数据库第2章(2)关系数据库
数据库基础知识2
生产副厂长
技术副厂长
经营副厂长
车间主任
处长
部门经理
层次模型具有层次分明、结构清晰的优点。 层次模型具有层次分明、结构清晰的优点。但只能反映实体 一对多”的联系。 间“一对多”的联系。
网状模型用 图结构” 网状模型用“图结构”来表示数据之间的联 系
网状数据模型反映现实世界较为复杂的事物间的联系。特点是: 网状数据模型反映现实世界较为复杂的事物间的联系。特点是: (1)可以有两个以上的根结点。 可以有两个以上的根结点。 一个父结点可以有多个子结点, (2 ) 一个父结点可以有多个子结点, 一个子结点也可以有多个父 结点。 结点。 专业系
2.1 数据模型概述
2.1.2 数据模型的组成三要素
1、数据结构——用于描述现实世界数据(系统)的静态特性 数据结构——用于描述现实世界数据(系统) ——用于描述现实世界数据 规定数据的存储和表示方式。 规定数据的存储和表示方式。 2、数据操作—用于描述现实世界数据(系统)的动态特性 数据操作—用于描述现实世界数据(系统) 是数据库中各种数据的操作集合以及相应的操作规则。 是数据库中各种数据的操作集合以及相应的操作规则。 如:创建、插入、替换、删除、查询、统计等操作。 创建、插入、替换、删除、查询、统计等操作。 3、数据的约束条件—一组完整性规则的集合 数据的约束条件— 是给定的数据模型中的数据及其联系所具有的制约和依存关 系,用以保证数据的正确、有效、相容。 用以保证数据的正确、有效、相容。 如:有效性规则,参照完整性,触发器等。 有效性规则,参照完整性,触发器等。
层次模型用 树结构” 层次模型用“树结构”来表示数据之间的联系
把客观问题抽象为一个严格的自上而下的层次关系。 把客观问题抽象为一个严格的自上而下的层次关系。 其特点是:(1)只有一个根结点. 其特点是:(1)只有一个根结点. 只有一个根结点 (2) 一 个 父 结 点 可 以 有 多 个 子 结 点 , 但 每 个 子 结点只能有一个父结点。 结点只能有一个父结点。
(第二讲)数据库(第二章:关系数据库的基本概念)
类型 char(10) char(10) char(2) Int char(4) 学号,主码 姓名:字符类型
说明
性别:只能为男或女 年龄:整形 所在专业编号,外码,参照专业表
4. 选课表(XK_Tab):记录学生的选课结果,对于任意一门课,每 个学生一年最多只能选一次,因此用课程编号、学号和年份联合作为 选课表的主码。选课表通过学号参照学生表,通过课程编号参照课程 表。
2. 课程表(KC_Tab):存放多门课程,主码为课程编号。
表2-4 课程表(KC_Tab)
列名 KC_Id KC_Name KC_KC_Id KC_Point
类型 char(4) char(50) char(4) Float
说明 课程编号,主码 课程名称 先修课课程编号 课程的学分
3. 学生表(XS_Tab):记录学生的基本信息,主码为学号,通过专业 编号参照专业表。
2.3 关系模型规范化
关系模型规范化的目的是为了消除存储异常,减少数据冗余, 保证数据的完整性和存储效率。 关系数据库中的关系是要满足一定的规范化要求的。对于不 同规范化程度,可以使用“范式”来衡量。满足最低要求的为I范 式。。在I范式的基础上,进一步满足一些要求的为II范式,以次 类推。一般情况下,在实践中关系模式满足3范式就基本可以。
元素的每一个值 di 叫作一个分量。关系模型中要求每一 个分量必须属于某种基本数据类型,如整形或字符串型。
关系:笛卡尔积的子集就是一个关系。
R( D1 , D2 ,, Dn )
这里R表示关系的名字,n是关系的目或度。
例: 我们给出如下三个域: D1 =导师集合。导师={王新,赵阳} D2=专业集合。专业={计算机,通信} D3=学生集合。学生={(张三,101),(李四,201)} 则笛卡尔积为: D1XD2XD3={(王新,计算机,张三,101), (王新,计算机,李四,201),
第2章关系数据库习题参考答案
第2章关系数据库习题参考答案1、试述关系模型的三个组成部分。
(46页)答:关系模型由关系数据结构、关系操作集合和关系完整性约束三部分组成。
2、试述关系数据语言的特点和分类。
(47页)答:关系数据语言可以分为三类:A、关系代数语言。
B、关系演算语言:元组关系演算语言和域关系演算语言。
C、SQL:具有关系代数和关系演算双重特点的语言。
这些关系数据语言的共同特点是,语言具有完备的表达能力,是非过程化的集合操作语言,功能强,能够嵌入高级语言中使用。
2、定义并理解下列术语,说明它们联系与区别:(P46---50页)(1)域,笛卡尔积,关系,元组,属性(2)主码,候选码,外部码(3)关系模式,关系,关系数据库3、试述关系模型的完整性规则(53页),在参照完整性中,为什么外部码属性也可以为空?什么情况下才可以为空?(55页)答:实体完整性规则是指若属性A是基本关系R的主属性,则属性A不能取空值。
(P55页)若属性(或属性组)F是基本关系R的外码,它与基本关系S的主码Ks相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:●或者取空值(F的每个属性值均为空值);●或者等于S中某个元组的主码值。
即属性F本身不是主属性,则可以取空值,否则不能取空值。
5.设有一个SPJ数据库,包括S,P,J,SPJ四个关系模式:1)求供应工程J1零件的供应商号码SNO:πSno(σSno=‘J1’(SPJ))2)求供应工程J1零件P1的供应商号码SNO:πSno(σSno=‘J1’∧Pno=‘P1‘(SPJ))3)求供应工程J1零件为红色的供应商号码SNO:πSno(σPno=‘P1‘(σCOLOR=’红‘(P)∞SPJ))4)求没有使用天津供应商生产的红色零件的工程号JNO:πJno(SPJ)- πJNO(σcity=‘天津’∧Color=‘红‘(S∞SPJ∞P)5)求至少用了供应商S1所供应的全部零件的工程号JNO:πJno,Pno(SPJ)÷πPno(σSno=‘S1‘(SPJ))(见P62页例6)6.试述等值连接与自然连接的区别和联系。
数据库原理2 关系数据库
三、用户定义的完整性(User-defined integrity)
实体完整性和参照性适用于任何关系数据 库系统。除此之外,不同的关系数据库 系统根据其应用环境的不同,往往还需 要一些特殊的约束条件。用户定义的完 整性就是针对某一具体关系数据库的约 束条件,它反映某一具体应用所涉及的 数据必须满足的语义要求。关系模型应 提供定义和检验这类完整性的机制,以 便用统一的系统的方法处理它们,而不 要由应用程序承担这一功能。
体和实体间的联系的关系的集合构成一 个关系数据库。同样,关系数据库也有 型和值之分。
型:关系数据库模式 是对关系数据库的描 述。
值:一般就称为关系数据库。
2.3 关系的完整性
关系模型的完整性规则是对关系的某种约 束条件。
关系模型的三类完整性:
1. 实体完整性 2. 参照完整性 3. 用户定义的完整性
2.4 关系代数
本节要求
给定关系和关系代数表达式,要会算。
给定关系模式和查询(语义)要求,要会写 关系代数表达式。
关系代数是一种抽象的查询语言,用对
关系的运算来表达查询,作为研究关系 数据语言的数学工具。
关系代数的运算对象是关系,运算结果
亦为关系。关系代数用到的运算符包括 四类:集合运算符、专门的关系运算符、 算术比较符和逻辑运算符。
第二章 关系数据库
2-5章为本课程重点与难点 关系数据库的理论基础 1970, E.F.Codd “A Relational Model of Data for Shared Data Banks” 现代主流数据库几乎全部支持关系模型 Oracle(甲骨文),Sybase, IBM DB2, MS SQL Server, Ingres
引用的时候,必须取基本表中已经存在的 值。由此引出参照的引用规则。
数据库原理第二章关系数据库
关系代数小结
❖ 传统的集合运算
▪ 并、差、交、笛卡尔积
❖ 专门的关系运算
▪ 选择、投影、连接、除
❖ 5种基本运算
▪ 并、差、笛卡尔积、投影、选择
二、关系演算
❖ 关系演算是以数理逻辑中的谓词演算为基础的,通过谓词 形式来表示查询表达式。
❖ 根据谓词变元的不同,可将关系演算分为元组关系演算和 域关系演算。前者以元组为变量,简称元组演算;后者以 域为变量,简称域演算。
❖ 元组关系演算
▪ Tuple Relational Calculus ,简称TRC ▪ 元组关系演算语言ALPHA ▪ 元组关系表达式
❖ 域关系运算
▪ Domain Relational Calculus ,简称DRC ▪ 域关系演算语言QUE
1、元组关系演算
❖ 元组关系演算是以元组变量作为谓词变元的基本对象。 ❖ 元组关系演算语言的典型代表是E.F.Codd提出的ALPHA
例2:查询一名男同学的教师号和姓名,并使他的年龄最小。
GET W (1) (Student) : Student. Ssex = ‘男’ up Student.Sage
▪ 所谓的定额查询就是通过在W后面的括号中加上定额数量, 限定查询出元组的个数。
▪ 这里(1)表示查询结果中男同学的个数,取出学生表中第一 个男同学的学号和姓名。
RANGE Course CX SC SCX
GET W (Student.Sname): SCX (SCX.Sno=Student.Sno∧ CX (o=o∧CX.Pcno='6'))
例5:查询选修全部课程的学生姓名。
RANGE SC X Course CX
GET W (Student.SN) : CXSCX (SCX.SNO=Student.SNO∧O=O)
第2章关系数据库(重点)数据库知识点整理
第2章关系数据库(重点)数据库知识点整理第2章关系数据库(重点)了解:关系数据结构及形式化定义、关系操作、关系的完整性、关系代数掌握关系模型的三个组成部分及各部分所包括的主要内容关系数据结构及其形式化定义关系的三类完整性约束关系代数及其运算,包括并、交、差、选择、投影、连接、除、⼴义笛卡⼉积知识点关系模型三个组成部分关系数据结构关系操作集合关系完整性约束实体完整性规则:若属性A是基本关系R的主属性,则属性A不能取空值参照完整性规则:若属性(或属性组)F是基本关系R的外码它与基本关系S的主码Ks相对应(基本关系R和S不⼀定是不同的关系),则对于R中每个元组在F上的值必须为:或者取空值(F的每个属性值均为空值)或者等于S中某个元组的主码值⽤户定义的完整性:针对某⼀具体关系数据库的约束条件,反映某⼀具体应⽤所涉及的数据必须满⾜的语义要求关系数据语⾔的特点和分类关系代数语⾔关系演算语⾔具有关系代数和关系演算双重特点的语⾔域、笛卡⼉积、关系、元组、属性域:域是⼀组具有相同数据类型的值的集合笛卡⼉积:D1*D2*…*Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}关系:在域D1,D2,…,Dn上笛卡⼉积D1*D2*…*Dn的⼦集,表⽰为R(D1,D2,…,Dn)元组:关系中的每个元素是关系中的元组属性:关系也是⼀个⼆维表,表的每⾏对应⼀个元组,表的每列对应⼀个域。
由于域可以相同,为了加以区分,对每列起⼀个名字,称为属性候选码、主码、外码候选码:若关系中的某⼀属性组的值能唯⼀地标识⼀个元组,⽽其⼦集不能,则称该属性组为候选码(candidate key)主码:若⼀个关系有多个候选码,选定其中⼀个为主码(primary key)外码:设F是基本关系R的⼀个或⼀组属性,但不是关系R的码,如果F与基本关系S的主码Ks相对应,则称F是基本关系R的外部码(foreign key),简称外码关系模式、关系、关系数据库关系模式:关系的描述称为关系模式(relation schema),关系模式形式化表⽰为R(U,D,DOM,F)。
02 关系数据库的基本理论
2.2.4 关系系统
2.关系系统的分类 按照E.F.Codd的思想,可以把关系系统分 类如下: (1)最小关系系统 (2)关系上完备的系统 (3)全关系系统
2.2.4 关系系统
3.全关系系统的12条基本准则 【准则2-0】一个关系型的DBMS必须能完全通过 它的关系能力来管理数据库。 【准则2-1】信息准则。 【准则2-2】保证访问准则。 【准则2-3】空值的系统化处理。 【准则2-4】基于关系模型的动态的联机数据字典。 【准则2-5】统一的数据子语言准则。
第2章 关系数据库的基本理论
关系数据库系统具有独特的风格,概括起 来有以下五个特点。
(1)简单明了的数据模型。 (2)具有严谨的理论基础。 (3)实体表示方法和实体之间联系的表示 方法一致。 (4)处理多对多的联系方便。 (5)使用的关系数据语言功能强大。
2.1 关系模型概述
关系模型是关系数据库的基础。关系模型由数据 结构、关系操作集合和完整性约束三部分组成。 2.1.1 关系数据结构
其中,姓名、职称、X称为域名,姓名域和职称域各有4个值, X域有2个值,一般称它们的基数分别为4、4、2。
2.2.1 数学定义
【 定 义 2-2】 给 定 一 组 域 D1,D2,…,Dn , 则 D1×D2×…×Dn = { (d1,d2,…,dn) | d1∈Di , i = 1,2,…,n } 称 为 D1,D2,…,Dn 的 笛卡尔积。其中每个(d1,d2,…,dn)叫做一个n元组,元组中的 每个di是Di域中的一个值,称为一个分量。
表达(或描述)关系操作的关系数据语言 可以分为三类,具体分类情况如下:
2.1.2 关系操作
(1)关系代数 关系代数是用对关系的运算来表达查询要
求的方式。 (2)关系演算
数据库第2章2.1-2.3
候选码主码Fra bibliotek有意义的关系及其值:
导师 专业 研究生姓名 研究生学号 1001 1002 1003
张清玫 信息专业 李 勇 张清玫 信息专业 刘 晨 刘 逸 信息专业 王 敏
关系(续)
2) 关系的表示
关系也是一个二维表,表的每行对应一个元 组,表的每列对应一个域(属性)。
表 2.2 SAP 关系
SUPERVISOR 张清玫 张清玫 刘逸 SPECIALITY 信息专业 信息专业 信息专业 POSTGRADUATE 李勇 刘晨 王敏
是 型
是值 关系模式是对关系的描述
数据库系统型与值的概念
5) 基本关系的性质
① 同列同质性,不同列可同域,不同名 ② 主码唯一性 ③ 行列无序性 ④ 分量原子性
2.1 关系数据结构
2.1.1 关系
2.1.2 关系模式 2.1.3 关系数据库
2.1.2 关系模式
1.什么是关系模式 2.定义关系模式
3. 关系模式与关系
1.什么是关系模式
关系模式 关系
第二章 关系数据库
2.1 2.2 2.3 2.4 2.5 关系数据结构及形式化定义 关系操作 关系的完整性 关系代数 小结
第二章 关系数据库
2.1 2.2 2.3 2.4 2.5 关系数据结构及形式化定义 关系操作 关系的完整性 关系代数 小结
2.1 关系数据结构
关系数据库系统是支持关系模型 的数据库系统 关系模型的三大组成部分 关系数据结构 关系操作集合 关系完整性约束
4)对关系的几点说明
笛卡尔积不满足交换律,即
(d1,d2,…,dn )≠(d2,d1,…,dn ) 但关系附加的属性名使得关系满足交换律, (d1,d2, …,di,dj ,…,dn)= (d1, d2, …,dj,di ,…,dn) ( i , j = 1 , 2 , …, n ) 例如 : (学号,姓名,性别,年龄)= (学号,姓名,年龄,性别)
《数据库整理》第2章 关系数据库
关系体
随数据更新不断变化
15
.
• 例如,在第1章的图1-22所示的教学数据库中,共有五个关 系,其关系模式可分别表示为:
– 学生(学号,姓名,性别,年龄,系别) – 教师(教师号,姓名,性别,年龄,职称,工资,岗位津贴,系
别)
– 课程(课程号,课程名,课时) – 选课(学号,课程号,成绩) – 授课(教师号,课程号)
• 给定一组域D1,D2,…,Dn(它们可以包含相同的元素, 即可以完全不同,也可以部分或全部相同)。D1,D2,… ,Dn的笛卡尔积为
D1×D2×……×Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}
每一个元素(d1,d2,…,dn)中的每一个值di叫做一个 分量(Component) ,di∈Di 每一个元素(d1,d2,…,dn)叫做一个n元组(n-Tuple ),简称元组(Tuple) (注意:元组是按序排列的)
5
.
笛卡尔积D1×D2×…×Dn的基数M(即元素(d1,d2, …,dn)的个数)为所有域的基数的累乘之
n
积,即M= m i 。 i1
例如,上述表示教师关系中姓名、性别两个域的笛卡尔 积为:
D1×D2={(李力,男),(李力,女),(王平,男),(王平 ,女),(刘伟,男),(刘伟,女)}
分量:李力、王平、刘伟、男、女 元组 :(李力,男),(李力,女) ,M=m1×m2=3×2=6
第2章 关系数据库
.
• 本章主要按数据模型的三个要素讲述关系数据库的一
些基本理论(关系模型的数据结构、关系的定义和性 质、关系的完整性、关系代数、关系数据库等 )
• 掌握关系的定义及性质、关系键、外部键等基本概念
以及关系演算语言的使用方法
第2章-关系数据库
计算机科学与工程系
列:属性对应字段
学号 050101
关系对应二维表
姓名 张三秋
性别 男
出生年月 1986-6-9
籍贯 广东
050102
050103 050104
主键
王五
李玉 黄国度
男
女 男
1986-8-8
1985-9-12 1986-8-13
江苏
湖南 广东
行:元组对应记录
分量对应数据项
关系模型与关系数据库的对应关系
院长 张兴杰 杨波 张三 李四 王二 林木
电话 85283291 85285393 85285313 85285329 85285333 85285343
地址 17号楼 信息大楼 1号楼 2号楼 3号楼 4号楼
null
教学进度
计算机科学与工程系
② 参照完整性 是对外键的约束,关系中的外键必 须是另一个关系的主键(或候选键)有效值 或空值(Null)。
A. B. C. D. 层次模型 网状模型 关系模型 以上3个都是
一公司
计算机科学与工程系
二公司
省代理 三公司 四公司
教学进度
复习:选择题
A. B. C. D. 关系型 层次型 网状型 以上皆非
计算机科学与工程系
如图所示的数据模型属于( )。
总裁
副总裁
部门A
员工甲
员工乙
教学进度
复习:选择题
计算机科学与工程系
计算机科学与工程系
Access是一种( )。
A. B. C. D. 数据库管理系统软件 操作系统软件 文字处理软件 CAD软件
教学进度
复习:选择题
计算机科学与工程系
数据库课件第2章
R
A B C
3 2 7 4 R
2=2
S
A B C
3 7 4 2 5 3
6 5 2 4 S
7 7 3 3 R.A
R.B R.C S.A S.B S.C
7 4
2 4
3 3
7 3
2 4
3 5
Question:
• 设关系R和S上的属性个数分别为2和3, 那么R 1<2 S等价于
• A. O1<2 (R*S) • C. O1<2(R S) B. O 1<4(R*S) D. O1<4(R S)
3. 连接(Join)
• 1)连接也称为θ连接 • 2)连接运算的含义 – 从两个关系的笛卡尔积中选取属性间满足一定条 件的元组
R S={
| tr R∧ts S∧tr[A]θts[B] }
– 连接运算从R和S的广义笛卡尔积R×S中选取 (R关系)在A属性组上的值与(S关系)在B属 性组上值满足比较关系的元组。
A
a1 a1 a1 a1 a1 a1 a2 a2 a2
B
b1 b1 b1 b2 b2 b2 b2 b2 b2
C
c1 c1 c1 c2 c2 c2 c1 c1 c1
A
a1 a1 a2 a1 a1 a2 a1 a1 a2
B
b2 b3 b2 b2 b3 b2 b2 b3 b2
C
c2 c2 c1 c2 c2 c1 c2 c2 c1
R
B b1 b2 b3 b4
C 5 6 8 12
B b1 b2 b3 b3 b5
S
E 3 7 10 2 2
连接(续)
R
C<E
S
A
02《数据库》第二章关系数据模型 #
• 结果关系的所有属性都是原关系的属性。 • 结果关系的所有元组都是原关系的元组。
• 例如:在学生表中将98管理班同学全部
学号 找出姓来名 。 出生年月 性别 班级
0001 • 李伟 <班19级80=.1‵2.0938管男理′>(学9生8管表理)
性、参照完整性和用户定义的完整性。 • 实体完整性:主码的任何属性值都不能为空。 • 参照完整性:若A是基本关系R1的外码。它与
基本关系R2的主码K相对应,则R1中每个元组 在A上的值必须为以下情况之一。 • 等于R2中某个元组的主码值。 • 取空值(A的每个属性值均为空值)。
• 例如:职工关系(职工号,姓名,…部门编号) 和部门关系(部门编号,部门名称,…)。
班级 98管理 98管理 98管理 98管理
学号 课程号 成绩
0001 01
85
0001 02
70
0003 01
80
0003 02
90
• 自然连接 • (学生表)(成绩表)
学号 姓名 0001 李伟 0001 李伟 0003 赵兰 0003 赵兰
出生年月 性别 1980.12.03 男 1980.12.03 男 1979.05.26 女 1979.05.26 女
《数据库技术原理与应用》
章、关系数据模型基础理论
TEL: Email:
本章教学内容
一、关系模型的基本概念 二、关系代数 三、关系演算 四、查询优化 五、关系系统
一、关系模型的基本概念
1、关系模型的数学定义: 关系模型是建立在数学理论基础上的。 定义(1)域:域(Domain)是值的集合
《数据库原理及应用》教学课件 第二章关系数据库基础
01
列是同质的,即每一列中的分量必须来自同一个域且必须是同 一类型的数据。
02
不同的属性可来自同一个域,但不同的属性有不同的名字。
03
列的顺序可以任意交换,但交换时应连同属性名一起交换,否则 将得到不同的关系。
13
2.1 关系模型
04 05 06
2.1.3 关系的性质
元组的顺序可任意交换。在关系数据库中,可以按照各种排序 要求对元组的次序重新排列。
关系中不允许出现相同的元组。关系中的一个元组表示现实世界 中的一个实体或一个实体间的联系,如果元组重复则表示实体或 实体间的联系重复,这样不仅会造成数据库中数据的冗余,也可 能造成数据查询与统计的结果出现错误。
关系中的每一个分量必须是不可再分的数据项,即所有属性值都 是一个单独的值,而不是值的集合。
例如,在没有重名学生的情况下,学生关系中的属性“学号”与“姓名” 都是学生关系的候选码。如果选定属性“学号”作为数据操作的依据,则属 性“学号”为主码;如果选定属性“姓名”作为数据操作的依据,则属性 “姓名”为主码。
22
2.2 关系模型的完整性约束
2.2.1 关系的码
03 主属性与非主属性
包含在任一候选码中的属性称为主属性,不包含在任一候选码中的属性称为非主属性。 例如,在没有重名学生的情况下,学生关系的属性“学号”与“姓名”都是学生关系的候选码, 则它们都是学生关系的主属性。而属性“性别”与“系别”不包含在任一候选码中,则它们都是学 生关系的非主属性。 在最简单的情况下,关系的候选码只包含一个属性;在最极端的情况下,关系的候选码是所有 属性的组合,这时称为全码。 例如,设有关系演出(演奏者编号,乐器编号,演播室编号),其中的3个属性分别为演奏者 关系、乐器关系及演播室关系的主码,它们共同唯一标识了一个演出,则演出关系的主码为它们的 组合,即为全码。
《数据库系统概论》第二章关系数据库复习题及答案
《数据库系统概论》第二章关系数据库复习题及答案一、选择题1、关系数据库管理系统应能实现的专门关系运算包括。
A.排序、索引、统计 B.选择、投影、连接 C.关联、更新、排序 D.显示、打印、制表2、关系模型中,一个关键字是。
A.可由多个任意属性组成 B.至多由一个属性组成C.可由一个或多个其值能惟一标识该关系模式中任何元组的属性组成 D.以上都不是3、自然连接是构成新关系的有效方法。
一般情况下,当对关系R和S使用自然连接时,要求R和S含有一个或多个共有的。
A.元组 B.行 C.记录 D.属性4、关系运算中花费时间可能最长的运算是。
A.投影 B.选择 C.笛卡尔积 D.除5.关系模式的任何属性。
A.不可再分 B.可再分 C.命名在该关系模式中可以不惟一 D.以上都不是6.在关系代数运算中,五种基本运算为。
A.并、差、选择、投影、自然连接 B.并、差、交、选择、投影C.并、差、选择、投影、乘积 D.并、差、交、选择、乘积7、设有关系R,按条件f对关系R进行选择,正确的是。
A.R⨯R B.R ♦❖ R C.σf(R) D.∏f(R)8、如图所示,两个关系R1和R2,它们进行运算后得到R3。
R2R1R3A.交 B.并 C.笛卡尔积 D.连接二、填空题1、一个关系模式的定义格式为。
答案:关系名(属性名1,属性名2,…,属性名n)2、.一个关系模式的定义主要包括关系名、属性名、属性类型、属性长度和关键字。
答案:①关系名②属性名③属性类型④属性长度⑤关键字3、.关系代数运算中,传统的集合运算有①、②、③和④。
答案:①笛卡尔积②并③交④差4、关系代数运算中,基本的运算是①、②、③、④和⑤。
答案:①并②差③笛卡尔积④投影⑤选择5、关系代数运算中,专门的关系运算有选择、投影和连接。
答案:①选择②投影③连接6、关系数据库中基于数学上两类运算是关系代数和关系演算。
答案:①关系代数②关系演算7、.已知系(系编号,系名称,系主任,电话,地点)和学生(学号,姓名,性别,入学日期,专业,系编号)两个关系,系关系的主关键字是①,系关系的外关键字②,学生关系的主关键字是③,外关键字④答案:①系编号②无③学号④系编号三、应用题:设有如下所示的关系S(S#,SNAME,AGE,SEX)、C(C#,CNAME,TEACHER)和SC(S#,C#,GRADE),试用关系代数表达式表示下列查询语句:(1)检索“程军”老师所授课程的课程号(C#)和课程名(CNAME)。
数据库第二版课后习题答案
数据库第二版课后习题答案数据库第二版课后习题答案数据库是计算机科学中重要的概念之一,它提供了一种有效地存储和管理数据的方式。
数据库系统的设计与实现是数据库课程的重要内容之一。
在学习数据库课程时,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供数据库第二版课后习题的答案,希望对大家的学习有所帮助。
第一章数据库系统概述1. 数据库是什么?答:数据库是一个有组织的、可共享的、可维护的数据集合,它以一定的数据模型为基础,描述了现实世界中某个特定领域的数据和关系。
2. 数据库系统的特点有哪些?答:数据库系统具有以下特点:- 数据的独立性:数据库系统将数据与程序相分离,使得数据的修改不会影响到程序的运行。
- 数据的共享性:多个用户可以同时访问数据库,并且可以共享数据。
- 数据的冗余性小:通过数据库系统的数据一致性和完整性约束,可以减少数据的冗余性。
- 数据的易扩展性:数据库系统可以方便地进行扩展和修改,以满足不同需求。
- 数据的安全性:数据库系统提供了权限管理和数据加密等机制,保证数据的安全性。
第二章关系数据库与SQL1. 什么是关系数据库?答:关系数据库是一种基于关系模型的数据库,它使用表格(关系)来表示和存储数据。
关系数据库中的数据以行和列的形式组织,每个表格代表一个实体集,每一行代表一个实体,每一列代表一个属性。
2. 什么是SQL?答:SQL(Structured Query Language)是一种用于管理关系数据库的语言。
它包含了数据定义语言(DDL)、数据操纵语言(DML)和数据控制语言(DCL)等部分。
通过SQL,用户可以对数据库进行创建、查询、更新和删除等操作。
第三章数据库设计1. 数据库设计的步骤有哪些?答:数据库设计的步骤包括:- 需求分析:确定数据库的需求和目标,了解用户的需求。
- 概念设计:根据需求分析的结果,设计数据库的概念模型,包括实体、属性和关系等。
- 逻辑设计:将概念模型转换为逻辑模型,包括表格的设计、关系的建立和约束的定义等。
数据库 第二章 关系数据库
关系的描述称为关系模式,在上图中二维表的表头那行
称为关系模式,又称表的框架。
(2)形式化定义 :
R(U,D,Dom,F)
其中:R表示关系名;
U表示组成该关系的属性集合;
D表示U中属性所来自的域;
Dom表示属性向域的映像的集合
F表示属性间数据的依赖关系集合
上一页 下一页 第一页 最末页
退出
第一节 关系数据结构及形式化定义
一、和”关系”相关的概念定义 二、“关系”相关的概念 三、关系数据库中关系的类型 四、数据库中基本关系的性质
上一页 下一页 第一页 最末页
退出
一、和”关系”相关的概念定义
1、域:P47 2、笛卡儿积:P48 3、关系:P48
上一页 下一页 第一页 最末页
退出
域的定义
专业号 001 002
专业名 计算机应用 信息管理
二、DBMS在维护完整性方面具备的功能
1、提供定义完整性约束条件的机制 2、提供完整性检查的方法 3、违约处理
1、实体完整性
(1)定义:Primary key ->主键 (2)检查:
①对基本表插入一条记录 ②对基本表的主码进行更新 (3)违约处理 ① 若主码不唯一则拒绝插入或修改 ②若主码的各个属性有一个为空则拒绝插入或修改
3、参照完整性(Referential Integrity)
(1)外码 (2)参照完整性规则
外码(Foreign Key)
• 外码的定义:设F是基本关系R的一个或一组属性,但 不是R的码,如果F与基本关系S的主码相对应,则 称F为基本关系R的外码。并称R为参照关系,S为被 参照关系。
• 外码举例: 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)
第2章关系数据库
(2)模型概念单一。 (3)集合操作:操作对象和结果都是元组的集合,即关系。
LOGO
2.1 关系模型的基本概念
2.1.3 关系模型、关系子模式、关系内模式
美国国家标准学会(ANSI)所属标准计划和要求委员 会在1975年公布的研究报告中,把数据库分为三级:模式、 外模式和内模式。对用户而言可以对应分为概念级模式、 一般用户级模式和物理级模式(其体系结构如图2-1)。 关系模型中,概念模式是关系模式的集合,外模式是关系 子模式的集合,内模式是存储模式的集合。
2,…,n}
其中每一个元素(d 1 ,d 2 ,…,d n)称为一个n元组(nTuple),或简称为元组(Tuple)通常元素中的每一个值d i
称为一个分量。
LOGO
2.1 关系模型的基本概念来自❖ 两个集合R和S的笛卡尔积(或只是乘积)是元素对的集合, 该元素对是通过选择R的任何元素作为第一个元素,S的元 素作为第二个元素构成的。该乘积用RS表示。当R和S是 关系时,乘积本质上相同。
LOGO
2.1 关系模型的基本概念
1. 关系模式
关系实质上是一张二维表,表的每一行为一个元组, 每一列为一个属性。一个元组就是该关系所涉及的属性集 的笛卡尔积的一个元素。关系是元组的集合,也就是笛卡 尔积的一个子集。因此关系模式必须指出这个元组集合的 结构,即它由哪些属性构成,这些属性来自哪些域,以及 属性与域之间的映象关系。
•计算机专业
•李喆
•刘德成
•通信专业
•吕景刚
•刘德成
•通信专业
•王弶
•刘德成
•通信专业
•李喆
LOGO
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 An Introduction to Database System
概述
1.关系代数 一种抽象的查询语言
用对关系的运算来表达查询
5 An Introduction to Database System
概述(续 概述 续)
2.关系代数运算的三个要素
运算对象:关系 运算结果:关系 运算符:四类
6 An Introduction to Database System
Sdept
结果:
CS IS MA
An Introduction to Database System 35
3. 连接(Join) 连接( )
1)连接也称为θ连接 2)连接运算的含义 笛卡尔积中选取属性间满足一定条件的 从两个关系的笛卡尔积 笛卡尔积 元组
R
AθB
S = {tr ts | tr ∈ R∧ts ∈S∧tr[A]θts[B] }
选择( 选择(续)
[例1] 查询信息系(IS系)全体学生 σSdept = 'IS' (Student) 或 σ5 ='IS' (Student) 结果:
Sno 95002 95004 Sname 刘晨 张立 Ssex 女 男 Sage 19 19 Sdept IS IS
An Introduction to Database System 29
R∪S
仍为n目关系,由属于R或属于S的元组组成 R∪S = { t|t ∈ R∨t ∈S }
An Introduction to Database System 14
并(续) a1 续
A R a1 a1 a2 A a1 a1 a2 B b1 b2 b2 B b2 b3 b2
b2 c2重复
C c1 c2 c1 C c2 c2 c1
概述(续 概述 续)
集合运算符
将关系看成元组的集合 运算是从关系的“水平”方向即行的角度来进行
专门的关系运算符
不仅涉及行而且涉及列
算术比较符
辅助专门的关系运算符进行操作
逻辑运算符
辅助专门的关系运算符进行操作
7 An Introduction to Database System
概述(续 概述 续)
2 An Introduction to Database System
2.4 关系代数
概述 传统的集合运算 专门的关系运算
3 An Introduction to Database System
概述
1. 2. 3. 4. 5. 关系代数 运算的三要素 关系代数运算的三个要素 关系代数运算的分类 表示记号
Zx={t[Z]|t ∈R,t[X]=x}
它表示R中属性组X上值为x的诸元组在Z上分 量的集合。
An Introduction to Database System 24
关系R如图 如图2.3, 例:关系 如图 , x1在R中的象集Zx1={Z1,Z2,Z3}, ,
x2在R中的象集Zx2={Z2,Z3}, , x3在R中的象集Zx3={Z1,Z3}, ,
π
但投影之后不仅取消了原关系中的某些列,而 且还可能取消某些元组(避免重复行)
An Introduction to Database System 32
投影( 投影(续)
3) 举例 [例3] 查询学生的姓名和所在系
即求Student关系上学生姓名和所在系两个 属性上的投影 πSname,Sdept(Student) 或 π2,5(Student) 结果:
An Introduction to Database System 10
概述(续 概述 续) 5.表示记号
设关系R(A1,A2,…,An), t∈R表示t是R的一 个组, t[Ai]则表示元组t中相应于属性Ai的一个分 量。
An Introduction to Database System 11
连接(续 连接 续)
自然连接(Natural join)
什么是自然连接 自然连接是一种特殊的等值连接 两个关系中进行比较的分量必须是相同 的属性组 在结果中把重复的属性列去掉 把重复的属性列去掉 自然连接的含义 R和S具有相同的属性组B
R S = { tr ts ts[B] }
| tr ∈R∧ts ∈S∧tr[B] =
3. 交(Intersection) )
R和S
具有相同的目n 相应的属性取自同一个域
R∩S
仍为n目关系,由既属于R又属于S的元组组成 R∩S = { t|t ∈ R∧t ∈S } R∩S = R –(R-S)
An Introduction to Database System 18
交 (续) 续
R∪S ∪
S
A a1 a1 a1 a2
B b1 b2 b3 b2
C c1 c2 c2 c1
An Introduction to Database System 15
2. 差(Difference) )
R和S
具有相同的目n 相应的属性取自同一个域
R-S
仍为 n目关系,由属于R 而不属于S 的所有元 组组成 R -S = { t|t∈R∧t∉S }
σ
4) 举例
设有一个学生-课程数据库,包括学生关系 Student、课程关系Course和选修关系SC。
An Introduction to Database System 27
设有学生—课程数据库(包括三个关系) 设有学生 课程数据库(包括三个关系) 课程数据库
An Introduction to Database System 28
21
2.4 关系代数
概述 传统的集合运算 专门的关系运算
An Introduction to Database System 22
2.4.2 专门的关系运算
选择 投影 连接 除
An Introduction to Database System 23
象集Z
给定一个关系 R ( X , Z ), X 和 Z 为属性组。 当t[X]=x时,x在R中的象集(Images Set)定 义为:
An Introduction to Database System 16
差(续) 续
R
A a1 a1 a2
B b1 b2 b2 B b2 b3 b2
C c1 c2 c1 C c2 c2 c1
R-S
A a1
B b1
C c1
A S a1 a1 a2
An Introduction to Database System 17
2.4 关系代数
概述 传统的集合运算 专门的关系运算
An Introduction to Database System 12
2.4.1 传统的集合运算
并 差 交 广义笛卡尔积
An Introduction to Database System 13
1. 并(Union) )
R和S
具有相同的目n(即两个关系都有n个属性) 相应的属性取自同一个域
X1θ Y 1
θ:比较运算符(>,≥,<,≤,=或<>)
X1,Y1等:属性名、常量、简单函数;属性名也可以用它的序 号来代替; φ:逻辑运算符(∧或∨)
An Introduction to Database System 26
选择( 选择(续)
3) 选择运算是从行的角度进行的运算 从行的角度进行的运算 从行的角度
2. 投影(Projection) 投影( )
1)投影运算符的含义
从R中选择出若干属性列组成新的关系 πA(R) = { t[A] | t ∈R }
A:R中的属性列
An Introduction to Database System 31
2. 投影(Projection) 投影( )
2)投影操作主要是从列的角度进行运算
R
A a1 a1 a2 A a1 a1 a2
B b1 b2 b2 B b2 b3 b2
C c1 c2 c1 C c2 c2 c1
R∩S
A a1 a2
B b2 b2
C c2 c1
S
R∩S = R –(R-S)? )?
An Introduction to Database System 19
4. 广义笛卡尔积(Extended Cartesian Product) 广义笛卡尔积( )
A R a1 a1 a2 A S a1 a1 a2 B b1 b2 b2 B b2 b3 b2 C c1 c2 c1 C c2 c2 c1 A
a1 a1 a1 a1 a1 a1 a2 a2 a2
B
b1 b1 b1 b2 b2 b2 b2 b2 b2
C A
B
C
R×S
c1 a1 b2 c2 c1 a1 b3 c2 c1 a2 b2 c1 c2 a1 b2 c2 c2 a1 b3 c2 c2 a2 b2 c1 c1 a1 b2 c2 c1 a1 b3 c2 An c1 Introduction to Database System a2 b2 c1
表2.4 关系代数运算符
运算符 集 合 运 算 符 ∪ ∩ ×
含义 并 差 交 广义笛 卡尔积
运算符 比 较 运 算 符 > ≥ < ≤ = ≠
含义 大于 大于等于 小于 小于等于 等于 不等于
8
An Introduction to Database System
概述(续 概述 续)
关系代数运算符( 表2.4 关系代数运算符(续)
An Introduction to Database System 33
投影( 投影(续)
Sname 李勇 刘晨 王敏 张立 Sdept