电力电子技术实验指导书电气专

合集下载

电力电子技术实验指导书16K版.docx

电力电子技术实验指导书16K版.docx

第一章MCL-II型教学实验台简介 (2)§1-1概述 (2)§1-2《电力电子技术》课程实验所用设备 (4)第二章实验内容 (15)§2-1实验一锯齿波同步移相触发电路的研究 (15)§2-2实验二三相桥式全控整流电路的研究 (18)§2-3实验三直流斩波电路的研究 (21)§2-4实验四单相交流调压电路的研究 (25)第一章MCL- II型教学实验台简介§1-1概述MCL- II型教学实验台是自动化系针対《电机及拖动基础》、《电力电子技术》、《电力拖动白动控制系统》等课程实验购置的实验设备,其外观如图1所示。

图1 MCL-II型教学实验台一. MCL-n型教学实验台的特点:1.采用组件式结构,可根据不同内容进行组合,故结构紧凑,使用方便灵活,并口可随着功能的扩展只需增加组件即可,能在一套装置上完成《电力电子技加,《电力拖动自动控制系统》等课程的主要实验。

2.装置布局合理,外形美观,面板示意图明确,直观,学生可通过面板的示意査寻故障,分析工作原理。

电机采用导轨式安装,更换机组简捷,方便,所采用的电机经过特殊设计,其参数特性能模拟3KW左右的通川实验机组,能给学生正确的感性认识。

除实验控制屏外,还设置有实验用台,内可放置机组,实验组件等,并有可活动的抽屉,内可放置导线,工具等,使实验更方便。

3.实验线路典型,配合教学内容,满足教学人纲要求。

控制电路全部采用模拟和数字集成芯片,町靠性高,维修,检测方便。

触发电路采用数字集成电路双窄脉冲。

4.装置具有较完善的过流、过压、RC吸收、熔断器等保护功能,提高了设备的运行可靠性和抗干扰能力。

5.面板上有多只发光二极管指示每一个脉冲的有无和熔断器的通断。

触发脉冲可夕卜加,也可采川内部的脉冲触发晶闸管,并可模拟整流缺相和逆变颠覆等故障现象。

二. MCL- n型教学实验台的技术参数1.输入电源:〜380V±10%; 5OHZ±1HZ2.工作条件:环境温度:・5〜40°C;相对湿度:<75%;海拔:vlOOOm3.装置容量:vlKVA4.电机容量:<200W5.夕卜形尺寸:长1600mm x宽700mm三. MCL-n型教学实验台能开设的实验MCL-II型教学实验台能开设《电机及拖动皋础》、《电力电子技术》、《电力拖动自动控制系统》课程的丄耍实验。

《电力电子技术》实验指导书_图文

《电力电子技术》实验指导书_图文

电力电子技术实验指导书适用专业:卓越自动化李建华编写江苏科技大学电子信息学院2014 年 9月前言《电力电子技术》课程是电气工程及其自动化专业和自动化专业的一门学科基础课,测控技术与仪器专业的专业选修课。

本课程的目的和任务是使学生了解电力电子技术的发展概况、技术动向和新的应用领域。

熟悉各种电力电子器件的特性和选用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计的基本计算方法及基本实验技能;熟悉各种常用电力电子装置的应用范围及技术经济指标。

同时为《电力传动自动控制系统》等课程打好基础。

实验环节是这门课程的重要组成部份,通过实验可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。

根据教学大纲要求,本课程实验共开出三相全控桥式整流电路、交流单相调压、直流降压斩波电路三个实验,均为综合性实验。

学生通过实验能掌握电力电子变流装置主电路、触发电路和驱动电路等的构成及调试方法及应用;熟悉并掌握基本实验设备、测试仪器的性能及使用方法;能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题;能够综合实验数据,解释实验现象,编写实验报告。

实验一:三相桥式全控整流电路的性能研究实验学时:2实验类型:(设计研究实验要求:(必做一、实验目的1、加深对三相桥式整流电路电阻性负载,电阻、电感性负载时工作情况的理解。

2、对实验出现的问题进行分析并排除。

二、实验内容1、三相桥式全控整流电路接电阻性负载。

2、三相桥式全控整流电路接电阻、电感性负载。

三、实验原理、方法和手段三相桥式全控整流电路实验原理框图如图1-1所示。

控制电路直流电源单元提供+15V、-15V电源给正给定单元、三相脉冲移向电路单元(LY105。

正给定单元输出1作为LY105单元移向控制电压(Uct。

Ub1f接地,输出正桥触发脉冲。

LY121-1主电源输出(A2、B2、C2作为正组桥晶闸管主电路输入电源。

图1-1 三相桥式全控整流电路实验原理框图四、实验组织运行根据本实验的特点、要求和具体条件,采用集中授课形式。

电力电子技术实验指导书(1).docx

电力电子技术实验指导书(1).docx

《电力电子技术》实验指导书电力电子实验室编华北电力大学二00六年十月1. 实验总体目标《电力电子技术》是电气工程及其自动化专业必修的专业基础课。

本实验是《电力电子技术》课程内实验,实验的主要目的是使学生在学习的过程屮通过实验环节进一步加深对电力电子电路工作原理的认识和理解,掌握测试电力电子电路的技能和方法,为后续课程打好基础。

2. 适用专业电气工程及其自动化以及和关各专业本科3・先修课程模拟电子技术基础,数字电子技术基础4.实验课时分配5. 实验环境实验室要求配有电力电子专用实验台,示波器,万用表等实验设备。

6. 实验总体要求掌握电力电子电路的测试和实验方法,拿握双踪示波器的使用方法;通过对实验电路的波形分析加深对电力电子电路工作原理的理解,建立电力电子电路的整体概念。

7. 本实验的重点、难点及教学方法建议《电力电子技术》实验的重点是:熟悉各种电力电子器件的特性和使用方法;掌握常用电力电子电路的拓扑、工作原理、控制方法和实验方法。

《电力电子技术》实验的难点是:电力电子电路的工作原理的理解和示波器的使用方法。

教学方法建议:在开始实验之前,通过多媒体设备对实验原理及实验方法进行讲解,同时对示波器的使用方法进行详细的讲解,对以通过实验演示的形式加深学牛对于实验内容的理解。

实验一、电力电子器件特性实验 (4)实验二、整流电路实验 (8)实验三、直流斩波电路实验(一)11实验四、直流斩波电路实验(二)14实验五、SPWM逆变电路实验17实验一、电力电子器件特性实验一、实验目的1 •熟悉MOSFET主要参数与开关特性的测童方法2.熟悉IGBT主要参数与开关特性的测试方法。

二、实验类型(验证型)木实验为验证型实验,通过实验对MOSFET和IGBT的主要参数和特性的测量,验证其开关特性。

三、实验仪器1 • MCL-07电力电子实验箱中的MOSFET与IGBT器件及英驱动电路部分2.双踪示波器3.毫安表4.电流表5.电压表四.实验原理MOSFET主要参数的测量电路原理图如图所示。

电力电子技术实验指导书

电力电子技术实验指导书

同学们:这是我们电力电子技术实验指导参考书,请同学们结合实验内容和要求参考实验参考书完成预习报告和实验2021~2021学年第一学期电力电子技术实验指导参考书实验1 三相桥式全控整流电路的性能研究实验目的1、熟悉三相全控桥式整流电路的结构特点,以及整流变压器、同步变压器的连接;2、掌握KC785集成触发电路的应用;3、掌握三相晶闸管集成触发电路的工作原理与调试〔包括各点电压波形的测试与分析〕。

4、研究三相全控桥式整流供电电路〔电阻负载时〕,在不同导通角下的电压与电流波形。

二、实验电路与工作原理〔一〕三相全控桥式整流电路如图7-1所示。

图7-1三相晶闸管全控桥式整流电路〔单元7〕1、图中6个晶闸管的导通顺序如图7-2所示。

它的特点是:①它们导通的起始点〔即自然换流点〕;对共阴极的VT1、VT3、VT5,为uΑ、uB、uC 三个正半波的交点;而对共阳极的VT4、VT6、VT2,那么为三相电压负半波的交点。

②在共阳极和共阴极的管子中,只有各有一个导通,才能构成通路,如6-1、1-2、2-3、3-4、4-5、5-6、6-1等,参见图7-2。

这样触发脉冲和管子导通的顺序为1→2→3→4→5→6,间隔为60°。

③为了保证电路能启动和电流断续后能再触发导通,必须给对应的两个管子同时加上触发脉冲,例如在6-1时,先前已给VT1发了触发脉冲,但到1-2时,还得给VT1再补发一个脉冲〔在下面介绍的触发电路中,集成电路KC41C的作用,就是产生补脉冲的〕,所以对每个管子触发,都是相隔60°的双脉冲,见图7-2b〔当然用脉宽大于60°的宽脉冲也可以,但功耗大〕。

2、在图7-1中,TA为电流互感器〔三相共3个〕,〔HG1型,5Α╱2.5mΑ,负载电阻<100Ω〕,由于电流互感器二次侧不可开路〔开路会产生很高电压〕,所以二次侧均并有一个负载电阻。

〔二〕整流变压器与同步变压器的接线如图7-3所示。

电力电子技术实验指导书7页

电力电子技术实验指导书7页

电力电子技术实验指导书中国矿业大学信电学院2009年4月学生实验守则一、学生进入实验室必须服从管理,遵守实验室的规章制度。

保持实验室的安静和整洁,爱护实验室的一切设施,不做与实验无关的事情。

二、实验课前要按照教师要求认真预习实验指导书,复习教材中于实验有关的内容,熟悉与本次实验相关的在理论知识,同时写出实验预习报告,并经教师批阅后方可进行实验。

三、实验课上要遵守操作规程,线路连接好后,先自行检查,后须经指导教师检查后,才可接通电源进行实验。

如果需更改线路,也要经过教师检查后才能接通电源继续实验。

四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,实验过程中按照要求记录实验数据。

实验中有仪器损坏情况,应立即报告指导教师检查处理。

凡因不预习或不按照使用方法误操作而造成设备损坏后,除书面检查外,还要按照规定进行赔偿。

五、注意实验安全,不要带电连接、更改或拆除线路。

实验中遇到事故应立即关断电源并报告教师处理。

六、实验完成后,实验数据必须经教师签阅后,方可拆除实验线路。

并将仪器、设备、凳子等按照规定放好,经教师同意后方可离开实验室。

七、实验室仪器设备不能擅自搬动、调换,更不能擅自带出实验室。

八、因故缺课的同学可以向实验室申请一次补做机会。

无故缺课、无故迟到十五分钟以上或者早退的不予补做,该实验无成绩。

实验一 整流电路仿真实验1、 单相半波可控整流电路(输出端有续流二极管)要求电源电压t u ωsin 1002=,频率50Hz ,控制角︒=30α,负载为阻感负载,Ω=3.0R 。

试通过仿真分析0=L H ,5.0=L mH ,1.0=L H 对电路输出的影响 附:该电路仿真所用模块:电源模块AC Voltage Source1:位于SimPowerSystems/Electrical Sources中;器件模块g m akr:位于SimPowerSystems/PowerElectronics 中,器件参数设置如图1所示: 图1脉冲发生器Generator:位于Simulink/Sources 中;阻感负载:位于SimPowerSystems/Elements 中,其中电容参数设置为:inf ;电压/电流测量模块:v +-V o l e M e a i +-C u r t M e:位于SimPowerSystems/Measurements 中;示波器:位于Simulink/Sinks 中。

20120403电力电子技术实验指导书

20120403电力电子技术实验指导书

电力电子技术实验指导书吉林化工学院信控学院电气工程系刘刚2012年4月2日目录实验一MOSFET、IGBT驱动与保护电路实验 (1)实验二直流斩波电路的性能研究 (3)实验三单相桥式半控整流电路实验 (7)实验四单相交流调压电路实验 (10)实验五单相正弦波脉宽调制SPWM变频调速系统实验 (13)实验六三相正弦波脉宽度调制(SPWM)变频原理实验 (15)实验一MOSFET、IGBT驱动与保护电路实验一、实验目的(1)理解MOSFET、IGBT器件对驱动与保护电路的要求。

(2)熟悉MOSFET、IGBT器件的驱动与保护电路的结构及特点。

(3)掌握由MOSFET、IGBT器件构成PWM直流斩波电路原理与方法。

二、实验所需挂件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK06 给定及实验器件该挂件包括“负载”等几个模块3 DJK07 新器件特性实验该挂件包括“IGBT”、“GTR”等几个模块4 DJK12 功率器件驱动电路实验箱该挂件包括“PWM发生电路”等几个模块三、实验线路及原理自关断器件的实验接线及实验原理图如图1-1所示,图中直流电源可由控制屏上的励磁电压提供,或由控制屏上三相电源中的两相经整流滤波后输出。

接线时,应从直流电源的正极出发,经过负载电阻、自关断器件及保护电路、直流电流表、再回到直流电源的负端,构成实验主电路。

图1-1 自关断器件的实验接线及原理图四、实验内容自关断器件MOSFET、IGBT及其驱动、保护电路的研究。

五、实验方法(1)MOSFET的驱动与保护电路实验将DJK12实验挂箱上的“PWM发生电路”频率选择开关拨至“高频档”,调节频率调节电位器,使方波的输出频率在“8KHz~10KHz”范围内,然后再按实验原理图接好驱动与保护电路的实验线路。

在主电路中,直流电源由控制屏上的励磁电源输出,负载电阻R用DJK06上的灯泡负载,直流电压、电流表均在控制屏上。

电力电子技术课程实验指导书

电力电子技术课程实验指导书

《电力电子技术》课程实验指导书一、课程的目的、任务本课程是电子科学、测控技术专业学生在学习电力电子技术课程中的一门实践性技术基础课程,其目的在于通过实验使学生能更好地理解和掌握电力电子基本理论,培养学生理论联系实际的学风和科学态度,提高学生的电工实验技能和分析处理实际问题的能力。

为后续课程的学习打下基础。

二、课程的教学内容与要求包括三个子实验:1、单相交流调压电路实验通过该实验加深理解单相交流调压电路的工作原理和单相交流调压电路带电感性负载对脉冲及移相范围的要求。

2、功率场效应晶体管(MOSFET)特性与驱动电路研究掌握MOSFET对驱动电路的要求并且熟悉MOSFET主要参数的测量方法。

3、绝缘栅双极型晶体管(IGBT)特性与驱动电路研究掌握混合集成驱动电路EXB840的工作原理与调试方法。

三、各实验具体要求见P2四、实验流程介绍学生用户登陆进入实验系统的用户名为:D+学号(D205003200XX),密码:netlab五、实验报告请各指导老师登陆该实验系统了解具体实验方法,并指导学生完成实验。

学生结束实验后应完成相应的实验报告并交给指导老师。

其中实验报告的主要内容包括:实验目的,实验内容,实验结果和实验心得等。

实验一单相交流调压电路实验一.实验目的:1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。

二.实验内容:1.单相调压电路带电阻性负载实验;2.单相交流调压电路带电阻电感性负载实验。

三.实验步骤:在客户端实验界面中的实验列表框中选择“电力电子实验”下的“单相交流调压实验”子实验,出现“单相交流调压实验”的实验界面。

点击工具栏的开始实验按钮,开始“单相交流调压实验”。

点击图中电阻和电感边上的红点选择电阻和电感,进行电路连接。

然后在“晶闸管脉冲触发角度”框中输入“0—360”之间的任意角度,然后点击“开始”按钮,开始实验。

右边界面将出现三路波形,其中蓝色为电源电压波形,黄色为负载电压波形,红色为负载电流波形。

《电力电子技术》实验指导书

《电力电子技术》实验指导书

龙岩学院《电力电子技术》实验指导书龙岩学院物理与机电学院电气工程系2007.1前言本书依据电气自动化技术等专业“电力电子技术”课程的教学大纲的要求,配合课程主教材《电力电子技术》(王兆安、黄俊主编,机械工业出版社)而编写的实验指导教材,供电气自动化技术、电子与信息工程、物理教学、机电一体化技术、矿山机械等专业使用。

实验课有两方面的重要意义:首先,学生通过做实验,可以加深对课程内容中的重点、难点的理解。

例如:在课程学习时,学生对整流电路的输出电压波形及结论理解不深,若在做实验时,通过观察示波器,则可在直观、生动的感性认识中深刻理解原理,通过整流电路带不同负载时波形的变化,分析和研究最基本的几种可控整流电路的工作原理、基本数量关系,以及负载性质对整流电路的影响,从而使学生得到直接的实际经验,使理解更加深刻。

其次,实验课的第二个重要意义在于:通过对工控电力电子设备安装、调试、维修的训练,不仅有利于对课程内容本身的理解,更有助于实际工作能力的培养。

实验课的目的不在于使学生会做几个固定内容的实验,而在于给学生一个动手的机会,通过实验使学生掌握一些基本的电路测试的知识和技能;使学生会正确地使用一些最基本的电工、电子测量仪器;使学生能将理论的分析方法和实际测量的手段结合起来;学会正确地选择测量仪器及进行必要的误差分析;通过对工控电力电子设备安装、调试、维修的训练,不仅有利于对课程内容本身的理解,更有助于实际工作能力的培养。

学生参考有关的书籍和资料,自己动手去设计一个合理的实验电路是要求较高、较困难的题目。

在条件允许的情况下,可作为选作内容,希望学生这方面的能力也有所培养和提高,已达到分层教学之目的。

另外,在上实验课之前,学生应根据实验内容要求仔细地阅读本实验指导书,做好实验课前的预习以明确实验课的目的与要求,弄懂原理与电路,明确操作方法与步骤,了解电路元件、仪器设备的性能和使用方法、以及实验的注意事项。

实验时,必须亲自动手,认真做安装、操作、调试、测量和记录、故障诊断和故障排除。

电力电子技术实验指导书Word

电力电子技术实验指导书Word

电力电子技术实验指导书宁夏大学物理电气信息学院自动化系编目录第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1)1.1 控制屏介绍及操作说明 (1)1.2 DJK01电源控制屏 (2)1.3 各挂件功能介绍 (3)第二章电力电子技术实验的基本要求和安全操作说明 (40)1.1 实验的特点和要求 (40)1.2 实验前的准备 (40)1.3 实验实施 (40)1.4 实验总结 (41)1.5 实验安全操作规程 (41)第三章电力电子技术实验 (43)实验一正弦波同步移相触发电路实验 (43)实验二单相桥式半控整流电路实验 (45)实验三单相桥式全控整流及有源逆变电路实验 (48)实验四三相桥式半控整流电路实验 (51)实验五三相桥式全控整流及有源逆变电路实验 (54)实验六单相交流调压电路实验 (58)实验七三相交流调压电路实验 (61)附录 (63)电源控制屏常见故障的诊断 (63)可供配置的电机参数 (63)DJK04过流保护的调试方法 (64)KC系列集成块原理说明 (65)DJK02和DJK02-1插座使用说明 (68)DJK01电源控制屏十芯、十二芯插座接线说明 (69)第一章 DJDK-1型电力电子技术及电机控制实验装置简介1.1 控制屏介绍及操作说明一、特点(1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。

(2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。

(3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。

(4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。

电力电子技术实验指导书(12课时)

电力电子技术实验指导书(12课时)

电力电子技术实验指导书兰勇青岛大学自动化工程学院电气工程系实验室2012.9实验一三相半波可控整流电路的研究实验一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。

二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。

不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。

实验线路见图1-1。

图1-1 三相半波可控整流实验电路三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。

2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。

四.实验设备及仪表1.MCL系列教学实验台主控制屏。

2.MCL—51组件3.MCL—52组件4.MCL—53组件5.MCL—54组件6.双踪示波器。

7.万用电表。

五.注意事项1.整流电路与三相电源连接时,一定要注意相序。

2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。

3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。

六.实验方法1.研究三相半波可控整流电路供电给电阻性负载时的工作接上电阻性负载,合上主电源:(a)改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。

(b)记录不同α时的Ud=f(t)及id =f(t)的波形图。

2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—54的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A观察不同移相角α时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录不同α时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。

七.实验报告1.画出三相半波可控整流电路的主电路原理图。

电力电子技术实验指导书

电力电子技术实验指导书

实验一单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。

3.熟悉MCL—05锯齿波触发电路的工作。

二.实验线路及原理参见图4-7。

三.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

3.单相桥式全控整流电路供电给反电势负载。

四.实验设备及仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。

6.MEL—02三相芯式变压器。

7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。

2.电阻RP的调节需注意。

若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。

3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。

6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。

7.带反电势负载时,需要注意直流电动机必须先加励磁。

六.实验方法1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连),“触发电路选择”拨向“锯齿波”。

《电力电子技术》实验 指导书

《电力电子技术》实验 指导书

《电力电子技术》实验指导书兰州工业高等专科学校电气工程系实验中心目录实验安全操作规程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Ⅰ实验一单结晶体管触发电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 1 实验二正弦波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 3 实验三锯齿波同步移相触发电路实验┄┄┄┄┄┄┄┄┄┄ 5 实验四西门子TCA785集成触发电路实验┄┄┄┄┄┄┄┄┄┄ 7 实验五单相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 11 实验六单相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 14 实验七单相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄┄ 17 实验八三相半波可控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 20 实验九三相半波有源逆变电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 23 实验十三相桥式半控整流电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 26 实验十一三相桥式全控整流及有源逆变电路实验┄┄┄┄┄┄ 29 实验十二单相交流调压电路实验(1) ┄┄┄┄┄┄┄┄┄┄┄ 33 实验十三单相交流调压电路实验(2) ┄┄┄┄┄┄┄┄┄┄┄ 36 实验十四单相交流调功电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 39 实验十五三相交流调压电路实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 42 实验十六直流斩波电路原理实验┄┄┄┄┄┄┄┄┄┄┄┄┄ 45实验十七单相正弦波脉宽调制(SPWM)逆变电路实验┄┄┄┄ 48实验十八全桥DC-DC变换电路实验┄┄┄┄┄┄┄┄┄┄┄┄ 53 实验十九直流斩波电路的性能研究(六种典型线路)┄┄┄┄ 55 实验二十单相斩控式交流调压电路实验┄┄┄┄┄┄┄┄┄┄ 61实验安全操作规程为了顺利完成电力电子技术实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。

(2)为了提高学生的安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。

电力电子技术实验指导书(2013[1][1].8)

电力电子技术实验指导书(2013[1][1].8)

电力电子技术实验指导书蒋鸿飞席惠李冠一编写适用专业:电气工程及其自动化上海应用技术学院2013年8月实验须知1.预习实验者须事先预习,以保证实验顺利进行,预习内容一般包括:1)本次实验有关的实验装置介绍,仪器的使用方法等。

尽可能在实验室对照设备熟悉。

2)实验指导书中及课本中与本次实验有关的章节、有关原理、计算方法、操做等。

3)预习后应作出简要的预习报告,包括拟出的实验大致步骤,并列出实验数据记录、表格等。

2.实验1)实验前由指导老师检查预习情况,经提问后方可参加实验。

2)按图接线,力求简单明了,主回路导线应用粗导线,接线完成后先相互检查,然后请指导老师检查无误后方可通电。

3)认真观察,记录实验现象和数据。

4)实验完毕,应将数据交指导老师检查认可后再拆线,并照原样整理好仪器和设备。

3.实验报告实验报告用规范的实验报告纸书写,正文包括实验名称、实验目的、主要设备、简要原理、实验内容、实验线路、简要步骤、实验数据、波形、实验现象的记录与讨论、思考题的解答等,字迹工整,语言简练,应体现学生独立的风格,反对照抄实验指导书。

4.安全操做1)接线、拆线都必须在切断电源情况下进行。

2)在接通电源前,应招呼同组同学引起注意后方可合上电源。

若实验中发生事故,应及时断电并报告老师。

实验时应注意衣服、发辫、实验导线等不要卷入电机旋转部分目录实验一单结晶体管触发电路及单相半波可控整流电路实验 (4)实验二TCA785触发电路 (7)实验三单相桥式全控整流电路实验 (9)实验四TC787三相移相触发电路 (12)实验五三相桥式全控整流 (14)实验六单相交流调压电路实验 (17)实验七单相交流调功电路实验 (19)实验八直流斩波电路(设计性)的性能研究 (21)实验九单相SPWM逆变电路实验 (24)实验一单结晶体管触发电路及单相半波可控整流电路实验一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。

2.掌握单结晶体管触发电路的调试步骤和方法。

电力电子技术课程实验指导书

电力电子技术课程实验指导书

《电力电子技术》课程实验指导书一、课程的目的、任务本课程是电子科学、测控技术专业学生在学习电力电子技术课程中的一门实践性技术基础课程,其目的在于通过实验使学生能更好地理解和掌握电力电子基本理论,培养学生理论联系实际的学风和科学态度,提高学生的电工实验技能和分析处理实际问题的能力。

为后续课程的学习打下基础。

二、课程的教学内容与要求包括三个子实验:1、单相交流调压电路实验通过该实验加深理解单相交流调压电路的工作原理和单相交流调压电路带电感性负载对脉冲及移相范围的要求。

2、功率场效应晶体管(MOSFET)特性与驱动电路研究掌握MOSFET对驱动电路的要求并且熟悉MOSFET主要参数的测量方法。

3、绝缘栅双极型晶体管(IGBT)特性与驱动电路研究掌握混合集成驱动电路EXB840的工作原理与调试方法。

三、各实验具体要求见P2四、实验流程介绍学生用户登陆进入实验系统的用户名为:D+学号(D0XX),密码:netlab 五、实验报告请各指导老师登陆该实验系统了解具体实验方法,并指导学生完成实验。

学生结束实验后应完成相应的实验报告并交给指导老师。

其中实验报告的主要内容包括:实验目的,实验内容,实验结果和实验心得等。

实验一单相交流调压电路实验一.实验目的:1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。

二.实验内容:1.单相调压电路带电阻性负载实验;2.单相交流调压电路带电阻电感性负载实验。

三.实验步骤:在客户端实验界面中的实验列表框中选择“电力电子实验”下的“单相交流调压实验”子实验,出现“单相交流调压实验”的实验界面。

点击工具栏的开始实验按钮,开始“单相交流调压实验”。

点击图中电阻和电感边上的红点选择电阻和电感,进行电路连接。

然后在“晶闸管脉冲触发角度”框中输入“0—360”之间的任意角度,然后点击“开始”按钮,开始实验。

右边界面将出现三路波形,其中蓝色为电源电压波形,黄色为负载电压波形,红色为负载电流波形。

电力电子技术实验指导书

电力电子技术实验指导书

试验一单相半波可控整流电路试验一、试验目旳(1) 加深理解锯齿波同步移相触发电路旳工作原理及各元件旳作用。

(2) 掌握锯齿波同步移相触发电路旳调试措施。

(2) 掌握单相半波可控整流电路在电阻负载及电阻电感性负载时旳工作。

(3) 理解续流二极管旳作用。

二、试验所需设备(1) DJDK-1型电力电子技术及电机控制试验装置。

其所需挂件如下:① DJK01 电源控制屏② DJK02 晶闸管主电路③ DJK03 晶闸管触发电路④ DJK06 给定及试验器件⑤ D42三相可调电阻(2) 双踪示波器三、试验内容(1) 锯齿波同步移相触发电路各点波形旳观测和分析。

(2) 单相半波整流电路带电阻性负载时U d/U2=f(α)特性旳测定。

(3) 单相半波整流电路带电阻电感性负载时U d/U2=f(α)特性旳测定。

(4) 续流二极管作用旳观测。

四、预习规定(1) 阅读本教材电力电子技术教材中有关锯齿波同步移相触发电路旳内容,弄清锯齿波同步移相触发电路旳工作原理。

(2) 复习单相半波可控整流电路旳有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时旳工作波形。

(3) 掌握单相半波可控整流电路接不一样负载时U d、I d旳计算措施。

五、思索题(1) 锯齿波同步移相触发电路有哪些特点?(2) 锯齿波同步移相触发电路旳移相范围与哪些参数有关?(3) 单相半波可控整流电路接电感性负载时会出现什么现象?怎样处理?六、试验措施1. 锯齿波同步移相触发电路调试(1)将DJK01上旳钥匙式三相“电源总开关”置于“开”旳位置,操作控制屏左上角切换开关观测输入旳三相电网电压与否平衡。

(2) 将DJK01上旳电源选择开关打到“直流调速”侧(不能打到“交流调速”侧)。

用两根导线将DJK01旳A、B(200V)交流电压接到DJK03旳“外接220V”端,按下“启动”按钮。

(3) 打开DJK03电源开关,用双踪示波器观测锯齿波同步触发电路各观测孔旳电压波形。

电力电子实验指导书(电气)

电力电子实验指导书(电气)

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的(1)掌握各种电力电子器件的工作特性。

(2)掌握各器件对触发信号的要求。

二、实验所需挂件及附件三、实验线路及原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。

实验线路的具体接线如下图所示:图1-1 新器件特性实验原理图四、实验内容(1)晶闸管(SCR)特性实验。

(2)可关断晶闸管(GTO)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(4)大功率晶体管(GTR)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。

五、预习要求阅读电力电子技术教材中有关电力电子器件的章节。

六、思考题各种器件对触发脉冲要求的异同点?七、实验方法(1)按图1-1接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U g调节过程中回路电流I d以及器件的管压降U v。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一单相桥式半控整流电路实验一、实验目的:1、加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。

2、了解续流二极管在单相桥式半控整流电路中的作用,学会对实验中出现的问题加以分析和解决。

二、实验主要仪器与设备:三、实验原理本实验线路如图1所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸管,图中的R用D42三相可调电阻,将两个 900Ω接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。

VD3图1 单相桥式半控整流电路实验线路图四、预习要求1、阅读电力电子技术教材中有关单相桥式半控整流电路的有关内容。

五、实验内容及步骤1、实验内容:(1)锯齿波同步触发电路的调试。

(2)单相桥式半控整流电路带电阻性负载。

(3)单相桥式半控整流电路带电阻电感性负载。

2、实验步骤:(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察“锯齿波同步触发电路”各观察孔的波形。

(2)锯齿波同步移相触发电路调试:其调试方法与实验三相同。

令Uct=0时(RP2电位器顺时针转到底),α=170o。

(3)单相桥式半控整流电路带电阻性负载:按原理图接线,主电路接可调电阻R,将电阻器调到最大阻值位置,按下“启动”按钮,用示波器观察负载电压Ud、晶闸管两端电压UVT和整流二极管两端电压UVD1的波形,调节锯齿波同步移相触发电路上的移相控制电位器RP2,观察并记录在不同α角时Ud 、UVT、UVD1的波形,测量相应电源电压U2和负载电压Ud的数值,记录表1中。

六、实验注意事项1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

2、在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr悬空,避免误触发。

实验二单相桥式全控整流及有源逆变电路实验一、实验目的:1、加深理解单相桥式全控整流及逆变电路的工作原理。

2、研究单相桥式变流电路整流的全过程。

3、研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。

4、掌握产生逆变颠覆的原因及预防方法。

二、实验主要仪器与设备:三、实验原理图2为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。

触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。

图3为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器返馈回电网。

“三相不控整流”是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心式变压器”的中压端Am、Bm,返回电网的电压从其高压端A、B输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y接法。

图中的电阻R、电抗Ld和触发电路与整流所用相同。

R图2 单相桥式整流实验原理图图3 单相桥式有源逆变电路实验原理图四、预习要求1、阅读电力电子技术教材中有关单相桥式全控整流电路的有关内容。

2、掌握实现有源逆变的条件。

五、实验内容及步骤1、实验内容:(1)单相桥式全控整流电路带电阻电感负载。

(2)单相桥式有源逆变电路带电阻电感负载。

(3)有源逆变电路逆变颠覆现象的观察。

2、实验步骤:(1)触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。

将控制电压Uct调至零(将电位器RP2顺时针旋到底),观察同步电压信号和“6”点U6的波形,调节偏移电压Ub(即调RP3电位器),使α=180°。

将锯齿波触发电路的输出脉冲端分别接至全控桥相应晶闸管的门极和阴极,注意不要把相序接反了,将DJKO2上的正桥和反桥触发脉冲开关都打到“断”位置,使Ulf 和Ulr悬空,确保晶闸管不被误触发。

(2)单相桥式全控整流按图2接线,将电阻器放在最大阻值处,按下“启动”按钮,保持Ub 偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在α=0°、30°、60°、90°、120°时,用示波器观察、记录整流电压Ud和晶闸管两端电压Uvt的波形,并记录电源电压U2和负载电压Ud的数值于表4中。

表2(3)单相桥式有源逆变电路实验按图3接线,将电阻器放在最大阻值处,按下“启动”按钮,保持Ub 偏移电压不变(即RP3固定),逐渐增加Uct(调节RP2),在β=30°、60°、90°时,观察、记录逆变电流Id和晶闸管两端电压Uvt的波形,并记录负载电压Ud的数值于表5中。

表3(4)逆变颠覆现象的观察调节Uct,使α=150°,观察Ud波形。

突然关断触发脉冲(可将触发信号拆去),用双踪慢扫描示波器观察逆变颠覆现象,记录逆变颠覆时的Ud 波形。

六、实验注意事项1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。

为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。

2、在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf 及Ulr悬空,避免误触发。

3、为了保证从逆变到整流不发生过流,其回路的电阻R应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。

实验三三相桥式全控整流及有源逆变电路实验一、实验目的:1、加深理解三相桥式全控整流及有源逆变电路的工作原理。

2、了解KC系列集成触发器的调整方法和各点的波形。

二、实验主要仪器与设备:三、实验原理实验线路如图4及图5所示。

主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。

集成触发电路的原理可参考有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。

图中的R用D42三相可调电阻,将两个900Ω接成并联形式;电感Ld在DJK02面板上,选用700mH,直流电压、电流表由DJK02获得。

在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压R图4 三相桥式全控整流电路实验原理图R图5 三相桥式有源逆变电路实验原理图变压器,逆变输出的电压接心式变压器的中压端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。

四、预习要求1、阅读电力电子技术教材中有关三相桥式整流与逆变电路的有关内容。

2、了解三相桥式整流电路有源逆变的条件。

五、实验内容及步骤1、实验内容:(1)三相桥式全控整流电路。

(2)三相桥式有源逆变电路。

(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。

2、实验步骤:(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=150°。

⑥适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)三相桥式全控整流电路按图4接线,将DJK06上的“给定”输出调到零(逆时针旋到底),使电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使α角在30°~150°范围内调节,同时,根据需要不断调整负载电阻R,使得负载电流Id保持在0.6A左右(注意Id不得超过0.65A)。

用示波器观察并记录α=30°、60°及90°时的整流电压Ud和晶闸管两端电压Uvt的波形,并记录相应的Ud数值于表6中。

(3)三相桥式有源逆变电路按图5接线,将DJK06上的“给定”输出调到零(逆时针旋到底),将电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使β角在30°~90°范围调节,同时,根据需要不断调整负载电阻R,使电流Id保持在0.6A左右(注意Id不得超过0.65A)。

相关文档
最新文档