27.2.1_相似三角形的判定(3)

合集下载

27.2.1_相似三角形的判定(复习)

27.2.1_相似三角形的判定(复习)

b 1 B
D
四、中考透视
1、如图正方形边长是2,BE=CE,MN=1。线段MN 的两端在CD、AD上滑动,当DM为多长时,△ABE 与以D、M、N为顶点的三角形相似。
A
N
D
M
A
N
D
M
B
E
C
B
E
C
2、已知在△ABC中,∠C=90o ,AC=8cm,BC=6cm, 点P从点A出发,沿AC以3厘米/秒的速度向点C移动, 点Q从点B出发,沿BA以4厘米/秒的速度向点A移动。 如果P、Q分别从A、B 同时出发,移动时间为t秒 (0<t<2.5)。 当t为何值时,以Q、A、P为顶点的三角 形与△ ABC相似?
1、已知如图,DC∥AB,AC、BD相交于点 O,AO=BO,DF=FB 求证:DE2=EC· EO 证明: ∵OA=OB ∴∠3=∠2 ∵DF=FB ∴∠1=∠2 ∵DC∥AB ∴∠3=∠4 ∴∠1=∠4 又∵∠DEO=∠DEC ∴△DEO∽ △CED ∴ DE/CE = EO/DE ∴DE2=EC· EO
B
E F C
O D
明理由。
A
巩固提高:
2.如图,在□ABCD中,已知E是 AB的中点,在AD上截取AF=FD, AG EF交AC于G,求 的值.
AC
A E B G
F
D
C
1 、 在△ ABC 与△ AB C 中,有下列条 件: BC AC AB BC ① AB B C ;② ; B C ③∠ AC A=∠ C ④∠ A C =∠ 。如果从中任取两个条件 组 成 一 组 , 那 么 能 判 断 △ ABC∽△ AB C 的共有( )组。 A、1 B 、2 C、3 D、4

27.2.1 相似三角形的判定--三边

27.2.1 相似三角形的判定--三边

D B 分析: 分析: DE∽△ △A′DE∽△A′B′C′ DE≌△ △A′DE≌△ABC C B′
E C′
} ?
△ABC∽△A′B′C′ ABC∽△
相似三角形的判定 简称:三边) 3、(简称:三边):如果两个三角形的三组对 应边的比相等,那么这两个三角形相似. 应边的比相等,那么这两个三角形相似.
相似三角形的判定
对应角相等, 1、 对应角相等,三组对应边的比也相等的两 个三角形是相似三角形 相似三角形. 个三角形是相似三角形. A′符号语言: △ABC和△A´B´C´中, ′ 符号语言: 在 ABC和 A
∵ ∠ A = ∠ A ′, ∠ B = ∠ B ′, ∠ C = ∠ C ′ B C B′ C′
D B E C
∴△ADE∽△ABC ∽
探究: 探究:
任意画一个△ABC中 再画一个△ 任意画一个△ABC中, 再画一个△ A´B´C´, 使它 的各边长都是△ABC各边长的 各边长的k 的各边长都是△ABC各边长的k倍. 度量这两个三角形的对应角,它们相等吗? (1)度量这两个三角形的对应角,它们相等吗? ABC与 有什么关系? (2) △ABC与△ A´B´C有什么关系? A′ A
B
C B′ C′
结论:如果两个三角形的三组对应边的比 结论: 相等,那么这两个三角形相似. 相等,那么这两个三角形相似.
推理论证: 推理论证:
已知: 已知:在△ABC和△A′B′C′中 ABC和 求证: ABC∽△ 求证:△ABC∽△A′B′C′ A
AB BC AC , = = A′B′ B′C′ A′C′ A′
4cm
5cm
3cm
小结: 小结:
与同桌交流一下你这节课的收获! 与同桌交流一下你这节课的收获 相似三角形判定方法

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

27.2.1相似三角形的判定(第3课时)一、内容和内容解析1.内容判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.2.内容解析全等是相似中放缩比例为1的特殊情形,这为我们提供了一个思路:类比判定两个三角形全等的“SSS”“SAS”方法,发现并提出判定两个三角形相似的简单方法.在探究“三边成比例的两个三角形相似”的过程中,学生通过度量,发现结论成立,再通过作与△A'B'C'相似的三角形,把证明相似的问题转化为证明所作三角形与△ABC全等的问题.“两边成比例且夹角相等的两个三角形相似”的证法与前一个判定方法的证明方法类似,再次体现了定理“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的基础性作用.基于以上分析,确定本节课的教学重点是:判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.二、目标和目标解析1.目标(1)理解三角形相似的两个判定定理.(2)会运用三角形相似的两个判定定理解决简单的问题.2.目标解析达成目标(1)的标志是:理解两个判定定理的含义,能分清条件和结论,能用文字语言、图形语言和符号语言表示.达成目标(2)的标志是:会用两个判定定理判定两个三角形相似,从而解决简单的问题.三、教学问题诊断分析在两个判定定理的证明过程中,教科书作了一个中介三角形,使之与要证的三角形相似,再利用相似三角形对应边成比例和已知条件证明“中介三角形”与原三角形全等,这种转化的方法学生往往难以想到.其中通过线段的比相等证明线段相等,不同于以往常用的证明线段相等的方法,也会给定理的证明带来一定难度.基于以上分析,确定本节课的教学难点是:判定定理“三边成比例的两个三角形相似”的证明.四、教学过程设计 1.问题引入,类比猜想问题1 (1)两个三角形全等有哪些简便的判定方法?(2)全等是相似比为1的特殊情形.如图1,类比三角形全等的判定,判定△ABC 与△A'B'C'相似,是否有简便的判定方法?你有什么猜想?师生活动:问题(1)由学生口答.问题(2)组织学生分小组讨论,然后全班交流.如果学生对“两角对应相等的两个三角形相似”是否正确存在疑问,可存疑,留在下一节课解决.对学生提出的判断三角形相似的方法进行归纳整理,指出本节课先研究“三边”和“两边及其夹角”的情形.设计意图:通过全等三角形与相似三角形之间特殊与一般的关系,运用类比的思维方式,让学生猜想出两三角形相似的简单判定方法,从而引出下一步要探究的问题.2.画图探究,初步感知问题2 在△ABC 与△A'B'C'中,如果满足B A AB ''=C B BC ''=C A AC''=k ,那么能否判定这两个三角形相似?师生活动:(1)画图探究.教师引导学生任意画△ABC ,取一个便于操作的k 值(如21,2等),得到△A'B'C'的三边长,再作出△A'B'C'.指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似.(2)教师借助《几何画板》对k 取任意值的情况进行演示,让学生归纳发现的结论.并说明k =1时两个三角形全等,即全等是相似的特殊情况.设计意图:在教师的指导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.k 取1时,两个三角形全等,取其他值时,两个三角形相似,进一步感受相似与全等的紧密联系.《几何画板》的动态演示,有利于学生更直观地发现结论.ABCA 'B 'C '图13.构造中介,证明定理问题3 怎样证明“三边成比例的两个三角形相似”呢? 师生活动:(1)学生结合图形写出已知、求证并交流讨论.(2)当学生感到无处入手时,教师用学生剪出的△ABC 与△A'B'C'的纸片为模型,用较小的△ABC 放置于较大△A'B'C'的上(学生取的k 值不同,可能会出现两种图形,但证明的本质是相同的),点A 与点A'重合,点B 在边A'B'上,记为点D ,将点C 在A'C'上的位置记为点E .教师追问1:B'C'与DE 有什么位置关系?为什么? 师生活动:学生直观发现B'C'∥DE .教师追问2:由B'C'与DE 的位置关系可得到△A'DE 与△A'B'C'相似吗?为什么? 师生活动:学生回答由“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,得到△A'DE 与△A'B'C'相似.教师追问3:我们先构造了一个与△ABC 全等的中介△A'DE ,得到△A'DE ∽△A'B'C',然后可得△ABC ∽△A'B'C'.这为我们证明“三边成比例的两个三角形相似”提供了一个思路:能否在△A'B'C'上作一个与△A'B'C'相似的△A'DE ,再证明它与△ABC 全等呢?如何作?师生活动:(1)学生思考交流.教师展示学生的不同作法,并请学生说明△A'DE 与 △ABC 全等的原因.(2)由学生整理出证明思路,教师板书,从而得到三角形相似的判定定理.设计意图:让学生在操作中发现解决问题的方法:作DE ∥B'C',证明△A'DE ∽△A'B'C',从而把证明“△ABC 与△A'B'C'相似”的问题转化为证明△ABC ≌△A'DE 的问题.4.类比实验,自主探究问题4 全等三角形有“SAS ”的判定方法,类似地,△ABC 和△A'B'C'中,如果满足B A AB''=C A AC''=k ,且∠A =∠A',那么能否判定这两个三角形相似? 师生活动:(1)教师借助《几何画板》对k 取任意值的情况进行演示,看△ABC 和△A'B'C'的另一组对应边的比是否为k ,另两组对应角是否相等.问:图中的△ABC 与△A'B'C'相似吗?为什么?学生提出猜想的结论.(2)学生模仿上一个定理的证明,讨论问题4的证明思路,在课后完成证明过程. (3)师生小结判定定理二的内容.并追问:对于△ABC 和△A'B'C',如果B A AB ''=C B BC'',且∠B =∠B',这两个三角形一定相似吗?如果将∠B =∠B'换成∠C =∠C',这两个三角形一定相似吗?为什么?让学生试着画画看,找出反例即可.设计意图:学生有前面探究活动的经验,教师提出问题后,利用《几何画板》辅助,学生容易获取初步结论,而且仿照上一个定理的证明,容易得到这个命题的证明思路.最后,学生通过考虑“两边和其中一边的对角”的情形,加强对三角形相似条件的理解与记忆.5.运用结论,解决问题例 根据下列条件,判断△ABC 和△A'B'C'是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm , A'B'=12 cm ,B'C'=18 cm ,A'C'=24 cm . (2)∠B =120°,AB =7 cm ,AC =14 cm , ∠A'=120°,A'B'=3 cm ,A'C'=6 cm .师生活动:师生共同分析从题干的条件中是否可能得到两个三角形相似的条件,教师提醒学生注意第(2)题中的角是不是已知两边的夹角.设计意图:使学生学会从现有条件中得到判定三角形相似的条件. 6.变式训练,巩固提高判断图中的两个三角形是否相似,并求出x 和y .师生活动:学生自主答题,写出相应的解答过程,然后互评. 设计意图:巩固本节课所学的相似三角形的判定定理. 7.回顾小结回顾本节课的学习,回答下列问题: (1)你学到了哪些判定三角形相似的方法? (2)你认为证明两个三角形相似的思路是什么?设计意图:引导学生归纳本节课的知识点及判定定理的证明思路. 8.布置作业A BDE C y ° x 4530 54 36 46°20 图2152025402745图11.教科书第34页练习第1,3题. 2.教科书第42页习题27.2第2(1),3题.3.证明判定定理“两边成比例且夹角相等的两个三角形相似”(画图,写出已知、求证,并进行证明).六、目标检测设计1.下列条件中可以判定△ABC ∽△C B A '''的是( ). A .AC AB =''''C A B A B .AC AB =''''C A B A ,∠B =∠B' C .B A AB ''=''C A AC =C B BC''D .''B A AB =''C A AC设计意图:考查对三角形相似的两个判定定理的条件特征的理解. 2.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( ).设计意图:考查判定定理“两边成比例且夹角相等的两个三角形相似”的应用. 3.在△ABC 和△A'B'C'中,AB =6,BC =8,AC =5,A'B'=3,B'C'=4,则当A'C'=______时,△ABC ∽△A'B'C'.设计意图:考查用“三边成比例的两个三角形相似”判定两个三角形相似.4.如图,在平面直角坐标系中,A (4,0),B (0,2),如果点C 在x 轴的正半轴上(点C 与点A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.设计意图:结合平面直角坐标系的知识,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.5.如图,在正方形ABCD 中,点P 是BC 上的一点,BP =3PC ,点Q 是CD 中点,求证:△ADQ ∽△QCP .ABCDQP (第5题)A B C 555 555 55 56675° 75°30° 40° A B CD(第4题)设计意图:结合勾股定理,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.。

27.2.1相似三角形的判定

27.2.1相似三角形的判定

∵AB=2,BC=2 2,AC=2 5,FE=2,DE= 2,
DF= 10,

DABE=
2= 2
2,BECF=2 2 2=
2,DACF=2
5= 10
2.
∴ DABE=BECF=DACF,∴△ABC∽△DEF.
感悟新知
知识点 5 边角关系判定三角形相似定理
知5-讲
1. 相似三角形的判定定理:两边成比例且夹角相等的两个
感悟新知
知识点 1 相似三角形
知1-讲
1. 定义:如果在两个三角形中,三个角分别相等,三条边 成比例,那么这两个三角形相似.
感悟新知
如图27.2-1,在△ ABC 和△ A′B′C′中,
知1-讲
∠ A= ∠ A′,∠ B= ∠ B′,∠ C= ∠ C′, △ABC
AB BC AC k,
↔ ∽△A′B′C′.
感悟新知
知2-练
3-1. 如图,l1 ∥ l2 ∥ l3,AB=3,AD=2,DE=4,EF=9, 求BC,BF 的长.
感悟新知
解:∵ l1∥l2∥l3, ∴ ABBC=ADDE.

AB=3,AD=2,DE=4,

3 BC
=24,
解得 BC=6.
知2-练
∵ l1∥l2∥l3,

BF EF

AB AC
第27章 相似
27.2 相似三角形
27.2.1 相似三角形的判定
学习目标
1 课时讲解
2 课时流程
逐点 导讲练
相似三角形 平行线分线段成比例 平行线截三角形相似的定理 三边关系判定三角形相似定理 边角关系判定三角形相似定理 角的关系判定三角形相似定理 直角三角形相似的判定

两边成比例且夹角相等的两个三角形相似

两边成比例且夹角相等的两个三角形相似

探究,可以培养学生在变化中捕
探究 2
捉不变因素的能力。
改变∠A 或 k 值的大小,再试一试,是否有同样的结论?(教
师应用“几何画板”等计算机软件作动态探究进行演示验证, 引导学生学习如何在动态变化中捕捉不变因素。) 归纳:如果两个三角形的两组对应边的比相等,并且相应的夹 角相等,那么这两个三角形相似。
让学生注意到:两个三角形相似 判定方法 2 的判定条件“角相等” 必须是 “夹角相等”。
﹑AC﹑ A1B1 ﹑A1C1 的夹角,所以∆ABC 与∆A1B1C1 不相似。
运用提高:
运用相似三角形的判定方法 2 进
1. P47 练习题 1(1)。 2. P47 练习题 2(1)。 课堂小结:说说你在本节课的收获。
27.2.1 相似三角形的判定 第 3 课时 两边成比例且夹角相等的两个三角形相似
〔学习目标〕掌握判定两个三角形相似的方法,让学生经历从实验探究到归纳证明的过程,

展学生的合情推理能力。
〔学习重点与难点〕两个三角形相似的判定方法 2 探究过程及其应用
〔学习设计〕
学习过程
设计意图说明
新课引入:
从回顾探究判定引例﹑判定方法
1. 复习两个三角形相似的判定方法 1 与全等三角形判定方法 1 的过程及复习两个三角形相似
(SSS)的区别与联系:
SSS
的判定方法 1 与全等三角形判定
如果两个三角形的三组对应边的比相等,那么这两个三角形相 方法(SSS)的区别与联系两个角
似。(相似的判定方法 1)
度来以旧引新,帮助学生建立新
2. 回顾探究判定引例﹑判定方法 1 的过程
例 1:根据下列条件,判断 ∆ABC 与∆A1B1C1 是否相似,并说 让学生了解运用相似三角形的判

27.2.1相似三角形的判定-陕西省商洛市柞水县小岭镇九年制学校九年级数学下册教案

27.2.1相似三角形的判定-陕西省商洛市柞水县小岭镇九年制学校九年级数学下册教案
课堂上,我尝试通过生活中的实例来引导学生理解相似三角形的判定定理,他们对此表现出浓厚的兴趣。这说明激发学生的学习兴趣是非常有效的教学方法。但同时,我也注意到,有些学生在小组讨论中参与度不高,可能是因为他们对主题不够感兴趣,或者是对自己的观点不够自信。针对这个问题,我打算在下一节课中,多设置一些开放性问题,鼓励更多的学生参与讨论,提升他们的自信心。
3.能够运用相似三角形的判定定理解决实际问题。
4.了解相似三角形在实际生活中的应用,如建筑、摄影、地图制作等领域。
二、核心素养目标
《相似三角形的判定》课程的核心素养目标如下:
1.培养学生的逻辑推理能力,通过对相似三角形判定方法的探讨,使学生能够运用严密的数学语言进行推理和证明。
2.提升学生的空间想象力,通过实际例题和图形分析,让学生在脑海中构建和想象相似三直观感受相似三角形的性质,如形状相同但大小不同的两个三角形。
-通过具体例题,强调判定相似三角形时,必须满足的条件,如三边相等、两边及夹角相等、两角及夹边相等。
2.教学难点
-理解相似三角形的动态性质:学生往往难以理解相似三角形之间的动态关系,即如何通过变换得到相似三角形。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指在大小上不同,但形状完全相同的两个三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例中相似三角形的应用,了解它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA判定定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。

一、说教材首先进入我的第一个大板块“说教材”。

我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。

1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。

是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。

本节课是判定三角形相似的起始课,是本章的重点之一。

一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。

因此,这节课在本章中有着举足轻重的地位。

2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。

(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。

(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。

3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。

教学难点:探究两个三角形相似的预备定理的过程。

二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。

老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。

九年级数学 相似三角形的判定(教案、导学案)

九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。

27.2.1相似三角形的判定课件sss (3)

27.2.1相似三角形的判定课件sss (3)

∵ A A, B B, C C C B′ C′
Bቤተ መጻሕፍቲ ባይዱ
∴ △ABC ∽ △A´B´C´
2、(平行线法)平行于三角形一边的直线和其他两(或两边的延 长线)相交,所构成的三角形与原三角形相似.
“A”型
D B A E C
E “X”型
D
A C
符号语言: ∵ DE∥BC
∴△ADE∽△ABC
∴ △ABC~ △A′B′C′
相似,因为三组对应边的比相等.
解一解 (2)在△ABC 和△A′B′C′中,已知:
AB=12cm BC=15cm AC=24cm A′B′=16cm B′C′=20cm A′C′ = 30cm△ABC 与 A′B′C′是否相似并说明理由. 试判定
解: ∵

∴ △ABC与△A′B′C′不相似
27.2
三角形相似的判定SSS (2)
1、 你现在有哪些方法可判定两个三角形相似? 定义法 平行线法
相似三角形的判定
1、(定义法)对应角相等, 对应边的比也相等的两个三角形 是
A
相 似
A′
三 角 形. 符号语言:
在△ABC和△A´B´C´中,
AB BC CA . AB BC CA
∴ A1DE≌ABC(SSS) ∵ A1DE∽A 1B 1C1 ∴ ABC∽A1B1C1
知识要点
三角形相似判定定理之一 如果两个三角形的三组对应边的比 相等,那么这两个三角形相似。简称:
三边对应成比例,两三角形相似。
A
A1 即:
C
B
B1
C1
AB BC AC 如果 A B B C A C , 1 1 1 1 1 1 那么 △ABC∽△A1B1C1.

仙游县第四中学九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定第3课时由两

仙游县第四中学九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定第3课时由两

14.已知抛物线 y=14 x2+1 具有如下性质:该抛物线上任意一点到定 点 F(0,2)的距离与到 x 轴的距离始终相等.如图,点 M 的坐标为( 3 ,3), P 是抛物线 y=14 x2+1 上一个动点,则△PMF 周长的最小值是__5__.
15.(5 分)能否通过适当地上下平移二次函数 y=13 x2 的图象,使得到 的新的函数图象过点(3,-3)?若能,说出平移的方向和距离;若不能, 说明理由.
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
(三)解答题(共42分) 12.(12分)(杭州中考)如下图 , 在△ABC中 , AB=AC , AD为BC边上的 中线 , DE⊥AB于点E. (1)求证 : △BDE∽△CAD ; (2)假设AB=13 , BC=10 , 求线段DE的长.
17.(10 分)如图,抛物线 y=-34 x2+3 与 x 轴交于 A,B 两点,与直线
y=-34 x+b 相交于 B,C 两点,连接 A,C (1)令 y=0,则-34 x2+3=0, 解得 x=±2,∴点 B 的坐标为(2,0), 代入 y=-34 x+b 得 b=32 , ∴直线 BC 的解析式为 y=-34 x+23
,∴AD=2
5
(一)选择题(每道题6分 , 共12分) 9.(牡丹江中考)如下图 , 在矩形ABCD中 , AB=3 , BC=10 , 点E在BC 边上 , DF⊥AE , 垂足为F.假设DF=6 , 那么线段EF的长为( B ) A.2 B.3 C.4 D.5
10.如下图 , AB为⊙O的直径 , BC为⊙O的切线 , 弦AD∥OC , 直线CD

27.2.1相似三角形的判定相似三角形的判定(教案)

27.2.1相似三角形的判定相似三角形的判定(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.能够运用相似三角形的判定方法解决实际问题;
4.通过实际操作和例题分析,培养学生的观察能力和逻辑思维能力。
本节课将结合实际例题,引导学生掌握相似三角形的判定方法,并运用到解决具体问题中。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的几何直观能力,通过观察和分析相似三角形的特征,提升对几何图形的理解和感知;
举例:
在讲解AA判定法时,重点强调两个角相等即可判定三角形相似,例如:已知∠ABC=∠DEF,且∠BAC=∠EDF,证明ΔABC∼ΔDEF。
2.教学难点
-理解并区分AA、SSS、SAS判定法的适用条件,学生容易混淆。
-在实际问题中,学生难以识别哪些信息是关键的,以及如何运用相似三角形的判定方法。
-熟练进行几何证明,学生可能对证明步骤和逻辑推理过程感到困惑。
-难点三:在几何证明过程中,学生可能忽略证明步骤的逻辑顺序。教师应提供清晰的证明框架,如先证明两个角相等,再证明两三角形相似,最后得出对应边成比例的结论。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个三角形看起来很相似,但不知道如何证明的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形判定的奥秘。

27.2.1相似三角形的判定(教案)

27.2.1相似三角形的判定(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指两个三角形的对应角相等,对应边成比例。它在几何学中有着重要的地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
实践活动和小组讨论的环节,学生们表现得非常活跃。他们通过分组讨论和实验操作,不仅加深了对相似三角形判定方法的理解,还提高了合作解决问题的能力。我观察到,在小组讨论中,学生们能够相互启发,共同克服难题,这让我感到很欣慰。
不过,我也发现了一些需要改进的地方。在小组讨论中,有些学生显得不够主动,可能是因为他们对主题还不够自信。为了鼓励这些学生更多地参与进来,我可以在下一次课中采取一些策略,比如提供更多的引导问题,或者给予他们更多的时间来准备分享。
3.重点难点解析:在讲授过程中,我会特别强调AA、SSS、SAS这三个判定方法。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
-难点二:在实际问题中运用相似三角形的判定方法。
-学生可能难以从复杂的实际问题中抽象出相似三角形的模型,需要通过案例分析和反复练习,提高学生的几何建模能力。
-举例:在解决实际问题中,指导学生如何从给定的信息中识别出相似三角形的特征,例如在测量物体高度时,如何利用相似三角形的性质来计算。
-难点三:理解相似三角形的判定方法之间的内在联系。
2.教学难点
-难点一:理解“对应角”和“对应边”的概念,以及它们在相似三角形中的应用。

新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)

新人教版八年级数学下册27.2.1 第3课时 两边成比例且夹角相等的两个三角形相似(优秀教学设计)

27.2.1 相似三角形的判定第3课时 两边成比例且夹角相等的两个三角形相似1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似 【类型一】 直接利用判定定理判定两个三角形相似已知:如图,在△ABC 中,∠C =90°,点D 、E 分别是AB 、CB 延长线上的点,CE =9,AD =15,连接DE .若BC =6,AC =8,求证:△ABC ∽△DBE .解析:首先利用勾股定理可求出AB 的长,再由已知条件可求出DB ,进而可得到DB ∶AB 的值,再计算出EB ∶BC 的值,继而可判定△ABC ∽△DBE .证明:∵在Rt △ABC 中,∠C =90°,BC =6,AC =8,∴AB =BC 2+AC 2=10,∴DB =AD -AB =15-10=5,∴DB ∶AB =1∶2.又∵EB =CE -BC =9-6=3,∴EB ∶BC =1∶2,∴EB ∶BC =DB ∶AB ,又∵∠DBE =∠ABC =90°,∴△ABC ∽△DBE .方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题【类型二】 添加条件使三角形相似如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB =12,AC =8,AD =6,当AP 的长度为________时,△ADP 和△ABC 相似.解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型三】 利用三角形相似证明等积式如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .解析:先证明△ADC ∽△CDB 可得AD CD =AC BC ,再结合条件证明△FDC ∽△F AD ,可得AD CD=DF CF,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△F AD ,∴DF CF =AD DC ,∴AC BC =DF CF,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.【类型四】 利用相似三角形的判定进行计算如图所示,BC ⊥CD 于点C ,BE ⊥DE 于点E ,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD =32,解得AD =103,∴CD =AD +AC =103+3=193. 方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】 利用相似三角形的判定解决动点问题如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间△ABC和△PQC相似?解析:由AC与AB的关系,设出AC=3x cm,AB=5x cm,在直角三角形ABC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,进而得到AB与AC的长.然后设出动点运动的时间为t s,根据相应的速度分别表示出PC与CQ的长,由△ABC和△PQC相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t的方程,求出方程的解即可得到t的值,从而得到所有满足题意的时间t的值.解:由5AC-3AB=0,得到5AC=3AB,设AB为5x cm,则AC=3x cm,在Rt△ABC 中,由BC=8cm,根据勾股定理得25x2=9x2+64,解得x=2或x=-2(舍去),∴AB=5x =10cm,AC=3x=6cm.设经过t秒△ABC和△PQC相似,则有BP=2t cm,PC=(8-2t)cm,CQ=t cm,分两种情况:①当△ABC∽△PQC时,有BCQC=ACPC,即8t=68-2t,解得t=3211;②当△ABC∽△QPC时,有ACQC=BCPC,即6t=88-2t,解得t=125.综上可知,经过125或3211秒△ABC和△PQC相似.方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC∽△PQC 与△ABC∽△QPC分别列出比例式来解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2.应用判定定理解决简单的问题.本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

27.2.1 第4课时 相似三角形的判定定理3

27.2.1  第4课时   相似三角形的判定定理3

利用两角判定三角形相似
直角三角形相似的判定
THANKS
则AB=kA'B',AC=kA'C'
由勾股定理得



Rt△ABC∽ Rt△A'B'C'.
1.在 Rt△ABC 和 Rt△A′B′C′ 中,∠C=∠C′=90°,依据下列各组条件判定这两个三角形是否相似.(1) ∠A=35°,∠B′=55°: ;(2) AC=3,BC=4,A′C′=6,B′C′=8: ;(3) AB=10,AC=8,A′B′=25,B′C′=15: .
符号语言:
归纳:
例1 如图,Rt△ABC中,∠C=90°,AB=10,AC=8.E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长.
解:∵ ED⊥AB, ∴ ∠EDA=90°. 又∠C=90 °, ∠A=∠A, ∴△AED∽△ABC. ∴
在△ABC 与△A'B'C'中,如果满足∠B=∠B',∠C=∠C',那么能否判定这两个三角形相似?
猜想:△ABC∽△A'B'C'
问题1: 度量 AB,BC,AC,A′B′,B′C′,A′C′ 的长,并计算出它们的比值. 你有什么发现?
一、两角分别相等的两个三角形相似
探究
与同伴合作,一人画 △ABC,另一人画 △A′B′C′,使∠A=∠A′=40°,∠B=∠B′=55°,探究下列问题:
第二十七章 相 似
27.2.1 相似三角形的判定
第4课时 两角分别相等的两个三角形相似
27.2 相似三角形
1. 探索两角分别相等的两个三角形相似的判定定理.2. 掌握利用两角来判定两个三角形相似的方法,并能进行相关计算. (重点、难点)3. 掌握判定两个直角三角形相似的方法,并能进行相关计算.

27.2.1相似三角形的判定教案

27.2.1相似三角形的判定教案
-通过对比不同判定方法的适用场景,如给出具体图形,让学生判断哪些方法适用,哪些不适用,并解释原因。
-对于实际问题的建模,教师可以提供多个不同情境的问题,如测量距离、计算面积等,指导学生如何从问题中提取关键信息,建立相似三角形的模型,并解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否相似的情况?”(如地图上的比例尺应用)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指两个三角形,它们的对应角相等,对应边成比例。这个概念在几何学中非常重要,它可以帮助我们解决实际问题,如测量距离、计算面积等。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
三、教学难点与重点
1.教学重点
-相似三角形的定义及其性质:确保学生能够准确理解相似三角形的含义,掌握其对应的角相等、对应边成比例的基本性质。
-相似三角形的判定方法:重点讲解两角对应相等、两边对应成比例且夹角相等、三边对应成比例三种判定方法,并强调其在解题中的应用。
-实际问题的解决:通过典型例题,让学生学会将实际问题转化为相似三角形的判定问题,培养学生的应用能力。
五、教学反思
在上完这节课后,我思考了几个方面。首先,关于相似三角形判定方法的教学,我发现学生们对于两角对应相等和三边对应成比例的判定方法掌握得相对较好,但在两边对应成比例且夹角相等的判定方法上,部分学生还存在理解上的困难。在今后的教学中,我需要针对这个难点进行更多的讲解和练习,让学生能够更熟练地运用这个方法。

数学课件-27.2.1 第3课时 相似三角形判定定理3

数学课件-27.2.1 第3课时 相似三角形判定定理3
图形的相似
第三课时
探究1:两角相等的两个三角形是否相似? 问题1: 请大家拿出你们的含30°角的直角三角板,观察是否与 老师手里拿的含30°角的直角三角板相似?
它们相似.
问题2:请观察老师在几何画板中的演示,你发现了什么?你能 得出什么结论?
A A
B
C B
C
两角分别相等的两个三角形相似.
问题3: 你能结合图形用符号语言表述上述结论吗?
谢谢观赏
You made my day!

(1)∠AED=∠B,或者 AD AE 等.
(2)
AC AB ∠A=∠C,或者∠B=∠D,或者
AE CE
BE DE
等.
课堂小结 ,能力提升
(1) 判定三角形相似的方法有哪些?判定直角三角形相似的 方法有哪些?它们是怎么探究出来的?主要运用了什么思想? (2)利用相似主要能解决一些什么样的问题? (3)本节课你还有什么收获与困惑?
A A
B
C B
C
如果 A A,B B,
那么 △ABC∽△ABC.
问题4:你能尝试证明上述结论吗?
A A
D
E
B
C B
C
分析:如图所示,作平行线,构造全等三角形.
我们一起写出证明过程.
探究2:如果是两个直角三角形,判定相似的方法是否会更简洁? 问题1:你能想到哪些判定两个直角三角形相似的方法呢?
解:∵ED⊥AB,∴∠EDA=90°. 又∵∠C=90°, ∠A=∠A, ∴△AED∽△ABC.
∴ AE AD , AB AC
∴ AD AC AE 8 5 4. AB 10
追问1:目前我们见到过哪些常见的相似基本图形?
DE ∥ BC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P49练习2
A D B
结论: ΔACD∽Δ CBD DB ΔACD ∽Δ ABC
CD2=AD · AC2=AD ·AB
AB
此结论可以称为“母子相似定理”,今后可以直接使用.
ΔBCD ∽Δ ABC
BC2=BD ·
A
已知DE ∥BC 且∠1=∠B ,则图 中共有 4 对相似三角形。
B
D 1
E
C
∵ DE∥BC ∴△ADE∽△ABC
2.如图直线BE、DC交于A, AD· AC=AE· BA, 求证:∠E=∠C
E A D A E B B C C
将△DAE绕A点旋转
D
如何证明∠DEA=∠C?
A
A
D
E
D
C B C
B
3.已知如图, ∠ABD=∠C AD=2 , AC=8, 求AB
解: ∵ ∠ A= ∠ A ∠ABD=∠C ∴ △ABD ∽ △ACB ∴ AB : AC=AD : AB ∴ AB2 = AD · AC ∵ AD=2 AC=8 ∴ AB =4
B A A´
C


判定定理3:如果一个三角形的两个角与另一个三角
形的两个角对应相等,那么这两个三角形相似。
两角对应相等,两三角形相似。
用数学符号表示:
∵ ∠A=∠A', ∠B=∠B' ∴ ΔABC ∽ ΔA'B'C'
B
A

C


相似三角形判定方法
1、(定义)三组对应边的比相等且对应角相等; 2、(平行)平行于三角形一边的直线与其他两边(或 两边的延长线)相交,所构成的三角形与原三角形相似。 3、(判定定理1)三组对应边的比相等的两个三角 形相似。 4、(判定定理2)两组对应边之比相等且夹角相等 的两个三角形相似。 5、(判定定理3)两角对应相等的两个三角形相似。
底角相等
A
A'
B'
C'
B
C
第 二 种 情 况
∴ ΔABC ∽ ΔA'B'C'
A
顶角与底角相等
A'
B'
C'
B
C
第 三 种 情 况
两三角形不相似
3、求证:直角三角形被斜边上的高分成的两个 直角三角形和原三角形相似。 已知:在RtΔ ABC中,CD是斜边AB上的高。 求证: Δ ABC∽Δ ACD∽Δ CBD C
§27.2.1 相似三角形的判定(3)
知识回顾
判定三角形相似的方法
AB AC BC DE DF EF
A
D
(1)∵∠A=∠D, ∠B= ∠E, ∠C= ∠F E F
∴△ABC∽△DEF (2)∵DE∥BC∴△ADE∽△ABC
(3)∵
B
C
AB AC BC DE DF EF
A
∴△ABC∽△DEF
∵ DE∥BC ∵ ∠EDC=∠DCB, 又∵ ∠1=∠B ∴△DEC∽△CDB
∵ ∠1=∠B ,∠A=∠A ∴△ACD∽△ABC ∴△ADE ∽△ACD
A
D
B
18
4 √2 12√2
C
1、如图:在Rt △ ABC中, ∠ABC=900,BD⊥AC于D 若 AB=6 AD=2 则AC= BD= BC=
B C E A
D
2、判断题: ⑴ 所有的直角三角形都相似 . ⑵ 所有的等边三角形都相似. ⑶ 所有的等腰直角三角形都相似. ⑷ 有一个角相等的两等腰三角形相似 . ( ) × (√ ) (√ )

×)
顶角相等
底角相等
顶角与底角相等
顶角相等
A
A'
B'
C'
B
C
第 一 种 情 况
∴ ΔABC ∽ ΔA'B'C'
A
A
D B C B
0
D
C
4、如图:在Rt △ ABC中, ∠ABC=90 ,BD⊥AC于D
问:图中有几个直角三角形?它们相似吗?为什么?
解: 图中有三个直角三角形,分别是: △ ABC、 △ ADB、 △ BDC
△ ABC ∽ △ ADB ∽ △ BDC
相似三角形判定方法
1、(定义)三组对应边的比相等且对应角相等; 2、(平行)平行于三角形一边的直线与其他两边(或 两边的延长线)相交,所构成的三角形与原三角形相似。 3、(判定定理1)三组对应边的比相等的两个三角 形相似。 4、(判定定理2)两组对应边之比相等且夹角相等 的两个三角形相似。 5、(判定定理3)两角对应相等的两个三角形相似。
基础演练
A’
1、下列图形中两个三角形是否相似?
A
B
A
C
D A B
(1)
C B’ A’C’Biblioteka (2)DA
E
E C
B
(3)
C
B’
C’
B
(4)
基础演练
2、根据下列条件,判断△ABC和△A’B’C’是否 相似,并说明理由: (1)∠A=35°,AB=12cm,AC=15cm, ∠A’=35°,A’B’=36cm,A’C’=45cm, (2)AB=12cm,BC=15cm,AC=24cm, A’B’=20cm,B’C’=25cm,A’C’=40cm. (3)∠A=105°, ∠B=15°;∠A’=105°, ∠B’=15° ∠B’=60°
如图,弦AB和CD相交于⊙O内一点P,
求证:PA ▪ PB = PC▪PD
A D B C
▪ O
P
变式1:如果弦AB和CD相交于圆O外一点P, 结论还成立吗? A
B
O
C
P D
变式2:上题中A,B重合为一点时,又会有什 么结论?
A
O
C
P D
1、已知如图直线BE、DC交于A , ∠E= ∠C
求证:DA·AC=AB·AE 证明: ∵ ∠E=∠C ∠DAE=∠BAC ∴ △ABC ∽ △ADE ∴ AC :AE=AB :AD ∴ DA · AC=AB · AE
AB AC (4) ∵ DE DF
∠A=∠D ∴△ABC∽△DEF D E C
B
问题引入:
观察两副三角尺,其中同样角度(30°与60°,或45°与 45°)的两个三角尺大小可能不同,但它们看起来是相 似的。一般地,如果两个三角形有两组对应角相等,它 们一定相似吗?
已知:在△ABC 和△A´B´C´中, ∠A=∠A', ∠B'=∠B 求证: Δ A'B'C'∽Δ ABC
相关文档
最新文档