系统的时域分析 线性时不变系统的描述及特点 连续时间LTI系统的响应
连续时间系统的时域分析经典法
在弹性限度内,拉力Fk与位移
k
m
FS
x成正比,x(t) t v( )d ,设
f
刚度系数为k,有 Fk (t) k t v( )d
Ff (t) f v(t)
牛顿第二定律
Fm
(t)
m
d dt
v(t)
m d v(t) dt
f
v(t) k t v( )d
FS (t )
m
d2 dt 2
v(t)
3B1 1 4B1 3B2 2 2B1 2B2 3B3 0
联立求解
B1
1, 3
B2
2, 9
B3
10 27
所以,特解为
rp
(t)
1 3
t
2
2 9
t
10 27
(2) 当e(t) et时,选择特解函数形式
rp (t) Bet
代入方程得
d2 dt 2
(Bet
)
2d dt
(Bet
)
3(Bet
特征方程 6
(
特征根
2, 4
齐次解 rh (t)
rh (t) A1e2t A2e4t
2)求非齐次方程 r(t) 6r(t) 8r(t) e(t)的特解 rp (t) 由输入e(t) 的形式,设方程的特解为
rp (t) Bet
将特解代入原微分方程
rp(t) 6rp(t) 8rp (t) et
i(t)
R2 R1L
d dt
e(t)
1 R1LC
e(t)
d2 d t2
i(t
)
1 R1C
d i(t) 1 d
dt
R1C dt
iL
信号与系统期末重点总结
信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。
2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。
3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。
4. 系统的定义:系统是将输入信号转换为输出信号的过程。
5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。
二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。
(2)幅度谱与相位谱:复指数信号的频谱特性。
(3)周期信号:特点是在一个周期内重复。
(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。
2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。
(2)冲击响应与系统特性:系统的特性通过冲击响应得到。
(3)卷积积分:输入信号与系统冲激响应的积分运算。
3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。
(2)Fourier变换:将时域信号转换为频域信号。
(3)Laplace变换:用于解决微分方程。
三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。
(2)离散频谱:离散时间信号的频域特性。
(3)周期信号:在离散时间中周期性重复的信号。
(4)离散时间系统的线性时不变性:线性组合和时延等。
2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。
(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。
(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。
3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。
(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。
(3)Z变换:傅立叶变换在离散时间中的推广。
四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。
系统的时域分析 线性时不变系统的描述及特点 连续时间LTI系统的响应
y x (t ) K1e 2t K 2 e 3t
y(0)=yx(0)=K1+K2=1 y' (0)= y'x(0)= 2K13K2 =3
解得 K1= 6,K2= 5
y x (t ) 6e 2t 5e 3t , t 0
18
[例] 已知某线性时不变系统的动态方程式为: y" (t)+4y ' (t) +4y (t) = 2f ' (t )+3f(t), t>0 系统的初始状态为y(0) = 2,y'(0) = 1, 求系统的零输入响应yx(t)。 解: 系统的特征方程为 系统的特征根为
2t
Be
4t
1 y (0) A B 1 3 解得 A=5/2,B= 11/6 1 y ' (0) 2 A 4 B 2 3
5 2t 11 4t 1 t y(t ) e e e , t 0 2 6 3
12
1 t e 3
系统的几个概念:
9
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t), 求系统的完全响应y(t)。
解:
(1) 求齐次方程y''(t)+6y'(t)+8y(t) = 0的齐次解yh(t)
11
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
MATLAB与信号实验——连续LTI系统的时域分析
MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。
MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。
下面将介绍MATLAB在连续LTI系统时域分析中的应用。
首先,我们需要了解连续LTI系统的基本概念。
一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。
冲激响应是系统对单位冲激信号的响应。
在MATLAB中,可以使用impulse函数来生成单位冲激信号。
假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。
conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。
例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。
我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。
接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。
最后,得到了输出信号y(t)。
在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。
例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。
LTI时间系统响应的经典时域分析方法
LTI时间系统响应的经典时域分析方法【摘要】在信号与系统的学习中,由于信号系统频域分析法和复频域分析法具有物理意义明确,计算简便的特点,越来越多的人习惯了用频域和复频域分析法来求解系统。
而直观易于理解的经典时域分析法却被忽略,很多信号与系统的教材都缺少对其系统的介绍。
系统介绍LTI时间系统响应的经典时域分析方法的求解步骤和方法,并在此基础上分析经典法的适用场合和优缺点。
【关键词】经典法微分方程线性时不变、动态、因果、集总参数连续或离散的系统简称线性时不变系统(Linear Time Invariant , LTI)。
系统分析就是根据已知的系统的参数和结构,研究系统的特性,也就是求解系统的输入和输出的关系。
在进行系统分析时,一般的分析步骤是根据已知的系统结构和参数进行建模,即对离散系统列写差分方程,对连续系统列写微分方程。
然后求解模型,也就是求解列写的微分方程或者差分方程。
最后说明解的物理意义,当然这一步不是必须的,可以根据要求来看是否要解释其物理意义。
由此可见,系统分析时,最重要也是最关键的步骤就是求解模型。
在模型的求解过程中可以采取的方法很多,比如不经任何变换、以时间t为函数变量的时域分析法;经过拉氏变换转换为复频域的复频域分析法等。
时域分析法中,又有经典法和算子法。
算子法是把求导符号用一个算子符表示,然后算子符可以参与到数学的基本运算中,大大简化了微分方程的复杂的求解方法。
由于算子法这一计算简便的特点,所以被很多教材重点介绍,而忽略了直观且易于理解的经典法。
经典法的计算虽然稍微麻烦一些,但是经典法求解系统是学习其他方法的基础,也是理解系统的全响应分解为自然响应和受迫响应的基础。
另外,在电路中求解一阶和二阶电路系统重点介绍的就是经典法。
所以经典法求解系统在信号与系统的学习中起着举足轻重的作用,也是我们必须要系统掌握的一种方法。
一、经典时域分析方法的求解步骤和方法经典时域分析方法即直接求解微分方程,微分方程的全解即系统的全响应,由齐次微分方程的通解 r n(t) 和非齐次方程的特解 r p(t) 组成。
实验三 线性时不变(LTI)连续系统的时域分析
执行结果
实验任务 1:LTI系统的微分方程y''(t)+2y'(t)+y(t)=f'(t)+2f(t),激励f (t)=e-2tε(t),
(1) 利用 impulse 函数获得冲激响应; (2) 利用 lsim 函数求取零状态响应; (3) 用卷积分析法计算其零状态响应; 要求:在一个图形窗口里以 3 个子图形式绘制冲激响应和两种方法得到的零状 态响应的波形。 (4)改变系统的 a 系数矩阵,观察冲激响应和零状态响应时域波形的变化情况。 建议 a 系数向量分别如下取值讨论。
用。
一、实验目的
1. 掌握系统时域分析常用函数的使用方法; 2. 理解系统特征根对系统时域特性的影响;
二、实验原理及内容 2.1 连续系统的时域分析 2.1.1 连续系统时域分析的几个常用函数
设 LTI 连续时间系统的微分方程为
a 2 y''(t)+a 1 y'(t)+a 0 y(t)=b 2 f''(t)+b 1 f'(t)+b 0 f(t)
将积分变量离散化即将用n替代d用替代只要时域取样间隔足够小上式可近似为再把观察响应时刻离散化即将t用k替换只要足够小通常将fn简记为fnhkn简记为hknyk简记为yk这样上式便可表示为因此两个连续信号ft和ht的卷积yt可用ft和ht的取样信号f均取整数
实验三 线性时不变(LTI)连续系统的时域分析
2.1.2 连续信号卷积的近似计算
连续系统的零状态响应 y(t)可通过输入信号 f(t)与系统冲激响应 h(t)的卷积求 得;但是计算机只能处理数字信号,不能直接处理模拟信号,因此,卷积积分不 能直接用计算机计算。为了解决这个问题,可以将连续信号用取样信号来近似表 示,利用卷积和近似求得卷积积分。下面就连续信号卷积积分的近似计算进行简 单推导。
[工学] 第3章1 LTI系统的描述及特点_连续LTI系统响应
2、冲激平衡法 求系统的单位冲激响应
h ( n ) (t ) an1h ( n1) (t ) a1h' (t ) a0 h(t ) bm ( m) (t ) bm1 ( m1) (t ) b1 ' (t ) b0 (t )
由于t >0+后, 方程右端为零, 故 n>m 时
求解系统的零状态响应yzs (t)方法:
1) 直接求解初始状态为零的微分方程。
2) 卷积法:
利用信号分解和线性时不变系统的特性求解。
卷积法求解系统零状态响应yzs(t)的思路
1) 将任意信号分解为单位冲激信号的线性组合
2) 求出单位冲激信号作用在系统上的响应 —— 冲激响应 3) 利用线性时不变系统的特性,即可求出任意 信号f(t)激励下系统的零状态响应yzs (t) 。
?线性时不变系统的描述及特点?连续时间lti系统的响应连续时间系统的冲激响应卷积积分及其性质连续时间系统的冲激响应卷积积分及其性质?离散时间lti系统的响应离散时间系统的单位脉冲响应卷积和及其性质系统的响应离散时间系统的单位脉冲响应卷积和及其性质?冲激响应表示的系统特性第第3章系统的时域分析lti系统分析方法概述一系统理论中的主要问题
§3.1 线性时不变系统的描述及特点
例1 求并联电路的端电压 vt 与激励 is t 间的关系。
解
1 电阻 iR t vt R
iR
iL
L C
电感
d vt 电容 iC t C dt iR t iL t iC t iS t 根据KCL
s1 2,s2 3
y x (t ) K1e 2t K 2 e 3t
y(0)=yx(0)=K1+K2=1
信号与系统 2.1 LTI连续系统的响应
4 4 0
2
2 0 1 2 重根
2
对应的齐次解为
yh t C1t C2 e2t
2. 特解
特解的形式和激励的形式有关,由激励的形式定。
激励f(t) 响应y(t)的特解yp(t)
F (常数 )
tm
P(常数)
三.零输入响应和零状态响应
1 、零输入响应
零输入响应是激励为零时仅由系统的初始状态{x(0)} 所引起的响应,用yzi(t)表示。在零输入条件下,微分 方程等号右端为零,化为齐次方程,即:
( a j yzij ) (t ) 0 j 0 n
对于零输入响应,由于激励为零,故有 yzi(j)(0+)=yzi(j)(0-)= y(j)(0-) 注意:零输入响应的这个性质
第二章 连续系统的时域分析
本章主要研究线性时不变(LTI)连续系统的时域 分析方法,即对于给定的激励,根据激励和响应之间 关系的微分方程求响应的方法。
第二章 连续系统的时域分析
本章重点:
微分方程的经典求解方法
关于0-和0+初始值 零输入响应和零状态响应
§2.1 LTI连续系统的响应
一、微分方程的经典解
全响应
如果系统的初始状态不为零,在激励f(t)的作用下, LTI系统的响应称为全响应,它是零输入响应与零状 态响应之和,即: y(t)=yzi(t)+yzs(t) 注意:对t=0时接入激励f(t)的系统,初始值 yzi(j)(0+), yzs(j)(0+) (j=0,1,2,…,n-1)的计算。 y(j)(0-)= yzi(j)(0-)+ yzs(j)(0-) y(j)(0+)= yzi(j)(0+)+ yzs(j)(0+) 对于零状态响应,在t=0-时激励尚未接入,因此 yzs(j)(0-)=0 因而零输入响应的0+值 yzi(j)(0+)= yzi(j)(0-)= y(j)(0-)
信号与系统连续时间LTI系统的几种响应求解方法及例题
谢谢您的聆听
THANKS
优点
能够直接得到系统在任意 时刻的响应值。
缺点
计算量大,需要逐个时间 点进行计算。
拉普拉斯变换法
定义
拉普拉斯变换法是一种将时域函 数转换为复频域函数的数学工具。
01
描述ห้องสมุดไป่ตู้
02 通过拉普拉斯变换,将系统的微 分方程转化为代数方程,然后求 解得到系统在复频域的响应。
优点
能够方便地求解高阶微分方程, 适用于具有复杂特性的系统。 03
拉普拉斯变换法
能够求解系统的零状态响应,但需要 已知系统传递函数,且变换过程可能 较为复杂。
05
结论
总结
本文介绍了求解连续时间LTI系统响应的几种方法,包括时域法和频域法。 通过具体实例,展示了这些方法在求解系统响应中的应用和优势。
时域法通过建立和求解微分方程来获取系统输出,具有直观和物理意义 明确的优点。而频域法则通过分析系统函数的频域特性来求解响应,具
信号与系统连续时间LTI系统的 几种响应求解方法及例
CONTENTS
• 引言 • 几种响应求解方法 • 例题解析 • 方法比较与选择 • 结论
01
引言
背景介绍
01
信号与系统是电子工程和通信工 程的重要基础学科,主要研究信 号和系统在时域和频域的行为和 特性。
02
在信号与系统中,线性时不变 (LTI)系统是最基本、最重要的 系统之一,其响应求解是研究的重 要内容。
LTI系统的基本概念
LTI系统是指系统的输出仅与输入和系统 的状态有关,而与时间无关。
LTI系统具有线性、时不变和因果性等基 本特性。
信号与系统第3章(陈后金)1
特解yp(t)的形式由方程右边激励信号的形式确定
一、系统的零输入响应
定义:系统的零输入响应是输入信号为零,仅由系 统的初始状态单独作用而产生的输出响应。 数学模型:
y ( n) (t ) an1 y ( n1) (t ) a1 y ' (t ) a0 y(t ) 0 求解方法: 根据微分方程的特征根确定零输入响应的形式
y ( n ) (t ) an 1 y ( n 1) (t ) a1 y ' (t ) a0 y (t ) bm x ( m ) (t ) bm 1 x ( m 1) (t ) b1 x ' (t ) b0 x(t )
ai 、 bj为常数。
离散LTI系统用n阶常系数线性差分方程描述
则
dx(t ) dy (t ) T{ } dt dt
离散时间系统, 若 T{x[k]}= y[k] 则 T{ x[k] -x[k-1]}= y[k] - y[k-1]
线性非时变(LTI)系统的特点
4.积分(求和)特性
连续时间系统,若 T{x(t)}=y(t) 则
T {
t
x( )d }
2
非线性系统 非线性系统 线性系统 线性系统
(3) y(t ) 4 y(0) x(t ) 3x(t )
dx(t ) (4) y(t ) 4 y(0) 2 sin t dt
不满足可分解性
(5) y[k ] ky[0]
i 0
k
x[i]
线性非时变(LTI)系统的特点
2.非时变特性
1
0
1
t
0
自动控制原理实验报告《线性控制系统时域分析》
自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。
2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。
3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。
二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。
三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。
LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。
2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。
针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。
四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。
搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。
2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。
其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。
下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。
实验二连续时间LTI系统的时域分析
实验二连续时间LTI系统的时域分析一、实验目的:1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应二、实验原理及实例分析1、连续时间系统零输入响应和零状态响应的符号求解连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。
MATLAB符号工具箱提供了dsolve函数,可以实现对常系数微分方程的符号求解,其调用格式为:dsolve(‘eq1,eq2…’,’cond1,cond2,…’,’v’)其中参数eq表示各个微分方程,它与MATLAB符号表达式的输入基本相同,微分和导数的输入是使用Dy,D2y,D3y来表示y的一价导数,二阶导数,三阶导数;参数cond表示初始条件或者起始条件;参数v表示自变量,默认是变量t。
通过使用dslove函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。
2、连续时间系统零状态响应的数值求解在实际工程中使用较多的是数值求解微分方程。
对于零输入响应来说,其数值解可以通过函数initial 来实现,而该函数中的参量必须是状态变量所描述的系统模型,由于现在还没有学习状态变量相关内容,所以此处不做说明。
对于零状态响应,MATLAB 控制系统工具箱提供了对LTI 系统的零状态响应进行数值仿真的函数lsim ,利用该函数可以求解零初始条件下的微分方程的数值解。
其调用格式为:y=lsim(b,a,f,t),其中t 表示系统响应的时间抽样点向量,f 是系统的输入向量; b 和a 分别为微分方程右端和左端的系数向量,若不带返回参数y ,则直接在屏幕上绘制输入信号x 和响应信号的波形。
例如,对于微分方程)()()()()()()()(0'1''2'''30'1''2'''3t f b t f b t f b f f b t y a t y a t y a t y a +++=+++可以使用32103210[,,,];[,,,]a a a a a b b b b b ==注意,如果微分方程的左端或者右端表达式有缺项,则其向量a 或者b 中对应元素应该为零,不能省略不写。
连续时间信号与系统知识点总结
连续时间信号与系统是信号处理和通信系统领域的重要基础知识。
以下是关于连续时间信号与系统的一些核心知识点总结:
1. 信号的基本概念:包括信号的定义、分类(连续、离散、确定、随机)、信号的表示方法(波形图、时域表达式、频域表示等)。
2. 连续时间信号的运算:包括信号的加、减、乘、卷积等基本运算,以及信号的平移、反转、尺度变换等变换。
3. 系统的基本概念:包括系统的定义、分类(线性时不变、线性时变、非线性等)、系统的描述方法(微分方程、差分方程、传递函数等)。
4. 线性时不变系统的分析:包括系统的响应(零状态响应和零输入响应)、系统的稳定性、系统的频率响应等。
5. 连续时间傅里叶分析:包括傅里叶级数、傅里叶变换及其性质、频率域的信号分析等。
6. 系统函数的性质和表示方法:包括系统函数的极点、零点,以及它们对系统特性的影响。
7. 信号通过线性时不变系统的分析:包括冲激响应和阶跃响应的分析,以及信号的频谱分析和系统对不同类型信号的响应。
8. 滤波器设计:包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计,以及滤波器的频率响应和群时延特性。
9. 采样定理与信号重建:包括采样定理的理解,以及由采样信号重建原始信号的方法。
10. 连续时间系统的模拟与实现:包括模拟电路和数字电路实
现连续时间系统的方法,以及模拟与数字系统之间的转换。
以上知识点为连续时间信号与系统的基础内容,掌握这些知识点有助于理解实际通信系统和信号处理应用的原理。
如需更深入的学习,建议参考相关的教材或专业课程。
信号与系统MATLAB仿真——LTI连续系统的时域分析
信号与系统MATLAB仿真——LTI连续系统的时域分析1. 知识回顾(1)经典时域分析⽅法线性时不变(LTI)系统是最常见最有⽤的⼀类系统,描述这类系统的输⼊-输出特性的是常系数线性微分⽅程。
\begin{array}{l} {y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = \\ {b_m}{f^{(m)}}(t) + {b_{m - 1}}{f^{(m - 1)}}(t) + \cdot \cdot \cdot + {b_1}{f^{(1)}}(t) + {b_0}f(t) \end{array}齐次解:{y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = 0特征⽅程:{\lambda ^n} + {a_{n - 1}}{\lambda ^{n - 1}} + \cdot \cdot \cdot + {a_1}\lambda + {a_0} = 0均为单根:{y_h}(t) = \sum\limits_{i = 1}^n {{C_i}{e^{{\lambda _i}t}}}有重根(r重根):{y_h}(t) = \sum\limits_{i = 1}^r {{C_i}{t^{i - 1}}{e^{{\lambda _1}t}}}共轭复根({\lambda _{1,2}} = \alpha \pm j\beta ):{e^{\alpha t}}({C_1}\cos \beta t + {C_2}\sin \beta t)r重复根:{e^{\alpha t}}(\sum\limits_{i = 1}^r {{C_{1i}}{t^{i - 1}}} \cos \beta t + \sum\limits_{i = 1}^r {{C_{2i}}{t^{i - 1}}} \sin \beta t)特解:f(t) = {t^m}所有的特征根均不等于0:{y_p}(t) = {P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}有r重等于0的特征根:{y_p}(t) = {t^r}[{P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}] f(t) = {e^{\alpha t}}:\alpha 不是特征根:{y_p}(t) = P{e^{\alpha t}}\alpha 是特征单根:{y_p}(t) = {P_1}t{e^{\alpha t}} + {P_0}{e^{\alpha t}}\alpha 是r重特征根:{y_p}(t) = ({P_r}{t^r} + {P_{r - 1}}{t^{r - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}){e^{\alpha t}} f(t) = \cos \beta t或\sin \beta t:所有特征根均不等于 \pm j\beta :{y_p}(t) = {P_1}\cos \beta t + {P_2}\sin \beta t\pm j\beta 是特征单根:{y_p}(t) = t[{P_1}\cos \beta t + {P_2}\sin \beta t]全解:y(t) = {y_h}(t) + {y_p}(t)(2)零输⼊响应与零状态响应y(t) = {y_{zi}}(t) + {y_{zs}}(t)(3)冲激响应和阶跃响应\left\{ \begin{array}{l} \delta (t) = \frac{{{\rm{d}}\varepsilon (t)}}{{{\rm{d}}t}}\\ \varepsilon (t) = \int_{ - \infty }^t {\delta (\tau ){\rm{d}}\tau } \end{array} \right. \left\{ \begin{array}{l} h(t) = \frac{{{\rm{d}}g(t)}}{{{\rm{d}}t}}\\ g(t) = \int_{ - \infty }^t {h(\tau ){\rm{d}}\tau } \end{array} \right.(4)卷积积分y(t) = {f_1}(t) * {f_2}(t) = \int_{ - \infty }^{ + \infty } {{f_1}(\tau ){f_2}(t - } \tau ){\rm{d}}\tau系统的零状态响应:{y_{zs}}(t) = f(t) * h(t)卷积积分的性质:交换律分配率结合律任意函数与单位冲激函数卷积的结果仍是函数本⾝:f(t) * \delta (t) = f(t)2. 利⽤MATLAB求LTI连续系统的响应LTI连续系统以常微分⽅程描述,如果系统的输⼊信号及初始状态已知,便可以求出系统的响应。
信号与系统第三章(陈后金)3.
离散时间LTI系统的响应
3. 卷积法: 系统完全响应 = 零输入响应+零状态响应
y[k] yzi [k] yzs [k] yzi [k] x[k]* h[k]
✓ 求解齐次差分方程得到零输入响应
✓ 利用信号分解和线性非时变特性可求出 零状态响应
一、零输入响应
定义:系统的零输入响应是输入信号为零,仅由系 统的初始状态单独作用而产生的输出响应。
离散时间LTI系统的响应
1. 迭代法
n
m
ai y[k i] bj x[k j]
i0
j0
已知 n 个初始状态{ y[1], y[2], y[2],∙∙∙∙, y[n] } 和输入,由差分方程迭代出系统的输出。
n
m
y[k] ai y[k i] bj x[k j]
C2
1 2
解得 C1=1,C2= 2
yzi [k] (1)k 2(2)k k 0
[例] 已知某线性时不变系统的动态方程式为: y[k]+4y[k1]+4y[k2]=x[k]
解: (2) 求非齐次方程y[k]5y[k1]+6y[k2] =x[k]的特解yp[k]
由输入x[k]的形式,设方程的特解为
yp[k] Ak2k , k 0
将特解带入原差分方程即可求得常数A= 2。
[例]已知某二阶线性时不变离散时间系统的差分方程
y[k]5y[k1]+6y[k2] = x[k] 初始条件y[0] = 0,y[1] = 1,输入信号 x[k] = 2k u[k],求系统的完全响应y[k]。
1) 若初始条件不变,输入信号 x[k] = sin0 k u[k],
LTI系统的时域频率复频域分析
一、LTI系统时域分析
1. 用单位冲激响应和单位脉冲响应表示LTI系统
x ( t ) h ( t ) y(t)x(t)h(t)
x[n] h[n]
y[n]x[n]h[n]
3
2. 用微分和差分方程描述的因果LTI系统
一个LTI系统的数学模型可以用线性常系数微分方程或线性常 系数差分方程来描述。分析这类系统,就是要求解线性常系数 微分方程或差分方程。 对于因果系统,当输入为0时,输出也为0。也就是说对于因 果LTI系统,其输出的初始状态为零,此时的输出常称为系统 的零状态响应。 系统分析时,往往不是通过微分/差分方程的时域求解,而是 通过频域或复频域分析来求解方程。但是对离散LTI系统,其 差分方程的时域递归解法在数字滤波器的设计中有非常重要的 应用。
4
4 4
4
4 4
依此 ,可 y [n 类 ]得 1 n 1 推 ,n 1 . 或者 y [n ] 1 写 n 1 u [n 成 1 ]
4
4
8
3. LTI系统的方框图表示
(1) 离散时间系统
一阶差分方程 : y [n ] a[n y 1 ]b[n x ]
2. 根据系统的描述,求出 H ( j )
3. Y (j)X (j)H (j)
4. y(t)F1[Y(j)]
16
从信号分解观点分析
若 x ( t) : e j t
则 y ( t) : h ( t) x ( t) h () e j ( t ) d h () e jd e j t H (j) e j t
x[n][n1] 1,n1,
对于因果y系 [n]统 0,n必 1. 有
0,n1
信号与系统实验五 连续线性时不变系统分析
信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。
2.掌握连续LTI系统的频域分析方法。
3.掌握连续LTI系统的复频域分析方法。
4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。
二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。
(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。
一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。
Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。
(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。
(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。
其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
(2) 求非齐次方程y''(t)+6y'(t)+8y(t) = f(t)的特解yp(t)
由输入f (t)的形式,设方程的特解为 yp(t) = Cet t>0
将特解带入原微分方程即可求得常数C=1/3。
8
一、经典时域分析方法
常用激励信号对应的特解形式
输入信号 K Kt Keat(特征根 sa) Keat(特征根 s=a) Ksin0t 或 Kcos0t Keatsin0t 或 Keatcos0t 特解 A A+Bt Aeat Ateat Asin0t+ Bcos0t Aeatsin0t+ Beatcos0t
11
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t), 求系统的完全响应y(t)。
解:
(3) 求方程的全解
y(t ) y h (t ) y p (t ) Ae
2)积分特性或求和特性:
若 T{ f(t)}=y(t) 若 T{f[k]}= y[k] 则 则
T{
t
k
f ( )d }
t
k
y( )d
y[n]
4
T { f [n]}
n
n
[例] 已知某线性时不变系统在f1(t)激励下产生的 响应为y1(t) ,试求系统在f2(t)激励下产生的 响应 y2(t) 。
2t
Be
4t
1 y (0) A B 1 3 解得 A=5/2,B= 11/6 1 y ' (0) 2 A 4 B 2 3
5 2t 11 4t 1 t y(t ) e e e , t 0 2 6 3
12
1 t e 3
系统的几个概念:
特征方程为 特征根为 齐次解yh(t)
s 2 6s 8 0
s1 2,s2 4
yh (t ) K1e
2t
K 2e
4t
t>0
10
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
(2) 特征根是等实根 s1=s2==sn =s
y h (t ) K1e s t K 2 te s t K n t n1e s t
(3) 特征根是成对共轭复根
si i ji , i n / 2
y h (t ) e1t ( K1 cos 1t K 2 sin 1t ) e it ( K n1 cos i t K n sin i t )
1) 若初始条件不变,输入信号 f(t) = sin t u(t),则 系统的完全响应 y(t) = ? 2) 若输入信号不变,初始条件 y(0) = 0, y '(0) = 1, 则系统的完全响应 y(t) = ?
y(t ) y h (t ) yp (t )
齐次解yh(t)的形式由齐次方程的特征根确定
特解yp(t)的形式由方程右边激励信号的形式确定
7
一、经典时域分析方法
齐次解yh(t)的形式
(1) 特征根是不等实根 s1, s2, , sn
y h (t ) K1e s1t K 2 e s2t K n e snt
3
线性时不变系统的描述及特点
线性时不变系统的特点
由于LTI系统具有线性特性和时不变特性,因此具有: 1)微分特性或差分特性: df (t ) dy(t ) T{ } 若 T{ f(t)}=y(t) 则 dt dt
若 T{f[k]}= y[k] 则 T{ f[k] -f[k-1]}= y[k] - y[k-1]
f1(t) 1
y1(t) 1 e2tu(t) t
1
f2(t)
0
1
t
0
1
1
0
t
解: 从f1(t)和f2(t)图形可以看得出,f2(t)与f1(t)存在以下关系
f 2 (t )
( 1) f1 (t
1)
t 1
f1 ( )d
根据线性时不变性质,y2(t)与y1(t)之间也存在同样的关系
9
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t), 求系统的完全响应y(t)。
解:
(1) 求齐次方程y''(t)+6y'(t)+8y(t) = 0的齐次解yh(t)
系统完全响应 = 固有响应 + 强迫响应 固有响应:仅依赖于系统本身的特性,而和激励 信号的形式无关的部分,也即是齐次解。 强迫响应:由激励信号确定的部分,即是特解。 系统完全响应 = 暂态响应 + 稳态响应 暂态响应:指系统完全响应中随时间的增加而很 快衰减趋于零的部分。 稳态响应:指系统完全响应中不随时间的增加而 13 衰减的部分。
2
连续时间LTI系统的数学描述
R
RC电路的数学描述
dy (t ) RC y (t ) f (t ) dt
1 1 y (t ) y (t ) f (t ) RC RC
'
R
+
+
f(t)
-
C
y(t)
-
把电压f(t)看作输入信号,电压y(t)看作输出信 号,则RC电路系统可以由一阶微分方程描述
y2 ( t )
t 1
y1 ( )d 0.5(1 e 2(t 1) )u(t 1)
5
连续时间LTI系统的响应
经典时域分析方法
齐次解求解
特解求解
卷积法
零输入响应求解 零状态响应求解
6
一、经典时域分析方法
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
系统的时域分析
线性时不变系统的描述及特点 连续时间LTI系统的响应 连续时间系统的冲激响应 卷积积分及其性质 离散时间LTI系统的响应 离散时间系统的单位脉冲响应 卷积和及其性质 冲激响应表示的系统特性
1
系统的时域分析
系统时域分析法包含两方面的内容:
微分方程的求解 已知系统单位冲激响应,将冲激响应与输 入激励信号进行卷积极分,求出系统输出 响应