必修3算法初步复习

合集下载

高中必修三数学第一章算法初步

高中必修三数学第一章算法初步

第一章 算法初步一、选择题1.如果输入3n ,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5D .程序出错,输不出任何结果 2.算法:此算法的功能是( ). A .输出a ,b ,c 中的最大值 B .输出a ,b ,c 中的最小值 C .将a ,b ,c 由小到大排序D .将a ,b ,c 由大到小排序3.右图执行的程序的功能是( ). A .求两个正整数的最大公约数B .求两个正整数的最大值C .求两个正整数的最小值D .求圆周率的不足近似值 4.下列程序: INPUT “A =”;1 A =A *2 A =A *3 A =A *4 A =A *5 PRINT A(第1题)(第2题)(第3题)END输出的结果A 是( ). A .5B .6C .15D .1205.下面程序输出结果是( ).A .1,1B .2,1C .1,2D .2,26.把88化为五进制数是( ). A .324(5)B .323(5)C .233(5)D .332(5)7.已知某程序框图如图所示,则执行该程序后输出的结果是( ). A .1- B .1C .2D .12(第5题)(第7题)8.阅读下面的两个程序:甲 乙对甲乙两程序和输出结果判断正确的是( ).A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同9.执行右图中的程序,如果输出的结果是4,那么输入的 只可能是( ).A .-4B .2C .2 或者-4D .2或者-410.按照程序框图(如右图)执行,第3个输出的数是( ). A .3 B .4 C .5 D .6二、填空题(第8题)(第9题)11.960与1 632的最大公约数为 .12.如图是某个函数求值的程序框图,则满足该程序的函数解析式为 _________.13.执行下图所示的程序,输出的结果为48,则判断框中应填入的条件为 .(第13题)14.下列所画流程图是已知直角三角形两条直角边a ,b 求斜边的算法,其中正确的是 .(写出正确的序号)(第12题)15.流程图中的判断框,有1个入口和 个出口. 16.给出以下问题:①求面积为1的正三角形的周长; ②求键盘所输入的三个数的算术平均数; ③求键盘所输入的两个数的最小数;④求函数⎩⎨⎧=22)(x x x f 当自变量取x 0时的函数值.其中不需要用条件语句来描述算法的问题有 . 三、解答题17.编写一个程序,计算函数f (x )=x 2-3x +5当x =1,2,3,…,20时的函数值.,x ≥3,x <318.编写程序,使得任意输入的3个整数按从大到小的顺序输出.19.编写一个程序,交换两个变量A和B的值,并输出交换前后的值.20.编写一个程序,计算两个非零实数的加、减、乘、除运算的结果(要求输入两个非零实数,输出运算结果).参考答案一、选择题1.C解析:本题通过写出一个算法执行后的结果这样的形式,来考查对算法的理解及对赋值语句的掌握.2.B解析:此算法为求出a,b,c中的最小值.3.A解析:本题通过理解程序语言的功能,考查求两个正整数最大公约数的算法.4.D解析:A=1×2×3×4×5=120.5.B解析:T=1,A=2,B=T=1.6.B解析:∵88=3×52+2×5+3,∴88为323(5).7.A解析:本题以框图为载体,对周期数列进行考查.数列以3项为周期,2 010除以3余数为0,所以它与序号3对应相同的数.8.B解析:结果均为 1+2+3+…+1 000,程序不同.9.B解析:如x≥0,则x2=4,得x=2;如x<0,则由y=x,不能输出正值,所以无解.10.C解析:第一个输出的数是1;第二个输出的数是3;第三个输出的数是5.二、填空题11.96.解析:(1 632,960)→(672,960)→(672,288)→(384,288)→(96,288)→(96,192)→(96,96).12.f (x )=⎩⎨⎧0 ,4- 50<,32x x x x -解析:根据程序框图可以知道这是一个分段函数. 13.答案:i ≥4?. 解析:根据程序框图分析:可知答案为i ≥4?. 14.①.解析:③、④选项中的有些框图形状选用不正确;②图中的输入变量的值应在公式给出之前完成.15.2.解析:判断框的两个出口分别对应“是”(Y)或“否”(N). 16.①②.解析:③④需用条件语句. 三、解答题 17.程序:(如图)18.第一步,输入3个整数a ,b ,c .第二步,将a 与b 比较,并把小者赋给b ,大者赋给a .第三步,将a 与c 比较.并把小者赋给c ,大者赋给a ,此时a 已是三者中最大的.≥ (第17题)第四步,将b 与c 比较,并把小者赋给c ,大者赋给b ,此时a ,b ,c 已按从大到小的顺序排列好.第五步,按顺序输出a ,b ,c . 程序:(如下图所示)19.程序:20.程序:。

高中数学必修3知识点总结

高中数学必修3知识点总结

高中数学必修3知识点一:算法初步1:算法的概念(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.2:程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

②构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

高一数学必修三算法初步复习提纲+习题

高一数学必修三算法初步复习提纲+习题

高一数学必修三算法初步复习提纲+习题第十一章算法初步与框图(理)一、知识网络算法概念算法与程序框图框图的逻辑结构输入语句顺序结构循环结构条件结构算法初步循环语句算法语句条件语句输出语句赋值语句算法案例二、大纲要求1.算法的含义、程序框图(1)理解算法的含义和算法的思想(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句dd输入语句、输出语句、赋值语句、条件语句、循环语句的含义.三、复习指南本章是新增内容,多以选择题或填空题形式考查,常与数列、函数等知识联系密切.考查的重点是算法语句与程序框图,以基础知识为主,如给出程序框图或算法语句,求输出结果或说明算法的功能;或写出程序框图的算法语句,判断框内的填空等考查题型.难度层次属中偏低.※知识回顾1.算法的概念:算法通常是指按一定规则解决某一类问题的明确和有限的步骤.2.程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.程序框图的三种基本逻辑结构是顺序结构、条件结构和循环结构。

4算法的描述方法包括:自然语言、程序框图和程序语言。

5.算法的基本特征:① 清晰性:算法的每一步都清晰;② 排序:算法的“前一步”是“下一步”的前提,“下一步”是“前一步”的延续;③ 有限性:算法必须在有限的步骤内完成任务,不能无限期地继续;④ 通用性:算法应该能够解决某类问题第一节算法与程序框图※典型案例分析例1.如图所示是一个算法的程序框图,则该程序框图所表示的功能是分析:首先理解每个程序框的含义,输入数字a、B和C,然后判断a和B的大小。

如果B小,则将B分配给a,否则执行下一步,即判断a和C的大小。

如果C小,则将C分配给a,否则执行下一步,使输出a为a的最小值,因此,程序框图的功能是找出a、B和C的最小值评注:求a,b,c三个数中的最小值的算法设计也可以用下面程序框图来表示.例2以下程序框图所示的算法函数是()(1)计算奇数小于100的连续乘积;(2)从1开始计算连续奇数的连续积;(3)计算从1开始的连续奇数的连续积。

高中数学必修三算法初步知识点讲解

高中数学必修三算法初步知识点讲解

高中数学必修三算法初步知识点讲解前言在现代社会中,算法是极其重要的。

无论是互联网公司的搜索引擎、电子商务平台,还是金融市场的投资分析、量化交易,都离不开算法的支持。

因此,在高中阶段学习并掌握一些基础的算法,不仅能提高数学素养和思维能力,还有利于今后的学习和工作。

本文就是要介绍高中数学必修三中一些初步的算法知识点。

下面将分别从排序算法、查找算法和递推算法三个方面展开讲解,以帮助读者加深对算法的理解和掌握。

排序算法冒泡排序冒泡排序是一种基础的排序算法,其思路是通过不断地交换相邻元素的位置,将大的元素逐渐往后移动。

具体实现过程如下:1.从第一个元素开始,一直到倒数第二个元素,依次比较相邻元素的大小。

2.如果前一个元素大于后一个元素,则交换它们的位置。

3.重复以上步骤,直到没有需要交换的元素为止。

冒泡排序的时间复杂度为O(n2),因此对于较大的数据集来说,效率较低。

选择排序选择排序是另一种基础的排序算法,其思路是每次选出剩下元素中最小的一个,放在已排好序的部分的末尾。

具体实现过程如下:1.从第一个元素开始,一直到倒数第二个元素,依次找出剩下元素中的最小值。

2.将找出的最小值与当前位置的元素进行交换。

3.重复以上步骤,直到所有元素都排好序。

选择排序的时间复杂度为O(n2),与冒泡排序相同,但是其空间复杂度较低。

插入排序插入排序是一种简单而有效的排序算法,它类似于整理扑克牌的过程,将未排序的部分依次插入已经排序的部分。

具体实现过程如下:1.从第二个元素开始,将其与已经排好序的部分进行比较。

如果它小于前面的元素,则将它插入到前面的合适位置。

2.重复以上步骤,直到所有元素都排好序。

插入排序的时间复杂度为O(n2),但是对于小规模数据集,效率较高。

查找算法顺序查找顺序查找是一种基础的查找算法,其思路是从头到尾依次查找目标元素。

具体实现过程如下:1.从第一个元素开始,逐个与目标元素进行比较。

2.如果找到目标元素,则返回对应位置的索引值。

高二数学必修3第一章算法初步知识点:算法的概念知识点总结

高二数学必修3第一章算法初步知识点:算法的概念知识点总结

高二数学必修3第一章算法初步知识点:算法的概念知识点
总结
知识点的掌握是提高能力的必备条件。

小编准备了高二数学必修3第一章算法初步知识点,希望能帮助到大家。

1、算法概念:
在数学上,现代意义上的算法通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 2. 算法的特点:
(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
以上是
高二数学必修3第一章算法初步知识点的全部内容,更多精彩内容请持续关注。

(完整版)高中数学必修三算法初步复习(含答案).docx

(完整版)高中数学必修三算法初步复习(含答案).docx

算法初步章节复习一.知识梳理算法概念算法与程序框图顺序结构框图的逻辑结构循环结构输入语句条件结构算循环语句法初算法语句条件语句步输出语句赋值语句算法案例1、算法的特征:①有限性:算法执行的步骤总是有限的,不能无休止的进行下去②确定性:算法的每一步操作内容和顺序必须含义确切③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定时间内可以完成2、程序框图的三种基本逻辑结构:顺序结构、条件结构和循环结构。

3、基本语句:输入语句: INPUT“提示内容” ;变量,兼有赋值功能输出语句: PRINT“提示内容” ;表达式,兼有计算功能赋值语句:变量=表达式,兼有计算功能条件语句: IF条件THEN IF条件THEN语句体语句体ELSE END IF语句体END IF循环语句:( 1)当型( WHILE 型)循环:(2)直到型(UNTIL型)循环:WHILE条件DO循环体循环体WEND LOOP UNTIL条件4. 常用符号运算符号:加____,减 ____,乘 ____,除 ____,乘方 ______,整数取商数 ____ ,求余数 _______.逻辑符号:且AND ,或 OR,大于 >,等于 =,小于 <,大于等于 >=,小于等于 <=,不等于 <>.常用函数:绝对值ABS() ,平方根SQR()5.算法案例(1)辗转相除法和更相减损术 : 辗转相除法和更相减损术都是求两个正整数的最大公约数的方法(2)秦九韶算法 :是求多项式值的优秀算法 .二、精1.将两个数 A =9, B= 15 交使得 A = 15, B= 9 下列句正确的一是()A. B. C. D.A =B A =C B= A C=BB = A C=B A = B B=AB =A A= C2、如所示程序,若入 8 ,下程序行后出的果是()A 、0.5B、 0.6C、 0.7 D 、0.8INPUT t a=0i=1IF t<= 4 THEN j=1WHILE i<8c=0.2WHILE j<=5i=i+2ELES a=(a+j) MOD 5s=2※I+3c=0.2+0.1(t - 3)j=j+1WENDEND IF WEND PRINT sPRINT c PRINT a ENDEND END2343. 上程序运行后出的果()A. 50B. 5C. 25D. 04、上程序运行后的出果()A.17B.19C.21D.235、如右所示 ,甲乙两程序和出果判断正确的是()甲: INPUT i=1乙: INPUT I=1000A .程序不同果不同 B. 程序不同,果相同S=0S=0WHILE i ≤ 1000DO C.程序相同果不同 D .程序同,果S=S+i S=S+ii=i+l I=i一 1WEND Loop UNTIL i<1PRINT S PRINT SEND END6.下列各数中最小的数是()A .85(9)B.210( 6)C. 1000( 4)D. 111111(2)7.二制数 111011001001 (2)的十制数是()A. 3901 B . 3902 C . 3785D. 39048、下面的中必用条件构才能的个数是()(1)已知三角形三,求三角形的面;(2)求方程 ax+b=0(a,b 常数 ) 的根;(3)求三个数 a,b,c 中的最大者;(4)求 1+2+3+⋯ +100 的。

人教版高中数学必修三 第一章 算法初步算法初步的归纳总结

人教版高中数学必修三 第一章 算法初步算法初步的归纳总结

算法初步的归纳总结随着计算机科学和信息技术的发展,算法已经渗透到人们的方方面面,算法思想有助于我们理解数学与计算机技术的关系,促进数学思想及计算机技术的发展。

在必修3第二章算法初步的内容主要是算法的基本思想、算法的基本结构及设计、排序问题和几种基本语句。

1、对算法的基本思想的学习可以根据书本的例题及平时生活中的实例从而了解算法是解决某类问题的一系列步骤或程序。

学习和理解算法的必要性,体会一个问题可能存在多种算法,有优劣之分,并且要在有限步骤内解决问题,对二分法要有初步认识。

如P91练习2.2(必修3)中的分油问题就需要用尽可能少的步骤来解决,而且存在多种方法。

通过以上的方法就能加深对算法基本思想的理解。

2、算法的基本结构及设计首先介绍顺序结构与选择结构。

了解按照依次执行的算法是“顺序结构”,而需要进行判断,判断的结果决定后面的步骤,这样的结构是“选择机构”。

在学习选择结构时可通过判断“一年是不是闰年”的例题加深记忆,注意开始结束框、处理框、指向线和输入输出框的形式和格式,学会使用流程图描述算法。

接着介绍算法中的重要概念——边量,以及如何给变量赋值,学习将常数赋予变量,将含其他变量的表达式赋予变量,将含有变量自身的表达式赋予变量,理解这些赋值方式的意义,切实学会通过赋值的方式改变变量的值。

再介绍的循环结构是算法的另一种重要结构。

了解什么是循环体,循环变量和循环的终止条件。

在使用循环来描述算法时要先确定循环变量和初始条件;确定算法中反复执行的部分——循环体;最后确定循环的终止条件。

在P108例10(必修3)中第二步就是确定循环变量和初始条件,设下标i为循环变量,3为i的初始值。

第二步确定循环体,算法中反复执行部分为:A i=A i-1+A i-2 ,输出A i。

最后一步确定终止条件当i>50时,算法结束。

并由此作出算法流程图。

再以此方法画出二分法算法的流程图就能大大加深印象。

3、排序问题主要讲的两种排序算法:直接插入排序算法和冒泡排序算法。

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术

高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术

高二数学必修3 第一章算法初步知识点:展转相除法与更相减损术高二数学关于知识点的掌握的要求是比较高的。

小编准备了高二数学必修 3 第一章算法初步知识点,希望能帮助到大家。

1.3.1 展转相除法与更相减损术1、展转相除法。

也叫欧几里德算法,用展转相除法求最大条约数的步骤以下:( 1):用较大的数m 除以较小的数n 获得一个商S和一个余数R;( 2):若R=0,则 n 为 m, n 的最大条约数;若R0,则用除数 n 除以余数 0R获得一个商1S和一个余数1R;( 3):若1R=0,则1R 为 m, n 的最大条约数;若1R0,则用除数R除以余数1R获得一个商2S和一个余数2R;挨次计算直至nR=0,此时所获得的1nR 即为所求的最大条约数。

2、更相减损术我国初期也有求最大条约数问题的算法,就是更相减损术。

在《九章算术》中有更相减损术求最大条约数的步骤:可半者半之,不行半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:( 1):随意给出两个正数;判断它们能否都是偶数。

假如,用 2 约简;若不是,履行第二步。

(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。

连续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大条约数。

例 2 用更相减损术求98 与 63 的最大条约数 . 剖析:(略)3、展转相除法与更相减损术的差异:(1)都是求最大条约数的方法,计算上展转相除法以除法为主,更相减损术以减法为主,计算次数上展转相除法计算次数相对较少,特别当两个数字大小差异较大时计算次数的差异较显然。

语文课本中的文章都是优选的比较优异的文章 ,还有许多名家名篇。

假如有选择顺序渐进地让学生背诵一些优异篇目、出色段落 ,对提升学生的水平会大有裨益。

此刻 ,许多语文教师在剖析课文时 ,把文章解体的支离破裂 ,总在文章的技巧方面下功夫。

结果教师费力 ,学生头疼。

剖析完以后 ,学生见效甚微 ,没过几日便忘的干干净净。

高中数学必修三:知识点

高中数学必修三:知识点

必修3:知识点一:算法初步 1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. (2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。

③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

2: 程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,5、在图形符号内描述的语言要非常简练清楚。

3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。

如在示意图中,A 框和B 框是依次执行的,只有在 执行完A 框指定的操作后,才能接着执行B 框所指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。

高三数学必修三算法知识点

高三数学必修三算法知识点

高三数学必修三算法知识点一、算法概述算法是指解决问题的一系列明确指令的有限序列。

在高三数学必修三中,算法是解决数学问题的基本工具,它可以用来求解数值计算问题、优化问题以及数学模拟等。

二、二分法1. 概述:二分法是一种通过将问题分解为更小的子问题进行求解的算法。

它适用于有序列表的搜索和函数求根等计算问题。

2. 原理:二分法的基本思想是不断将搜索范围缩小一半,通过将目标值与中间值进行比较,逐步逼近目标值。

3. 实例:求解有序列表中某个元素的位置。

三、迭代法1. 概述:迭代法是一种通过不断逼近目标值的方法来求解问题的算法。

它适用于函数求解、线性方程组求解、递归关系求解等问题。

2. 原理:迭代法的基本思想是通过不断迭代计算的方式,逐步逼近目标值。

通常通过设置初始值和递推公式来实现迭代。

3. 实例:使用牛顿迭代法求解方程的根。

四、贪心法1. 概述:贪心法是一种通过每一步选择当前最优解来求解问题的算法。

它适用于某些优化问题,如最小生成树、背包问题等。

2. 原理:贪心法的基本思想是每一步都选择当前最优解,以期望整体解能够达到最优。

贪心法通常需要证明某种贪心策略的正确性。

3. 实例:使用贪心法求解背包问题。

五、动态规划1. 概述:动态规划是一种通过将问题分解为相互重叠的子问题,并保存子问题的解来求解问题的算法。

它适用于具有重叠子问题和最优子结构性质的问题。

2. 原理:动态规划的基本思想是通过解决子问题的方式,逐步构建最优解。

动态规划一般需要设计递推关系和确定初始条件。

3. 实例:使用动态规划求解最长公共子序列问题。

六、快速排序1. 概述:快速排序是一种通过将数组分为两个子数组并对每个子数组进行排序来实现整体排序的算法。

它是一种高效的排序算法。

2. 原理:快速排序的基本思想是选择基准元素,将数组分为小于基准元素和大于基准元素的两部分,然后递归地对这两部分进行排序。

3. 实例:使用快速排序对数组进行排序。

七、图论算法1. 概述:图论算法是解决图相关问题的一类算法。

高中数学必修三算法初步知识点讲解-教育文档

高中数学必修三算法初步知识点讲解-教育文档

高中数学必修三算法初步知识点讲解一、考点(必考)概要:1、算法的概念:①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。

②算法的五个重要特征:ⅰ有穷性:一个算法必须保证执行有限步后结束;ⅱ确切性:算法的每一步必须有确切的定义;ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。

所谓0个输入是指算法本身定出了初始条件。

ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。

没有输出的算法是毫无意义的。

2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法(1)程序框图的基本符号:(2)画流程图的基本规则:①使用标准的框图符号②从上倒下、从左到右③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点④判断可以是两分支结构,也可以是多分支结构⑤语言简练⑥循环框可以被替代3、三种基本的逻辑结构:顺序结构、条件结构和循环结构(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

(2)条件结构:分支结构的一般形式两种结构的共性:①一个入口,一个出口。

特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。

②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。

以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)(3)循环结构的一般形式:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

循环结构又称重复结构,循环结构可细分为两类:①如左下图所示,它的功能是当给定的条件成立时,执行A 框,框执行完毕后,再判断条件是否成立,如果仍然成立,再执行A框,如此反复执行框,直到某一次条件不成立为止,此时不再执行A框,从b离开循环结构。

人教版高中数学必修三第一章算法初步复习课件

人教版高中数学必修三第一章算法初步复习课件

例1. 已知算法如下:
(1)指出其功能(用算式表示);
输入x
(2)将该算法用程序框图来描述.
(1) 输入实数 x ;


x0
(2) 若x<0,执行(3);否则,执行(6);
(3) y x 1 ; (4) 输出y;
y x 1
x0
(5) 结束;

(6) 若x=0,执行(7);否则执行(10); (7) y 0 ;
例5.课本P119 例8
三、课堂小结
1.先进行算法分析,再根据算法作出程序框图. 2.分析是否要用条件结构和循环结构. 3.程序框图的四种类型.
四、课外作业
1.下列关于基本逻辑结构说法正确的是 ( ) (A)一个算法一定含有顺序结构 (B)一个算法一定含有选择结构 (C)一个算法一定含有循环结构 (D)以上说法均不对 2.下面的程序框图是循环结构的是( )
条件M

A

A
B
指令A
指令B

条件M

A

条件M





(A) ①②
(B) ②③
(C) ③④
(D) ②④
3.下列流程图的运行结果是( )
(A) 2
(B) 2.5
(C) 3 (D) 4
开始
开始
a 2,b 4
输入x、y
Tx
S a b ba
(1) y T
输出S
输出x、y
结束
结束
(第3题)
(第4题)
4. 右上图功能是交换两个变量的值并输出,则流程图中①处应为_______.
5. 课本P120 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开始
输入a,b t=a ① b=t 输出a,b
INPUT ―a,b‖ a,b
a=a+b b=a-b PRINT a,b
*按照算法顺序依次执行即可
结束
图1
图2
考点训练3:条件结构
给出下列程序框图,欲输出给定两实数a,b中的较大 的数,则判断框内应填写的条件是———————— a>b (或a≥b)
开始 输入a,b
一、顺序结构:按顺序处理流程 二、条件结构:按条件是否成立 处理流程
(1)
否 满足条件? 是 语句体
输入n i=1
S=0
i=i+1
(2)
否 满足条件? 是 语句体1 语句体2
i≤n? 否 输出S 结束
S=S+i2 是
思考2 :该程序框图包含算法的哪些 开始 基本逻辑结构?
三、循环结构:按条件是否成立 输入n 执行循环体 i=1 直到型循环结构 当型循环结构 S=0
n-1
=
= ((an x + an-1 )x + an-2 )x + + a1)x + a 0
f ( x) ((an x an1 ) x an2 ) x a1 ) x a0
要求多项式的值,应该先算最内层的一次多项式的值,即
v0 an v1 an x an1 v2 v1 x an2 v3 v2 x an3 vn vn1 x a0
n=r r=0? 否
1813=333×5+148
333=148×2+37 148=37×4+0

(2)算法步骤
第一步:输入两个正整数m,n(m>n). 第二步:计算m除以n所得的余数r. 第三步:m=n,n=r. 第四步:若r=0,则m,n的最大公约数等于m; 否则转到第二步.
第五步:输出最大公约数m.
第一步:输入多项式次数n、最高次项的系数an和x的值. 第二步:将v的值初始化为an,将i的值初始化为n-1. 第三步:输入i次项的系数ai 第四步:v=vx+ai, i=i-1. 第五步:判断i>=n?,若是,则执行第三步;否则, 输出多项式的值v.

是 输出a 结束

输出b
考点训练3:条件结构
阅读ቤተ መጻሕፍቲ ባይዱ序,写出该程序表示的函数.
INPUT ―x=‖; x IF x<0 THEN x 2 ( x 0) 结构的 y=x^2 嵌套 ELSE y 0 ( x 0) IF x=0 THEN y=0 x ( x 0) ELSE y=SQR(x) *解决此类问题首先对问 END IF 题的条件进行判断,然后 END IF 根据条件是否成立决定不 PRINT ―y=‖;y 同的流向. END
知识网络:
算法与 程序框图
算法
程序框图
算法的基本 逻辑结构
顺序结构 条件结构 循环结构
算 法 初 步
输入,输出,赋值语句
基本算法语句
条件语句 循环语句 辗转相除法与更相减损术
算法案例
秦九韶算法 进位制
引例:以下是某个算法的具体步骤以及程序框图. 思考1 :程序框图中的不同图形 符号分别表示什么? 开始
(3)程序框图
(4)程序
INPUT “m,n=”;m,n
DO r=m MOD n m=n n=r
开始 输入m,n
r=m MOD n
m=n n=r 否
r=0?
是 输出m 结束
LOOP UNTIL r=0
PRINT m END
2、更相减损术
1.算理:
就是对于给定的两个数,用大 数减小数,然后将差和小数构 成新的一对数,再用大数减小 数,反复执行此步骤直到差和 小数相等,此时相等的两数便 为原来两个数的最大公约数
98-63=35 63-35=28 35-28=7 28-7=21 21-7=14 14-7=7
故98与63的最大 公约数是7
2.算法步骤
第一步:输入两个正整数a,b(a>b);
第二步:若a不等于b ,则执行第三步;否则转 到第五步; 第三步:把a-b的差赋予r;
第四步:如果b>r, 那么把b赋给a,把r赋给b;否 则把r赋给a,执行第二步; 第五步:输出最大公约数b.

WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件
思考4:还有哪些基本算法语句?
输入语句 INPUT ―提示内容”;变 量 赋值语句 变量=表达式 条件语句 (1)IF 条件 THEN 语句体 END IF
循环语句
(2)IF 条件 THEN WHILE 条件 DO 语句体1 循环体 循环体 ELSE WEND LOOP UNTIL 条件 语句体2 END IF 输出语句 PRINT ―提示内容”;表达 式
算法: 第一步,输入正整数n 输入n i=1 S=0 i=i+1 S=S+i2 i≤n? 否 输出S
第二步,令i=1,S=0.
第三步,若i ≤n,则执 行第三步;否则,输 出S,结束算法. 第四步,S=S+i2.
第五步,i=i+1,返回 第二步.

结束
思考2 :该程序框图包含算法的哪些 开始 基本逻辑结构?
练习:求结果
(3+5)*5 MOD 2 + 2*3*SQR(4)^2
考点训练1:算法的理解
下列关于算法的说法,正确的个数有( C ) ① 求解某一类问题的算法是唯一的;
② 算法必须在有限步操作之后停止;
③ 算法的每一步操作必须是明确的,不能有歧义或模糊; ④ 算法执行后一定产生确定的结果. (A)1 (B)2 (C)3
(D)4
• 算法是指按照一定规则解决某一类问题的程序 或步骤,这些程序或步骤必须是明确的和有效 的,而且能够在有限步之内完成.
考点训练2:顺序结构 (1)右图1的程序框图作 用是交换两个变量的值 并输出,则①处应 为 a=b .
(2)阅读图2中的程序, 当输入 a=3,b=-5时 -2,3 输出结果为_______.
输入、输出语句; 赋值语句; 条件语句IF - THEN ; IF –THEN – ELSE 循环语句:WHILE 语句; UNTIL 语句.
案例1 辗转相除法与更相减损术
案例2 秦九韶算法
案例3 进位制
1、辗转相除法(求两个数的最大公约数) 1.算理: m=n×q+r 8251=6105×1+2146 对于给定的两个数,用大 数除以小数.若余数不为 6105=2146×2+1813 零,则将余数和较小的数 2146=1813×1+333 构成新的一对数,继续 上面的除法,直到大数 1813=333×5+148 被小数除尽,则这时较 333=148×2+37 小的数就是原来两个数 的最大公约数。
(1)IF与END IF, DO与LOOP UNTIL, WHILE和WEND 要配对使用,不能夹杂,不能缺一; (2)区分END IF与END:,前者是结束条件语句, 后者是结束整个程序
(3)语句的执行顺序不能随意调换,对变量赋初值也不能随意, 理解程序最好用具体数据进行模拟; (4)各种结构相互之间不要混淆, 如条件语句与循环语句,当型循环与直到型循环等
循环体 循环体
满足条件?
否 是
i=i+1

满足条件?

先判断后执行
先执行后判断
i≤n? 否 输出S 结束
S=S+i2 是
循环体
思考3:你能根据程序框图写出相应程序语句么?
开始
INPUT ―n=‖;n i=1 S=0 WHILE i<=n S=S+i^2 i=i+1 WEND PRINT ―S=‖;S END
148=37×4+0
故8251与6105的最大 公约数是37
辗转相除法是一个反复执行直到余数等于0停止的步骤, 这实际上是一个循环结构。 m=n×q+r
用程序框图表示出右边的过程 8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+333
r=m MOD n
m=n
人数 /人
550 500 450 350 300 200 100 50
145 150 155 160 165 170 175 180 185 190 195
输入A1、 A2 … Am i=4, s=0 i=i+1 s=s+Ai 否 输出s 结束 是
身高 /cm
课堂小 结:
1、3种算法表示方法: 自然语言,程序框图,算法语句 2、3种算法的逻辑结构: 顺序结构、 条件结构、循环结构 3、5个基本算法语句:
*阅读程序时
应注意WHILE 语句和UNTIL 语句分别对应 着当型和直到 型循环结构.
能力提升:(高考试题)
如图是某市参加2007年高考的学生身高条形统计图,从 左到右的各条形表示的学生人数依次记为A1、 A2 、 „ 、 Am(如A 2表示身高(单位:cm)在[150,155)内的学生 人数).右图是统计图中身高在一定范围内学生人数的 一个程序框图.现要统计身高在160~180(含160,不含 180)的学生人数,那么在程序框图中的判断框内应填写 开始 的条件是 。 i<8?
k ≤ 50?

否 输出S 结束
S S 2k
k k 1
(2)读懂判断条件;( 3)循环体执行的次数.
考点训练4:循环结构
如图的程序框图表示的是 输出1x3x5x……x i ≥100 的最小的i值,则判断框内应 填入的条件是_______
S ≥100?
相关文档
最新文档