八年级上册江门数学期末试卷中考真题汇编[解析版]
江门数学全等三角形中考真题汇编[解析版]
江门数学全等三角形中考真题汇编[解析版]一、八年级数学轴对称三角形填空题(难)1.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD,则∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③OD=AD,则∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.3.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD ,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJCAI BJACA BA∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.4.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记a 1,第2个等边三角形的边长记为a 2,以此类推,若OA 1=3,则a 2=_______,a 2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1=6,得出a 3=4a 1,a 4=8a 1,a 5=16a 1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a5=16a1,以此类推:a2019=22018a1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.5.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBC BE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD,∴MN//AB,故②正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.6.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12 AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.8.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.9.如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则AFE ∠=_______度.【答案】72.【解析】【分析】根据五边形的内角和公式求出EAB ∠,根据等腰三角形的性质,三角形外角的性质计算即可.【详解】解:∵五边形ABCDE 是正五边形,(52)1801085EAB ABC ︒︒-⨯∴∠=∠==,BA BC =,36BAC BCA ︒∴∠=∠=,同理36ABE ∠︒=,363672AFE ABF BAF ∴∠∠+∠︒+︒︒===.故答案为:72【点睛】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.10.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长.在△ABC 中,利用面积法可求出BQ 的长度,此题得解.【详解】∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置,则∠1-∠2的度数是( )A .32°B .64°C .65°D .70°【答案】B 【解析】【分析】 此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH -∠DEH=180︒-2∠DEH∠2=180︒-∠D -∠DEH -∠EHF=180︒-∠B -∠DEH -(∠B+∠BEH)=180︒-∠B -∠DEH -(∠B+∠DEH)=180︒-32°-∠DEH -32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH -(180︒-64°-2∠DEH)=180︒-2∠DEH -180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键12.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.13.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.14.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】根据等边三角形的性质证出△BAE≌△DAC,可得BE=CD,从而得出①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的补角相等得出∠AEM=∠CAN,由AAS可证△AME≌△ANC,得到AM=AN,由角平分线的判定定理得到FA平分∠EFC,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DAC AE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.15.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°【答案】C【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.16.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】根据题意可得MN是直线AB的中点AD BD∴=ADC的周长为14AC CD AD++=14AC CD BD++=∴BC BD CD=+14AC BC=∴+已知8BD=6AC∴=,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.17.如图, 在△DAE中, ∠DAE=40°, B、C两点在直线DE上,且∠BAE=∠BEA,∠CAD=∠CDA,则∠BAC的大小是()A.100°B.90°C.80°D.120°【答案】A【解析】【分析】由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.【详解】解:如图,∵BG是AE的中垂线,CF是AD的中垂线,∴AB=BE,ACECD∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,∵∠DAE+∠ADE+∠AED=180°∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+∠EAC=180°∴∠BAD+∠EAC=60°∴.∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;故选:A【点睛】本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.18.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 由点A 、B 的坐标可得到AB=22,然后分类讨论:若AC=AB ;若BC=AB ;若CA=CB ,确定C 点的个数.【详解】∵点A 、B 的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB ,以A 为圆心,AB 为半径画弧与x 轴有2个交点(含B 点),即(0,0)、(4,0),∴满足△ABC 是等腰三角形的C 点有1个;②若BC=AB ,以B 为圆心,BA 为半径画弧与x 轴有2个交点,即满足△ABC 是等腰三角形的C 点有2个;③若CA=CB ,作AB 的垂直平分线与x 轴有1个交点,即满足△ABC 是等腰三角形的C 点有1个;综上所述:点C 在x 轴上,△ABC 是等腰三角形,符合条件的点C 共有4个.故选D .【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.19.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM =;(4)结合(1)(2)的结论,BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.【详解】解:①延长AB 取BD=BE ,连接DE ,∴∠D=∠BED ,∠ABC=∠D+∠BED=2∠D,∵2ABC C ∠=∠,∴∠D=∠C ,在△ADE 和△ACE 中,DAE CAE D C AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE ≌∴AC=AD=AB+BE ,故(1)正确;②在HC 上截取HF=BH,连接AF ,∵AH BC ⊥,∴△ABF 为等腰三角形,∴AB=AF ,∠ABF=∠AFB ,∵2ABC C ∠=∠,∴∠AFB=2∠C=∠C+∠CAF ,∴FC=AF=AB ,∴FC+BH+HF=AB+2BH=BC ,故(2)正确;③∵HM=BM-BH ,∴2HM=2BM-2BH=BC-2BH ,由②可知BC-2BH=AB ,∴2AB HM =④根据①②结论,可得:BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.20.如图,已知长方形ABCD ,AB =1,BC =2,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为( )A .1B .3C .3D .3【答案】B【解析】【分析】 将△AMD 绕点A 逆时针旋转60°得到△AM ’D ’,MD=M’D’,易得到△ADD ’和△AMM ’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME ,共线时最短;由于点E 也为动点,可得当D’E ⊥BC 时最短,此时易求得D’E=DG+GE 的值.【详解】将△AMD 绕点A 逆时针旋转60°得到△AM ’D ’,MD=M’D’,易得到△ADD ’和△AMM ’均为等边三角形,∴AM=MM ’,∴MA+MD+ME=D ’M+MM ’+ME ,∴D ′M 、MM′、ME 共线时最短,由于点E 也为动点,∴当D’E ⊥BC 时最短,此时易求得3∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.。
八年级上册江门数学全册全套试卷中考真题汇编[解析版]
八年级上册江门数学全册全套试卷中考真题汇编[解析版] 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,在△ABC 中,∠B=50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠A EC =_______°.【答案】65【解析】如图,∵AE 平分∠DAC ,CE 平分∠ACF ,∴∠1=12∠DAC,∠2=12∠ACF,∴∠1+∠2=12(∠DAC+∠ACF),又∵∠DAC+∠ACF=(180°-∠BAC)+(180°-∠ACB)=360°-(∠BAC+∠ACB),且∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°,∴在△ACE中,∠E=180°-(∠1+∠2)=180°-115°=65°.3.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.4.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.【答案】12cm2.【解析】【分析】根据三角形的面积公式,得△ACE 的面积是△ACD 的面积的一半,△ACD 的面积是△ABC 的面积的一半.【详解】解:∵CE 是△ACD 的中线,∴S △ACD =2S △ACE =6cm 2.∵AD 是△ABC 的中线,∴S △ABC =2S △ACD =12cm 2.故答案为12cm 2.【点睛】此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.5.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.6.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.二、八年级数学三角形选择题(难)7.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180° 【详解】】解:图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形; 图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°. 【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )A .32αB .64αC .128αD .256α 【答案】C【解析】【分析】根据角平分线的性质及外角的性质可得11122A A α∠=∠=,同理可得2212A α∠=,3312A α∠=,由此可归纳出12n nA α∠=,易知7A ∠. 【详解】 解:ABC ∠与ACD ∠的平分线交于点1A1111,22A BC ABC ACD ACD ∴∠=∠∠=∠ 111ACD A BC A ∠=∠+∠ 11122ACD ABC A ∴∠=∠+∠ ACD ABC A ∠=∠+∠111222ACD ABC A ∴∠=∠+∠ 11122A A α∴∠=∠= 同理可得21211112222A A αα∠=∠=⨯=,3231122A A α∠=∠=,…,由此可知12n nA α∠=, 所以7712128A αα∠==. 故选:C.【点睛】本题考查了角平分线的性质及图形的规律探究,灵活的利用角平分线的性质及外角的性质确定角的变化规律是解题的关键.9.如图:∠A+∠B+∠C+∠D+∠E+∠F 等于( )A .180°B .360°C .270°D .540°【答案】B【解析】【分析】 先根据三角形的外角,用∠AGE 表示出∠A ,∠B ;用∠EMC 表示出∠E ,∠F ;用∠CNA 表示出∠C ,∠D ,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵ ∠AGE 是△ABG 的外角∴∠AGE=∠A+∠B ;同理:∠EMC=∠E+∠F ;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA 又∵∠AGE+∠EMC+∠CAN 是△MNG 的三个外角∴∠AGE+∠EMC+∠CAN=360°故选:B .【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键.10.已知:如图,ABC ∆三条内角平分线交于点D ,CE ⊥BD 交BD 的延长线于E ,则∠DCE=( )A .12BAC ∠ B .12CBA ∠ C .12ACB ∠ D .CDE ∠ 【答案】A【解析】【分析】 根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】 由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒- ∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.11.已知如图,△ABC 中,∠ABC=50°,∠BAC=60°,BO 、AO 分别平分∠ABC 和∠BAC ,求∠BCO 的大小()A .35°B .40°C .55°D .60°【答案】A【解析】 分析:先根据三角内角和可求出∠ACB =180°-50°-60°=70°,根据角平分线的性质:角平分线上的点到角两边的距离相等可得:点O 到AB 和BC 的距离相等,同理可得:点O 到AC 和BC 的距离相等,然后可得: 点O 到AC 和BC 的距离相等,再根据角平分线的判定可得:OC 平分∠ACB ,所以∠BCO =12∠ACB=35°. 详解: 因为∠ABC =50°,∠BAC =60°,所以∠ACB =180°-50°-60°=70°,,因为BO ,AO 分别平分∠ABC 和∠BAC ,所以点O 到AB 和BC 的距离相等,同理可得:点O 到AC 和BC 的距离相等,所以点O 到AC 和BC 的距离相等,所以OC 平分∠ACB ,所以∠BCO =12∠ACB=35°. 点睛:本题主要考查三角形内角和和角平分线的性质和判定,解决本题的关键是要熟练掌握三角形内角和性质和角平分线的性质和判定.12.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A【分析】根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A 转化到同一个三角形中是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.【答案】6:8:3【解析】由角平分线性质可知,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 边上的高相等,利用面积公式即可求解.【详解】解:过点P 作PD ⊥BC 于D ,PE ⊥CA 于E ,PF ⊥AB 于F∵P 是三条角平分线的交点∴PD=PE=PF∵AB=30,BC=40,CA=15∴APB S ∆︰BPC S ∆︰CPA S ∆=30∶40∶15=6∶8∶3故答案为6∶8∶3.【点睛】本题主要考查了角平分线的性质和三角形面积的求法. 角平分线上的点到两边的距离相等. 难度不大,作辅助线是关键.14.如图,P 为等边△ABC 内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD 的长为______.【答案】34【解析】【分析】将△CPA 绕点C 逆时针旋转60°得到△CEB ,连接EP ,由全等三角形的性质可得CE =CP ,∠ECB =∠PCA ,∠CEB =∠CPA =150°,BE =AP =6,结合等边三角形的性质可得出∠ECP =60°,进而证明△ECP 为等边三角形,由等边△ECP 的性质进而证明D 、P 、E 三点共线以及∠DEB =90°,最后利用勾股定理求出BD 的长度即可.【详解】将△CPA 绕点C 逆时针旋转60°得到△CEB ,连接EP ,∴CE =CP ,∠ECB =∠PCA ,∠CEB =∠CPA =150°,BE =AP =6,∵等边△ABC ,∴∠ACP +∠PCB =60°,∴∠ECB +∠PCB =60°,即∠ECP =60°,∴△ECP为等边三角形,∴∠CPE=∠CEP=60°,PE=6,∴∠DEB=90°,∵∠APC=150°,∠APD=30°,∴∠DPC=120°,∴∠DPE=180°,即D、P、E三点共线,∴ED=3+7=10,∴BD=22DE BE+=234.故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.15.如图,在ABC中,ACB90,CA CB∠==.点D在AB上,点F在CA的延长线上,连接FD并延长交BC于点E,若∠BED=2∠ADC,AF=2,DF=7,则ABC的面积为______.【答案】25 2【解析】【分析】作CD的垂直平分线交AD于M,交CD与N,根据垂直平分线的性质可得MC=MD,进而可得∠MDC=∠MCD,根据已知及外角性质可得∠AMC=∠BED,由等腰直角三角形的性质可得∠B=∠CAB=45°,根据三角形内角和定理可得∠ACM=∠BDE,进而可证明∠ADF=∠ACM,进而即可证明∠FCD=∠FDC,根据等腰三角形的性质可得CF=DF,根据已知可求出AC的长,根据三角形面积公式即可得答案.【详解】作CD 的垂直平分线交AD 于M ,交CD 与N ,∵MN 是CD 的垂直平分线,∴MC=MD ,∴∠MDC=∠MCD ,∵∠AMC=∠MDC=∠MCD ,∴∠AMC=2∠ADC ,∵∠BED=2∠ADC ,∴∠AMC=∠BED ,∵∠ACB=90°,AC=BC ,∴∠B=∠CAB=45°,∵∠ACM=180°-∠CAM-∠AMC ,∠BDE=180°-∠B-∠BED ,∴∠ACM=∠BDE ,∵∠BDE=∠ADF ,∴∠ADF=∠ACM ,∴∠ADF+∠ADC=∠ACM+∠MCD ,即∠FCD=∠FDC ,∴FC=FD ,∵AF=2,FD=7,∴AC=FC-AF=7-2=5,∴S △ABC=12×5×5=252.故答案为:252【点睛】 本题考查了等腰三角形的判定与性质及线段垂直平分线的性质,线段垂直平分线上的点,到线段两端的距离相等;等腰三角形的两个底角相等;熟练掌握相关的定理及性质是解题关键.16.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.【答案】AC 中点或点P 与点C 重合【解析】分析:本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=5cm ,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC ,P 、C 重合.详解:根据三角形全等的判定方法HL 可知:①当P 运动到AP BC =的,∵90C QAP ∠=∠=︒,在Rt ABC △和Rt QPA 中,AP BC PQ AB =⎧⎨=⎩, ∴Rt ABC △≌Rt ()QPA HL ,即5AP BC ==,即P 运动到AC 的中点.②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC PQ AB =⎧⎨=⎩∴Rt △QAP ≌Rt △BCA (HL ),即AP=AC=10cm ,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.故答案为:AC 中点或点P 与点C 重合.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.17.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC 于E ,且OE =2,CO =3,则两平行线间AB 、CD 的距离等于________.【答案】4【解析】试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.四、八年级数学全等三角形选择题(难)19.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80°B.70°C.60°D.45°【答案】B【解析】【分析】连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.【详解】如图所示,连接AE.∵AB=DE,AD=BC∵DE∥BC,∴∠ADE=∠B,可得AE=DE∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE与△CBA中,DAE ACBAD BCADE B∠∠⎧⎪⎨⎪∠∠⎩===,∴△ADE≌△CBA(ASA),∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE-∠BAC=80°-20°=60°,∴△ACE是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形, ∴∠CDE=∠DCE ,∴∠DEC=∠AEC-∠AED=40°,∴∠DCE=∠CDE=(180-40°)÷2=70°.故选B .【点睛】考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.20.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG=( )A .73B .83 C .113 D .133【答案】D【解析】【分析】过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.【详解】解:过点F 作FD ⊥AG ,交AG 的延长线于点D∵53BC CE = 设BC=5x ,则CE=3x∴BE=BC +CE=8x∵5AB BC x ==,90ABC ∠=︒,∴∠BAC=∠BCA=45°∴∠BCA=∠CAE +∠E=45°由旋转可知∠EAF=90°,AF=EA∴∠CAE +∠FAD=∠EAF -∠BAC=45°∴∠FAD=∠E在△FAD 和△AEB 中90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△FAD ≌△AEB∴AD=EB=8x ,FD=AB∴BD=AD -AB=3x ,FD=CB在△FDG 和△CBG 中90FDG CBG FGD CGBFD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△FDG ≌△CBG∴DG=BG=12BD=32x ∴AG=AB +BG=132x ∴13132332xAG x BG == 故选D .【点睛】此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.21.Rt △ABC 中,AB =AC ,D 点为Rt △ABC 外一点,且BD ⊥CD ,DF 为∠BDA 的平分线,当∠ACD =15°,下列结论:①∠ADC =45°;②AD =AF ;③AD+AF =BD ;④BC ﹣CE =2D,其中正确的是( )A.①③B.①②④C.①③④D.①②③④【答案】C【解析】【分析】由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.【详解】∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,22.如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD 【答案】A【解析】根据题意可知∠C=∠D=90°,AB=AB,然后由AC=AD,可根据HL判定两直角三角形全等,故符合条件;而B答案只知道一边一角,不能够判定两三角形全等,故不正确;C答案符合AAS,证明两三角形全等,故不正确;D答案是符合AAS,能证明两三角形全等,故不正确.故选A.23.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.24.在△ABC中,∠C=90°,D为AB的中点,ED⊥AB,∠DAE=∠CAE,则∠CAB=()A.30°B.60°C.80 °D.50°【答案】B【解析】试题解析:∵D为AB的中点,ED⊥AB,∴DE为线段AB的垂直平分线,∴AE=BE,∴∠DAE=∠DBE,∴∠DAE=∠DBE=∠CAE,在Rt△ABC中,∵∠CAB+∠DBE=90°,∴∠CAE+∠DAE+∠DBE=90°,∴3∠DBE=90°,∴∠DBE=30°,∴∠CAB=90°-∠DBE=90°-30°=60°.故选B.五、八年级数学轴对称三角形填空题(难)25.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.26.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.27.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DB ABE DBC BE BC ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△DBC (SAS ),∴AE=DC ,故①正确;∵△ABE ≌△DBC ,∴∠AEB=∠DCB ,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE 和△NBC 中,∵AEB DCB EB CB MBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE ≌△NBC (ASA ),∴BM=BN ,∠MBE=60°,则△BMN 为等边三角形,故⑤正确;∵△BMN 为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD ,∴MN//AB ,故②正确;③无法证明PM=PN ,因此不能得到BD ⊥AE ;④由①得∠EAB=∠CDB ,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.28.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.29.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】 ∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.30.如图,在△ABC 中,AB =AC ,点D 、E 在BC 的延长线上,G 是AC 上一点,且CG =CD ,F 是GD 上一点,且DF =DE .若∠A =100°,则∠E 的大小为_____度.【答案】10【解析】【分析】由DF=DE,CG=CD可得∠E=∠DFE,∠CDG=∠CGD,再由三角形的外角的意义可得∠GDC=∠E+∠DFE=2∠E,∠ACB=∠CDG+∠CGD=2∠CD G,进而可得∠ACB=4∠E,最后代入数据即可解答.【详解】解:∵DF=DE,CG=CD,∴∠E=∠DFE,∠CDG=∠CGD,∵GDC=∠E+∠DFE,∠ACB=∠CDG+∠CGD,∴GDC=2∠E,∠ACB=2∠CDG,∴∠ACB=4∠E,∵△ABC中,AB=AC,∠A=100°,∴∠ACB=40°,∴∠E=40°÷4=10°.故答案为10.【点睛】本题考查等腰三角形的性质以及三角形外角的定义,解题的关键是灵活运用等腰三角形的性质和三角形的外角的定义确定各角之间的关系.六、八年级数学轴对称三角形选择题(难)31.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.64°C.65°D.70°【答案】B【解析】【分析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH-∠DEH=180︒-2∠DEH∠2=180︒-∠D-∠DEH-∠EHF=180︒-∠B-∠DEH-(∠B+∠BEH)=180︒-∠B-∠DEH-(∠B+∠DEH)=180︒-32°-∠DEH-32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH-(180︒-64°-2∠DEH)=180︒-2∠DEH-180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键32.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【答案】C【解析】【分析】根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.33.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D 【解析】 【分析】过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解. 【详解】 解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.34.如图,△ABC 的周长为32,点D 、E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =12,则PQ 的长为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】首先判断△BAE 、△CAD 是等腰三角形,从而得出BA =BE ,CA =CD ,由△ABC 的周长为32以及BC =12,可得DE =8,利用中位线定理可求出PQ . 【详解】∵BQ 平分∠ABC ,BQ ⊥AE , ∴∠ABQ =∠EBQ ,∵∠ABQ+∠BAQ =90°,∠EBQ+∠BEQ =90°, ∴∠BAQ =∠BEQ , ∴AB =BE ,同理:CA =CD ,∴点Q 是AE 中点,点P 是AD 中点(三线合一), ∴PQ 是△ADE 的中位线,∵BE+CD =AB+AC =32﹣BC =32﹣12=20, ∴DE =BE+CD ﹣BC =8, ∴PQ =12DE =4. 故选:B . 【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.35.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D 【解析】【分析】(1)延长AB取BD=BE,连接DE,由∠D=∠BED,2ABC C∠=∠,得到∠D=∠C,在△ADE和△ACE中,利用AAS证明ADE ACE≌,可得AC=AD=AB+BE;(2)在HC上截取HF=BH,连接AF,可知△ABF为等腰三角形,再根据2ABC AFB C∠=∠=∠,可得出△AFC为等腰三角形,所以FC+BH+HF=AB+2BH=BC;(3)HM=BM-BH,所以2HM=2BM-2BH=BC-2BH,再结合(2)中结论,可得2AB HM=;(4)结合(1)(2)的结论,BC2BH BE BC BH BE BH CH EHAC AB BE=+=-+=-+-=+.【详解】解:①延长AB取BD=BE,连接DE,∴∠D=∠BED,∠ABC=∠D+∠BED=2∠D,∵2ABC C∠=∠,∴∠D=∠C,在△ADE和△ACE中,DAE CAED CAE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE≌∴AC=AD=AB+BE,故(1)正确;②在HC上截取HF=BH,连接AF,∵AH BC⊥,∴△ABF为等腰三角形,∴AB=AF,∠ABF=∠AFB,∵2ABC C∠=∠,∴∠AFB=2∠C=∠C+∠CAF,∴FC=AF=AB,∴FC+BH+HF=AB+2BH=BC,故(2)正确;③∵HM=BM-BH,∴2HM=2BM-2BH=BC-2BH,由②可知BC-2BH=AB,∴2AB HM=④。
2023-2024学年广东省江门市八年级(上)期末数学试卷+答案解析
2023-2024学年广东省江门市八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.江门五邑华侨华人博物馆推出的“大眼鸡”航船、开平碉楼、冯如二号、铁路华工的纪念印章图形中,是轴对称图形的是( )A. B. C. D.2.下列给出的三条线段的长度,能组成三角形的是( )A. 1cm,2cm,3cmB. 2cm,2cm,4cmC. 2cm,3cm,4cmD. 3cm,3cm,9cm3.在中,,则的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形4.如图,四个图形中,线段BE是的高的图是( )A. B.C. D.5.下列图形具有稳定性的是( )A. 三角形B. 正方形C. 长方形D. 正六边形6.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去.( )A. ①B. ②C. ③D. ①和②7.把分式中的a,b的值同时扩大为原来的10倍,则分式的值( )A. 不变B. 缩小为原来的C. 扩大为原来的10倍D. 扩大为原来的100倍8.如图,在中,已知,,,AB边的垂直平分线交AB于E,交BC于D,且,则AC的长是( )A. 13cmB.C. 30cmD.9.如图:是的外角,BD平分,CD平分,且BD、CD交于点若,则等于( )A.B.C.D.10.如图,在中,,以AC为边,作,满足,E为BC上一点,连接AE,,连接DE,下列结论中正确的有( )①;②;③若,则;④A. ①②③B. ②③④C. ②③D. ①②④二、填空题:本题共5小题,每小题3分,共15分。
11.用科学记数法表示______.12.已知aᵐ,则______.13.如图,OP平分,,如果,那么点P到OA的距离等于______.14.若分式的值为零,则a的值是______.15.如图,在四边形ABCD中,,,在边AB,BC上分别找一点E,F使的周长最小,此时______.三、解答题:本题共8小题,共75分。
2018-2019学年广东省江门市八年级(上)期末数学试卷(解析版)
2018-2019学年广东省江门市八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分):1.(3分)下列图案中是轴对称图形的有()A.1个B.2 个C.3个D.4个2.(3分)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.(x2)3=x5C.x8÷x2=x4D.x2•x5=x73.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+95.(3分)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC6.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.(3分)如图,△ABC中,D、E分别是BC、AD的中点,若△ABC的面积是18,则△ABE的面积是()A.9B.6C.4.5D.48.(3分)等腰三角形周长为18,其中一边长为4,则其它两边长分别为()A.4,10B.7,7C.4,10或7,7D.无法确定9.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=6cm,AB=8cm,则△EBC 的周长为()A.14cm B.18cm C.20cm D.22cm10.(3分)一件工作,甲独做x小时完成,乙独做y小时完成,那么甲、乙合做全部工作需()小时A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分):11.(4分)一根头发的直径约为0.0000715米,该数用科学记数法表示为.12.(4分)已知点A(m,﹣3)与点B(﹣4,n)关于x轴对称,则m+n的值为.13.(4分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=.14.(4分)已知单项式﹣2x a+2b y a﹣b与3x4y是同类项,则2a+b的值为.15.(4分)Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则BD的长度是.16.(4分)若a+b=7,ab=12,则的值为.三、解答题(本题共3小题,每小题6分,共18分):17.(6分)分解因式:﹣2a3+12a2﹣18a18.(6分)计算:(1﹣)÷19.(6分)如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使△QAB的周长最小.四、解答题(本题共3小题,每小题7分,共21分):20.(7分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.21.(7分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y =2019.22.(7分)上午8时,一艘轮船从A处出发以每小时20海里的速度向正北航行,10时到达B处,则轮船在A处测得灯塔C在北偏西36°,航行到B处时,又测得灯塔C在北偏西72°,求从B到灯塔C的距离.五、解答题(本题共3小题,每小题9分,共27分):23.(9分)因课外活动的需要,鹏胜同学第一次在文具店买若干支笔芯,花了30元,第二次再去买该款笔芯时,发现每一盒(20支装)价钱升了2元,他这一次买该款笔芯的数量是第一次的2倍,花了68元,求他两次买的笔芯分别是多少支?24.(9分)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.(9分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?2018-2019学年广东省江门市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分):1.【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有第一、四共2个.故选:B.2.【解答】解:(a﹣b)2=a2﹣2ab+b2,A错误;(x2)3=x6,B错误;x8÷x2=x6,C错误;x2•x5=x7,D正确;故选:D.3.【解答】解:根据三角形的稳定性可固定窗户.故选:A.4.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.5.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.6.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.7.【解答】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的,△ABE是△ABD面积的,∴△ABE的面积=18××=18×=4.5.故选:C.8.【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18﹣4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形∴其它两边长分别为7,7.故选:B.9.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴CE+BE=AB=8cm.∵BC=6cm,∴△EBC的周长=BC+CE+BE=BC+AB=6+8=14(cm).故选:A.10.【解答】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:,∴甲、乙合做全部工作需:=,故选:D.二、填空题(本题共6小题,每小题4分,共24分):11.【解答】解:0.000 0715=7.15×10﹣5;故答案为7.15×10﹣5.12.【解答】解:∵点A(m,﹣3)与点B(﹣4,n)关于x轴对称,∴m=﹣4,n=3,则m+n=﹣4+3=﹣1,故答案为:﹣1.13.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°故答案是:240°.14.【解答】解:∵单项式﹣2x a+2b y a﹣b与3x4y是同类项,∴,解得,a=2,b=1,则2a+b=5,故答案为:5.15.【解答】解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=2cm,在Rt△ACD中,AC=2AD=4cm,在Rt△ABC中,AB=2AC=8cm.∴AB的长度是8cm.∴BD的长度=8﹣2=6cm,故答案为:6cm16.【解答】解:原式=,由于a+b=7,ab=12.∴原式==,故答案为:.三、解答题(本题共3小题,每小题6分,共18分):17.【解答】解:原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2.18.【解答】解:原式=•=•=x+1.19.【解答】解:(1)如图所示:从△ABC各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点A关于直线DE的对称点A1,连接A1B,交直线DE于点Q,点Q即为所求,此时△QAB的周长最小.四、解答题(本题共3小题,每小题7分,共21分):20.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,,∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM,如图所示:由(1)得:△AED≌△BFE,∴DE=EF,∵∠MDF=∠ADF,∠ADE=∠BFE,∴∠MDF=∠BFE,∴FM=DM,∴EM⊥DF,∴ME垂直平分DF.21.【解答】解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.22.【解答】解:由题意得:AB=(10﹣8)×20=40海里,∵∠C=72°﹣∠A=36°=∠A,∴BC=AB=40海里.答:从B到灯塔C的距离为40海里.五、解答题(本题共3小题,每小题9分,共27分):23.【解答】解:设他第一次买的笔芯为x支,则第二次买的笔芯为2x支.由题意得方程:=,化简,得:,解得:x=40,2x=80,经检验,x=40是原分式方程的解.答:他两次买的笔芯分别是40支、80支.24.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.25.【解答】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CQP∴BP=CP =BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CQP此时点Q的运动速度为6÷=(cm/s)第11页(共11页)。
八年级上册江门数学全册全套试卷中考真题汇编[解析版]
八年级上册江门数学全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.如图,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD=2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是_____.【答案】30【解析】【分析】由于BD =2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC .【详解】解:∵BD =2DC ,∴S △ABD =2S △ACD ,∴S △ABC =3S △ACD .∵E 是AC 的中点,∴S △AGE =S △CGE .又∵S △GEC =3,S △GDC =4,∴S △ACD =S △AGE +S △CGE +S △CGD =3+3+4=10,∴S △ABC =3S △ACD =3×10=30. 故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.【答案】15【解析】【分析】作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度【详解】作EH AB ⊥∵AE 平分∠BACBAE CAE ∴∠=∠EC EH ∴=∵P 为CE 中点4EC EH ==∴∵D 为AC 中点,P 为CE 中点=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,15x BEF S =-△∴15+x+y BCD BDA S S ==△△∴y=15+x+y-y=15+x BFA BDA S S =-△△∴15x+15+x=30BEA BEF BFA S S S =+=-△△△∴1=302BEA S AB EH ⨯=△∵ =15AB ∴【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP 的面积来表示△BEA 的面积3.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n ,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.4.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______. 【答案】9【解析】【分析】 根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=72×360°, 解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.已知一个三角形的三边长为3、8、a ,则a 的取值范围是_____________.【答案】5<a <11【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a <8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a <8+3,解得:5<a <11,故答案为:5<a <11.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.6.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【详解】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、八年级数学三角形选择题(难)7.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm【答案】D【解析】试题分析:①当A,B,C三点在一条直线上时,分点B在A、C之间和点C在A、B之间两种情况讨论;②当A,B,C三点不在一条直线上时,根据三角形三边关系讨论.解:当点A、B、C在同一条直线上时,①点B在A、C之间时:AC=AB+BC=3+1=4;②点C 在A、B之间时:AC=AB-BC=3-1=2,当点A、B、C不在同一条直线上时,A、B、C三点组成三角形,根据三角形的三边关系AB-BC<AC<AB+BC,即2<AC<4,综上所述,选D.故选D.点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,9.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。
2024届广东省江门市第二中学八上数学期末经典试题含解析
2024届广东省江门市第二中学八上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .242.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .等腰三角形的中线与高线重合C 3,4,5D .到线段两端距离相等的点在这条线段的垂直平分线上3.如果点(m ﹣1,﹣1)与点(5,﹣1)关于y 轴对称,则m =( )A .4B .﹣4C .5D .﹣54.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .() x 2y)x 2y ---( D .()2x y)2x y +-+( 5.过点()1,3P -作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )A .4条B .3条C .2条D .1条6.若分式2242x x x ---的值为零,则x 的值是( ) A .2或-2 B .2 C .-2 D .47.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =;②若这5次成绩的中位数为8,则8x =;③若这5次成绩的众数为8,则8x =;④若这5次成绩的方差为8,则8x =A .1个B .2个C .3个D .4个 8.如图,在中,,是的角平分线交于点,于点,下列四个结论中正确的有( ) ①② ③ ④ A .个 B .个 C .个 D .个9.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为( )A .4B .5C .6D .810.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )A .B .C .D .11.49的平方根为( )A .7B .-7C .±7D .±712.下列运算结果为6a 的是( )A .23a a +B .23a a ⋅C .23(a )-D .82a a ÷二、填空题(每题4分,共24分)13.如图,△EFG ≌△NMH ,EH =2.4,HN =5.1,则GH 的长度是_____.14.分解因式:x 2﹣7x +12 =________.15.如图,已知BE 平分ABC ∠,且BE DC ∥,若50ABC ∠=︒,则C ∠的度数是__________.16.有一个两位数,个位上的数字比十位上的数字大5,如果把这个两位数的数字对换位置,那么所得的新数与原数的和是143,则这个两位数是_________.17.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.18.如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线和与其平行的内框线之间的距离均为2cm ,则图中阴影部分的面积为_______2cm (结果保留根号) 三、解答题(共78分)19.(8分)化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值. 20.(8分)先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.21.(8分)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.22.(10分)某电话公司开设了两种手机通讯业务,甲种业务:使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;乙种业务:不交月租费,每通话1分钟,付话费0.6元(指市话).若一个月内通话x 分钟,两种方式的费用分别为y 1(元)和y 2(元).(1)分别求出y 1、y 2与x 之间的函数关系式.(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.23.(10分)在△ ABC 中,AB = AC(1)如图 1,如果∠BAD = 30°,AD 是BC 上的高,AD =AE ,则∠EDC =(2)如图 2,如果∠BAD = 40°,AD 是BC 上的高,AD = AE ,则∠EDC =(3)思考:通过以上两题,你发现∠BAD 与∠EDC 之间有什么关系?请用式子表示:(4)如图 3,如果AD 不是BC 上的高,AD = AE ,是否仍有上述关系?如有,请你写出来,并说明理由24.(10分)已知等边ABC ∆和等腰CDE ∆,CD DE =,120CDE ∠=.(1)如图1,点D 在BC 上,点E 在AB 上,P 是BE 的中点,连接AD ,PD ,则线段AD 与PD 之间的数量关系为 ;(2)如图2,点D 在ABC ∆内部,点E 在ABC ∆外部,P 是BE 的中点,连接AD ,PD ,则(1)中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由.(3)如图3,若点D 在ABC ∆内部,点E 和点B 重合,点P 在BC 下方,且PB PC +为定值,当PD 最大时,BPC ∠的度数为 .25.(12分)为参加八年级英语单词比赛,某校每班派相同人数的学生参加,成绩分别为A 、B 、C 、D 四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.学校将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分) 中位数(分) 众数(分) 一班8.76 a= b= 二班 8.76 c= d=根据以上提供的信息解答下列问题:(1)请补全一班竞赛成绩统计图;(2)请直接写出a 、b 、c 、d 的值;(3)你认为哪个班成绩较好,请写出支持你观点的理由.26.已知:如图180B BCD ∠+∠=,B D ∠=∠,那么E DEF ∠=∠成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.解:成立,理由如下:180B BCD ∠+∠=(已知)∴① (同旁内角互补,两条直线平行)B DCE ∴∠=∠(② )又B D ∠=∠(已知),DCE D ∴∠=∠(等量代换)//AD BE ∴(③ )E DFE ∴∠=∠(④ ).参考答案一、选择题(每题4分,共48分)1、A【分析】此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.【题目详解】解:∵▱ABCD的周长为32,∴2(BC+CD)=32,则BC+CD=1.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=2.又∵点E是CD的中点,DE=12 CD,∴OE是△BCD的中位线,∴OE=12 BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=2+9=3,即△DOE的周长为3.故选A【题目点拨】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.2、D【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【题目详解】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为222+≠B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【题目点拨】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3、B【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可.【题目详解】解:∵点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,∴m﹣1=﹣5,解得m=﹣1.故选:B.【题目点拨】本题考查了关于y轴对称的点的坐标特征,掌握关于y轴对称的点的坐标特征是横坐标互为相反数是解题的关键. 4、A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【题目详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选A.【题目点拨】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.5、C【分析】先设出函数解析式,y=kx+b,把点P坐标代入,得-k+b=3,用含k的式子表示b,得b=k+3,求出直线与x 轴交点坐标,y轴交点坐标,求三角形面积,根据k的符号讨论方程是否有解即可.【题目详解】设直线解析式为:y=kx+b,点P(-1,3)在直线上,-k+b=3,b=k+3,y=kx+3+k,当x=0时,y=k+3,y=0时,x=k+3 -k,S△=1k+3k+3-=52k,2k+3=10k,当k>0时,(k+3)2=10k,k2-4k+9=0,△=-20<0,无解;当k<0时,(k+3)2=-10k,k2+16k+9=0,△=220>0, 故选择:C .【题目点拨】 本题考查的是直线与坐标轴围成的三角形面积问题,关键是用给的点坐标来表示解析式,求出与x,y 轴的交点坐标,列出三角形面积,进行分类讨论.6、C【分析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零.【题目详解】x 2-4=0,x=±2,同时分母不为0,∴x=﹣27、A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【题目详解】①若这5次成绩的平均数是8,则8589788x =⨯----=,故正确;②若这5次成绩的中位数为8,则x 可以任意数,故错误;③若这5次成绩的众数为8,则x 只要不等于7或9即可,故错误;④若8x =时,方差为2221[3(88)(98)(78)]0.45⨯-+-+-=,故错误.所以正确的只有1个故选:A .【题目点拨】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.8、C【分析】根据角平分线性质,即可得到DE=DC ;根据全等三角形的判定与性质,即可得到BE=BC ,△BDE ≌△BDC .【题目详解】解:∵∠ACB=90°,BD 是∠ABC 的角平分线,DE ⊥AB ,∴DE=DC ,故①正确;又∵∠C=∠BEC=90°,BD=BD ,∴Rt △BCD ≌Rt △BED (HL ),故④正确;∴BE=BC ,故②正确;∵Rt △ADE 中,AD >DE=CD ,∴AD=DC 不成立,故③错误;故选C .【题目点拨】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.9、B【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【题目详解】解:根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B .【题目点拨】本题主要考查了多边形的对角线,多边形的外角和定理,n 边形从一个顶点出发可引出(n−3)条对角线. 10、B【解题分析】根据乌龟早出发,早到终点,结合各图象进行分析判断即可.【题目详解】A 、兔子后出发,先到了,不符合题意;B 、乌龟比兔子早出发,而早到终点,符合题意;C 、乌龟先出发后到,不符合题意;D 、乌龟先出发,与兔子同时到终点,不符合题意,故选B .【题目点拨】本题考查了函数图象,弄清题意,认真分析是解题的关键.11、C【分析】根据平方根的定义进行求解即可.【题目详解】.∵2(7)±=49,则49的平方根为±7. 故选:C12、D【分析】根据整式运算法则逐个分析即可.【题目详解】A. 236a a a +≠, B. 235a a a ⋅=, C. 23(a )- =6a - , D. 82a a ÷=6a .故选D【题目点拨】本题考核知识点:整式基本运算.解题关键点:掌握实数运算法则.二、填空题(每题4分,共24分)13、2.1.【分析】根据全等三角形的性质求出EG ,结合图形计算,得到答案.【题目详解】解:∵△EFG ≌△NMH ,∴EG =HN =5.1,∴GH =EG ﹣EH =5.1﹣2.4=2.1.故答案为:2.1.【题目点拨】本题考查了全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.14、 (x-4)(x-3)【分析】因为(-3)×(-4)=12,(-3)+(-4)=-7,所以利用十字相乘法分解因式即可.【题目详解】解:x 2-7x+12=(x-3)(x-4).故答案为:(x-3)(x-4).【题目点拨】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.15、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C 的度数.【题目详解】∵BE 平分ABC ∠,且50ABC ∠=︒,∴∠CBE=12∠ABC=25°, ∵ BE DC ∥∴∠CBE=∠BCD∴∠C=25°. 故答案为:25°. 【题目点拨】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.16、49【分析】设个位数字是x ,十位数字是y ,根据新数与原数的和是143列方程解答即可得到答案.【题目详解】设个位数字是x ,则十位数字是y ,51010143x y y x x y -=⎧⎨+++=⎩, 解得94x y =⎧⎨=⎩,∴这个两位数是49,故答案为:49.【题目点拨】此题考查一元二次方程组的应用,正确理解新数与原数的表示方法是解题的关键.17、a=-1或a=-1.【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【题目详解】解:∵点P 到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-1.故答案是:a=-1或a=-1.【题目点拨】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.18、14162+ 【分析】过顶点A 作AB ⊥大直角三角形底边,先求出CD ,然后得到小等腰直角三角形的底和高,再利用大直角三角形的面积减去小直角三角形面积即可【题目详解】如图:过顶点A 作AB ⊥大直角三角形底边由题意:2cm,2cm EC AC ==∴()5222CD =-+=422-cm∴小等腰直角三角形的直角边为2CD 822=-cm∴大等腰直角三角形面积为10×10÷2=50cm 2小等腰直角三角形面积为28222-()=36-162cm 2 ∴2=502)14162S cm -=+阴影(36-16【题目点拨】本题主要考查阴影部分面积的计算,涉及到直角三角形的基本性质,本题关键在于做出正确的辅助线进行计算三、解答题(共78分)19、x+2;当x=1时,原式=1.【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可. 【题目详解】解:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ 22(2)33[](2)24x x x x x x --=-÷--- 233224x x x x x -⎛⎫=-÷ ⎪---⎝⎭ 3(2)(2)23x x x x x -+-=⨯-- =x+2,∵x 2-4≠0,x-1≠0,∴x≠2且x≠-2且x≠1,∴可取x=1代入,原式=1.【题目点拨】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.20、5y +x ,2.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【题目详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y +÷=5y x +, 当21x y =-,=时, 原式=523-=【题目点拨】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式.21、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【分析】(1)设甲种书柜单价为x 元,乙种书柜的单价为y 元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程求解即可;(2)设甲种书柜购买m 个,则乙种书柜购买(20-m )个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820,且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组,解不等式组即可的不等式组的解集,从而确定方案.【题目详解】(1)解:设甲种书柜单价为x 元,乙种书柜的单价为y 元,由题意得:321020431440x y x y ==+⎧⎨+⎩, 解得:180240x y ⎧⎨⎩== , 答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m 个,则乙种书柜购买(20-m )个;由题意得:()20180240204320m m m m -≥⎧⎨+-≤⎩解得:8≤m≤10因为m 取整数,所以m 可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【题目点拨】主要考查二元一次方程组、不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.22、 (1)、y 1=50+0.4x ,y 2=0.6x ;(2)、当通话时间小于250分钟时,选择乙种通信业务更优惠;当通话时间等于250分钟时,选择两种通信业务一样;当通话时间大于250分钟时,选择甲种通信业务更优惠.【分析】(1)根据两种费用的缴费方式分别列式计算即可得解;(2)先写出两种缴费方式的函数关系式,再分情况列出不等式然后求解即可.【题目详解】解: (1)由题意可知:y 1=50+0.4x ,y 2=0.6x ;(2)y 1=50+0.4x ,y 2=0.6x , 当y 1>y 2即50+0.4x >0.6x 时,x <250,当y 1=y 2即50+0.4x=0.6x 时,x=250,当y 1<y 2即50+0.4x <0.6x 时,x >250,所以,当通话时间小于250分钟时,选择乙种通信业务更优惠, 当通话时间等于250分钟时,选择两种通信业务一样, 当通话时间大于250分钟时,选择甲种通信业务更优惠.考点:一次函数的应用.23、(1)15°;(2)20°;(3)∠BAD=2∠EDC;(4)成立,理由见解析【分析】(1)根据等腰三角形三线合一,可知∠DAE=30°,再根据AD=AE ,可求∠ADE 的度数,从而可知答案;(2)同理易知答案;(3)通过(1)(2)题的结论可知∠BAD=2∠EDC,(4)由于AD=AE ,所以∠ADE=∠AED,根据已知容易证得∠BAD=2∠EDC.【题目详解】解:(1)∵在△ABC 中,AB=AC ,AD 是BC 上的高,∴∠BAD=∠CAD=30°∵AD=AE, ∴18018030=7522CAD ADE AED --∠=∠==∠ ∴∠DEC=90°-∠AD =15°;(2)∵在△ABC 中,AB=AC ,AD 是BC 上的高,∴∠BAD=∠CAD=40°∵AD=AE,∴18018040=7022CAD ADE AED --∠=∠==∠ ∴∠DEC=90°-∠ADE=20°;(3)根据前两问可知:∠BAD=2∠EDC(4)仍成立,理由如下:∵AD=AE,∴∠ADE=∠AED∵∠BAD+∠B=∠ADC,∠ADC=∠ADE+∠EDC∴∠ADC=∠AED+∠EDC∵∠AED=∠EDC+∠C∴∠ADC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C又∵AB=AC∴∠B=∠C∴∠BAD=2∠EDC【题目点拨】本题考查了等腰三角形的三线合一,熟知等腰三角形顶角平分线,底边上的高和中线三线合一是解题的关键.24、(1)AD 2PD =;(2)成立,理由见解析;(3)60︒【分析】(1)根据等边三角形的性质,60B ACB ∠=∠=︒,120CDE ∠=,可得BDE ∆是等边三角形,P 是BE 的中点,利用等边三角形三线合一性质,以及CD DE =得出//PD CE ,所以PD 是BCE ∆中位线,得出点D 是BC 的中点,AD=CE ,可得出结论AD 2PD =.(2)作辅助线,延长ED 到F ,使得DF DE =,使得DFC ∆是等边三角形,PD 是EBF ∆的中位线,通过证明三角形全等得出BF AD =可证明结论.(3)作出等腰PDK ∆,由旋转模型证明三角形()BCF ACD SAS ∆≅∆,利用P 、C 、K 三点共线时,PK 最大,即PD 最大可求解得.【题目详解】(1)根据图1,在等边ABC ∆和等腰CDE ∆中,CD DE =,120CDE ∠=,60,30BDE DCE DEC ∴∠=︒∠=∠=︒,60B ∠=︒,BDE ∴∆是等边三角形,P 是BE 的中点,30BDE DCE ∴∠=∠=︒,//PD CE ∴,90BEC ∠=︒,∴PD 是BCE ∆中位线,D E ∴分别是,BC AB 的中点,2AD CE PD ∴==,故答案为:AD 2PD =.(2)结论成立.理由:如下图中,延长ED 到F ,使得DF DE =,连接FC ,BF ,,BP EP DE DF ==,2,//,BF PD BF PD ∴=120,EDC ∠=︒60,FDC ∴∠=︒,DF DE DC ==DFC ∴∆是等边三角形,60BCA DCF ∴∠=∠=︒,在BCF ∆和ACD ∆中CB CA BCF ACD CD CF =⎧⎪∠=∠⎨⎪=⎩∴()BCF ACD SAS ∆≅∆,BF AD ∴=,2AD PD ∴=,故答案为:结论成立;(3)作120PDK BDC ∠=∠=︒,且PD DK =,连接PK ,DK ,则PDK ∆为等腰三角形,在PDB ∆和KDC ∆中BD CD BDP CDK PD KD =⎧⎪∠=∠⎨⎪=⎩()PDB KDC SAS ∴∆≅∆,PB CK ∴=,即PB PC PC CK +=+为定值.P、C、K三点共线时,PK最大,即PD最大,∴此时,18060∠=∠+∠=∠+∠=︒-∠=︒,BPC BPD DPC DKC DPC PDK故答案为:60︒.【题目点拨】考查了全等三角形的判定和性质应用,等腰三角形三线合一的性质应用,等边三角形的判定和性质,中点和中位线的性质,利用了三线共点判定线段最大,熟记性质和判定定理是解决问题的关键.25、(1)补全一班竞赛成绩统计图如图所示,见解析;(2)a=9;b=9;c=8;d=10 ;(3)一班成绩比二班好.理由见解析.【分析】(1)设一班C等级的人数为x,根据题意列出方程求解即可;(2)根据已知数据求出中位数、众数即可;(3)根据平均数和中位数做判断即可;【题目详解】(1)设一班C等级的人数为x,则8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,补全一班竞赛成绩统计图如图所示:(2)由题可知总共有25人,则可得一班的中位数是9,众数是9,二班A级人数是11,B级人数是1,C级人数是9,D级人数是4人,故二班中位数是8,众数是10,∴a=9;b=9;c=8;d=10;(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.【题目点拨】本题主要考查了数据分析的知识点,准确计算是解题的关键.26、AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的判定推出AB∥CD,根据平行线的性质和已知得出∠DCE=∠D,推出AD∥BE,根据平行线的性质推出即可.【题目详解】180∠+∠=,B BCD∴AB∥CD(同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为:AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.【题目点拨】本题考查了对平行线的性质和判定的应用,主要考查学生的推理能力.。
2023届广东省江门市名校八年级数学第一学期期末达标测试试题含解析
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)1.如图,在△ABC 中,∠C =36°,将△ABC 沿着直线l 折叠,点C 落在点D 的位置,则∠1﹣∠2的度数是( )A .36°B .72°C .50°D .46°2.如图,在ABC 中,点D 是BC 延长线上一点,70A ∠=︒,120ACD ∠=︒,则B 等于( ).A .60°B .80°C .70°D .50°3.已知一个三角形的两边长分别为2和4,则这个三角形的第三边长可能是( ) A .2B .4C .6D .8 4.已知112a b -=,则代数式232a ab b a ab b+---的值是( ) A .12 B .12- C .13D .13- 5.下列运算中正确的是( )A .()2211x x +=+B .236a a a =C .()326ab ab =D .253a a a -÷=6.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A .OE=12DCB .OA=OC C .∠BOE=∠OBAD .∠OBE=∠OCE7.计算16的平方根为( )A .4±B .2±C .4D .2±8.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( ) A .2 B .12 C .-2 D .12- 9.已知x y >,则下列不等式成立的是( )A .11x y -<-B .33x y <C .x y -<-D .22x y < 10.如图,△ABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D ,E 两点,并连接BD ,DE ,若∠A =30°,AB =AC ,则∠BDE 的度数为( )A .45B .52.5C .67.5D .75二、填空题(每小题3分,共24分)11.计算:2933a a a -=++__________. 12.点(2,﹣1)所在的象限是第____象限.13.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,已知1纳米0.000000001=米,则0.5纳米用科学记数法表示为_____________米.14.因式分解:232x x ++=__.15.如图,在△ABC 中,AB=3,AC=4,则BC 边上的中线AD 的长x 取值范围是___;163x -在实数范围内有意义,则 x 的取值范围是_______ .17.如图, 在平面直角坐标系中, 一次函数2的图象与x 轴交于点A, 与y 轴交于点B, 点P 在线段AB 上, PC ⊥x 轴于点C, 则△PCO 周长的最小值为_____18.如图,在ABC 中,DE 是AC 的垂直平分线.若3AE =,ABD △的周长为13,则ABC 的周长为______.三、解答题(共66分)19.(10分)如图,CE AB ⊥,BD AC ⊥,垂足分别为E 、D ,CE ,BD 相交于O . (1)若12∠=∠,求证:OB OC =;(2)若OB OC =,求证:12∠=∠.20.(6分)计算(1)(-3x 2y 2)2·(2xy)3÷(xy)2 (2)8(x+2)2-(3x-1)(3x+1) (3) (π﹣3.14)032|21483-⎛⎫ ⎪⎝⎭. (4112388 21.(6分)某服装店用4500元购进A ,B 两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价一进价),这两种服装的进价、标价如表所示 类型价格A 型B 型 进价(元/件)60 100 标价(元/件) 100 160(1)请利用二元一次方程组求A ,B 两种新式服装各购进的件数;(2)如果A 种服装按标价的9折出售,B 种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?22.(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点坐标为A (﹣3,0),B (﹣3,﹣3),C (﹣1,﹣3).(1)在图中作出△ABC 关于x 轴对称的图形△DEF ;(2)求线段DF 的长.23.(8分)先化简,再求值:(2x+1)2﹣(x+2y )(x ﹣2y )-(2y )2,其中x =﹣1.24.(8分)已知点A (a +2b ,1),B (7,a ﹣2b ).(1)如果点A 、B 关于x 轴对称,求a 、b 的值;(2)如果点A 、B 关于y 轴对称,求a 、b 的值.25.(10分)阅读材料:我们学过一次函数的图象的平移,如:将一次函数2y x =的图象沿x 轴向右平移1个单位长度可得到函数()21y x =-的图象,再沿y 轴向上平移1个单位长度,得到函数()211y x =-+的图象;如果将一次函数2y x =的图象沿x 轴向左平移1个单位长度可得到函数()21y x =+的图象,再沿y 轴向下平移1个单位长度,得到函数()211y x =+-的图象.类似地,形如2y ax bx c =++的函数图象的平移也满足此规律.仿照上述平移的规律,解决下列问题:(1)将一次函数2y x =-的图象沿x 轴向右平移3个单位长度,再沿y 轴向上平移1个单位长度,得到函数________的图象(不用化简);(2)将2y x 的函数图象沿y 轴向下平移3个单位长度,得到函数________________的图象,再沿x 轴向左平移1个单位长度,得到函数_________________的图象(不用化简);(3)函数()2225y x x =+++的图象可看作由22y x x =+的图象经过怎样的平移变换得到?26.(10分)设121515,22x x -+--==,求代数式21x x 和221122x x x x ++的值参考答案一、选择题(每小题3分,共30分)1、B【分析】由折叠的性质得到∠D =∠C ,再利用外角性质即可求出所求角的度数.【详解】解:由折叠的性质得:∠D =∠C =36°,根据外角性质得:∠1=∠3+∠C ,∠3=∠2+∠D ,则∠1=∠2+∠C +∠D =∠2+2∠C =∠2+72°,则∠1﹣∠2=72°.故选:B .【点睛】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键.2、D【分析】利用外角的性质解答即可.【详解】∵ ∠ACD =∠B +∠A ,∴∠B =∠ACD -∠A =120°-70°=50°,故选:D .【点睛】本题考查外角的性质,属于基础题型.3、B【分析】设第三边的长为x ,再由三角形的三边关系即可得出结论.【详解】设第三边的长为x ,∵三角形两边的长分别是2和4,∴4242x -<<+,即26x <<,只有B 满足条件.故选:B .【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、C 【分析】先将112a b-=化简得到a-b=-2ab ,再代入代数式进行计算. 【详解】∵112a b -=, ∴a-b=-2ab , ∴2322()3432a ab b a b ab ab ab a ab b a b ab ab ab +--+-+===------13, 故选:C.【点睛】此题考查分式的化简计算,将代数式的值整体代入计算是求分式值的方法.5、D【分析】根据完全平方公式、同底数幂的乘法除法法则、幂的乘方法则计算即可.【详解】A 、()2221211x x x x +=++≠+,该选项错误;B 、2356a a a a =≠,该选项错误; C 、()32366ab a b ab =≠,该选项错误;D 、253a a a -÷=,该选项正确;故选:D .【点睛】本题考查了完全平方公式、同底数幂的乘法除法法则、幂的乘方法则,熟练掌握运算法则是解决本题的关键.6、D【解析】由平行四边形的性质和三角形中位线定理得出选项A 、B 、C 正确;由OB≠OC,得出∠OBE≠∠OCE,选项D 错误;即可得出结论.解:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD ,AB∥DC,又∵点E 是BC 的中点,∴OE 是△BCD 的中位线, ∴OE=12DC ,OE∥DC, ∴OE∥AB,∴∠BOE=∠OBA,∴选项A 、B 、C 正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D 错误;故选D .“点睛”此题考查了平行四边形的性质,还考查了三角形中位线定理,解决问题的方法是采用排除法解答.7、B结果.,又∵(±2)2=4,∴4的平方根是±2±2, 故选B .【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8、A【分析】根据“代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项”可知x 2系数等于0,所以将代数式整理计算后合并同类项,即可得出x 2的系数,令其等于0解答即可.【详解】原式=322222x mx x x mx ++--- ()()322122x m x m x =+-+--∵代数式不含x 2项∴m -2=0,解得m=2故答案选A.【点睛】本题考查的是多项式的乘法和不含某项的问题,知道不含某项,代表某项的系数为0是解题的关键.9、C【分析】根据不等式的性质逐项分析.【详解】A 在不等式的两边同时减去1,不等号的方向不变11x y ->-,故A 错误; B 在不等式的两边同时乘以3,不等号的方向不变33x y >,故B 错误;C 在不等式的两边同时乘以-1,不等号的方向改变,故C 正确;D 在不等式的两边同时乘以12,不等号的方向不变22x y >,故D 错误. 【点睛】本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变; (3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变. 10、C【解析】试题分析:根据AB=AC ,利用三角形内角和定理求出∠ABC 的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE 的度数:∵AB=AC ,∴∠ABC=∠ACB.∵∠A=30°,∴∠ABC=∠ACB=()118030752︒-︒=︒. ∵以B 为圆心,BC 长为半径画弧,∴BE=BD=BC .∴∠BDC=∠ACB=75°.∴∠CBD 180757530=︒-︒-︒=︒.∴∠DBE=75°-30°=45°.∴∠BED=∠BDE=()11804567.52︒-︒=︒. 故选C.考点: 1.等腰三角形的性质;2.三角形内角和定理.二、填空题(每小题3分,共24分)11、3a -. 【详解】解:2933a a a -++=293a a -+ =()()33 3a a a +-+ =a-1故答案为:a-1.12、四.【分析】根据点在四个象限内的坐标特点解答即可.【详解】∵点的横坐标大于0,纵坐标小于0∴点(2,﹣1)所在的象限是第四象限.故答案为:四.【点睛】本题主要考查了四个象限的点的坐标的特征,熟练掌握,即可解题.13、5×1−1【分析】0.5纳米=0.5×0.000000001米=0.0000000005米.小于1的正数也可以利用科学记数法表示,一般形式为a ×1−n ,在本题中a 为5,n 为5前面0的个数.【详解】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×1−1米. 故答案为:5×1−1.【点睛】用科学记数法表示较小的数,一般形式为a ×1−n ,其中1≤|a|<1,n 为由原数左边起第一个不为零的数字前面的0的个数.注意应先把0.5纳米转化为用米表示的数. 14、()()12x x ++【分析】利用十字相乘法因式分解即可.【详解】解:232x x ++=()()12x x ++故答案为:()()12x x ++.【点睛】此题考查的是因式分解,掌握利用十字相乘法因式分解是解决此题的关键. 15、0.1<x<3.1【解析】延长AD 到E ,使AD=DE ,连接BE ,∵AD 是△ABC 的中线,∴BD=CD,在△ADC 和△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),∴EB=AC=4,∵AB=3,∴1<AE <7,∴0.1<AD <3.1.故答案为0.1<AD <3.1.16、x≥1【分析】直接利用二次根式的有意义的条件得到关于x 的不等式,解不等式即可得答案.【详解】由题意可得:x ﹣1≥0,解得:x≥1,故答案为x≥1.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.17、323【解析】先根据一次函数列出PCO ∆周长的式子,再根据垂线公理找到使周长最小时点P 的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P 的坐标为(,32)(0)a a a +<,32OC a PC a ∴=-=+PCO ∴∆周长为3232OC PC OP a a OP OP ++=-++=则求PCO ∆周长的最小值即为求OP 的最小值如图,过点O 作⊥OD AB由垂线公理得,OP 的最小值为OD ,即此时点P 与点D 重合 由直线32y x =+的解析式得,(32,0),(0,32)A B -,则32OA OB == BAO ∴∆是等腰直角三角形,45BAO ∠=︒DAO ∴∆是等腰直角三角形,22,32OD AD OD AD OA =+==解得3OD =则PCO ∆周长的最小值为3232323OP OD +=+=+故答案为:323+.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出PCO ∆周长的式子,从而找到使其最小的点P 位置是解题关键. 18、19.【分析】由线段的垂直平分线的性质可得2,AC AE AD DC ==,从而可得答案.【详解】解: DE 是AC 的垂直平分线.3AE =,26,,AC AE AD DC ∴===13,AB BD AD ++=ABC ∴的周长AB BC AC AB BD AD AC =++=+++13619.=+=故答案为:19.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键.三、解答题(共66分)19、(1)证明见解析;(1)证明见解析.【分析】(1)根据已知条件,∠BEC =∠CDB =90°,∠EOB =∠DOC ,所以∠B =∠C ,则△ABO ≅△ACO (AAS ),即OB =OC .(1)根据(1)可得△BOE ≅△COD (AAS ),即OE =OD ,再由CE ⊥AB ,BD ⊥AC 可得AO 是∠BAC 的角平分线,故∠1=∠1.【详解】(1)∵CE ⊥AB ,BD ⊥AC ,∴∠BEC =∠CDB =90°,又∵∠EOB =∠DOC ,∴∠B =∠C ,∴在△ABO 与△ACO 中,12B C AO AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≅△ACO (AAS ),∴OB =OC . (1)由(1)知,∠BEO =∠CDO ,∴在△BOE 与△COD 中,BEO CDO EOB DOC OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≅△COD (AAS ),∴OE =OD . 又∵CE ⊥AB ,BD ⊥AC ,∴AO 是∠BAC 的角平分线,∴∠1=∠1.【点睛】本题考查全等三角形的性质,解题关键是根据已知条件证明得出△ABO ≅△ACO (AAS ).20、(1)72x 5y 5;(2)-x 2+32x+33;(3)(4) 【分析】(1)原式第一项利用积的乘方及幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果;(3)原式第一项利用零指数幂法则,第二项利用绝对值进行化简,第三项利用算术平方根定义计算,最后一项利用负整数指数幂化简,计算即可得到结果;(4)原式利用平方根的定义化简,合并即可得到结果;【详解】解:(1)原式=9x 4y 4•8x 3y 3÷x 2y 2=72x 7-2y 4+3-2=72x 5y 5; (2)原式=8(x 2+4x+4)-(9x 2-1)=8x 2+32x+32-9x 2+1=-x 2+32x+33;(3)原式=1+9(4)原式=4-=【点睛】 此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21、(1)A 种新式服装购进25件,B 种新式服装购进30件;(2)1210元【分析】(1)设A种新式服装购进x件,B种新式服装购进y件,根据4500元购进的两种服装销售完后毛利润为2800元,即可得出关于x,y的二元一次方程组,即可求解;(2)根据减少的收入=每件服装少卖的价格×销售数量,即可求解.【解答】解:【详解】(1)设A种新式服装购进x件,B种新式服装购进y件,依题意得:601004500(10060)(160100)2800x yx y+=⎧⎨-+-=⎩,解得:2530 xy=⎧⎨=⎩.答:A种新式服装购进25件,B种新式服装购进30件;(2)100×(1﹣0.9)×25+160×(1﹣0.8)×30=1210(元).答:这批服装全部售完后,服装店比按标价出售少收入1210元.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出二元一次方程组,是解题的关键.22、(1)见解析;(2)13【分析】(1)分别作出点B与点C关于x轴的对称点,再与点A首尾顺次连接即可得.(2)利用勾股定理进行计算可得线段DF的长.【详解】解:(1)如图所示,△DEF即为所求;(2)由勾股定理得,线段DF222+3=13【点睛】本题考查作图-轴对称变换,解题关键是熟练掌握轴对称变换的定义和性质.23、3x2+4x+1,2【分析】根据完全平方公式、平方差公式和积的乘方可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(2x +1)2﹣(x +2y )(x ﹣2y )﹣(2y )2=4x 2+4x +1﹣x 2+4y 2﹣4y 2=3x 2+4x +1,当x =﹣1时,原式=3×(﹣1)2+4×(﹣1)+1=2.【点睛】本题考查了整式的化简求值问题,熟练掌握整式化简求值的步骤是解题的关键.24、(1)32a b =⎧⎨=⎩;(2)32a b =-⎧⎨=-⎩. 【分析】(1)根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.(2)根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:(1)∵点A 、B 关于x 轴对称,∴2721a b a b +=⎧⎨-=-⎩, 解得:32a b =⎧⎨=⎩; (2))∵点A 、B 关于y 轴对称,∴2127a b a b -=⎧⎨+=-⎩, 解得:32a b =-⎧⎨=-⎩. 【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.25、(1)2(3)1y x =--+;(2)23y x =-;2(1)3y x =+-;(3)先向左平移2个单位长度,再向上平移1个单位长度.【分析】(1)由于把直线平移k 值不变,利用“左加右减,上加下减”的规律即可求解; (2)由于把抛物线平移k 值不变,利用“左减右加,上加下减”的规律即可求解; (3)利用平移规律写出函数解析式即可.【详解】解:(1)将一次函数2y x =-的图象沿x 轴向右平移3个单位长度,再沿y 轴向上平移1个单位长度后,得到一次函数解析式为:2(3)1y x =--+;故答案为:2(3)1y x =--+;(2)∵2y x 的函数图象沿y 轴向下平移3个单位长度,∴得到函数:23y x =-;再沿x 轴向左平移1个单位长度,得到函数:2(1)3y x =+-;故答案为:23y x =-;2(1)3y x =+-.(3)函数y=x 2+2x 的图象向左平移两个单位得到:y=(x+2)2+2(x+2), 然后将其向上平移一个单位得到:y=(x+2)2+2(x+2)+1=(x+2)2+2x+1. ∴先向左平移2个单位长度,再向上平移1个单位长度.【点睛】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.26、2 【分析】直接将12x x 、代入21x x ,再分母有理化即可;先求得12x x +,12x x 的值,再将221122x x x x ++变形为12x x +,12x x 的形式即可求解.【详解】2111x x ======;∵1211111222x x ---+-+=+==-,2212115(1)1224x x -+----===-, ∴()()()222211*********x x x x x x x x ++=+-=---=.【点睛】本题考查了二次根式的混合运算,涉及的知识点有分母有理化、完全平方公式的应用、平方差公式的应用,熟练掌握二次根式的运算法则和完全平方公式的结构特征是解题的关键.。
八年级上册江门数学压轴题 期末复习试卷中考真题汇编[解析版]
八年级上册江门数学压轴题 期末复习试卷中考真题汇编[解析版]一、压轴题1.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+==,()8223y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.①试确定y 与x 的关系式;②在给定的坐标系xOy 中,画出①中的函数图象;③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.2.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.3.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.4.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值.(3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.5.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.6.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.7.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).8.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.9.如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)点D 是折线A —B —C 上一动点.①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由10.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.11.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.12.如图,直线l 1的表达式为:y=-3x+3,且直线l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C .(1)求点D 的坐标;(2)求直线l 2的解析表达式;(3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点C 是点A 、B 的融合点;(2)①2-1y x ;②见详解;③点E 的坐标为:(2,9)或(8,21)【解析】【分析】(1)根据融合点的定义3a c x +=,3b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;②利用①的函数关系式解答;③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.【详解】解:(1)x =-17233a c ++==,y =54333b d ++==, 故点C 是点A 、B 的融合点;(2)①由题意得:x =433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13x y x +==; ②令x =0,y =-1;令y =0,x =12,图象如下:③当∠THD =90°时,∵点E (t ,2t +5),点T (t ,2t−1),点D (4,0),且点T (x ,y )是点D ,E 的融合点.∴t =13(t +4), ∴t =2,∴点E (2,9);当∠TDH =90°时,∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.∴4=13(4+t)∴t=8,∴点E(8,21);当∠HTD=90°时,由于EH与x轴不平行,故∠HTD不可能为90°;故点E的坐标为:(2,9)或(8,21).【点睛】本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.2.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.3.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣2m≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF OD①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2);得出m的取值范围为﹣3≤m≤﹣或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF OD分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣2m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22)或(﹣,2);∴m的取值范围为2m≤3或﹣1≤m≤﹣综上所述,m的取值范围为﹣3≤m≤﹣2m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.4.(1)①()3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.5.(1)203;(2)①t =83;②a =185;(3)t =6.4或t =103 【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM =CN =3t ,则只可以是△CMN ≌△BAM ,AB =CM ,由此列出方程求解即可;②由题意得:CN ≠BM ,则只可以是△CMN ≌△BMA ,AB =CN =12,CM =BM ,进而可得3t =10,求解即可;(3)分情况讨论,当△CMN ≌△BPM 时,BP =CM ,若此时P 由A 向B 运动,则12-2t =20-3t ,但t =8不符合实际,舍去,若此时P 由B 向A 运动,则2t -12=20-3t ,求得t =6.4;当△CMN ≌△BMP 时,则BP =CN ,CM =BM ,可得3t =10,t =103,再将t =103代入分别求得AP ,BP 的长及a 的值验证即可.【详解】解:(1)20÷3=203, 故答案为:203; (2)∵CD ∥AB ,∴∠B =∠DCB ,∵△CNM 与△ABM 全等,∴△CMN ≌△BAM 或△CMN ≌△BMA ,①由题意得:BM =CN =3t ,∴△CMN ≌△BAM∴AB =CM ,∴12=20-3t ,解得:t =83;②由题意得:CN ≠BM ,∴△CMN ≌△BMA ,∴AB =CN =12,CM =BM ,∴CM =BM =12BC , ∴3t =10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP =AB -AP =12-203=163, 则CN =BP =163 即at =163, ∵t =103, ∴a =1.6符合题意综上所述,满足条件的t 的值有:t =6.4或t =103【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.6.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==, CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.7.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(1280a b b -+-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);故答案为:(0,6),(8,0);(2)由(1)知,A (0,6),C (8,0),∴OA=6,OB=8,由运动知,OQ=t ,PC=2t ,∴OP=8-2t ,∵D (4,3), ∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322ODP D S OP y t t =⨯=-⨯=-△(), ∵△ODP 与△ODQ 的面积相等,∴2t=12-3t ,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.8.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.9.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E的位置见解析,E(43,0);②D点的坐标为(-1,3)或(45,125) 【解析】【分析】 (1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C 点的坐标为(2,0);(2)①如图∵点D 是AB 的中点∴D (-2,2)点B 关于x 轴的对称点B 1的坐标为(0,-4),设直线DB 1的解析式为y kx b =+,把D (-2,2),B 1(0,-4)代入,得224k b b -+=⎧⎨=-⎩, 解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43 -,∴E点的坐标为(43-,0).②存在,D点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为421 2,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A(-4,0)与F(0,2)代入得402m nn-+=⎧⎨=⎩,解得1,22m n==,∴122y x=+,联立12224y xy x⎧=+⎪⎨⎪=-+⎩,解得:45125xy⎧=⎪⎪⎨⎪=⎪⎩,∴D 的坐标为(45,125). 综上所述:D 点的坐标为(-1,3)或(45,125) 【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.10.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.11.(123【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中, ===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°, ∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4a a +,2222=4b b +, 解得:3a ,23=b , ∴222323⎛⎫+ ⎪ ⎪⎝⎭=33, ∴22AP BP +()22AM PM BP ++221;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:23 ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:3,∴AM=23,∴PC=CN-NP=AM-NP=33, 在△BPC 中,BP 2+CP 2=BC 2,即BC=22224322123BP CP⎛⎫+=+=⎪⎪⎝⎭,∴AB=BC=221 3.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.12.(1)(1,0);(2)362y x-=;(3)92;(4)(6,3).【解析】【分析】(1)由题意已知l1的解析式,令y=0求出x的值即可;(2)根据题意设l2的解析式为y=kx+b,并由题意联立方程组求出k,b的值;(3)由题意联立方程组,求出交点C的坐标,继而即可求出S△ADC;(4)由题意根据△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C 到AD的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=32-,代入表达式y=kx+b,∴40332k bk b+⎧⎪⎨+-⎪⎩==,∴326 kb⎧⎪⎨⎪-⎩==,∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P (6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册江门数学期末试卷中考真题汇编[解析版]一、八年级数学全等三角形解答题压轴题(难)1.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;(3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.证明:如答图1,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠EAF=12∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-12∠BAD=12∠BAD,∴∠EAF=∠GAF.在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.又∵FG=DG+DF=BE+DF.∴EF=BE+FD.(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.∴EF=AE+FB=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离为210海里;(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,∴对于四边形AMCD符合探索延伸,则ND=MN ,∵∠NCD=90°,CD=1,CN=3,∴MN=ND=10.2.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.3.如图①,在ABC中,90BAC∠=︒,AB AC=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE⊥于D,CE AE⊥于E.(1)求证:BD DE CE=+.(2)若将直线AE绕点A旋转到图②的位置时(BD CE<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE,理由见解析.【解析】【分析】(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.4.(1)如图(a )所示点D 是等边ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明.(2)如图(b )所示当动点D 运动至等边ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c )所示,当动点D 在等边ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方、下方分别作等边DCF 和等边DCF ',连接AF 、BF ',探究AF 、BF '与AB 有何数量关系?并证明.②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.5.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC 与∠A 、∠B 、∠C 之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ 放置在△ABC 上使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =40°,则∠ABX+∠ACX = °.②如图(3),DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =40°,∠DBE =130°,求∠DCE 的度数.【答案】(1)∠BDC =∠BAC+∠B+∠C ,理由见解析;(2)①50;②∠DCE =85°.【解析】【分析】(1)首先连接AD 并延长至点F ,然后根据外角的性质,即可判断出∠BDC =∠BAC+∠B+∠C ;(2)①由(1)可得∠A+∠ABX+∠ACX =∠X ,然后根据∠A =40°,∠X =90°,即可求解;(3)②由∠A =40°,∠DBE =130°,求出∠ADE+∠AEB 的值,然后根据∠DCE =∠A+∠ADC+∠AEC ,求出∠DCE 的度数即可.【详解】(1)如图,∠BDC =∠BAC+∠B+∠C ,理由是:过点A 、D 作射线AF ,∵∠FDC =∠DAC+∠C ,∠BDF =∠B+∠BAD ,∴∠FDC+∠BDF =∠DAC+∠BAD+∠C+∠B ,即∠BDC =∠BAC+∠B+∠C ;(2)①如图(2),∵∠X =90°,由(1)知:∠A+∠ABX+∠ACX =∠X =90°,∵∠A =40°,∴∠ABX+∠ACX =50°,故答案为:50;②如图(3),∵∠A =40°,∠DBE =130°,∴∠ADE+∠AEB =130°﹣40°=90°,∵DC 平分∠ADB ,EC 平分∠AEB ,∴∠ADC =12∠ADB ,∠AEC =12∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°, ∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、八年级数学 轴对称解答题压轴题(难)6.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.7.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC 中,∠A=36°,直线BD 平分∠ABC 交AC 于点D ,求证:△ABD 和△DBC 都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.8.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.9.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-;(3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-的值不变为3-.(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°, ∵ABC △为等腰直角三角形,∴AC=AB,∠CAB=90°, ∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,∴AQC BOA ≅(AAS),∴CQ=AO,AQ=BO,∵OA=2,OB=4, ∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP ⊥OB 于点P ,∴∠BPD=90°,∵ABD △是等腰直角三角形,∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP ,又∵AB=BD,∠AOB=∠BPD=90°,∴AOB BPD ≅∴AO=BP ,∵BP=OB -PO=m-(-n)=m+n,∵A ()23,0-,∴OA=3∴m+n=23∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23∴整式2253m n +-3-(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12 EG,∴EN=12 EG,∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.10.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=.(1)如图1,当点E在AC的延长线上且CD CE=时,AD是ABC的中线吗?请说明理由;(2)如图2,当点E在AC的延长线上时,写出,,AB BD AE之间的数量关系,请说明理由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出AB BD AE的数量关系.,,+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB 上取BH=BD ,连接DH ,∵BH=BD ,∠B=60°,∴△BDH 为等边三角形,AB-BH=BC-BD ,∴∠BHD=60°,BD=DH ,AH=DC ,∵AD=DE ,∴∠E=∠CAD ,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE ,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE ,∴在△AHD 和△DCE ,BAD CDE AHD DCE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD ≌△DCE (AAS ),∴DH=CE ,∴BD=CE ,∴AE=AC+CE=AB+BD .(3)结论:AB=BD+AE ,理由如下:如图3,在AB 上取AF=AE ,连接DF ,∵△ABC 为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE 是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF ∥BC ,∴∠EDB=∠DEF ,∵AD=DE ,∴∠DEA=∠DAE ,∴∠DEF=∠DAF ,∵DF=DF ,AF=EF ,在△AFD 和△EFD 中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩, ∴△AFD ≌△EFD (SSS )∴∠ADF=∠EDF ,∠DAF=∠DEF ,∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,∵∠EDB=∠DEF ,∴∠FDB=∠DFB ,∴DB=BF ,∵AB=AF+FB ,∴AB=BD+AE .【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.解:∵m 2﹣2mn+2n 2﹣8n+16=0,∴(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0∴(m ﹣n )2+(n ﹣4)2=0,∴(m ﹣n )2=0,(n ﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x 2+2xy+2y 2+2y+1=0,求2x+y 的值;(2)已知a ﹣b=4,ab+c 2﹣6c+13=0,求a+b+c 的值.【答案】(1)1;(2)3.【解析】【分析】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x 、y 的值,从而可以得到2x+y 的值;(2)根据a-b=4,ab+c 2-6c+13=0,可以得到a 、b 、c 的值,从而可以得到a+b+c 的值.【详解】解:(1)∵x 2+2xy+2y 2+2y+1=0,∴(x 2+2xy+y 2)+(y 2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=−1,∴2x+y=2×1+(−1)=1;(2)∵a−b=4,∴a=b+4,∴将a=b+4代入ab+c 2−6c+13=0,得b 2+4b+c 2−6c+13=0,∴(b 2+4b+4)+(c 2−6c+9)=0,∴(b+2)2+(c−3)2=0,∴b+2=0,c−3=0,解得,b=−2,c=3,∴a=b+4=−2+4=2,∴a+b+c=2−2+3=3.【点睛】此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.12.(1)你能求出(a ﹣1)(a 99+a 98+a 97+…+a 2+a +1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a ﹣1)(a +1)= ;(a ﹣1)(a 2+a +1)= ;(a ﹣1)(a 3+a 2+a +1)= ;…由此我们可以得到:(a ﹣1)(a 99+a 98+…+a +1)= .(2)利用(1)的结论,完成下面的计算:2199+2198+2197+…+22+2+1.【答案】(1)21a -,31a -,41a -,1001a -(2)20021-【解析】【分析】根据简单的多项式运算推出同类复杂多项式运算结果的一般规律,然后根据找出的规律进行解决较难的运算问题.【详解】解:(1)21a - 31a - 41a - 1001a -(2)1991981972222221+++⋅⋅⋅++=()21- ⨯(1991981972222221+++⋅⋅⋅++)=20021-.【点睛】考查了学生的基础运算能力和对同一类运算问题计算结果的一般规律性洞察力.13.先阅读下列材料,然后解后面的问题.材料:一个三位自然数abc (百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F (abc )=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12. (1)对于“欢喜数abc ”,若满足b 能被9整除,求证:“欢喜数abc ”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.【答案】(1)详见解析;(2)99或297.【解析】【分析】(1)首先由题意可得a +c =b ,将欢喜数展开,因为要证明“欢喜数abc ”能被99整除,所以将展开式中100a 拆成99a +a ,这样展开式中出现了a +c ,将a +c 用b 替代,整理出最终结果即可;(2)首先设出两个欢喜数m 、n ,表示出F (m )、F (n )代入F (m )﹣F (n )=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵abc 为欢喜数,∴a +c =b . ∵abc =100a +10b +c =99a +10b +a +c =99a +11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数abc ”能被99整除;(2)设m =11a bc ,n =22a bc (且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n =100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n =99或m ﹣n =297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.14.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +--=[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.15.对于任意两个数a 、b 的大小比较,有下面的方法:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.请根据以上材料完成下面的题目:(1)已知:228A x y y =+,8B xy =,且A B >,试判断y 的符号;(2)已知:a 、b 、c 为三角形的三边,比较222a c b +-和2ac 的大小.【答案】(1)y >0;(2)222a c b +-<2ac【解析】【分析】(1)根据题意得到22880x y y xy +->,因式分解得到22(2)0y x ->,进而得到y 的符号即可;(2)将222a c b +-和2ac 作差,结合已知及三角形的两边之和大于第三边可求.【详解】解:(1)因为A >B ,所以A-B >0,即22880x y y xy +->,∴222(44)2(2)0y x x y x +-=->,因为2(2)0x -≥,∴y >0(2)因为a 2−b 2+c 2−2ac =a 2+c 2−2ac−b 2=(a−c )2−b 2=(a−c−b )(a−c +b ), ∵a +b >c ,a <b +c ,所以(a−c−b )(a−c +b )<0,所以a 2−b 2+c 2−2ac 的符号为负.∴222a c b +-<2ac【点睛】本题考查了作差法比较两个式子的大小以及因式分解,解题的关键是理解题中的“求差法”比较两个数的大小,并熟练掌握因式分解的方法.四、八年级数学分式解答题压轴题(难)16.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.17.已知11x a b c ⎛⎫=+ ⎪⎝⎭,11y b a c ⎛⎫=+ ⎪⎝⎭,11z c a b ⎛⎫=+ ⎪⎝⎭. (1)当1a =,1b =,2c =时,求1111x y +--的值; (2)当0ab bc ac ++≠时,求111111x y z +++++的值. 【答案】(1)4;(2)1【解析】【分析】(1)分别对x 、y 进行化简,然后求值即可;(2)分别求出1x +、1y +、和z 1+值,然后代入化简即可.【详解】(1),,ac ab bc ab bc ac x y z bc ac ab+++===, 当1,1,2a b c ===时, 1211111=;122x ⨯+⨯∴-=-⨯ 1211111=122y ⨯+⨯∴-=-⨯ 1111=4111122x y ∴+=+-- (2)11ac ab ac ab bc x bc bc ++++=+=, 11bc ab bc ab ac y ac ac ++++=+=, 11bc ac bc ac ab z ab ab++++=+=, ∵+0ab bc ac +≠,∴111111;+++x y z bc ac ab ab bc ac ab bc ac ab bc ac+++++=+++++ ++ab bc ac ab bc ac+=+ =1.【点睛】 本题考查了整式的化简求值问题,解题的关键是仔细认真的进行整式的化简.18.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。