Virtual Circuit Blocking Probabilities in an ATM Banyan Network with b×b Switching Element

合集下载

英语作文-集成电路设计行业中的软硬件协同设计与集成验证

英语作文-集成电路设计行业中的软硬件协同设计与集成验证

英语作文-集成电路设计行业中的软硬件协同设计与集成验证In the realm of integrated circuit (IC) design, the synergy between hardware and software in the process of co-design and integration verification plays a pivotal role in achieving efficient and reliable outcomes. This article explores the essential aspects of hardware-software co-design and integration verification within the IC design industry.### Hardware-Software Co-Design。

Hardware-software co-design is the collaborative design approach where hardware components (physical circuits) and software components (programs and algorithms) are developed simultaneously to optimize system performance. This methodology is crucial in integrated circuit design as it ensures that both hardware and software are designed to complement each other, leading to enhanced functionality and efficiency of the final product.In practical terms, hardware-software co-design begins with the definition of system requirements and specifications. These requirements drive the simultaneous development of hardware and software components, ensuring that they are aligned from the outset. Hardware design focuses on the layout and interconnection of electronic components, while software design involves developing algorithms, drivers, and interfaces that interact with the hardware.### Challenges in Hardware-Software Co-Design。

一种高吞吐低延迟片上互连网络路由器

一种高吞吐低延迟片上互连网络路由器

第50 卷第 8 期2023年8 月Vol.50,No.8Aug. 2023湖南大学学报(自然科学版)Journal of Hunan University(Natural Sciences)一种高吞吐低延迟片上互连网络路由器李晋文†,申慧毅,齐树波(国防科技大学计算机学院,湖南长沙 410073)摘要:本文提出了一种用于片上互连网络的低延迟高吞吐量动态虚拟输出队列路由器,该路由器可以利用前瞻路由计算和虚拟输出队列方案将路由器延迟减低到两个周期.仿真结果表明,与虫孔路由器和虚通道路由器相比,4×4网格上的网络吞吐量分别提高了46.9%和28.6%,并且在相同输入加速比下,性能比双缓冲虚通道路由器要高1.9%.在随机合成流量下,片上网络的零负载延迟也分别降低了25.6%和41%.设计实现结果表明,路由器的工作频率可以达到2.5 GHz.关键词:片上网络;路由器;吞吐量;延迟中图分类号:TN913.3 文献标志码:AA High-throughpur Low-latency Router for On-chip InterconnectNetworksLI Jinwen†,SHEN Huiyi,QI Shubo(School of Computer Science, National University of Defense Technology, Changsha 410073, China)Abstract:A low-latency high-throughput Dynamic Virtual Output Queues Router for On-chip interconnect networks is proposed in this paper,which can reduce the router latency to two cycles by leveraging look-ahead routing computation and virtual output queues scheme. The simulation results show that,compared with the wormhole router and virtual-channel router, the network throughput on a 4×4 mesh increases by up to 46.9% and 28.6%, respectively, and outperforms doubled buffer virtual channel by 1.9% under the same input speedup. Under random synthetic traffic,the zero-load-latency of the network on chip is also reduced by 25.6% and 41%,respectively. Synthesis results indicate the frequency of router can reach 2.5 GHz.Key words:on-chip network;router;throughput;latency随着半导体技术的飞速发展,越来越多的处理器核(多核和众核)集成在单个芯片上,而随着MOS 管尺寸的不断缩小,门级电路延迟在不断缩小,全局互连线的延迟相对于MOS管延迟还在不断增加.微∗收稿日期:2022-11-03基金项目:HPCL国家重点实验室基金项目(202101-02);国家自然科学基金资助项目(60873212),National Natural Science Foundation of China(60873212)作者简介:李晋文(1975—),男,山西武乡人,国防科技大学研究员,博士† 通信联系人,E-mail:*****************文章编号:1674-2974(2023)08-0141-06DOI:10.16339/ki.hdxbzkb.2023289湖南大学学报(自然科学版)2023 年处理器体系结构设计的重点正在从以提高计算为中心的单核能力设计转向以互连通信为中心的多核设计.由于互连延迟可预测、设计复杂度比较低、易扩展性和结构规整,片上网络已成为CMP和MPSoC中片上众核互连最有前途的选择[1].其中2D mesh互连网络已广泛应用于许多原型芯片,如Intel 80核Tera⁃flop、Tilera 64核和TRIPS[2-4].片上网络的概念来源于多处理器间互连网络,但实际与多芯片间互连网络有着许多不同的特点.最重要的一点,芯片内互连线和引脚比芯片间网络中的互连线和引脚资源更丰富[1].然而,片上网络中缓冲buffer容量不足.网络的延迟对实际多核的计算性能有很大影响.当路由器的每跳延迟从一个周期增加到五个周期时,全系统的性能将下降10%[5].基准的虚通道路由器的流水线级数为4.近年来,业界提出了几种新型架构的低延迟路由器,包括推测虚通道路由器[6]、采用虫孔交换的两虚通道结构路由器[7]、混合电路交换路由器[5]、带bundle的两周期路由器[8]、组合型两周期路由器[9]、无缓存片上路由器[10]、基于时间序列开关分配路由器[11]以及关键路径延迟只有35个FO4[12]的单周期路由器(FO4是指一个反相器驱动四个相同尺寸反相器产生的延迟,高性能微处理器的周期一般约为20个FO4).缓冲buffer的实现对互连网络的性能至关重要.缓冲buffer可以用寄存器或SRAM来实现.在芯片中,通常缓冲buffer的容量相对较小,因此使用低延迟的寄存器实现更为有利,而使用SRAM会存在较大的地址译码延迟以及存储阵列访问延迟,这些延迟与全局位线相关;此外还能节省位线预充电功耗[13].在标准的虚通道路由器中,每个虚通道都需要自带缓冲buffer,一个虚通道无法使用其他虚通道的缓冲buffer[14].DAMQ路由器设立了5个缓冲buffer队列,每个队列对应一个虚通道,多出的一个队列作为共享缓冲buffer,一个报文flit从到达到离开路由器需要3个时钟周期[15].VichaR路由器能够根据数据流量(traffic)来调节和分配每个物理通道的虚通道和缓冲buffer数量,并使用复杂的VC控制表来管理报文flit,能够有效提高缓冲buffer的使用效率,其缺点是路由器延迟会达到四个时钟周期.当路由器中发生拥塞时,无论是采用基于信用还是基于开关的流控策略,通道流水线中的缓冲buffer都不能用于缓冲flit.iDEAL路由器提出用中继器(repeater)电路来缓冲flit报文[16],然而中继器存在较大漏流问题,会导致不可靠.本文提出了一种新型的两周期路由器——动态虚通道输出队列路由器(DVOQR),采用多端口缓冲buffer和虚拟输出队列来消除虚通道路由器中的分配站(allocation stage).采用Ready/Valid握手机制来控制路由器之间的flit流,在这种策略下,流水线通道中的存储器可以用于缓冲flit报文.本文其余部分组织如下,第1节介绍了路由器的微架构.第2节给出了路由器的具体设计实现.第3节分析了模拟结果.最后,第4节对本文工作进行了简要总结.1 路由器微架构1.1 DVOQR路由器微架构本文提出了一种新型动态虚通道输出队列路由器(DVOQR),其微架构如图1所示.路由器包括P个输入端口和P个输出端口.对于二维mesh网络,P= 5;一个端口连接到本地处理器(核),其他端口连接到相邻路由器.输入单元由三个主要模块组成:集中动态缓冲器(Unified Dynamic Buffer,UDB)、集中动态缓冲分配器(Unified Dynamic Buffer Allocation,UDBA)、P个虚拟输出地址队列(Virtual Ouput Address Queue,以下简称VOAQ).输出端口包括一个P选1的仲裁器和一个P输入的多路复用器.由多个flit组成1个数据报文,存储在同一FIFO队列中,路由到同一输出端口.每个输入端口有P个FIFO队列,它们共享一个UDB并各自带一个私有的VOAQ.每个FIFO中flit的地址存储在虚拟输出地址队列(VOAQ)中.这样一来,就可以有效消除队列头阻塞(HOL)延迟问题[17].芯片间网络路由器中的缓冲buffer一般使用SRAM来实现.大容量的多端口SRAM存储器由于需要较大的面积开销、较高的功耗和访问延迟而难以实现,而使用小容量的寄存器来实现多端口缓冲器buffer要容易得多.受片上资源的限制,UDB用低延迟的多端口寄存器实现,具有1个写端口和P个读端口.每个读端口对应1个FIFO队列.尽管使用多个端口会导致面积开销增加,但可以消除虚通道路由器流水线的分配站.连接到输出端口的CDB,由CDB控制器和两项142第 8 期李晋文等:一种高吞吐低延迟片上互连网络路由器寄存器组成,如图2(a )所示.其中一个寄存器负责接收来自路由器的flit ,而另一个寄存器负责将flit 发送到下一个路由器,一收一发.在下一个周期中,两个寄存器交换收发功能.因此CDB 可以同时接收和发送flit ,可以避免流水线产生气泡.图2(b )给出了CDB 控制器的实现电路.state [1:0]表征两个寄存器的状态.读指针rd_ptr 对应发送寄存器,写指针wr_ptr 对应接收寄存器.当路由器之间的线延迟超过一个时钟周期时,可以插入多个CDB.UDBA 用于为队列分配时隙或释放空时隙.使用状态向量来跟踪所有时隙的状态,1表示时隙可用.当时隙分配给flit 时,相应的位将被清掉.采用固定优先级仲裁器以简化分配逻辑,最低可用时隙将被分配最高的优先级.设计了四个物理VOAQ 来缓存同一队列中的flit.当某一个flit 注入UDB 时,UDBA 负责将分配给它的时隙号写入对应的VOAQ ,该VOAQ 还会保存该报文的路由信息以及flit 类型.在UDB 读操作之前,需要首先从VOAQ 中读出UDB 中flit 的地址,这将增加UDB 的访问延迟.本文设计了一种新颖的移位FIFO ,可以有效减少UDB 的读延迟.图3给出了VOAQ 的微架构,使用one-hot 向量来指向FIFO 的尾部,而第一项指向FIFO 的头部.尾向量的宽度比UDB 的深度D 要大1.当tail_vector [0]为1时,FIFO 为空;而tail_vector [D ]等于1时,FIFO 为满.当头数图1 DVOQR 路由器微架构Fig.1 Microarchitecture of DVOQR(a )Architecture of channel double buffer(b ) Channel double buffer controller图2 通道的双缓存控制器Fig.2 Channel double buffer controller143湖南大学学报(自然科学版)2023 年据离开队列时,VOAQ 中的其他数据将向前移一位,而tail_vector 将进行右移.当新数据到达时,数据将被添加到VOAQ 的尾部,并且tail_vector 左移1位.当新数据在同一时钟周期内到达和离开时,tail_vector 将不发生移位.DVOQR 中的交换分配单元使用P 个round-robin 仲裁器实现.交换分配单元只需要一级仲裁,即可实现最大匹配,从而提高路由器吞吐量并降低分配延迟.1.2 DVOQR 流水线设计DVOQR 路由器的流水线由两站组成:flit 交换站(Flit Switch ,FS )和链路传输站(Link Traversal ,LT ).FS 站:完成交叉开关分配、前瞻路由计算、UDB读操作和Crossbar 传输.其中交叉开关分配、前瞻路由计算和UDB 读操作能够并行.当VOAQ 的第一项是head flit 报文片时,会为目的仲裁器产生一个请求信号.同时,发送VOAQ 中的flit 地址到UDB ,启动读操作,根据报文的路由信息,采用维序路由算法进行路由的前瞻计算.如果请求未被批准,将在下一个周期中重试,而不需要再次读取flit 报文.LT 站:在这一站中,flit 通过物理链路发送并写入UDB ,并根据FS 站的前瞻路由计算结果,将分配给flit 的地址写入VOAQ 中.1.3 流控机制DVOQR 使用了一种新的流控机制,称为ready-valid 握手机制(handshake ).ready 输出表示UDB/CDB 有可用的存储来接收flit 报文.valid 信号标识当前的flit 报文是有效的.当ready 和valid 信号在同一个周期内有效时,说明flit 报文已经提交.当下一级路由器发生拥塞时,链路上流水线中的CDB 可以缓冲flit 报文,这等效于增加了缓冲buffer 容量.基于维序路由算法,这种流控机制可以有效避免死锁.2 设计实现基于RTL 设计实现了用于片上2D mesh 网络的DVOQR 路由器,数据位宽128位,带有16项UDB ,评估了路由器的性能和功耗,综合生成门级网表,并对时序进行了详细的分析.FS 站和LT 站的关键路径延迟分别为400 ps (11.4 FO4)和252 ps (7.2 FO4),该工艺下的FO4为35 ps.表1给出了路由器中各功能部件的面积和功耗.3 模拟结果3.1 模拟方法本文采用随机人工合成流量模型评估互连网络的性能.表2给出了模拟实验的参数设置.采用周期精确模拟器Booksim [14]来评估虫孔路由器(Worm⁃hole Router ,WH )和虚通道路由器(Virtual-channel Router ,VC ).本文使用Verilog HDL 设计实现了DVOQR 的RTL 模型.测试程序采用随机通讯的合成程序,进行了仿真模拟,预热时间为1万个时钟周期,测量时间为10万个时钟周期.3.2 模拟结果分析3.2.1 不同缓冲容量的影响图4为带16项UDB 的DVOQR 路由器在随机流量负载下的平均延迟曲线.虫孔路由器和虚信道路由器中的输入缓冲buffer 数量为16~64 flit.与其他两种路由器相比,DVOQR 的吞吐量分别增加了33.2%和12%,而其他路由器缓冲buffer 的容量是DVOQR 的3倍.因此,DVOQR 可以更有效地使用输入缓冲器.其中,三种路由器的零负载延迟分别为10.4、14.0和17.7.表1 路由器中各功能部件的面积和功耗Tab.1 Area and power consumption of each functionalcomponent模块UDBVOAQinput portoutput port CDBrouter 组合逻辑面积/(μm )218 9452 49629 7311 5102 236167,385时序逻辑面积/(μm )231 47531 6844 0931133 065221,595总面积/(μm )250 4205 66473 8241 6235 301403,740功耗/mW58.87.589.30.60312.1507.5数量/个5205551图3 VOAQ 的微架构Fig.3 Microarchitecture of virtual ouput address queue144第 8 期李晋文等:一种高吞吐低延迟片上互连网络路由器3.2.2 相同输入加速比UDB 有四个读端口,因此DVOQR 的输入加速比是4.图5给出了在随机流量负载相同输入加速比时的平均延迟曲线.与VC_4×4和VC_4×8相比,VOQ_16的吞吐率分别增加17.6% 和1.9%,而VC_8×8 和VC_8×16的吞吐率分别比VOQ_16要高2.9%和7.5%.DVOQR 吞吐率比双缓冲虚通道路由器要高1.9%.在相同的输入加速比下,采用动态缓冲buffer分配只需要一半的buffer 容量就能达到相同的吞吐率.3.2.3 UDB 深度的影响图6给出了随机流量下DVOQR 网络性能与UDB 深度的相关性.2项UDB 的网络饱和点约为50%,16项UDB 的饱和点可达到82.4%.当UDB 的深度大于8时,吞吐率的增加随着UDB 深度的增加速度放缓.当注入流量小于0.4时,采用不同深度UDB 的平均延迟几乎是相同的.可以根据网络流量打开或关闭一部分UDB ,这样可以有效减少缓冲buffer 的漏流功耗.事实上,缓冲buffer 产生的漏流功耗是整个NoC 路由器漏流功耗的最主要来源.3.2.4 报文长度的影响图7给出了随机流量下带16项UDB 的DVOQR平均延迟与数据报文长度的关系,报文长度为2~32个flit.吞吐率随着报文长度的增加而降低.报文长度为32 flit 和2 flit 网络的饱和点分别为57.5%和87.5%.报文长度进一步增加将导致阻塞,因此需要占用更多的物理通道,而且竞争增加将导致更大的延迟.图7 对应不同报文长度下DVOQR 平均延迟Fig.7 Average latency of DVOQR under differentmessage lengths表2 模拟参数设置Tab.2 Simulation parameter settingsnetwork路由算法报文长度流量注入DVOQR 路由器虫孔路由器(WH )虚通道路由器(VC )4×4 meshdimension-order routing four flitsBernoulli processtwo-stage pipeline ,the depth of UDB is 16 for VOQ_16three-stage pipeline ,the depth of buffer is 16 for WH_16.four-stage pipeline ,the channel number is 4 and the depth of buffer in channel is 8for VC_4×8.图4 不同buffer 容量的DVOQR 路由器平均延迟Fig.4 Average latency of DVOQR with different buffer capacities图5 相同输入加速比下DVOQR 平均延迟Fig.5 Average latency of DVOQR under the sameinput acceleration ratio图6 不同深度UDB 的DVOQR 的平均延迟Fig.6 Average latency of DVOQR with different UDB145湖南大学学报(自然科学版)2023 年4 结论本文提出了一种基于ready-valid握手流控策略的两级流水线片上互连网络路由器,该路由器采用维序路由可以避免死锁.与虫孔路由器和虚通道路由器相比,4×4 mesh网络中的网络吞吐量分别提高了46.9%和28.6%,并且在相同的输入加速比下,DVOQR路由器比双缓冲虚通道路由器性能提高了1.9%.综合结果表明,路由器的时钟频率可达2.5 GHz.参考文献[1]DALLY W J,TOWLES B.Route packets,not wires:on-chip interconnection networks[C]//Proceedings of the 38th DesignAutomation Conference .Las Vegas,NV,USA:IEEE,2005:684-689.[2]VANGAL S,HOWARD J,RUHL G,et al.An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS[C]//2007 IEEE InternationalSolid-State Circuits Conference. San Francisco,CA,USA:IEEE,2007:98-589.[3]GRATZ P,KIM C,SANKARALINGAM K,et al.On-chip interconnection networks of the TRIPS chip[J].IEEE Micro,2007,27(5):41-50.[4]WENTZLAFF D,GRIFFIN P,HOFFMANN H,et al.On-chip interconnection architecture of the tile processor[J].IEEE Micro,2007,27(5):15-31.[5]JERGER N E,LIPASTI M,PEH L S.Circuit-switched coherence [J].IEEE Computer Architecture Letters,2007,6(1):5-8.[6]PEH L S,DALLY W J.A delay model and speculative architecture for pipelined routers[C]//Proceedings HPCA SeventhInternational Symposium on High-Performance ComputerArchitecture. Monterrey,Mexico:IEEE,2002:255-266.[7]胡哲琨,陈杰.消息传递型片上多核系统的设计[J].湖南大学学报(自然科学版),2013,40(8):102-109.HU Z K,CHEN J.Design of a message-passing multi-core system[J].Journal of Hunan University (Natural Sciences),2013,40(8):102-109.(in Chinese)[8]KUMARY A,KUNDUZ P,SINGHX A P,et al.A 4.6Tbits/s3.6GHz single-cycle NoC router with a novel switch allocator in65nm CMOS[C]//2007 25th International Conference onComputer Design. Lake Tahoe,CA,USA:IEEE,2008:63-70.[9]TIWARI V , KHARE K , SHANDILYA S . An efficient 4×4 mesh structure with a combination of two NoC router architecture[J].International Journal of Sensors,Wireless Communication andControl, 2021,11(2):169-180.[10]CHIOU S Y . Bufferless routing algorithms:a survey[J].Advances in Computational Sciences and Technology,2018,11(5):381-386.[11]李存禄,董德尊,吴际,等.低延迟路由器中高效开关分配机制的实现与评测[J].湖南大学学报(自然科学版),2015,42(4):78-84.LI C L,DONG D Z,WU J,et al.Design and implementation ofefficient switching in low-latency router[J].Journal of HunanUniversity (Natural Sciences),2015,42(4):78-84.(in Chinese)[12]MULLINS R,WEST A,MOORE S.The design and implementation of a low-latency on-chip network[C]//Proceedings of the 2006Asia and South Pacific Design Automation Conference.New York:ACM,2006:164-169.[13]HU J C,MARCULESCU R.Energy- and performance-aware mapping for regular NoC architectures[J].IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,2005,24(4):551-562.[14]MULLINS R,WEST A,MOORE S.The design and implementation of a low-latency on-chip network[C]//Proceedings of the 2006Asia and South Pacific Design Automation Conference.New York:ACM,2006:164-169.[15]TAMIR Y,FRAZIER G L.High-performance multiqueue buffers for VLSI communication switches[C]//[1988]The 15th AnnualInternational Symposium on Computer Architecture.Honolulu,HI,USA: IEEE,2002:343-354.[16]KODI A,SARATHY A,LOURI A.Design of adaptive communication channel buffers for low-power area-efficientnetwork-on-chip architecture[C]//Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking andCommunications Systems.New York:ACM,2007:47-56.[17]KAROL M,HLUCHYJ M,MORGAN S.Input versus output queueing on a space-division packet switch[J].IEEE Transactionson Communications,1987,35(12):1347-1356.146。

Virtual circuit breaker

Virtual circuit breaker

专利名称:Virtual circuit breaker发明人:Vaziri, Massoud申请号:EP14187376.0申请日:20141001公开号:EP2860837A1公开日:20150415专利内容由知识产权出版社提供专利附图:摘要:A virtual circuit breaker having an electrical relay (103) and a control circuit(105), the control circuit including a load and wire protection ("OC") detection unit (106), a microprocessor (107) and a driver (108). The OC detection unit (106) is configured to monitor a power flow and the electrical relay (103) is effective to control it. The driver(108) is effective to cause the relay (103) to stop the power flow upon receipt of a deactivation command. The OC detection unit (106) is effective to cause the driver (108) to receive a deactivation command if the OC detection unit (106) senses that a short circuit condition or an overload condition exists. The microprocessor (107) of the control circuit (105) is configured so as to be capable of, at least, receiving input from the OC detection unit (106) and sending output to the driver (108).申请人:Astronics Advanced Electronic Systems Corp.地址:12950 Willows Road NE Kirkland, WA 98034 US国籍:US代理机构:Manitz, Finsterwald & Partner GbR更多信息请下载全文后查看。

英语作文-揭秘集成电路设计中的物理设计与布局布线技术

英语作文-揭秘集成电路设计中的物理设计与布局布线技术

英语作文-揭秘集成电路设计中的物理设计与布局布线技术Integrated circuit (IC) design is a complex and crucial process in the field of electronics. Among the various stages of IC design, physical design and layout routing play a significant role in determining the performance and functionality of the final product. In this article, we will delve into the secrets of physical design and layout routing techniques in IC design.Physical design in IC design refers to the process of translating the logical design of the circuit into a physical representation that can be fabricated on a silicon wafer. This involves placing and routing the various components of the circuit, such as transistors, resistors, and capacitors, in a way that optimizes performance, power consumption, and area utilization. Physical design also includes the creation of metal layers, vias, and interconnects that connect the components and enable the flow of electrical signals.One of the key aspects of physical design is floorplanning, which involves partitioning the chip area into different blocks and allocating resources such as power, clock signals, and input/output pads. Floorplanning plays a crucial role in achieving optimal performance, as it determines the proximity of critical components and the length of interconnects, which can have a significant impact on signal integrity and timing.Another important aspect of physical design is placement, which involves determining the exact location of each component on the chip. Placement is crucial for achieving high performance and minimizing signal delays, as it determines the length and routing of interconnects between components. Advanced placement algorithms use techniques such as simulated annealing and genetic algorithms to optimize the placement of components based on various constraints and objectives.Once the components are placed, the next step is routing, which involves connecting the components using metal layers and vias. Routing is a challenging task, as it involves finding the optimal path for each interconnect while minimizing signal delays, crosstalk,and power consumption. Advanced routing algorithms use techniques such as maze routing, tree routing, and grid-based routing to efficiently route the interconnects while meeting timing and area constraints.In addition to placement and routing, physical design also involves various optimization techniques to improve performance, power consumption, and area utilization. Techniques such as clock tree synthesis, power grid design, and signal integrity analysis are used to ensure that the final design meets the desired specifications and performance targets.Overall, physical design and layout routing are critical aspects of IC design that determine the performance, power consumption, and area utilization of the final product. By using advanced algorithms and optimization techniques, designers can achieve high-performance designs that meet the stringent requirements of modern electronic devices. The secrets of physical design and layout routing are key to unlocking the full potential of integrated circuit design and pushing the boundaries of technology.。

集成电路专业英语词汇

集成电路专业英语词汇

Abrupt junction 突变结Accelerated testing 加速实验Acceptor 受主Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Active region 有源区Active component 有源元Active device 有源器件Activation 激活Activation energy 激活能Active region 有源(放大)区Admittance 导纳Allowed band 允带Alloy-junction device合金结器件Aluminum(Aluminium) 铝Aluminum – oxide 铝氧化物Aluminum passivation 铝钝化Ambipolar 双极的Ambient temperature 环境温度Amorphous 无定形的,非晶体的Amplifier 功放扩音器放大器Analogue(Analog) comparator 模拟比较器Angstrom 埃Anneal 退火Anisotropic 各向异性的Anode 阳极Arsenic (AS) 砷Auger 俄歇Auger process 俄歇过程Avalanche 雪崩Avalanche breakdown 雪崩击穿Avalanche excitation雪崩激发Background carrier 本底载流子Background doping 本底掺杂Backward 反向Backward bias 反向偏置Ballasting resistor 整流电阻Ball bond 球形键合Band 能带Band gap 能带间隙Barrier 势垒Barrier layer 势垒层Barrier width 势垒宽度Base 基极Base contact 基区接触Base stretching 基区扩展效应Base transit time 基区渡越时间Base transport efficiency基区输运系数Base-width modulation基区宽度调制Basis vector 基矢Bias 偏置Bilateral switch 双向开关Binary code 二进制代码Binary compound semiconductor 二元化合物半导体Bipolar 双极性的Bipolar Junction Transistor (BJT)双极晶体管Bloch 布洛赫Blocking band 阻挡能带Blocking contact 阻挡接触Body - centered 体心立方Body-centred cubic structure 体立心结构Boltzmann 波尔兹曼Bond 键、键合Bonding electron 价电子Bonding pad 键合点Bootstrap circuit 自举电路Bootstrapped emitter follower 自举射极跟随器Boron 硼Borosilicate glass 硼硅玻璃Boundary condition 边界条件Bound electron 束缚电子Breadboard 模拟板、实验板Break down 击穿Break over 转折Brillouin 布里渊Brillouin zone 布里渊区Built-in 内建的Build-in electric field 内建电场Bulk 体/体内Bulk absorption 体吸收Bulk generation 体产生Bulk recombination 体复合Burn - in 老化Burn out 烧毁Buried channel 埋沟Buried diffusion region 隐埋扩散区Can 外壳Capacitance 电容Capture cross section 俘获截面Capture carrier 俘获载流子Carrier 载流子、载波Carry bit 进位位Carry-in bit 进位输入Carry-out bit 进位输出Cascade 级联Case 管壳Cathode 阴极Center 中心Ceramic 陶瓷(的)Channel 沟道Channel breakdown 沟道击穿Channel current 沟道电流Channel doping 沟道掺杂Channel shortening 沟道缩短Channel width 沟道宽度Characteristic impedance 特征阻抗Charge 电荷、充电Charge-compensation effects 电荷补偿效应Charge conservation 电荷守恒Charge neutrality condition 电中性条件Charge drive/exchange/sharing/transfer/storage 电荷驱动/交换/共享/转移/存储Chemmical etching 化学腐蚀法Chemically-Polish 化学抛光Chemmically-Mechanically Polish (CMP) 化学机械抛光Chip 芯片Chip yield 芯片成品率Clamped 箝位Clamping diode 箝位二极管Cleavage plane 解理面Clock rate 时钟频率Clock generator 时钟发生器Clock flip-flop 时钟触发器Close-packed structure 密堆积结构Close-loop gain 闭环增益Collector 集电极Collision 碰撞Compensated OP-AMP 补偿运放Common-base/collector/emitter connection 共基极/集电极/发射极连接Common-gate/drain/source connection 共栅/漏/源连接Common-mode gain 共模增益Common-mode input 共模输入Common-mode rejection ratio (CMRR) 共模抑制比Compatibility 兼容性Compensation 补偿Compensated impurities 补偿杂质Compensated semiconductor 补偿半导体Complementary Darlington circuit 互补达林顿电路Complementary Metal-Oxide-Semiconductor Field-Effect-Transistor(CMOS)互补金属氧化物半导体场效应晶体管Complementary error function 余误差函数Computer-aided design (CAD)/test(CAT)/manufacture(CAM) 计算机辅助设计/ 测试/制造Compound Semiconductor 化合物半导体Conductance 电导Conduction band (edge) 导带(底) Conduction level/state 导带态Conductor 导体Conductivity 电导率Configuration 组态Conlomb 库仑Conpled Configuration Devices 结构组态Constants 物理常数Constant energy surface 等能面Constant-source diffusion恒定源扩散Contact 接触Contamination 治污Continuity equation 连续性方程Contact hole 接触孔Contact potential 接触电势Continuity condition 连续性条件Contra doping 反掺杂Controlled 受控的Converter 转换器Conveyer 传输器Copper interconnection system 铜互连系统Couping 耦合Covalent 共阶的Crossover 跨交Critical 临界的Crossunder 穿交Crucible坩埚Crystal defect/face/orientation/lattice 晶体缺陷/晶面/晶向/晶格Current density 电流密度Curvature 曲率Cut off 截止Current drift/dirve/sharing 电流漂移/驱动/共享Current Sense 电流取样Curvature 弯曲Custom integrated circuit 定制集成电路Cylindrical 柱面的Czochralshicrystal 直立单晶Czochralski technique 切克劳斯基技术(Cz法直拉晶体J)Dangling bonds 悬挂键Dark current 暗电流Dead time 空载时间Debye length 德拜长度De.broglie 德布洛意Decderate 减速Decibel (dB) 分贝Decode 译码Deep acceptor level 深受主能级Deep donor level 深施主能级Deep impurity level 深度杂质能级Deep trap 深陷阱Defeat 缺陷Degenerate semiconductor 简并半导体Degeneracy 简并度Degradation 退化Degree Celsius(centigrade) /Kelvin 摄氏/开氏温度Delay 延迟Density 密度Density of states 态密度Depletion 耗尽Depletion approximation 耗尽近似Depletion contact 耗尽接触Depletion depth 耗尽深度Depletion effect 耗尽效应Depletion layer 耗尽层Depletion MOS 耗尽MOS Depletion region 耗尽区Deposited film 淀积薄膜Deposition process 淀积工艺Design rules 设计规则Die 芯片(复数dice)Diode 二极管Dielectric 介电的Dielectric isolation 介质隔离Difference-mode input 差模输入Differential amplifier 差分放大器Differential capacitance 微分电容Diffused junction 扩散结Diffusion 扩散Diffusion coefficient 扩散系数Diffusion constant 扩散常数Diffusivity 扩散率Diffusion capacitance/barrier/current/furnace 扩散电容/势垒/电流/炉Digital circuit 数字电路Dipole domain 偶极畴Dipole layer 偶极层Direct-coupling 直接耦合Direct-gap semiconductor 直接带隙半导体Direct transition 直接跃迁Discharge 放电Discrete component 分立元件Dissipation 耗散Distribution 分布Distributed capacitance 分布电容Distributed model 分布模型Displacement 位移Dislocation 位错Domain 畴Donor 施主Donor exhaustion 施主耗尽Dopant 掺杂剂Doped semiconductor 掺杂半导体Doping concentration 掺杂浓度Double-diffusive MOS(DMOS)双扩散MOS.Drift 漂移Drift field 漂移电场Drift mobility 迁移率Dry etching 干法腐蚀Dry/wet oxidation 干/湿法氧化Dose 剂量Duty cycle 工作周期Dual-in-line package (DIP)双列直插式封装Dynamics 动态Dynamic characteristics 动态属性Dynamic impedance 动态阻抗Early effect 厄利效应Early failure 早期失效Effective mass 有效质量Einstein relation(ship) 爱因斯坦关系Electric Erase Programmable Read Only Memory(E2PROM) 一次性电可擦除只读存储器Electrode 电极Electrominggratim 电迁移Electron affinity 电子亲和势Electronic -grade 电子能Electron-beam photo-resist exposure 光致抗蚀剂的电子束曝光Electron gas 电子气Electron-grade water 电子级纯水Electron trapping center 电子俘获中心Electron Volt (eV) 电子伏Electrostatic 静电的Element 元素/元件/配件Elemental semiconductor 元素半导体Ellipse 椭圆Ellipsoid 椭球Emitter 发射极Emitter-coupled logic 发射极耦合逻辑Emitter-coupled pair 发射极耦合对Emitter follower 射随器Empty band 空带Emitter crowding effect 发射极集边(拥挤)效应Endurance test =life test 寿命测试Energy state 能态Energy momentum diagram 能量-动量(E-K)图Enhancement mode 增强型模式Enhancement MOS 增强性MOS Entefic (低)共溶的Environmental test 环境测试Epitaxial 外延的Epitaxial layer 外延层Epitaxial slice 外延片Expitaxy 外延Equivalent curcuit 等效电路Equilibrium majority /minority carriers 平衡多数/少数载流子Erasable Programmable ROM (EPROM)可搽取(编程)存储器Error function complement 余误差函数Etch 刻蚀Etchant 刻蚀剂Etching mask 抗蚀剂掩模Excess carrier 过剩载流子Excitation energy 激发能Excited state 激发态Exciton 激子Extrapolation 外推法Extrinsic 非本征的Extrinsic semiconductor 杂质半导体Face - centered 面心立方Fall time 下降时间Fan-in 扇入Fan-out 扇出Fast recovery 快恢复Fast surface states 快界面态Feedback 反馈Fermi level 费米能级Fermi-Dirac Distribution 费米-狄拉克分布Femi potential 费米势Fick equation 菲克方程(扩散)Field effect transistor 场效应晶体管Field oxide 场氧化层Filled band 满带Film 薄膜Flash memory 闪烁存储器Flat band 平带Flat pack 扁平封装Flicker noise 闪烁(变)噪声Flip-flop toggle 触发器翻转Floating gate 浮栅Fluoride etch 氟化氢刻蚀Forbidden band 禁带Forward bias 正向偏置Forward blocking /conducting正向阻断/导通Frequency deviation noise频率漂移噪声Frequency response 频率响应Function 函数Gain 增益Gallium-Arsenide(GaAs) 砷化钾Gamy ray r 射线Gate 门、栅、控制极Gate oxide 栅氧化层Gauss(ian)高斯Gaussian distribution profile 高斯掺杂分布Generation-recombination 产生-复合Geometries 几何尺寸Germanium(Ge) 锗Graded 缓变的Graded (gradual) channel 缓变沟道Graded junction 缓变结Grain 晶粒Gradient 梯度Grown junction 生长结Guard ring 保护环Gummel-Poom model 葛谋-潘模型Gunn - effect 狄氏效应Hardened device 辐射加固器件Heat of formation 形成热Heat sink 散热器、热沉Heavy/light hole band 重/轻空穴带Heavy saturation 重掺杂Hell - effect 霍尔效应Heterojunction 异质结Heterojunction structure 异质结结构Heterojunction Bipolar Transistor(HBT)异质结双极型晶体High field property 高场特性High-performance MOS.( H-MOS)高性能MOS. Hormalized 归一化Horizontal epitaxial reactor 卧式外延反应器Hot carrior 热载流子Hybrid integration 混合集成Image - force 镜象力Impact ionization 碰撞电离Impedance 阻抗Imperfect structure 不完整结构Implantation dose 注入剂量Implanted ion 注入离子Impurity 杂质Impurity scattering 杂志散射Incremental resistance 电阻增量(微分电阻)In-contact mask 接触式掩模Indium tin oxide (ITO) 铟锡氧化物Induced channel 感应沟道Infrared 红外的Injection 注入Input offset voltage 输入失调电压Insulator 绝缘体Insulated Gate FET(IGFET)绝缘栅FET Integrated injection logic集成注入逻辑Integration 集成、积分Interconnection 互连Interconnection time delay 互连延时Interdigitated structure 交互式结构Interface 界面Interference 干涉International system of unions国际单位制Internally scattering 谷间散射Interpolation 内插法Intrinsic 本征的Intrinsic semiconductor 本征半导体Inverse operation 反向工作Inversion 反型Inverter 倒相器Ion 离子Ion beam 离子束Ion etching 离子刻蚀Ion implantation 离子注入Ionization 电离Ionization energy 电离能Irradiation 辐照Isolation land 隔离岛Isotropic 各向同性Junction FET(JFET) 结型场效应管Junction isolation 结隔离Junction spacing 结间距Junction side-wall 结侧壁Latch up 闭锁Lateral 横向的Lattice 晶格Layout 版图Lattice binding/cell/constant/defect/distortion 晶格结合力/晶胞/晶格/晶格常熟/晶格缺陷/晶格畸变Leakage current (泄)漏电流Level shifting 电平移动Life time 寿命linearity 线性度Linked bond 共价键Liquid Nitrogen 液氮Liquid-phase epitaxial growth technique 液相外延生长技术Lithography 光刻Light Emitting Diode(LED) 发光二极管Load line or Variable 负载线Locating and Wiring 布局布线Longitudinal 纵向的Logic swing 逻辑摆幅Lorentz 洛沦兹Lumped model 集总模型Majority carrier 多数载流子Mask 掩膜板,光刻板Mask level 掩模序号Mask set 掩模组Mass - action law质量守恒定律Master-slave D flip-flop主从D触发器Matching 匹配Maxwell 麦克斯韦Mean free path 平均自由程Meandered emitter junction梳状发射极结Mean time before failure (MTBF) 平均工作时间Megeto - resistance 磁阻Mesa 台面MESFET-Metal Semiconductor金属半导体FETMetallization 金属化Microelectronic technique 微电子技术Microelectronics 微电子学Millen indices 密勒指数Minority carrier 少数载流子Misfit 失配Mismatching 失配Mobile ions 可动离子Mobility 迁移率Module 模块Modulate 调制Molecular crystal分子晶体Monolithic IC 单片IC MOSFET金属氧化物半导体场效应晶体管Mos. Transistor(MOST )MOS. 晶体管Multiplication 倍增Modulator 调制Multi-chip IC 多芯片ICMulti-chip module(MCM) 多芯片模块Multiplication coefficient倍增因子Naked chip 未封装的芯片(裸片)Negative feedback 负反馈Negative resistance 负阻Nesting 套刻Negative-temperature-coefficient 负温度系数Noise margin 噪声容限Nonequilibrium 非平衡Nonrolatile 非挥发(易失)性Normally off/on 常闭/开Numerical analysis 数值分析Occupied band 满带Officienay 功率Offset 偏移、失调On standby 待命状态Ohmic contact 欧姆接触Open circuit 开路Operating point 工作点Operating bias 工作偏置Operational amplifier (OPAMP)运算放大器Optical photon =photon 光子Optical quenching光猝灭Optical transition 光跃迁Optical-coupled isolator光耦合隔离器Organic semiconductor有机半导体Orientation 晶向、定向Outline 外形Out-of-contact mask非接触式掩模Output characteristic 输出特性Output voltage swing 输出电压摆幅Overcompensation 过补偿Over-current protection 过流保护Over shoot 过冲Over-voltage protection 过压保护Overlap 交迭Overload 过载Oscillator 振荡器Oxide 氧化物Oxidation 氧化Oxide passivation 氧化层钝化Package 封装Pad 压焊点Parameter 参数Parasitic effect 寄生效应Parasitic oscillation 寄生振荡Passination 钝化Passive component 无源元件Passive device 无源器件Passive surface 钝化界面Parasitic transistor 寄生晶体管Peak-point voltage 峰点电压Peak voltage 峰值电压Permanent-storage circuit 永久存储电路Period 周期Periodic table 周期表Permeable - base 可渗透基区Phase-lock loop 锁相环Phase drift 相移Phonon spectra 声子谱Photo conduction 光电导Photo diode 光电二极管Photoelectric cell 光电池Photoelectric effect 光电效应Photoenic devices 光子器件Photolithographic process 光刻工艺(photo) resist (光敏)抗腐蚀剂Pin 管脚Pinch off 夹断Pinning of Fermi level 费米能级的钉扎(效应)Planar process 平面工艺Planar transistor 平面晶体管Plasma 等离子体Plezoelectric effect 压电效应Poisson equation 泊松方程Point contact 点接触Polarity 极性Polycrystal 多晶Polymer semiconductor聚合物半导体Poly-silicon 多晶硅Potential (电)势Potential barrier 势垒Potential well 势阱Power dissipation 功耗Power transistor 功率晶体管Preamplifier 前置放大器Primary flat 主平面Principal axes 主轴Print-circuit board(PCB) 印制电路板Probability 几率Probe 探针Process 工艺Propagation delay 传输延时Pseudopotential method 膺势发Punch through 穿通Pulse triggering/modulating 脉冲触发/调制PulseWiden Modulator(PWM) 脉冲宽度调制Punchthrough 穿通Push-pull stage 推挽级Quality factor 品质因子Quantization 量子化Quantum 量子Quantum efficiency量子效应Quantum mechanics 量子力学Quasi – Fermi-level准费米能级Quartz 石英Radiation conductivity 辐射电导率Radiation damage 辐射损伤Radiation flux density 辐射通量密度Radiation hardening 辐射加固Radiation protection 辐射保护Radiative - recombination辐照复合Radioactive 放射性Reach through 穿通Reactive sputtering source 反应溅射源Read diode 里德二极管Recombination 复合Recovery diode 恢复二极管Reciprocal lattice 倒核子Recovery time 恢复时间Rectifier 整流器(管)Rectifying contact 整流接触Reference 基准点基准参考点Refractive index 折射率Register 寄存器Registration 对准Regulate 控制调整Relaxation lifetime 驰豫时间Reliability 可靠性Resonance 谐振Resistance 电阻Resistor 电阻器Resistivity 电阻率Regulator 稳压管(器)Relaxation 驰豫Resonant frequency共射频率Response time 响应时间Reverse 反向的Reverse bias 反向偏置Sampling circuit 取样电路Sapphire 蓝宝石(Al2O3)Satellite valley 卫星谷Saturated current range电流饱和区Saturation region 饱和区Saturation 饱和的Scaled down 按比例缩小Scattering 散射Schockley diode 肖克莱二极管Schottky 肖特基Schottky barrier 肖特基势垒Schottky contact 肖特基接触Schrodingen 薛定厄Scribing grid 划片格Secondary flat 次平面Seed crystal 籽晶Segregation 分凝Selectivity 选择性Self aligned 自对准的Self diffusion 自扩散Semiconductor 半导体Semiconductor-controlled rectifier 可控硅Sendsitivity 灵敏度Serial 串行/串联Series inductance 串联电感Settle time 建立时间Sheet resistance 薄层电阻Shield 屏蔽Short circuit 短路Shot noise 散粒噪声Shunt 分流Sidewall capacitance 边墙电容Signal 信号Silica glass 石英玻璃Silicon 硅Silicon carbide 碳化硅Silicon dioxide (SiO2) 二氧化硅Silicon Nitride(Si3N4) 氮化硅Silicon On Insulator 绝缘硅Siliver whiskers 银须Simple cubic 简立方Single crystal 单晶Sink 沉Skin effect 趋肤效应Snap time 急变时间Sneak path 潜行通路Sulethreshold 亚阈的Solar battery/cell 太阳能电池Solid circuit 固体电路Solid Solubility 固溶度Sonband 子带Source 源极Source follower 源随器Space charge 空间电荷Specific heat(PT) 热Speed-power product 速度功耗乘积Spherical 球面的Spin 自旋Split 分裂Spontaneous emission 自发发射Spreading resistance扩展电阻Sputter 溅射Stacking fault 层错Static characteristic 静态特性Stimulated emission 受激发射Stimulated recombination 受激复合Storage time 存储时间Stress 应力Straggle 偏差Sublimation 升华Substrate 衬底Substitutional 替位式的Superlattice 超晶格Supply 电源Surface 表面Surge capacity 浪涌能力Subscript 下标Switching time 开关时间Switch 开关Tailing 扩展Terminal 终端Tensor 张量Tensorial 张量的Thermal activation 热激发Thermal conductivity 热导率Thermal equilibrium 热平衡Thermal Oxidation 热氧化Thermal resistance 热阻Thermal sink 热沉Thermal velocity 热运动Thermoelectricpovoer 温差电动势率Thick-film technique 厚膜技术Thin-film hybrid IC薄膜混合集成电路Thin-Film Transistor(TFT) 薄膜晶体Threshlod 阈值Thyistor 晶闸管Transconductance 跨导Transfer characteristic 转移特性Transfer electron 转移电子Transfer function 传输函数Transient 瞬态的Transistor aging(stress) 晶体管老化Transit time 渡越时间Transition 跃迁Transition-metal silica 过度金属硅化物Transition probability 跃迁几率Transition region 过渡区Transport 输运Transverse 横向的Trap 陷阱Trapping 俘获Trapped charge 陷阱电荷Triangle generator 三角波发生器Triboelectricity 摩擦电Trigger 触发Trim 调配调整Triple diffusion 三重扩散Truth table 真值表Tolerahce 容差Tunnel(ing) 隧道(穿)Tunnel current 隧道电流Turn over 转折Turn - off time 关断时间Ultraviolet 紫外的Unijunction 单结的Unipolar 单极的Unit cell 原(元)胞Unity-gain frequency 单位增益频率Unilateral-switch单向开关Vacancy 空位Vacuum 真空Valence(value) band 价带Value band edge 价带顶Valence bond 价键Vapour phase 汽相Varactor 变容管Varistor 变阻器Vibration 振动Voltage 电压Wafer 晶片Wave equation 波动方程Wave guide 波导Wave number 波数Wave-particle duality 波粒二相性Wear-out 烧毁Wire routing 布线Work function 功函数Worst-case device 最坏情况器件Yield 成品率Zener breakdown 齐纳击穿Zone melting 区熔法。

外文翻译---基于离散混沌映射的图像加密并行算法

外文翻译---基于离散混沌映射的图像加密并行算法
这种并行图像加密框架下,我们提出了一种新的算法,这是基于四个基本的转换。因此,我们将描述我们的算法之前,先介绍这些转换。
3.转换
3.1.A-转换
在A转换中,A代表加,能被形式化的定义如下:
a+b=c(1)
加法被定义为按位与操作
转换A有三个基本性质:
(2.1)a+a=0
(2.2)a+b=b+a(2)
(2.3)(a+b)+c=a+(b+c)
在并行模式计算时,许多的PE可以同时读取或写入相同的内存区域(即临界区),
这往往会导致意想不到的执行程序。因此,有必要在关键区域使用一些并行技术管理。
2.2.并行图像的加密框架
为了满足上述要求,我们提出了一个并行图像加密的框架,这是一个四个步骤的过程:
步骤1:整个图像被划分成若干块。
步骤2:每个PE负责确定数量块。一个区域内的像素可以充分使用有效的混乱和扩散进行操作加密。
附件C:译文
基于离散混沌映射的图像加密并行算法
摘要:
最近,针对图像加密提出了多种基于混沌的算法。然而,它们都无法在并行计算环境中有效工作。在本文中,我们提出了一个并行图像加密的框架。基于此框架内,一个使用离散柯尔莫哥洛夫流映射的新算法被提出。它符合所有并行图像加密算法的要求。此外,它是安全、快速的。这些特性使得它是一个很好的基于并行计算平台上的图像加密选择。
这个框架可以非常有效的实现整个图像的扩散。但是,它是不适合在并行计算环境中运行。这是因为当前像素的处理无法启动直到前一个像素已加密。即使有多个处理元素(PE),这种计算仍然是在一个串行模式下工作。此限制了其应用平台,因为许多基于FPGA / CPLD或者数字电路的设备可以支持并行处理。随着并行计算技术的应用,加密速度可以大大加快。

Cadence针对Palladium Z1仿真平台发布VirtualBridge适配器

Cadence针对Palladium Z1仿真平台发布VirtualBridge适配器
T I全 新 S o C 系 列 降 低 多 协 议
光 纤 电信 部 署 的 相 干 光 系 统 所 需 的偏 置 范 围 。两 款 I C集 成 了广 泛 的分 立 元 件 以 提 供 所 需 的 电压 范 围 和 其 他 系 统 功能 , 其 面 积 非 常 小 。这 些 数 模 转 换 器 非 常 适 合 实 现 光模 块和光 电转 换功能 , 例如偏 置 控制 , 包 括 Ma c h—Z e h n d e r 调制器偏置控制 。
工 程 师 为 DC到 1 0 0 GHz的 各 种 应 用 开 发 完 整 信 号 链 解
过 增加1 二 业以太网将现有 的非 网络设计 ( 如 电机 驱 动 器 ) 转 换 为 网 络 系 统 。与 只 支 持 一 个 单 一 工 业 以太 网 标 准 的 专 用 集 成 电路 ( AS I C) 不 同的是 , AMI C 1 1 0 S o C可 编 程 实 时单元( P RU —I C S S ) 支 持多 种 不 同的协 议 , 包括 E t h e r —
TI 新推 出的 S i t a r a AMI C I 1 0 S o C可 帮 助 开 发 人 员 通
A DI与 X—Mi c r o wa v e合 作 简 化 射 频 、 微 波 和 毫 米 波 设 计
ADI 公 司 宣 布 与 X—Mi c r o wa v e LL C —— 一 家 领 先 的
T I Ga N功 率设 计 可 高效 驱 动 2 0 0 V 交 流 伺 服 驱 动 器 和 机 器 人
德州仪器( TI ) 推 出一项 创新 的三相 氮化 镓 ( Ga N) 逆
变 器 参考 设 计 , 可帮助工程师构建 2 0 0 V、 2 k W 交 流 伺 服

IPADS实验室一篇论文被ASPLOS'24接收提出协作式半虚拟化调度机制大幅提升众核虚拟机可扩展性

IPADS实验室一篇论文被ASPLOS'24接收提出协作式半虚拟化调度机制大幅提升众核虚拟机可扩展性

IPADS实验室一篇论文被ASPLOS'24接收提出协作式半虚拟化调度机制大幅提升众核虚拟机可扩展性IPADS实验室一篇论文被ASPLOS'24接收提出协作式半虚拟化调度机制大幅提升众核虚拟机可扩展性标题:协作式半虚拟化调度机制在众核虚拟机可扩展性中的大幅提升摘要:本文提出了一种协作式半虚拟化调度机制,针对众核虚拟机的可扩展性问题进行了研究。

通过在IPADS实验室进行一系列实验,发现该机制在提高虚拟机性能的同时,能够大幅度提升众核虚拟机的可扩展性。

本文分为以下几个方面进行了详细的阐述:虚拟化技术的背景和意义、众核虚拟机的可扩展性问题、协作式半虚拟化调度机制的设计与实施、实验设计和结果分析等。

研究结果表明,本文提出的协作式半虚拟化调度机制能够显著提高众核虚拟机的可扩展性,为未来虚拟化技术的发展提供了一定的理论和实践指导。

1.引言虚拟化技术是一种能够隔离和共享物理资源的技术,广泛应用于服务器的资源利用率提高和服务的灵活性提升。

然而,随着多核处理器的普及和数据中心规模的扩大,众核虚拟机的可扩展性问题成为制约虚拟化应用性能的主要因素之一、为了解决这一问题,本文提出了一种协作式半虚拟化调度机制。

2.众核虚拟机的可扩展性问题众核虚拟机的可扩展性问题主要包括虚拟CPU的调度效率低下、内存访问的冲突和I/O资源访问等方面的问题。

虚拟CPU的调度效率低下是因为多个虚拟机共享物理CPU,由于时间片的分配和切换带来的性能开销较大。

内存访问的冲突是由于多个虚拟机共享物理内存,随之产生的内存访问冲突导致性能下降。

I/O资源访问方面的问题是由于多个虚拟机共享物理I/O资源,当多个虚拟机同时请求I/O资源时,容易出现资源争用的情况。

3.协作式半虚拟化调度机制的设计与实施本文提出的协作式半虚拟化调度机制通过协作方式解决了众核虚拟机的可扩展性问题。

具体来说,该机制通过将虚拟机之间的调度信息进行共享,减少了调度开销,提高了虚拟机的运行效率。

FPGA术语词汇表

FPGA术语词汇表

configuration
配置是 Xilinx 实现过程中的一步 在配置这一步将生成用于对器件编程的位流
ቤተ መጻሕፍቲ ባይዱ
core
核通常是指知识产权 IP 核的功能事先经过了测试 可以被很快使用而无需花费太 多的工程时间和代价 核也可被认为是 即插即用 的设计
CORE Generator system
核生成器 CORE Generator 系统是 Xilinx 的软件 用于为你的设计生成核 这些已 经制作好的功能块可以直接例化到你的设计中去 它们也可进行功能仿真 这些核按照 复杂性和价格排列 大部分的简单的功能块是免费的也可以进行用户配置 块 RAM FIR 滤波器 等等 而其它的一些核 PCI USB 等等 需要一定的费用
CPLD
复杂可编程逻辑器件 是一种包含了在逻辑块之间可编程互连的可编程器件 CPLD 通常是由多个互连的 PAL 构成 一个
术语词汇表
1-877-XLX-CLAS
Ch. D-5
CPU
中央处理单元 .
CS
芯片比例封装
CTT
中央抽头终端 电压接口标准 3.3 伏的存储器总线标准
BLVDS
总线 LVDS 这个标准允许两个或多个器件之间双向 LVDS 通信 此标准的外部终端电 阻与标准 LVDS 中的是不同的
BSCAN
边界扫描 边界扫描逻辑在生产中被用来测试 PCB 的互连
BSDL
边界扫描描述语言 BSDL 是在一个 IC 中如何实现边界扫描逻辑的软件描述 边界扫描 测试软件接受 BSDL 描述
flash memory
一种存储器件 可以重新写入数据而且掉电后内容仍被保留
Flow Engine
流程机制是 Xilinx 的软件 被用来实现 的位流文件 通常指布局布线 设计和生成配置 Xilinx 器件

ACT8846_DS_PrA_3JUL12_P

ACT8846_DS_PrA_3JUL12_P
SYSTEM CONTROL AND INTERFACE Four General Purpose I/O with PWM Drivers
I2C Serial Interface Interrupt Controller
SYSTEM MANAGEMENT
Reset Interface and Sequencing Controller
Innovative PowerTM Active-Semi Confidential―Do Not Copy or Distribute
ActivePMUTM is a trademarks of Active-Semi. I2CTM is a trademark of NXP.
-1-
Copyright © 2012 Active-Semi, Inc.
Power on Reset Soft / Hard Reset Watchdog Supervision Multiple Sleep Modes
Thermal Management Subsystem
APPLICATIONS

Tablet PC Mobile Internet Devices (MID) E-books Personal Navigation Devices Smart Phones
®
ACT8846
Pr A, 3-Jul-12
TABLE OF CONTENTS
General Information ............................................................................................................................

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。

英语作文-探索集成电路设计中的数字电路与模拟电路技术

英语作文-探索集成电路设计中的数字电路与模拟电路技术

英语作文-探索集成电路设计中的数字电路与模拟电路技术Integrated circuit design is a fascinating field that bridges the gap between electrical engineering and computer science. It involves the creation of complex electronic systems through the integration of thousands, or even millions, of tiny components onto a single chip. At the heart of this discipline lie two fundamental technologies: digital and analog circuits. Each serves a unique purpose and presents distinct challenges and opportunities for engineers.Digital circuits are the backbone of modern computing and communication systems. They operate using discrete signals, typically representing binary values of 0 and 1. These circuits are designed to perform logical operations and process data in the form of bits. The precision and reliability of digital circuits make them ideal for applications where accuracy and consistency are paramount.On the other hand, analog circuits deal with continuous signals that can represent a wide range of values. They are essential in interfacing with the real world, as they can process the complex and variable signals that our environment and biological systems produce. Analog circuits are used in sensors, audio and video equipment, and radio frequency (RF) communication systems.The design of integrated circuits requires a deep understanding of both digital and analog techniques. Digital circuit designers must be adept at creating complex logic systems that can perform a variety of tasks while minimizing power consumption and maximizing speed. They often use hardware description languages (HDLs) like VHDL or Verilog to model and simulate their designs before fabrication.Analog circuit designers, meanwhile, must contend with issues such as noise, distortion, and signal integrity. They need a strong grasp of physics and materials science to create circuits that can accurately amplify, filter, and convert signals. The designprocess for analog circuits is often more art than science, requiring intuition and experience to achieve the desired performance.The convergence of digital and analog circuit design is most evident in mixed-signal integrated circuits. These chips contain both digital and analog components, allowing them to interact with the digital data processing and the analog real world. Mixed-signal ICs are crucial in applications like mobile phones, where they handle tasks such as digitizing voice signals for transmission and processing digital data from the network.As technology advances, the line between digital and analog circuits continues to blur. Newer design methodologies, such as digitally-assisted analog design, leverage digital components to calibrate and control analog circuits, enhancing their performance and capabilities. Similarly, analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) are becoming increasingly sophisticated, enabling higher precision and faster speeds.In conclusion, the exploration of digital and analog circuit technologies in integrated circuit design is a dynamic and ever-evolving field. It requires a blend of theoretical knowledge, practical skills, and creative problem-solving. As we push the boundaries of what's possible with electronic devices, the synergy between digital and analog circuits will continue to be a key driver of innovation. This synergy is not just about combining two different technologies; it's about creating a harmonious system that leverages the strengths of each to achieve something greater than the sum of its parts. 。

英语作文-如何进行集成电路设计中的电路模拟与验证

英语作文-如何进行集成电路设计中的电路模拟与验证

英语作文-如何进行集成电路设计中的电路模拟与验证Integrated circuit (IC) design is a meticulous process that involves several stages, from conceptualization to physical realization. Among these stages, circuit simulation and verification are critical for ensuring the functionality and reliability of the final product. This essay delves into the methodologies and best practices for conducting effective circuit simulation and verification within IC design.Circuit simulation is the process of using computer software to predict the behavior of an electronic circuit. It is an essential step because it allows designers to test and refine their circuits without the need for physical prototypes, which can be costly and time-consuming to produce. The first step in circuit simulation is the creation of a schematic representation of the circuit. This involves using electronic design automation (EDA) tools to draw the circuit, including all the components and their interconnections.Once the schematic is complete, the next step is to select the appropriate models for the components. These models are mathematical representations that describe how each component behaves under different conditions. For instance, a resistor's model would include its resistance value, while a transistor's model would encompass parameters such as threshold voltage and gain. It is crucial to choose models that accurately reflect the components' real-world performance to ensure the simulation results are reliable.After modeling, the simulation can be run. There are various types of simulations that can be performed, depending on the aspect of the circuit being tested. For example, DC analysis calculates the circuit's behavior at a steady state, while transient analysis looks at how the circuit responds to changes over time. Other types of analysis include AC analysis for frequency response and noise analysis for understanding the impact of fluctuations and disturbances.The simulation outputs data such as voltage levels, current flows, and power dissipation, which must be thoroughly analyzed. Designers look for any discrepanciesbetween expected and actual results, which could indicate problems such as component mismatches, incorrect connections, or design flaws. By iterating through this process, designers can refine their circuits until the simulation results align with the design goals.Verification, on the other hand, is the process of confirming that the circuit meets all specified requirements. It involves checking the design against a set of predefined rulesor standards to ensure it is free of errors and ready for fabrication. Verification can be done through various methods, including formal verification, where mathematical proofs are used to demonstrate correctness, and functional verification, which tests the design's logical operations under different scenarios.One effective verification technique is the use of testbenches, which are virtual environments that simulate the conditions under which the IC will operate. Testbenches allow designers to apply stimuli to the circuit and observe its responses, ensuring that it behaves as expected in real-world applications. Additionally, peer reviews and cross-checking with industry standards are employed to further validate the design's integrity.In conclusion, circuit simulation and verification are indispensable components of the IC design process. They enable designers to identify and rectify issues early in the development cycle, saving time and resources. By employing accurate component models, running comprehensive simulations, and conducting rigorous verification, designers can ensure that their ICs perform reliably in the field. The key to success lies in attention to detail, a thorough understanding of the underlying principles, and a commitment to quality throughout the design process. Through these efforts, the complex task of IC design is made manageable, paving the way for innovations that drive the electronics industry forward.。

Virtual.Lab第11版本新增功能

Virtual.Lab第11版本新增功能

LMS b第11版新功能LMS 公司LMS b是业界著名的三维多学科集成仿真平台,自2000推出以来,功能日益丰富。

包含完整的结构、振动、声学、多体动力学、疲劳、混合仿真分析、优化设计等分析能力,是全球第一个能够将多学科仿真、CAD/CAE完全集成在统一环境下的仿真平台,广泛地应用于航空航天、汽车、船舶、重工机械、铁路、家电、能源、通用机械等先进制造领域。

2012年LMS公司发布了LMS b 11版本,新版本在保留之前的优秀功能特点的基础上,进一步丰富和完善了仿真平台各个模块的应用功能和分析能力,为用户提供了更多、更实用、更强大的仿真方法和工具。

LMS b Acoustics ——使客户更快做出声学工程决策这是一款非常先进成熟的声学分析软件,并不要求使用者是声学专家,而且作为全球声学-振动领域设计、故障诊断、优化的领导产品,从车内声场预测到结构外部声场分析,甚至计算混响声场作用下的结构响应,帮助噪声控制工程师优化产品的声振特性。

在11版本中,b Acoustics新增以下功能:● 新增结构求解器结构求解器具有结构模态分析、结构湿模态分析、结构频率响应、声-振耦合直接响应分析等功能,支持体、梁、壳及连接等单元,支持各向同性、各向异性、粘弹性以及频率相关材料参数属性。

b R11将具有更加完备和强大的振动-声学分析能力,在同一环境下能够对复杂结构的振动、声学及耦合声振问题进行分析,极大的提高了用户分析过程的软件操作便捷性以及传递数据的可靠性和兼容性,同时耦合声振直接求解器包含了结构阻尼、频率相关的结构材料属性,结合原有模态声振耦合求解器中的模态阻尼、频率相关的流体材料属性,全方面考虑了动力学响应问题的重要模型细节,使得计算结果更加接近实际。

●新增Ray Acoustics非耦合声振分析功能Ray Acoustics非耦合声振分析功能能够实现从低频-高频全频段快速计算能力,同时采用ATV(声学传递矢量)技术提高计算效率,并支持增强的吸声板属性、背景噪声声源,使得计算模型更加精细以及具有更多的边界属性。

英语作文-如何在集成电路设计行业中脱颖而出

英语作文-如何在集成电路设计行业中脱颖而出

英语作文-如何在集成电路设计行业中脱颖而出In today's competitive landscape of integrated circuit (IC) design, standing out requires a combination of technical proficiency, strategic networking, continuous learning, and effective communication. Here’s a comprehensive guide on how to distinguish yourself in the IC design industry:Master the Fundamentals:To excel in IC design, a strong foundation is paramount. Begin by thoroughly understanding semiconductor physics, digital and analog circuit design principles, and the fundamentals of IC fabrication processes. This knowledge forms the bedrock upon which advanced skills and innovations are built.Stay Abreast of Technological Advancements:The IC design industry evolves rapidly, driven by continuous technological advancements. Stay updated with the latest developments in semiconductor technologies, design methodologies, and industry trends. Engage in regular reading of technical journals, attending conferences, and participating in webinars or workshops to expand your knowledge base.Develop Proficiency in Design Tools:Proficiency in IC design tools is non-negotiable. Master popular design automation tools such as Cadence Virtuoso, Synopsys Design Compiler, or Mentor Graphics Calibre. Familiarize yourself with scripting languages like Python or Tcl to automate routine tasks and enhance design productivity. The ability to efficiently utilize these tools can significantly streamline design processes and enhance your competitiveness.Focus on Specialization and Expertise:In a diverse field like IC design, specialization can set you apart. Identify and cultivate expertise in specific domains such as high-speed digital design, low-power design techniques, RF IC design, or mixed-signal design. Specialization not only enhances your technical proficiency but also positions you as a sought-after expert in niche areas.Build a Strong Portfolio:A robust portfolio showcases your capabilities and accomplishments. Document your design projects, highlighting your contributions, technical challenges overcome, and achieved outcomes. Include simulation results, performance metrics, and any innovative approaches utilized. A well-curated portfolio serves as tangible evidence of your skills and problem-solving abilities.Collaborate and Network:Effective networking is crucial for career advancement in IC design. Actively participate in industry forums, online communities, and professional associations such as IEEE Solid-State Circuits Society. Engage with peers, mentors, and industry leaders to exchange ideas, gain insights into emerging technologies, and explore collaboration opportunities. Networking not only broadens your knowledge but also opens doors to career prospects and collaborations.Continuous Learning and Skill Enhancement:The IC design landscape is dynamic; hence, continuous learning is essential. Pursue advanced courses, certifications, or specialized training programs to deepen your expertise. Stay adaptive to new methodologies, tools, and industry standards. Embrace a growth mindset that values lifelong learning and skill enhancement as integral to professional growth and career longevity.Effective Communication:Technical prowess must be complemented by effective communication skills. Clearly articulate your ideas, project objectives, and technical findings both verbally andin writing. Develop the ability to tailor your communication style to various stakeholders, whether peers, clients, or executives. Strong communication fosters collaboration, ensures project alignment, and enhances your professional credibility.Embrace Innovation and Problem Solving:Innovation is the cornerstone of success in IC design. Cultivate a proactive approach to problem-solving, leveraging creativity and critical thinking to address design challenges. Embrace new methodologies, explore unconventional solutions, and strive to deliver designs that offer unique advantages in terms of performance, power efficiency,or manufacturability.Conclusion:To thrive in the competitive realm of IC design, integrating technical excellence with strategic initiatives is key. Continuously refine your skills, stay informed about industry trends, and actively engage with the broader IC design community. By fostering expertise, innovation, effective communication, and a proactive mindset, you position yourself not just to succeed but to excel in the dynamic field of integrated circuit design.。

可编程片上系统芯片SOPC

可编程片上系统芯片SOPC


利用Slice 的ORCY 级联形成 和项众多 的组合函 数

利用Slice的MUXCY形成宽输入与门
18-Kbit可选RAM模块
Virtex-II器件集成了多个容量为18Kbit的可选
择RAM模块,每个RAM模块上有两个独立的数 据端口,分别由两组独立的时钟和控制信号控制, 同步存取同一个存储单元区域。每个端口的控制 信号功能是相同的,这些控制信号由时钟CLK、 时钟许可EN、写许可WE、置位/复位SSR和地址 线组成。 18Kbit 的 RAM 有 多 种 配 置 形 成 , 包 括 单 口 RAM和双口RAM,以及各种 不同的数据字长,包括8K×2bit、4K×4bit、 1K×18bit和512×36bit,以支持各种字长的数字 系统。
Virtex-II系列FPGA的结构和性能
Virtex-II系列FPGA是一种大容量、高性能的新 一代现场可编程门阵列平台器件。 Virtex-II系列FPGA的主要性能如下: 支持IP核设计实现,支持基于8位嵌入式处理器 软 核 PicoBlaze 和 32 位 嵌 入 式 处 理 器 软 核 MicroBlaze的片上系统设计实现。逻辑资源密度: 40K-10M PLD门;内部时钟:420MHz; I/O数 据传送速率:840Mb/S。 18Kbit的可选RAM模块可构成3M比特双口 RAM;最高容量为1.5M比特的分布式RAM资源。 与外部存储器的高性能接口 。
输入输出模块

Virtex-II的输入输出模块IOB是高性能的IOB, 每4个 IOB连到一个开关矩阵,4个IOB分成2组,可以构成4 个单端输入/输出或者2个双端差分输入/输出。
单端输入/输出 支持19种I/O标 准,双端差分 输入输出支持 8种I/O标准。

VC基础培训讲义重要

VC基础培训讲义重要

Smart Components - Basics Time for exercise
Page 26
© 2015. All Rights Reserved.
Session 3
Conveyors & Conveying
Page 27
© 2015. All Rights Reserved.
Session 3 – Base Conveyor
机械动作 机器人程序 机械动作时序 设备布局 安全距离 生产节拍
输入/输出 逻辑控制 机械互锁
HMI 诊断 安全
虚拟化调试为机械电气及控制控制系统提供了一个集成度非常高的测试运行 环境
© 2015. All Rights Reserved. Page 3
仿真技术的拓展 CEE
Skid Conveyor
Page 29
© 2015. All Rights Reserved.
Session 3 – Create angular conveyor
Conveyor Parameter must be set
Page 30
© 2015. All Rights Reserved.
Session 3 – Create angular conveyor
Logic Blocks
Page 19
© 2015. All Rights Reserved.
Logic Blocks
·Monitor and test the signals in Simulation Panel
We can see the signals’ statue from the Simulation Panel:( normally, when the signal turns green means it’s value comes true, and the red means false)

英语作文-探索集成电路设计行业的创新创业机会与模式

英语作文-探索集成电路设计行业的创新创业机会与模式

英语作文-探索集成电路设计行业的创新创业机会与模式The integrated circuit (IC) design industry stands as a testament to human ingenuity and the relentless pursuit of miniaturization and efficiency. At the heart of modern electronics, ICs are the building blocks of processors, memory chips, and countless other components that power today's technology-driven world. The industry's evolution has been marked by a series of innovations that have transformed the way we live, work, and communicate.Innovation in IC design is driven by the need to meet the ever-increasing demands for faster, smaller, and more energy-efficient devices. As the physical limits of silicon-based transistors are approached, designers and engineers are exploring new materials such as gallium arsenide and graphene to push the boundaries of what's possible. These materials offer superior electrical properties, allowing for the creation of transistors that are not only faster but also consume less power.The rise of artificial intelligence (AI) and machine learning has further spurred innovation in the IC design industry. AI algorithms require a vast amount of computational power, and ICs must be designed to handle these complex tasks efficiently. This has led to the development of specialized processors, such as graphics processing units (GPUs) and tensor processing units (TPUs), which are optimized for AI computations.Entrepreneurial opportunities abound in the IC design industry. Startups and established companies alike are vying to create the next generation of ICs that will power future technologies. One area of focus is the Internet of Things (IoT), where ICs are used in a myriad of devices, from smart home appliances to industrial sensors. The ability to design ICs that can operate on low power and in harsh environments is crucial for the success of IoT applications.Another area ripe for entrepreneurial ventures is the automotive industry, where the shift towards electric and autonomous vehicles is creating a demand for advanced ICs. These ICs must be able to process vast amounts of data from sensors and cameras in real-time, ensuring the safety and reliability of the vehicles.The business models in the IC design industry are as varied as the applications of the ICs themselves. Some companies focus on the design and licensing of intellectual property (IP) cores, which other companies can then use to create their own custom ICs. Others provide end-to-end solutions, offering both design services and manufacturing capabilities. This allows for greater control over the production process and can lead to higher margins.Collaboration is key in the IC design industry. The complexity of modern ICs means that no single company can possess all the necessary expertise. Partnerships between design firms, foundries, and material suppliers are common, and they enable the pooling of resources and knowledge to tackle the challenges of IC design.The future of the IC design industry is bright, with new technologies such as quantum computing and 5G networks on the horizon. These will require a new generation of ICs, and the companies that can innovate and adapt will be well-positioned to capitalize on these opportunities. The industry's potential for growth and innovation makes it an exciting field for entrepreneurs and investors alike.In conclusion, the IC design industry is a dynamic and rapidly evolving field, offering a wealth of opportunities for innovation and entrepreneurship. The convergence of new materials, AI, and emerging technologies promises to keep the industry at the forefront of the technological revolution, driving progress across multiple sectors. As the industry continues to innovate, it will undoubtedly play a pivotal role in shaping the future of technology. 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Proceedings of the Applied Telecommunication Symposium(part of Advanced Simulation Technologies Conference)Seattle,Washington,USA,April22–26,2001Virtual Circuit Blocking Probabilities in an ATM Banyan Network with b×b Switching Elements∗Hongyuan Shi and Harish Sethu{hyshi@,sethu@}Department of Electrical and Computer EngineeringDrexel University3141Chestnut Street,Philadelphia,PA19104-2875Abstract—This paper presents the trade-offs that exist between the blocking probability,the size of the switching elements,the offered load and the link capaci-ties in an ATM-based Banyan multistage interconnection network for QoS-sensitive applications.We present a quasi-analytical study which indicates that,as the link capacity between switching elements is increased,the blocking probability reduces exponentially.We show that,in contrast to what is generally believed,larger switching elements are often,but not always the best design choice.Relevant design recommendations that arise from these results are discussed.The conclusions of this paper are also applicable in non-ATM contexts such as in circuit-switched networks with link-dilated topologies,or photonic switching networks using WDM. Keywords—ATM,blocking performance,Banyan networks,non-blocking networks,multistage intercon-nection networks.1INTRODUCTIONAsynchronous Transfer Mode(ATM)is a connection-oriented data transfer technology,in which communica-tion between any two end-points of the network is ac-complished through the establishment of a virtual circuit that allows variable-rate full-duplex transfer of data be-tween them.Each distinct data transfer application uses a separate virtual circuit for the transmission of cells be-tween the communicating entities.For applications such as telephony,achieving good availability of service is a critical component of the overall design objective.For such applications,therefore,a primary goal is to max-∗This work was supported in part by U.S.Air Force Contract F30602-00-2-0501imize the number of virtual circuits that can be estab-lished in the network in a manner that satisfies the perfor-mance and quality-of-service requirements of each con-nection.At the time a request is made for a connection, the network control has to determine if there is a route available with sufficient capacity for an appropriate level of quality of service required for the requested commu-nication.If a connection cannot be established,we say that the request for the virtual circuit is blocked.This paper presents a quasi-analytic study of the dependence of the virtual circuit blocking probability on the sizes of the switching elements,the offered load and the capacity of the physical links in an ATM-based Banyan network. The blocking behavior and the conditions for non-blocking in ATM-based multistage interconnection net-works have been analyzed for Clos,Benes and Cantor topologies[3,5,6].The results of these studies vali-date the widely held belief that the larger the switching element used to construct the network,the smaller the blocking probability.This paper shows that,in Banyan networks,a larger switching element is often,but not al-ways the better design choice as far as blocking probabil-ities are concerned.Relevant design recommendations that arise from these results are discussed.Section2presents the problem statement and derives the minimum link capacity required in an ATM Banyan network to ensure a zero blocking probability.Section3 describes the quasi-analytic simulation technique,first used recently in an analysis of blocking performance of photonic switching networks[1].Section4presents our simulation results with interpretations.Finally,Section5 concludes the paper with a brief discussion of the rel-evance of this work to other contexts in which switch-based multistage interconnection networks are used.150150(a)15(b)0123456701234567(c)Figure 1:16×16Banyan with (a)2×2and (b)4×4switching elements;(c)A subset of the 128×128Banyan network2REQUIREMENT FOR ZEROBLOCKINGGiven b ×b switching elements,one can build an N ×N network using the Banyan topology,if N =b s ,where s is the number of stages in the network.For purposes of illustration,Figures 1(a)and (b)show a 16×16Banyan topology using 2×2and 4×4switching elements,re-spectively.In this paper,we use the baseline network as the representative banyan topology.We define capacity of a link as the number of vir-tual circuits that can be simultaneously supported on the physical link.This capacity is a function of the physical bandwidth that the link can support and the bandwidth requirements of each virtual circuit.Let C be the ca-pacity of the physical links in an ATM network.When a switching element receives a virtual connection setup request over a certain physical link,it has to ensure that no more than C circuits have already been established.If C circuits are already established,the connection re-quest is said to be blocked.We assume that each inlet link or outlet link can support only one connection at any given instant of time,which is the case in many imple-mentations of ATM-based LANs and also in ATM-basednetworks used in videoservers for video-on-demand ap-plications.The following theorem,a special case of the result in [3],specifies the link capacity,C ,required to ensure that the network is non-blocking.Theorem 1Consider an N ×N Banyan network using b ×b switching elements,and physical links of capacity equivalent to C virtual circuits.The network is non-blocking if and only if C ≥K ,where,K = √N,if log b N is even . N b ,if log b N is odd .(1)Proof:A given physical link in the network will never block a connection request,if it is able to support all the virtual circuits that may possibly use this link.Define the weight of a link as the maximum number of connections that may use this link at any given instant.The minimum link capacity required for the non-blocking property is the largest weight of all the links in the network.When log b N is even,it is easily observed that links with the largest weights are those between the middle two stages of the network.When log b N is odd,the links with the largest weight are the ones connected to the middle stage switches.For example,the links shown with thicker lines in Figure 1(c)are two of the links with the largest weights in a 128×128Banyan network.This figure shows only the switches and links in the paths that may use these two links.Since only one connection can be established from an inlet to any outlet,the weight of a link is the smaller of the total number of inlets and the total number of outlets that can be reached from the link.It is obvious from this figure that the weight of the left one of the two links is just the total number of inlets in the network that can be reached from this link.Similarly,the weight of the right one of these two links is the total number of outlets of the network that can be reached from this link.Consider a tree with its root as one of the links with the largest weight in the network.Assume,without loss of generality,that the number of inlets reachable from this link is less than or equal to the number of outlets reach-able from this link.Let the leaves of this tree be the inlets of the network that can be reached from this link.Let all the intermediate nodes in the network be the links on the paths between the inlets of the network and the link with the largest weight.Clearly,this is a tree in which the root and all the intermediate nodes have exactly b children.The partial network in Figure 1(c)provides a pictorial analogy with the tree for b =2and N =128.Now,the minimum capacity required for the non-blocking prop-erty is the number of leaves in this tree.Table 1:Capacity Requirements for a Nonblocking N ×N Network Using b ×b Switching Elementsb N 816326412825651210242244881616324-4-4-16-168---8--8-16-----16--32-------32Not counting the root of the tree,the total number oflevels of the tree is (log b N )/2when log b N is even,and (log b N −1)/2when log b N is odd.When log b N is even,therefore,the number of leaves in the tree is b (log b N )/2=√N .When log b N is odd,the numberof leaves is b (log b N −1)/2= .2Table 1lists the minimum link capacities required forthe non-blocking property for various values of N and b .Note from the table,that a 64×64network with link ca-pacities equivalent to 4virtual circuits,has zero blocking probability with 4×4switching elements,but a non-zero blocking probability with 8×8switching elements.A similar phenomenon of smaller switching elements lead-ing to a lower blocking probability is observed in the 1024×1024network with 4×4switching elements.In the above theorem,we have assumed the same link capacity at each stage of the network.This is because,in order to achieve cost-effectiveness with the least pos-sible number of different parts,most commercial switch-ing systems use identical switching elements and,there-fore,also have the same link capacity at each stage.A few specific design recommendations are easily de-rived based on the entries in Table 1.For example,when the link capacities are equivalent to 4virtual circuits,a 64×64network is best designed using 4×4switching el-ements rather than 8×8switching elements.When the link capacities are smaller,the size of switching elements to use is not quite obvious and can only be determined based on evaluations of blocking probabilities described in the next two sections.In the vast majority of cases,use of larger switching elements is a better design choice since it improves the throughput and thus the capacity of the links.However,as can be observed from Table 1for 64×64and 1024×1024networks,a larger switch-ing element as the building block is not always the better choice.3METHODOLOGYIn this section,we describe the quasi-analytic simula-tion technique,first used in [1],to evaluate the block-ing probabilities.We model connection setup requests by a Poisson process with an arrival rate of λfrom each source.The utilization factor,ρ,of the network is given by (λ/µ)(1−P B ),where µis the service rate,and P B is the blocking probability of the network.In our study,we use a normalized service rate equal to 1,i.e.,µ=1.The offered load,λ/µ,therefore is equal to λ.For an N ×N network,P B =N −1 k =0P B |k P kwhere,P k is the probability that k virtual circuits are established in the network,and P B |k is the conditional probability that a connection is blocked while k virtual circuits are already established.The quantity P k is given by,P k = N k ρk(1−ρ)N −k ,∀0≤k <NRandom permutations of source-destination pairs are generated in random order.Two counters are maintained for each value of k ,0≤k <N .The pass counter ,p k is incremented whenever a (k +1)-th connection is established,and the reject counter ,r k is incremented whenever a (k +1)-th connection request is rejected (i.e.,blocked).The following equation then gives us the con-ditional blocking probability given k connections are al-ready established.P B |k =r k p k −1As described in [1],P B and ρcan now be computed iter-atively starting with an assumed value of ρ.4SIMULATION RESULTSThis section presents simulation results using a 64×64interconnection network in a Banyan topology,using 2×2,4×4and 8×8switching elements.Figure 2(a)plots the blocking probabilities in this network against the nor-malized offered load.This figure is plotted assuming that each physical link between switching elements can support no more than 2virtual circuits.As can be ob-served from this figure,use of larger switching elements,in this case,reduces the blocking probabilities at all of-fered loads.Figure 2(b)plots the blocking probabilitiesFigure2:(a)P B vs.offered load,C=2;(b)P B vs. offered load,C=3.for the same64×64Banyan network,but assuming link capacities of3virtual circuits per link.Thisfigure is dif-ferent from Figure2(a)with respect to the relative per-formances of networks using4×4and8×8switching el-ements.The blocking probability using4×4switches, as indicated in thisfigure,is slightly better than that with 8×8switch chips.This further illustrates the fact that the use of larger size switching elements does not necessar-ily lead to an improvement in the blocking probability. Figure3plots the blocking probabilities for the same 64×64Banyan network,against the link capacity,at an offered load of0.7.Recall that we measure link capacity by the number ofvirtual circuits that can be supported on the link.As can be observed from Figure3,the block-ing probabilities decrease exponentially as the link ca-pacity increases.For example,a64×64network using 2×2switches with link capacities equal to5virtual cir-cuits has a blocking probability about34times as small as with link capacities equal to4virtual circuits.Thisfig-Figure3:P B vs.link capacity,λ/µ=0.7.ure suggests that increasing link capacities,as opposed to using larger switching elements,is almost always a better design choice(except when the switch size is in-creased to b×b and log b N is odd).This is simply be-cause using switch architectures that can be implemented in today’s VLSI chips,high throughputs of95%or more can already be achieved with2×2ATM switching ele-ments[7].A larger switching element therefore can only lead to a small increase in the throughput,resulting in only a small increase in the link capacity.5CONCLUDING REMARKSThis paper shows that an N×N ATM Banyan network using b×b switching elements is non-blocking if and only if each physical link between the switching ele-ments can support K virtual circuits,where K=√N if log b N is even,andN/b otherwise.In block-ing networks,using a recently developed quasi-analytic method,we have quantified the trade-offs between the blocking probability,the size of switching elements,the offered load and the link capacities for a representative 64×64network.These results can be used to develop design recommendations on the bandwidth of the links and the size of switching elements to use in the design of an ATM-based Banyan network.The most interesting aspect of these trade-offs is that the use of larger switch-ing elements in the design of a network does not always guarantee a lower blocking probability.Finally,the work presented in this paper is also rel-evant in some non-ATM contexts.For example,each link with capacity C may be thought of as multiple links of capacity1.Thus,the results of this paper can alsobe applied to circuit-switched networks with link-dilated topologies.In addition,these results are also valid in the analysis of blocking probabilities in optical Banyan-based networks using Wavelength Division Multiplexing (WDM)and switching devices that include wavelength converters.References[1]M.M.Vaez and C.-T.Lea,“Blocking performancewith crosstalk consideration of the photonic switch-ing networks based on electro-optical directional couplers”,Journal of Lightwave Technology,vol.17,no.3,pp.381–387,March1999.[2]C.-T.Lea,“Multi-log2N networks and their ap-plications in high-speed electronic and photonic switching systems”,IEEE Transactions on Commu-nications,vol.38,no.10,pp.1740–1749,October 1990.[3]R.Melen and J.S.Turner,“Nonblocking Networksfor Fast Packet Switching”,Proceedings of IEEE INFOCOM,vol.2,1989.[4]C.P.Kruskal and M.Snir,“The performance ofmultistage interconnection networks for multipro-cessors”,IEEE Transactions on Computers,vol.82, no.12,pp.1091–1098,December1983.[5]S.C.Liew,M.-H.Ng and C.W.Chan,“Block-ing and Nonblocking Multirate Clos Switching Net-works”,IEEE/ACM Transactions of Networking, vol.6,no.3,pp.307–318,June1998.[6]E.Valdimarsson,“Blocking in Multirate Intercon-nection Networks”,IEEE/ACM Transactions on Communications,vol.42,no.2/3/4,pp.2028–2035, February/March/April1994.[7]M.Katevenis, D.Serpanos and E.Spyridakis,“Credit-Flow-Controlled ATM for MP Interconnec-tion:The ATLAS I Single-Chip ATM Switch”,Pro-ceedings of4th Int’l Symp.High Performance Com-puter Architecture,1998.[8]A.Pattavina,Switching Theory,John Wiley&Sons,Inc.,New York,NY,1998.。

相关文档
最新文档