB 是△BCD 的外接圆的切线.[思路点拨]连接OB ,OC ,OD →∠BOD =90°→ ∠OBC =∠OCB =30°→∠ABO =90°→结论. [证明] 如图,连接OB ,OC ,OD ,OD 交BC 于E . ∵∠DCB 是BD 所对的圆周角, ∠BOD 是BD 所对的圆心角,∠BCD =45°, ∴∠BOD =90°.∵∠ADB 是△BCD 的一个外角, ∴∠DBC =∠ADB -∠ACB =60°-45°=15°, ∴∠DOC =2∠DBC =30°, 从而∠BOC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°. 在△OEC 中,因为∠EOC =∠ECO =30°, ∴OE =EC ,在△BOE 中,因为∠BOE =90°,∠EBO =30°. ∴BE =2OE =2EC , ∴CE BE =CD DA =12, ∴AB ∥OD ,∴∠ABO =90°, 故AB 是△BCD 的外接圆的切线.要证明某直线是圆的切线,主要是运用切线的判定定理,除此以外,还有圆心到直线的距离等于半径等判定方法,但有时需添加辅助线构造判定条件,其中过圆心作直线的垂线是常用辅助线.3.本例中,若将已知改为“∠ABD =∠C ”,怎样证明:AB 是△BCD 的外接圆的切线. 证明:作直径BE ,连接DE , ∵BE 是⊙O 的直径,∴∠BDE =90°, ∴∠E +∠DBE =90°. ∵∠C =∠E ,∠ABD =∠C , ∴∠ABD +∠DBE =90°. 即∠ABE =90°.∴AB 是△BCD 的外接圆的切线.4.如图,△ABC 内接于⊙O ,点D 在OC 的延长线上,sin B =12,∠D =30°.(1)求证:AD 是⊙O 的切线. (2)若AC =6,求AD 的长. 解:(1)证明:如图,连接OA , ∵sin B =12,∴∠B =30°,∵∠AOC =2∠B ,∴∠AOC =60°, ∵∠D =30°,∴∠OAD =180°-∠D -∠AOC =90°, ∴AD 是⊙O 的切线. (2)∵OA =OC ,∠AOC =60°,∴△AOC 是等边三角形,∴OA =AC =6, ∵∠OAD =90°,∠D =30°, ∴AD =3AO =6 3.圆的切线的性质和判定的综合考查[例3] 如图,AB 为⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线BF 交AD 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若DE =3,⊙O 的半径为5,求BF 的长. [思路点拨] (1)连接OD ,证明OD ⊥DE ; (2)作DG ⊥AB . [证明] (1)连接OD , ∵D 是BC 中点,∴∠1=∠2. ∵OA =OD ,∴∠2=∠3. ∴∠1=∠3. ∴OD ∥AE .∵DE ⊥AE ,∴DE ⊥OD ,即DE 是⊙O 的切线. (2)过D 作DG ⊥AB , ∵∠1=∠2,∴DG =DE =3. 在Rt △ODG 中,OG =52-32=4, ∴AG =4+5=9.∵DG ⊥AB ,FB ⊥AB ,∴DG ∥FB . ∴△ADG ∽△AFB . ∴DG BF =AG AB. ∴3BF =910.∴BF =103.对圆的切线的性质与判定的综合考查往往是热点,其解答思路常常是先证明某直线是圆的切线,再利用切线的性质来求解相关结果.5.如图,已知两个同心圆O ,大圆的直径AB 交小圆于C 、D ,大圆的弦EF 切小圆于C ,ED 交小圆于G ,若小圆的半径为2,EF =43,试求EG 的长.解:连接GC ,则GC ⊥ED . ∵EF 和小圆切于C , ∴EF ⊥CD ,EC =12EF =2 3.又CD =4,∴在Rt △ECD 中, 有ED =EC 2+CD 2 =(23)2+42=27.由射影定理可知EC 2=EG ·ED , ∴EG =EC 2ED =(23)227=677.6.如图,以Rt △ABC 直角边AC 上一点O 为圆心,OC 为半径的⊙O 与AC 的另一个交点为E ,D 为斜边AB 上一点且在⊙O 上,AD 2=AE ·AC .(1)证明:AB 是⊙O 的切线; (2)若DE ·OB =8,求⊙O 的半径. 解:(1)证明:连接OD ,CD ,∵AD 2=AE ·AC , ∴AD AE =ACAD.又∵∠DAE =∠DAC , ∴△DAE ∽△CAD ,∴∠ADE =∠ACD . ∵OD =OC ,∴∠ACD =∠ODC , 又∵CE 是⊙O 的直径,∴∠ODE +∠CDO =90°,∴∠ODA =90°, ∴AB 是⊙O 的切线. (2)∵AB ,BC 是⊙O 的切线,∴OB ⊥DC ,∴DE ∥OB ,∴∠CED =∠COB , ∵∠EDC =∠OCB ,∴△CDE ∽△BCO , ∴DE CO =CEBO,DE ·OB =2R 2=8, ∴⊙O 的半径为2.[对应学生用书P27]一、选择题1.下列说法:①与圆有公共点的直线是圆的切线;②垂直于圆的半径的直线是圆的切线;③与圆心的距离等于半径的直线是圆的切线;④过直径的端点,垂直于此直径的直线是圆的切线.其中正确的有( )A .①②B .②③C .③④D .①④答案:C2.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 交⊙O 于D .AB =6,BC =8,则BD 等于( )A .4B .4.8C .5.2D .6解析:∵AB 是⊙O 的直径,∴BD ⊥AC . ∵BC 是⊙O 的切线,∴AB ⊥BC . ∵AB =6,BC =8,∴AC =10. ∴BD =AB ·BCAC =4.8.答案:B3.如图,CD 切⊙O 于B ,CO 的延长线交⊙O 于A ,若∠C =36°,则∠ABD 的度数是( )A .72°B .63°C .54°D .36°解析:连接OB .∵CD 为⊙O 的切线,∴∠OBC =90°. ∵∠C =36°,∴∠BOC =54°. 又∵∠BOC =2∠A ,∴∠A =27°, ∴∠ABD =∠A +∠C =27°+36°=63°. 答案:B4.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD 的延长线交于C ,若AD =DC ,则sin ∠ACO 等于( )A.1010 B.210 C.55D.24 解析:连接BD ,则BD ⊥AC .∵AD =DC ,∴BA =BC , ∴∠BCA =45°.∵BC 是⊙O 的切线,切点为B , ∴∠OBC =90°.∴sin ∠BCO =OB OC =OB 5OB =55,cos ∠BCO =BC OC =2OB 5OB =255.∴sin ∠ACO =sin(45°-∠BCO ) =sin 45°cos ∠BCO -cos 45°sin ∠BCO =22×255-22×55=1010. 答案:A 二、填空题5.如图,已知∠AOB =30°,M 为OB 边上一点,以M 为圆心、2为半径作⊙M .若点M 在OB 边上运动,则当OM =________时,⊙M 与OA 相切.解析:若⊙M 与OA 相切,则圆心M 到直线OA 的距离等于圆的半径2.过M作MN⊥OA于点N,则MN=2.在Rt△MON中,∵∠MON=30°,∴OM=2MN=2×2=4.答案:46.已知P A是圆O的切线,切点为A,P A=2,AC是圆O的直径,PC与圆O交于B点,PB=1.则圆O 的半径R=________.解析:AB=AP2-PB2= 3.由AB2=PB·BC,∴BC=3,Rt△ABC中,AC=AB2+BC2=2 3.∴R= 3.答案: 37.圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E,则∠DAC=________,DC=________.解析:连接OC,∵OC=OB,∴∠OCB=∠OBC.又∠DCA+∠ACO=90°,∠ACO+∠OCB=90°,∴∠DCA=∠OCB,∵OC=3,BC=3,∴△OCB是正三角形.∴∠OBC=60°,即∠DCA=60°.∴∠DAC=30°.在Rt△ACB中,AC=AB2-BC2=33,DC=AC sin 30°=32 3.答案:30°33 2三、解答题8.如图所示,D是⊙O的直径AB的延长线上一点,PD是⊙O的切线,P是切点,∠D=30 °.求证:P A=PD.证明:如图,连接OP,∵PD是⊙O的切线,P为切点.∴PO⊥PD.∵∠D=30°,∴∠POD=60°.又∵OA=OP,∴∠A=∠APO=30°.∴∠A=∠D.∴P A=PD.9.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,过D点作⊙O的切线交AC于E.求证:(1)DE⊥AC;(2)BD2=CE·CA.证明:(1)连接OD,AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC.∴DE⊥AC.(2)∵AD⊥BC,DE⊥AC,∴△CDE∽△CAD.∴CDCA=CECD.∴CD2=CE·CA.∴BD=DC.∴BD2=CE·CA.10.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1 cm,求BD的长.解:(1)证明:连接OA.∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD.∴∠OAD=∠EDA.∴OA∥CE.∵AE⊥DE,∴∠AED=90°,∴∠OAE=∠DEA=90°.∴AE⊥OA.∴AE是⊙O的切线.(2)∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∴∠BDC=60°.∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1 cm,∴BD的长是4 cm.。

人教版高中数学选修4-1《2.3圆的切线的性质及判定定理》

人教版高中数学选修4-1《2.3圆的切线的性质及判定定理》
∴OC⊥CD.
D C
又∵AD⊥CD,
∴OC//AD.由此得 ∠ACO=∠CAD. ∵OC=OA. ∴ ∠CAO=∠ACO. ∴ ∠CAD=∠CAO. 故AC平分∠DAB.
A O B
习题2.3
1.如图,△ABC为等腰三角形,O是底边BC的中点, ⊙O与腰AB相切于点D.
求证:AC与⊙O相切.
D
A
E
B
线的性质及它的两个推论 概括出来吗?
如果一条直线具备下列三个条件中的任意两个, 就可以推出第三个:(1)垂直于切线;(2) 过切点;(3)过圆心。
直线经过切点
切线垂直于半径
经过圆心
垂直于切线
直线经过切点 经过圆心
垂直于切线 经过圆心 直线经过切点
练一练
按图填空: (1). 如果AB是⊙O的切线, 那么 OA ⊥ AB. (2). 如果OA⊥AB,那 么AB是 ⊙O的切线
A
O
D E
.
B
F
例1 如图,AB是⊙O的直径, ⊙O过BC的中点D, DE⊥AC.求证:DE是⊙O是切线.
证明:连接OD. ∵BD=CD,OA=OB,
∴OD是△ABC的中位线, ∴OD//AC. 又∵∠DEC=90º
E D C
∴∠ODE=90º
又∵D在圆周上,
A O
B
∴DE是⊙O是切线..
例2 如图. AB为⊙O的直径,C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D. 求证:AC平分∠DAB. 证明:连接OC, ∵CD是⊙O的切线,
几何语言:∵ l 相切⊙O于A, A是切点, OA是⊙O的半径 ∴l ⊥OA. 提示:切线的性质定理是证明两条直线垂直的重要根据; 作过切点的半径是常用辅助线之一.

3圆的切线的性质及判定定理

3圆的切线的性质及判定定理
③_∠__B_A__C_+_∠__C__A_E_=. 90° (2)图乙, AB为非直径的弦,∠CAE=∠B.求证:EF是⊙O的
切线.
H
6.如图所示,半径为2的P 的圆心在直线 y 2x 1上运动. y
⑴ 当P和 x 轴相切时,写出
y=2x-1
点P的坐标;
⑵ 当P和 y 轴相切时,写出 P 点P的坐标;
2.如图,AB是⊙O的直径, C为⊙O上
一点,AD和过点C的切线互相垂直,
垂足为D.
证明:连接OC.
求∵C证D 是:⊙AO的C切平线分, ∠DAB.
∴OC⊥CD.
又∵AD⊥CD ,
D
∴OC//AD.
∴∠ACO= ∠CAD .
又∵OC=OD, ∴∠CAO= A∠ACO O
∴∠CAD= ∠CAO ,
故AC平分∠DAB.
C
D
3
1
42
A
O
B
变式2:如图,△ABC为等腰三角形,O是底边BC的中点,⊙O与 腰AB相切于点D,求证:AC与⊙O相切.
已知:三角形ABC内接于⊙O,过点A作直线EF. (1)图甲,AB为直径,要使得EF是⊙O切线,还需添加的条件 (只需写出三种情况)①∠__C__A_E__=_∠__B_②_A__B_⊥__F_E______
分析:如图
C
600 600
. 300
A
600 O
B
D
300
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为
半径作⊙O。
求证:⊙O与AC相切。
D
B
证明:过O作OE⊥AC于E。 ∵ AO平分∠BAC,OD⊥AB ∴ OE=OD ∵ OD是⊙O的半径 ∴ AC是⊙O的切线。

圆的切线的性质及判定定理 课件

圆的切线的性质及判定定理   课件

[解题过程] (1)证明:依据题意,得 a+b=c+4,ab=4(c+2), 则 a2+b2=(a+b)2-2ab =(c+4)2-2×4(c+2)=c2, 所以△ABC 是直角三角形.
(2)∵∠C=90°,tan A=ab=34, ∴不妨设 a=3k,b=4k,则 c=5k(k>0), 代入 a+b=c+4,得 k=2. ∴a=6,b=8,c=10. 连接 OE,得 BC∥OE. ∴OBCE=AAOB,即O6E=10-10OE.解得 OE=145. 在 Rt△AOE 中,tan A=OAEE=34,∴AE=5.
[规律方法] 用切线的性质定理求解线段的长度时,应注 意哪些问题?
(1)如果已知三边的一元二次方程,可利用韦达定理建立起 三角形的三边之间的关系;
(2)在应用切线的性质定理及其推论进行几何证明和求解 时,如果已知切点,则连接圆心和切点构成垂直是一种常用的 方法.
(江苏高考)AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB
[思路点拨]
[解题过程] 如图所示,连接OA、OB、OC.
∵PA和PB分别切⊙O于点A和B, ∴∠PAO=∠PBO=90°. ∴∠AOB+∠APB=180°. ∴∠AOB=180°-∠APB=140°. ∵DC切⊙O于点C,∴∠OCD=90°.
又∵∠PAO=90°, 在 Rt△CDO 与 Rt△ADO 中, 有 OD=DO,CO=AO, ∴△CDO≌△ADO.
∴∠COD=∠AOD=12∠COA. 同理可证,∠COE=∠BOE=12∠COB.
∴∠DOE=12(∠COA+∠COB)=12×140°=70°.
[规律方法] (1)如何利用切线性质定理及推论求解有关角 的问题?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 如图. AB为⊙O的直径,C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D. 求证:AC平分∠DAB. 证明:连接OC, ∵CD是⊙O的切线,
∴OC⊥CD.
D C
又∵AD⊥CD,
∴OC//AD.由此得 ∠ACO=∠CAD. ∵OC=OA. ∴ ∠CAO=∠ACO. ∴ ∠CAD=∠CAO. 故AC平分∠DAB.
A O
B
7 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
习题2.3
1.如图,△ABC为等腰三角形,O是底边BC的中点, ⊙O与腰AB相切于点D.
求证:AC与⊙O相切.
D
A
E
B
O
C
8 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
2.已知:OA和OB是⊙O的半径,并且OA⊥OB,P是OA 上任意一点,BP的延长线交⊙O于Q.过Q作⊙O的切 线交OA的延长线于R,. 求证:RP=RQ
4 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
切线的判定定理:
经过半径的外端并且垂直于这条半径的直线是圆的切线. 在直线上任取异于A的点B.
l
A
B
连OB.
则在Rt△ABO中
OB>OA=r
O
故B在圆外
.直线与圆只有一个公共点, 是切线.
5 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
12 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
小结:
1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
13 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
切线的性质定理: 圆的切线垂直于经过切点的半径
l
A
M
反 证 法
假设不垂直, 作OM⊥ l 因“垂线段最短”,
O
故OA>OM, 即圆心到直线距离小于半径. 这与线圆相切矛盾.
推论1: 经过圆心且垂直于切线的直线必经过切点. 推论2: 经过切点且垂直于切线的直线必经过圆心.
思考:
切线的性质定理逆命题是否成立?
B
P O Q
A R
∠AQO= ∠APQ
9 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
3.AB是⊙O的直径,BC是⊙O的切线,切点为B,OC 平行于弦AD. 求证:DC是⊙O的切线.
C
D
3 1 4 2
A
O
B
△COD与COB全等
10 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
作业:
如图,AB为⊙O的直径,AD平分<BAE ,DE⊥AC交 AC的延长线于E,⊙O的切线BF交AD的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5, 求BF的长.
15 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
16 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
例1 如图,AB是⊙O的直径, ⊙O过BC的中点D, DE⊥AC.求证:DE是⊙O是切线.
证明:连接OD. ∵BD=CD,OA=OB,
∴OD是△ABC的中位线, ∴OD//AC. 又∵∠DEC=90º
E D C
∴∠ODE=90º
又∵D在圆周上,
A O
B
∴DE是⊙O是切线..
6 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
(2)数量关系:到圆心距离等于半径的直线是圆的切线.
(3)定理:过半径外端点且与这条半径 垂直 的直线是圆 的切线. 其中(2)和(3)是由(1)推出的,(2)是用数量关系来判定, 而(3)是用位置关系加以判定的.
14 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
1 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
2 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
三. 圆的切线的性质及判定定理
圆与直线的位置关系:
相交-----有两个公共点 相切-----只有一个公共点 相离-----没有公共点
3 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
4. 如图,正方形ABCD是⊙O的内接正方形,延长BA
到 E,使AE=AB,连接ED.
(1)求证:直线ED是⊙O的切线; (2)连接EO交AD于点F,求证: EF=2FO.
11 [普通高中课程数学选修4-1] 第二讲 直线与圆的位置关系
解:(1)证明:连接 OD. ∵四边形 ABCD 为正方形, AE=AB, ∴AE=AB=AD, ∠EAD=∠DAB=90° . ∴∠EDA=45° ,∠ODA=45° . ∴∠ODE=∠ADE+∠ODA=90° . ∴直线 ED 是⊙O 的切线. (2)作 OM⊥AB 于 M. ∵O 为正方形的中心,∴M 为 AB 的中点. ∴AE=AB=2AM,AF∥OM. EF AE ∴FO=AM=2,∴EF=2FO.
[证明]
(1)连接 OD,
∵AD 平分<BAE ∴∠1=∠2. ∵OA=OD, ∴∠2=∠3. ∴∠1=∠3.
∴OD∥AE. ∵DE⊥AE,
∴DE⊥OD,即 DE 是⊙O第二讲 直线与圆的位置关系
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9. ∵DG⊥AB,FB⊥AB,∴DG∥FB. ∴△ADG∽△AFB. DG AG ∴ BF = AB. 3 9 10 ∴BF= .∴BF= . 10 3
相关文档
最新文档