第1章 命题逻辑3

合集下载

离散数学第一章 命题逻辑

离散数学第一章 命题逻辑

令Q表示:张亮是跳远运动员。
于是命题,张亮可能是跳高或跳远运动员就可以用P∨Q来表示,因为这里的或是可 兼或。 逻辑联结词析取也是个二元运算符。
1.1 命题和联结词
逻辑联结词单条件—“→”
设P是一个命题,Q是一个命题,由联结词→把P、Q连接成P→Q,称P→Q为P、 Q的条件式复合命题,把P和Q分别称为P→Q的前件和后件,或者前提和结论。 P→Q读作“如果P则Q”或“如果P那么Q”。其中P被称为前件,Q被称为为后件。 很多时候联结词→也被称为蕴涵。 P→Q的真值是这样定义的,当且仅当P→Q的前件P的真值为T,后件Q的真值为F
1.1 命题和联结词
逻辑联结词否定—“┓”
设P是一个命题,则联结词┓和命题P构成┓P,┓P为命题P的否定式复合 命题,读作“非P”。联结词┓是自然语言中的“非”、“不”和“没有” 等的逻辑抽象。 其真值是这样定义的,若P的真值是T,那么┓P的真值是F;若P的真值 是F,则┓P的真值是T。命题P与其否定┓P的如表1.1所示。
1.2 合式公式与真值表
例1.4 令P表示:小明现在正在睡觉。
令Q表示:小明现在正在打球。 于是命题,小明现在正在睡觉或者正在打球不能用P∨Q来表示。因为这里自然语言陈述的或是 排斥或,这种意义的或我们用另一个逻辑联结词“异或”“”来表示,后面我们将给出它的 定义。
1.1 命题和联结词
逻辑联结词析取——“∨”
例1.5 将句子“他昨晚做了20或者30道作业题”表示为复合命题。 在此例中,该句子不能被表示成复合命题,因为这里的“或”表示的是近似或者猜 测的意思。 例1.6 令P表示:张亮是跳高运动员。
P F F T T Q F T F T P∧Q F F F T P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1

离散数学第一章命题逻辑知识点总结

离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。

简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。

知识点1.1 命题、联结词及命题符号化

知识点1.1 命题、联结词及命题符号化

第1 章命题逻辑第1 章命题逻辑授课内容知识点1:命题、联结词及命题符号化知识点2:命题公式、真值表及公式分类知识点3:等价式与等价演算知识点4:对偶式与蕴涵式知识点5:范式第1 章命题逻辑授课内容知识点6:主析取范式与主合取范式知识点7:命题演算的推理理论知识点8:有效结论证明方法知识点9:命题演算推理实例解析知识点1:命题、联结词及命题符号化一问题的引入命题逻辑是研究由命题为基本单位构成的前提和结论之间的可推导关系。

那么,什么是命题?如何表示和构成?如何进行推理的?例如:已知:如果今天星期三,那么公鸡会下蛋。

今天是星期三。

问题:根据以上前提你能推出什么结论?二命题、联结词及命题符号化1 命题的概念定义1.1.1:能够判断真假的陈述句称作命题。

命题仅有两种可能的真值:真和假,且二者只能居其一。

真用1或T表示,假用0或F表示。

由于命题只有两种真值,所以称这种逻辑为二值逻辑。

例1.1.1 判断下列语句哪些是命题①-1是整数。

②地球是围绕月亮转的。

③3+5=8。

④木星的表面温度是20 F。

⑤不要讲话!⑥你吃饭了吗?⑦本命题是假的。

(他正在说谎。

等)解①-④都是命题,①和③的真值为真,②真值是假,④不知真和假,但真值是可以确定的。

⑤⑥都不是命题。

⑦无法确定它的真值,当它假时,它便真;当它真时,它便假。

这种断言叫悖论。

2 命题的分类与表示•命题分为两类,第一类是原子命题,它是由再也不能分解成更为简单的语句构成的命题,称为原子命题。

用英文字母P,Q,R,…或带下标Pi,Qi,Ri,…表示之。

例如,用P表示武汉是一座美丽的城市,记为P:武汉是一座美丽的城市。

冒号:代表表示的意思•第二类是复合命题,它由原子命题、命题联结词和圆括号组成。

3 联结词1.3.1 否定联结词﹁P定义1.1.2设P表示一个命题,由命题联结词⎤和命题P连接成⎤P,称⎤P为P的否定式复合命题,⎤P读“非P”。

称⎤为否定联结词。

⎤P是真当且仅当P为假;否定联结词“⎤”的定义可由表1-1表示。

第1章 命题逻辑

第1章 命题逻辑
28
第一章 命题逻辑(Propositional Logic)
1.2逻辑联结词(Logical Connectives)
联结词“∨”的定义真值表
P
Q
P∨Q
0
0
0
0
1
1
1
0
1
1
1
1
29
第一章 命题逻辑(Propositional Logic)
1.2逻辑联结词(Logical Connectives)
1.2 逻辑联结词(Logical Connectives) 1.2.1 否定联结词(Negation) ┐ 1.2.2 合取联结词(Conjunction)∧ 1.2.3 析取联结词(Disjunction)∨ 1.2.4 条件联结词(蕴涵联结词Conditional)→ 1.2.5 双条件联结(等值联结词Biconditional)
1.2逻辑联结词(Logical Connectives)
例3. 将下列命题符号化. (1) 李平既聪明又用功. (2) 李平虽然聪明, 但不用功. (3) 李平不但聪明,而且用功. (4) 李平不是不聪明,而是不用功.
解: 设 P:李平聪明. Q:李平用功. 则 (1) P∧Q (2) P∧┐Q
个值:真(用 T(true)或1 表 示)、假 (用F(false) 或0表 示) 。 ✓ 真命题:判断为正确的命题,即真值为真的命题。 ✓ 假命题:判断为错误的命题,即真值为假的命题。
5
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示
因而又可以称命题是具有唯一真值的陈述句。
说明:“∧” 属于二元(binary)运算符. 合取运算特点:只有参与运算的二命题全为真 时,运算结果才为真,否则为假。

第 1 章 命题逻辑

第 1 章 命题逻辑

第 1 章命题逻辑数理逻辑是用数学方法研究思维规律和推理过程的科学,而推理的基本要素是命题,因此命题逻辑是数理逻辑最基本的研究内容之一,也是谓词逻辑的基础。

由于数理逻辑使用了一套符号,简洁地表达出各种推理的逻辑关系,因此,一般又称之为符号逻辑。

数理逻辑和电子计算机的发展有着密切的联系,它为机器证明、自动程序设计、计算机辅助设计、逻辑电路、开关理论等计算机应用和理论研究提供了必要的理论基础。

一、命题与命题变量在日常生活中,人们不仅使用语句描述一些客观事物和现象,陈述某些历史和现实事件,而且往往还要对陈述的事实加以判断,从而辨其真假。

语句可以分为疑问句、祈使句、感叹句与陈述句等,其中只有陈述句能分辨真假,其他类型的语句无所谓真假。

在数理逻辑中,我们把每个能分辨真假的陈述句称作为一个命题。

陈述句的这种真或假性质称之为真值或值,这就是说真值包含“真”和“假”。

因而命题有两个基本特征,一是它必须为陈述句:二是它所陈述的事情要么成立(真),要么不成立(假),不可能同时既成立又不成立,即它的真值是惟一的。

命题可按其真值分为两类。

若一个命题是真的,则称其真值为真,用1或T表示,称该命题为真命题;若一个命题是假的,则称其真值为假,用0或F表示,称该命题为假命题。

命题还可根据其复杂程度分类。

只是由一个主语和一个谓语构成的最简单的陈述句,称为简单命题或原子命题或原始命题。

简单命题不可能再分解成更简单的命题了,它是基本的,原始的。

当然,也有一些命题并不是最基本的,它们还可以分解成若干个简单命题。

由若干个简单命题通过联结词复合而成的更为复杂的新命题称为复合命题或分子命题。

复合命题仍为陈述句。

任意有限个简单或复合命题,还可用若干不同的联结词复合成极为复杂的复合命题。

简单命题和复合命题的真值是固定不变的,故又可称为命题常量或命题常元,简称为命题。

而有些陈述句尽管不是命题,但可以将其变成命题,它的真值是不固定的、可变的,这种真值可变化的陈述句称为命题变量或命题变元。

第1章 命题逻辑3

第1章 命题逻辑3

第1章 命题逻辑
定义1.6.3 设p和q是两个命题,复 合命题p↓q称作p和q的或非。定 义为:当且仅当p、q的真值都为 假时,p↓q的真值为真。联结词 “↓”称为或非联结词。
表1.20 p 0 0 q 0 1 p↓ q 1 0
1
1
0
1
0
0
由此定义可得到下面的公式: p↓q¬ (p∨q)
联结词↓还有下面的几个性质: ⑴ p↓p¬ (p∨p) ¬ p ⑵ (p↓q)↓(p↓q) ¬ (p↓q) ¬ ¬ (p∨q)p∨q ⑶ (p↓p)↓(q↓q) ¬ p↓¬q¬ (¬ p∨¬ q)p∧q
第1章 命题逻辑
蕴含式是逻辑推理的重要工具。下面是一些重要的蕴含 式。它们都可以用上述两种方法证明,其中A,B,C,D是 任意的命题公式。 1.附加律 AA∨B, BA∨B 2.化简律 A∧BA, A∧BB 3.假言推理 A∧(A→B)B 4.拒取式 ¬ B∧(A→B)¬ A 5.析取三段论 ¬ A∧(A∨B)B, ¬ B∧(A∨B)A 6.假言三段论 (A→B)∧(B→C)(A→C) 7.等价三段论 (A↔B)∧(B↔C)(A↔C) 8.构造性二难 (A∨C)∧(A→B)∧(C→D)B∨D (A∨¬ A)∧(A→B)∧(¬ A→B)B 9.破坏性二难 (¬ B∨¬ D)∧(A→B)∧(C→D)(¬ A∨¬ C)
第1章 命题逻辑
定义1.6.5 设S是全功能联结词集,如果去掉其中的任何 联结词后,就不是全功能联结词集,则称S是最小全功 能联结词集。 可以证明 ¬,∧ , ¬,∨ , ↑ , ↓ 是最小全 功能联结词集。
第1章 命题逻辑
讨论:n个命题变元可以构成多少个不等价的命题公式? 两个命题变元可以构成多少个不等价的命题公式? 由等价的概念知道,等价的命题公式有相同的真值表,所 以上述问题就转化为两个命题变元构成的命题公式有多少个不 同的真值表? 表1.21 两个命题变元构成的命题公式 p q 公式 的真值表的格式如表1.21所示。 0 0 1或0 真值表中每行公式的真值都 有1,0两种可能,所以命题公式 0 1 1或0 22 的真值有2×2×2×2=24= 2 =16 1 0 1或0 22 种可能,既有 2 个不同的真值表。 22 1 1 1或0 故有 种不等价的公式。 2 8= 23个不等价的命题公式,n个变元可 三个变元可构成 2 2 2n 构成 2 个不等价的命题公式。

《离散数学》课件-第1章命题逻辑

《离散数学》课件-第1章命题逻辑
3
例题 • 判断下列句子中那些是命题?若是命题的,判断其真值。
1. 北京是中国的首都。 2. 2+3=6。 3. 3-x=5。 4. 请关上门。 5. 几点了?
Y真 Y假 N 真值不确定 N 祈使句
6. 除地球外的星球有生物。
N 疑问句
7. 多漂亮的花啊!
Y 真值确定, 但未知
8. 我只给所有不给自己理发的人理发。N 感叹句
p q pq
TT F TF T FT T FF T
23
其它联结词
• 定义1.1.10 设p、q是任意两个命题, p q可表示复合命题“p和q的或非”, 称为或非联结词。命题p q 称为p和q的或非式。当且仅当p和q的真值同时 为假时,p q的真值为真. Nhomakorabea•
p q的真值表
p q pq
TT F TF F FT F FF T
6
联结词
• (一)否定
• 定义1.1.4 设p是一个命题,p表示一个新命题“非p”。命题p 称为p的否定。当且仅当p的真值为假时,p的真值为真。
• p的真值表:
p p
T
F
F
T
• 例如:p:今天是晴天。则 p:今天不是晴天。 • “非”,“不”,“没有”,“无”,“并非”等都可用来表示。
7
联结词• (二)合取

p q :电灯不亮是灯泡或线路有问题所致。

p:派小王去开会,q:派小李去开会,

(p q)(p q): 派小王或小李中的一人去开会
10
联结词
• (四)蕴涵
• 定义1.1.7 设p、q表示任意两个命题, p q 可表示复合命
题“如果p,则q”。当且仅当p的真值为真,q的真值为假时,

离散数学——精选推荐

离散数学——精选推荐

离散数学第一章命题逻辑定义1。

设P为一命题,P的否定是一个新的命题,记作¬P。

若P为T,¬P为F;若P为F,¬P为T。

联结词“¬”表示命题的否定。

否定联结词有时亦可记作“¯”。

(P3)定义2。

两个命题P和Q的合取是一个复合命题,记作P∧Q。

当且仅当P,Q同时为T时,P∧Q为T,在其他情况下,P∧Q的真值都是F。

(P4)定义3。

两个命题P和Q的析取是一个复合命题,记作P∨Q。

当且仅当P,Q同时为F时,P∨Q的真值为F,否则P∨Q的真值为T。

(P5)定义4。

给定两个命题P和Q,其条件命题是一个复合命题,记作P→Q,读作“如果P,那么Q”或者“若P则Q”。

当且仅当P的真值为T,Q的真值为F时,P→Q的真值为F,否则P→Q的真值为T。

我们称P为前件,Q为后件。

(P6)定义5。

给定两个命题P和Q,其复合命题P⇆Q的真值为F。

(P7)定义6。

命题演算的合式公式(wff),规定为:(1)单个命题变元本身是一个合式公式。

(2)如果A是合式公式,那么¬A是合式公式。

(3)如果A和B是合式公式,那么(A∧B),(A∨B),(A→B)和(A⇆B)都是合式公式。

(4)当且仅当能够有限次地应用(1),(2),(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。

(P9)定义7。

在命题公式中,对于分量指派真值得各种可能组合,就确定了这个命题公式的各种真值情况,把它汇列成表,就是命题公式的真值表。

(P12)定义8。

给定两个命题公式A和B,设P1,P2,…,P n为所有出现于A和B中的原子变元,若给P1,P2,…,P n任一组真值指派,A和B的真值都相同,则称A和B是等价的或逻辑相等。

记作A⇔B。

(P15)定义9。

如果X是合式公式的A的一部分,且X本身也是一个合式公式,则称X为公式A 的字公式。

(P16)定理1。

设X是合式公式A的字公式,若X⇔Y,如果将A中的X用Y来置换,所得到公式B 与公式A等价,即A⇔B。

离散数学复习资料

离散数学复习资料

离散数学复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。

命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表h“”否定联结词,P是命题,P是P的否命题,是由联结词和命题P组成的复合命题.P取真值1,P取真值0,P取真值0,P取真值1. 它是一元联结词.h “”合取联结词,P Q是命题P,Q的合取式,是“”和P,Q组成的复合命题. “”在语句中相当于“不但…而且…”,“既…又…”. P Q取值1,当且仅当P,Q均取1;P Q取值为0,只有P,Q之一取0.h “”析取联结词,“”不可兼析取(异或)联结词, P Q是命题P,Q的析取式,是“”和P,Q组成的复合命题. P Q是联结词“”和P,Q组成的复合命题. 联结词“”或“”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P Q”“(P Q)(P Q)”. P Q取值1,只要P,Q之一取值1,P Q取值0,只有P,Q都取值0.h “”蕴含联结词, P Q是“”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P Q取值为0;其余各种情况,均有P Q的真值为1,亦即10的真值为0,01,11,00的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P Q”.h “” 等价联结词,P Q是P,Q的等价式,是“”和P,Q组成的复合命题. “”在语句中相当于“…当且仅当…”,P Q取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别h命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.h命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.h等值式A B,命题公式A,B在任何赋值下,它们的真值均相同,称A,B等值。

第一章命题逻辑(1,2,3)

第一章命题逻辑(1,2,3)

1.2 联 结 词
联结词:确定复合命题的逻辑形式。
❖ 原子命题和联结词可以组合成复合命题。 ❖ 联结词确定复合命题的逻辑形式,它来源于自然语言中的联结词,
但与自然语言中的联结词有一定的差别; ❖ 从本质上讲,这里讨论的联结词只注重“真值”,而不顾及具体
内容,故亦称“真值联结词”。
1.2.1 否定联结词
❖ 命题P Q的真值与命题P和命题Q的真值之间的关系如表所示。
P
Q
PQ
0
0
1
0
1
1
1
0
0
1
1
1
1.2.4 蕴涵联结词
❖ 说明:
▪ 1)蕴涵联结词也称为条件联结词。“如果P,则Q”也称为P与Q 的条件式。
▪ 2)蕴涵式的真值关系不太符合自然语言中的习惯,这一点请读者 务必注意。
1.1.3 命题标识符
❖ 命题标识符
▪ 为了能用数学的方法来研究命题之间的逻辑关系和推理,需要将 命题符号化。
▪ 通常使用大写字母P, Q, …或用带下标的大写字母或用数字,如Ai, [12]等表示命题。
• 例如:
P:今天下雨
• 意味着P表示“今天下雨”这个命题的名。
• 也可用数字表示此命题
• 例如:
❖ 定义1.1 设P为任一命题,复合命题“非P”(或“P的否定”)称为P 的否定式,记作﹁P,读作“非P”。﹁称为否定联结词。
❖ ﹁P的逻辑关系为P不成立,﹁P为真当且仅当P为假。 ❖ 命题P的真值与其否定﹁P的真值之间的关系
P
﹁P
0
1
1
0
1.2.1 否定联结词
例1.2 设 P:这是一个三角形 ﹁P:这不是一个三角形
数理逻辑命题逻辑一阶谓词逻辑集合论集合及其运算二元关系与函数代数结构代数系统的基本概念群环域格与布尔代数图论数理逻辑和集合论作为两块基石奠定了离散数学乃至整个数学理论的基础在上面生长着代数结构序结构拓扑结构和混合结构这四大结构涵盖与生长出许多数学分支同时各分支间交叉融合又形成了许多新的数学分支形成了庞大的数学体系

第一章 命题逻辑

第一章 命题逻辑
P T T Q T F 原命题 F T PQ T F
┐ (PQ)
F T
F F
T F
T F
F T
T F
举例
将下列命题符号化,并指出各复合命题的真值: (1) 如果3+3=6,则雪是白的。 (2) 如果3+3≠6,则雪是白的。 (3) 如果3+3=6,则雪不是白的。 (4) 如果3+3≠6,则雪不是白的。 令p:3+3=6, p的真值为1。 q:雪是白色的,q的真值也为1。 (1)到(4)的符号化形式分别为 p→q,┐p→q,p→┐q,┐p→┐q 这四个复合命题的真值分别为1,1,0,1。 以上四个蕴涵式的前件p与后件q没有什么内在的联系。
思维能力、归纳构造能力,十分有益于学生严谨、完整、规范的科学态
度的培养。使学生掌握一种证明问题的方法。整个课程由:数理逻辑、 集合论、抽象代数和图论四大部分组成。数理逻辑部分主要包括命题逻
辑、谓词逻辑;集合论部分包括集合代数、二元关系、函数;图论主要
包括图的基本概念、欧拉图、哈密尔顿图、树和平面图;抽象代数主要 包括代数系统、群、环、域、格与布尔代数。要求学生掌握数理逻辑、
设p1,p2,…,pn是出现在公式A中的全部命题变元, 给p1,p2,…,pn各指定一个真值,称为对A的一个赋值 或解释。若指定的一组值使A的真值为1,则称这组 值为A的成真赋值;若使A的真值为0,则称这组值为 A的成假赋值。 不难看出,含n(n≥1)个命题变项的公式共有2n 个不同的赋值。
定义1-3.1 命题演算的合式公式(wff),规定为:
将下列命题符号化,并讨论它们的真值。 (1) 是无理数当且仅当加拿大位于亚洲。 (2) 2+3=5的充要条件是 是无理数。 (3) 若两圆A,B的面积相等,则它们的半径相等;反之亦然。

三峡大学期末运算机专业离散数学考试期末离散温习

三峡大学期末运算机专业离散数学考试期末离散温习

《离散数学》期末温习提要课程的要紧内容1、集合论部份(集合的大体概念和运算、二元关系和函数);2、数理逻辑部份(命题逻辑、谓词逻辑);3、图论部份(图的大体概念、特殊的图,树及其性质)。

一、各章温习要求与重点第一章命题逻辑[温习知识点]1、命题与联结词(否定、析取、合取、蕴涵、等价),复合命题2、命题公式与说明,真值表,公式分类(永真、矛盾、可知足),公式的等价3、析取范式、合取范式,极小(大)项,主析取范式、主合取范式4、公式类别的判别方式(真值表法、等值演算法、主析取/合取范式法)5、全功能集6、推理理论本章重点内容:命题与联结词、公式与说明、析取范式与合取范式、公式恒真性的判定、推理理论[温习要求]1、明白得命题的概念;了解命题联结词的概念;明白得用联结词产生复合命题的方式。

2、明白得公式与说明的概念;把握求给定公式真值表的方式,用大体等价式化简其他公式,公式在说明下的真值。

3、了解析取(合取)范式的概念;明白得极大(小)项的概念和主析取(合取)范式的概念;把握用大体等价式或真值表将公式化为主析取(合取)范式的方式。

4、把握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价的方式。

把握24个重要等值式。

5、把握推理理论,会写出推理的证明,把握附加前提证明法和归谬发。

[本章重点习题]习题P31-36: 1.1,1.7-1.9,1.12,1.18,1.19,1.15 [疑难解析]一、公式恒真性的判定判定公式的恒真性,包括判定公式是恒真的或是恒假的。

具体方式有两种,一是真值表法,关于任给一个公式,要紧列出该公式的真值表,观看真值表的最后一列是不是全为1(或全为0),就能够够判定该公式是不是恒真(或恒假),假设不全为0,那么为可知足的。

二是推导法,即利用大体等价式推导出结果为1,或利用恒真(恒假)判定定理:公式G 是恒真的(恒假的)当且仅当等价于它的合取范式(析取范式)中,每一个子句(短语)均至少包括一个原子及其否定。

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会。

则命题:“派小王或小李中的一人去开会”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。

(2)设A,B都是命题公式,A⇒B,则A→B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p∧q。

(4)设A , B 代表任意的命题公式,则蕴涵等值式为A → B⇔⌝A∨B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

”可符号化为:⌝ p→⌝q 。

(6)设A , B 代表任意的命题公式,则德•摩根律为⌝(A ∧ B)⇔⌝A ∨⌝B)。

(7)设,p:选小王当班长;q:选小李当班长。

则命题:“选小王或小李中的一人当班长。

”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。

(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:P∧Q 。

(9)对于命题公式A,B,当且仅当 A → B 是重言式时,称“A蕴含B”,并记为A⇒B。

(10)设:P:我们划船。

Q:我们跑步。

在命题逻辑中,命题:“我们不能既划船又跑步。

”可符号化为:⌝ (P∧Q) 。

(11)设P , Q是命题公式,德·摩根律为:⌝(P∨Q)⇔⌝P∧⌝Q)。

(12)设P:你努力。

Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:⌝P→Q。

(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军。

”可符号化为:p∨q。

(14)设A,C为两个命题公式,当且仅当A→C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A→B⇔⌝A∧B。

(⨯)2.命题公式⌝p∧q∧⌝r是析取范式。

(√)3.陈述句“x + y > 5”是命题。

离散数学(第二版) (1)

离散数学(第二版) (1)
论(conclusion)或后件(consequent)。 “→”是一个二元运算。 条件联结词→的定义如表1.1.4
所示。
表1.1.4
第1章 命题逻辑
第1章 命题逻辑 5. 双条件联结词
定义1.1.6 如果 P和Q是命题, 那么“P当且仅当 Q” 是一个复合命题, 记做 P Q, 称为P和Q的双条件命题
表1.1.1
第1章 命题逻辑
第1章 命题逻辑
2. 合取联结词
定义1.1.3 如果 P和Q是命题, 那么“P并且Q”是一个 复合命题, 记做P∧Q, 称为P和Q 的合取(conjunction)。 符号∧用于表示合取联结词。 P∧Q 为T, 当且仅当P、 Q
均为T。 “∧”是一个二元运算符。 合取联结词∧的定义如表
第1章 命题逻辑
定义1.1.1 一个具有真或假但不能两者都是的断言称为 命题。
如果一个命题所表达的判断为真, 则称其真值(truth value)为“真”, 用大写字母T或数字1表示; 如果一个命题 所表达的判断为假, 则称其真值为“假”, 用大写字母F或 数字0表示。 为简便起见, 本书在构建真值表时一般用0表示 “假”, 用1表示“真”。
(biconditional proposition)。
词。 P Q为T, 当且仅当 P和Q 的真值相同。
1.1.5所示。
表1.1.5
第1章 命题逻辑
第1章 命题逻辑
1.2 命 题 公 式
1.2.1 命题公式及其符号化
定义1.2.1 用于代表取值为真(T、 1)或假(F、 0)之一 的变量, 称为命题变元, 通常用大写字母或带下标或上标的
大写字母表示, 如 P、 Q、 R、 P1、 P2等。 将T和F称为命

离散数学命题逻辑

离散数学命题逻辑

Q)
(MQ) P(附加前提)
(2) SR
P
第一章命题逻辑
本题即证:M Q, MS, SR R→Q (3) RS T(2)E (4) S T(1)(3)I (5) MS P (6) M T(4)(5)I (7) (MQ) P (8) MQ T(7)E (9) (MQ)∧(QM) T(8)E (10) QM T(9)E (11) MQ T(10)E (12) Q T(6)(11)E (13) R→Q CP
第一章命题逻辑
请根据下面事实,找出凶手:
1. 清洁工或者秘书谋害了经理。 2. 如果清洁工谋害了经理,则谋害不会发生在午夜前。 3.如果秘书的证词是正确的,则谋害发生在午夜前。 4.如果秘书的证词不正确,则午夜时屋里灯光未灭。 5. 如果清洁工富裕,则他不会谋害经理。 6.经理有钱且清洁工不富裕。 7.午夜时屋里灯灭了。 令A:清洁工谋害了经理。 B:秘书谋害了经理。 C:谋害发生在午夜前。 D:秘书的证词是正确的. E:午夜时屋里灯光灭了。 H:清洁工富裕. G:经理有钱. 命题符号为: A∨B,AC,DC,DE,HA,G∧H,E ?
第一章命题逻辑
例题1-8.2 用命题逻辑推理方法证明下面推理的 有效性: 如果我学习,那么我数学不会不及格。如果我不 热衷于玩朴克,那么我将学习。但是我数学不 及格。因此,我热衷于玩朴克。 解 设 P:我学习。 Q:我数学及格。 R:我热衷于玩朴克。 于是符号化为: P→Q,R→P,Q R
1-8 推理理论
第一章得出一个新 的判断的思维过程。称这些已知的判断为前提。 得到的新的判断为前提的有效结论。 实际上,推理的过程就是证明永真蕴含式的过程, 即令H1,H2,…,Hn是已知的命题公式(前提), 若有 H1∧H2∧....∧Hn C 则称C是H1,H2,…Hn的有效结论,简称结论。

离散数学的基础知识点总结

离散数学的基础知识点总结

离散数学的基础知识点总结第一章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第二章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数2种不同的关系;为mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函数;1.若|X|=m,|Y|=n,则从X到Y有mn2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2. 集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3. 判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶avb≥aA^b≤b 对偶avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶av(bvc)=(avb)vc7) 等幂律a^a=a 对偶ava=a8) 吸收律a^(avb)=a 对偶av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=>av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列;P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2TL(v2)=min{2-0,10-3,6-4}=2TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 命题逻辑
定义1.6.2 设p和q是两个命题,复合命题p↑q称作p和q的 与非。定义为:当且仅当p和q真值都是真时,p↑q才为假。 联结词“↑”称为与非联结词。 联结词“↑”的真值表如表1.19所示。 “↑”也可以看成逻辑运算,它是二元逻辑运算。 由定义可以看出下式成立: 表1.19 p↑q¬ (p∧q) p q p↑q 联结词“↑”还有以下几个性质: 0 0 1 ⑴ p↑p¬ (p∧p) ¬ p 0 1 1 ⑵(p↑q)↑(p↑q) ¬ (p↑q) 1 0 1 ¬ (p∧q) p∧q ¬ 1 1 0 ⑶ (p↑p)↑(q↑q) (¬ p)↑(¬q) ¬ p∧¬ p∨q (¬ q)
第1章 命题逻辑
蕴含式是逻辑推理的重要工具。下面是一些重要的蕴含 式。它们都可以用上述两种方法证明,其中A,B,C,D是 任意的命题公式。 1.附加律 AA∨B, BA∨B 2.化简律 A∧BA, A∧BB 3.假言推理 A∧(A→B)B 4.拒取式 ¬ B∧(A→B)¬ A 5.析取三段论 ¬ A∧(A∨B)B, ¬ B∧(A∨B)A 6.假言三段论 (A→B)∧(B→C)(A→C) 7.等价三段论 (A↔B)∧(B↔C)(A↔C) 8.构造性二难 (A∨C)∧(A→B)∧(C→D)B∨D (A∨¬ A)∧(A→B)∧(¬ A→B)B 9.破坏性二难 (¬ B∨¬ D)∧(A→B)∧(C→D)(¬ A∨¬ C)
第1章 命题逻辑
定义1.6.3 设p和q是两个命题,复 合命题p↓q称作p和q的或非。定 义为:当且仅当p、q的真值都为 假时,p↓q的真值为真。联结词 “↓”称为或非联结词。
表1.20 p 0 0 q 0 1 p↓q 1 0
1 由此定义可得到下面的公式: p↓q¬ (p∨q)
1
0
1
0Байду номын сангаас
0
联结词↓还有下面的几个性质: ⑴ p↓p¬ (p∨p) ¬ p ⑵ (p↓q)↓(p↓q) ¬ (p↓q) ¬ (p∨q)p∨q ¬ ⑶ (p↓p)↓(q↓q) ¬ p↓¬q¬ p∨¬ (¬ q)p∧q
⑵ (p q) rp (q r) (结合律)
第1章 命题逻辑
⑶ p∧(q r)(p∧q) (p∧r) (合取对异或的分配律) ⑷ p q(p∧q)∨(p∧q) ⑸ p q¬ (p↔q) ⑹ p p0,0 pp,1 p¬ p 定理1.6.1 设A,B,C为命题公式,如果A BC,则A CB,B C A,A B C为一矛盾式。
第1章 命题逻辑
1.8 命题逻辑的推理理论
数理逻辑的主要任务是用逻辑的方法研究数学中的推理。 所谓推理是指从前提出发,应用推理规则推出结论的思维过 程。任何一个推理都由前提和结论两部分组成。前提就是推 理所根据的已知命题,结论则是从前提出发通过推理而得到 的新命题。 要研究推理,首先应该明确什么样的推理是有效的或正 确的。 定义1.8.1 设A1,A2,…,An和C是n+1个命题公式,若 A1∧A2∧…∧AnC,则称C为A1,A2,…,An 的有效结论。 也称C可由A1,A2,…,An 逻辑的推出。A1,A2,…,An叫 做C的一组前提。 A1∧A2∧…∧AnC,亦可记为A1,A2,…,AnC。
第1章 命题逻辑
至此已经学了8个联结词:¬ ,∧,∨,→,↔,,↑,↓。 类似于定义1.2.1的方法,可以定义包含上述8个联结词的命 题公式。 定义1.6.4 设S是一个联结词集合,如果任何n(n≥1)个变元组 成的公式,都可以由S中的联结词来表示,则称S是全功能 联结词集。 根据命题公式的定义¬ ,∧,∨,→,↔,,↑,↓ 是全功能联结词集。 利用下列3个等价式可将任何命题公式中的命题联结词 “ ”、“↑”和 “↓”去掉。
第1章 命题逻辑
1.7 对偶式与蕰含式
1.7.1对偶式 从1.3节的命题定律中可以看出,很多常用等价式是成对 出现的,只要将其中的“∧”和“∨”分别换成“∨”和 “∧”,就可以由一个得到另一个。例如,将命题定律 (A∨B) ∧ C(A∧ C)∨(B∧ C ) 中的“∨”换成“∧”, “∧”换成“∨”就得到了命题定律 (A∧B) ∨C(A∨C) ∧ (B ∨ C ) 这些成对出现的等价式反映了等价的对偶性。本节介绍对偶 式和对偶原理。 定义1.7.1在仅含联结词¬ ,∧,∨的命题公式A中,将联 结词∨,∧,F,T分别换成∧,∨,T,F所得的公式称 为公式A的对偶式,记为A*。
第1章 命题逻辑
1.6 全功能联结词集
定义1.6.1 设p和q是两个命题,复合命题p q称作p和q的 不可兼析取,也叫异或。定义为:p q为T当且仅当p和q的 真值不相同时。联结词“ ”称为异或联结词。 联结词“ ”的真值表 表1.18 如表1.18所示。 p q p q “ ”也可以看成逻辑 0 0 0 运算,它是二元逻辑运算。 它在程序设计中有广泛的应 0 1 1 用。 1 0 1 不可兼析取有下列的性质: 1 1 0 ⑴ p qq p (交换律)
第1章 命题逻辑
设A*是A的对偶式,将A*中的∨,∧,F,T分别换成 ∧,∨,T,F,就会得到A。即A 是A*的对偶式,(A*)*A。 所以说A*和A互为对偶式。 【例1.27】求p↑q和p↓q的对偶式。 解: p↑q¬ (p∧q) ¬ (p∧q)的对偶式是¬ (p∨q)p↓q 故p↑q的对偶式是p↓q;同样的方法可以证明p↓q的对偶 式是p↑q。 根据例1.27,对偶式概念可以推广为:在仅含有联结词 ¬ ,∧,∨,↑,↓的命题公式中,将联结词∨,∧,↑,↓, F,T分别换成 ∧,∨,↓,↑,T,F,就得到了它的对偶式。
定理1.7.2叫做对偶原理。对偶原理是数理逻辑中最基 本的规律之一。
第1章 命题逻辑
【例1.29】证明重言式的对偶式是矛盾式,矛盾式的对偶式 是重言式。 证明:设A是重言式,即A1,因为1的对偶式是0,由对偶 原理知A*0。所以A*是矛盾式;设A是矛盾式,即A0, 而0的对偶式是1,所以A*1。所以A*是重言式。
第1章 命题逻辑
⑵验证 A(¬ q,¬ p,¬ r)¬ A*(p,q,r)
A(¬ q,¬ p,¬ r)(¬ p∨¬ q)∧¬ r ¬ ((p∧q)∨r) ¬ A*(p,q,r)
第1章 命题逻辑
定理1.7.2 (对偶原理)设p1,p2,„,pn是出现在公式 A和B中的所有原子变元,如果AB,则A*B* 证明:因为 AB 所以 A(p1,p2,…,pn)↔B(p1,p2,…,pn)是重言式。 根据定理1.4.2(公式置换),在上述重言式中用¬ i置换 pi, p i=1, …,n,所得的公式仍为重言式,即 A(¬ 1,¬ 2,…,¬ n)↔B(¬ 1,¬ 2,…,¬ n)是重言式。 p p p p p p 所以 A(¬ 1,¬ 2,…,¬ n)B(¬ 1,¬ 2,…,¬ n) p p p p p p 由定理1.7.1¬ A*(p1,p2,…,pn)¬ B*(p1,p2,…,pn) 即: ¬ A*¬ B* 由双条件否定等价式知 A*B*
第1章 命题逻辑
⑴ 对A指定真值T,若由此推出B的真值不为F,而为T, 则A→B是重言式,即AB。 ⑵ 对B指定真值F,若由此推出A的真值不为T,而为F, 则A→B是重言式,即AB。 【例1.31】推证¬ p∧(p∨q)q 解:证法1: 假定¬ p∧(p∨q)为T¬ p为T且p∨q为Tp为F且p∨q为 Tq为T。 所以 ¬ p∧(p∨q)q 证法2: 假定q为F, ① 当p为T时,¬ p为F,所以¬ p∧(p∨q)为F。 ② 当p为F时,(p∨q)为F,所以¬ p∧(p∨q)为F。 故 ¬ p∧(p∨q)q
第1章 命题逻辑
等价式和蕴含式有下面的关系。 定理1.7.3 设A,B为任意两个命题公式,则AB的充分必要 条件是AB且BA 证明:设AB,下证AB且BA 因为AB,所以A↔BT 由双条件等价式得 (A→B)∧(B→A)A↔BT 因而A→B与B→A都是重言式,故有AB且BA。 设AB且BA,下证AB。 因为AB且BA,所以A→B与B→A都是重言式,重 言式的合取也是重言式,即 (A→B)∧(B→A)T 再由双条件等价式得 (A↔B)(A→B)∧(B→A)T 即A↔B为重言式,故有AB。
第1章 命题逻辑
根据此定理,以前学过的所有等价式都可以作两个蕴 含式来使用。 例 如 吸 收 律 A∨(A∧B)A 可 以 作 两 个 蕴 含 式 A∨(A∧B)A和AA∨(A∧B) 来使用。
第1章 命题逻辑
定理1.7.4 设A、B、C为合式公式。 ⑴ AA (即蕴含是自反的) ⑵ 若AB且A为重言式,则B必为重言式。 ⑶ 若AB且BC,则AC (即蕴含是传递的) ⑷ 若AB且AC,则AB∧C ⑸ 若AB且CB,则A∨CB ⑹ 若AB,C是任意公式,则 A∧CB∧C 证明:仅证明 ⑸。 因为AB,CB, 所以A→BT,C→BT (A∨C)→B¬ (A∨C)∨B(¬ A∧¬ C)∨B (¬ A∨B)∧(¬ C∨B)(A→B)∧(C→B)T∧TT 由等价的传递性,(A∨C)→BT,故A∨CB
1.7.2蕴含式
定义1.7.2 设A和B是命题公式,若A→B是重言式,则称A蕴 含B,记为AB。 根据定义可以用真值表或等价演算证明AB。
AB定义为:A→B为重言式。又由条件命题的定义知,仅在 AT,BF时,A→B为假,其余情况都为真。故要证明AB, 只需排除AT,BF的情况。于是就有了证明AB的两种方 法:
第1章 命题逻辑
p q¬ (p↔q) p↑q¬ (p∧q) p↓q¬ (p∨q) 所以¬ ,∧,∨,→,↔是全功能联结词集。 利用下列2个等价式可将任何命题公式中的命题联结词 “→”和“↔”去掉。 p→q¬ p∨q p↔q(p→q)∧(q→p)(¬ p∨q)∧(¬ q∨p) 所以¬ ,∧,∨是全功能联结词集。 用德摩根律可证明¬ ,∧和¬ ,∨分别都是全功 能联结词集。 可以证明∧,∨,→,↔不是全功能联结词集。
第1章 命题逻辑
关于对偶式有以下两个结论。 定理1.7.1 设A*是A的对偶式,p1,p2,…,pn是出现在A和 A*中的原子变元,则 ¬ 1,p2,…,pn)A*(¬ 1,¬ 2,…,¬ n) A(p p p p A(¬ 1,¬ 2,…,¬ n)¬ p p p A*(p1,p2,…,pn) 【例1.28】设命题公式A(p,q,r)(p∨q)∧r,试用此公式验证 定理1.7.1的有效性。 证明:⑴验证 ¬ A(p,q,r)A*(¬ ¬ ¬ p, q, r) A(p,q,r)(p∨q)∧r ¬ A(p,q,r)¬ ((p∨q)∧r)(¬ p∧¬ q)∨¬ r A*(p,q,r)(p∧q)∨r A*(¬ ¬ ¬ p, q, r)( ¬ p∧¬ q)∨¬ r 所以,¬ A(p,q,r) A*(¬ q,¬ p,¬ r)
相关文档
最新文档