2012数学建模A题答案

合集下载

2012年全国大学生数学建模竞赛A题国一

2012年全国大学生数学建模竞赛A题国一
葡萄酒的评价模型
摘要
在问题一中,首先根据 T 检验、方差显著性检验和 Wilcoxon 秩和检验对两组评酒 员给葡萄酒的评价结果的差异的显著性检验。在大多数评酒员评分可靠的假设下,分别 利用评分方差比较模型,说明第二组结果可靠。在此基础上引入了评酒员“失误度”概 念来衡量每位评酒员与所有评酒员总体评价的差异, 对各组失误度求和得到第二组结果 更可靠。为了进一步优化评酒员评分,利用根据失误度对评酒员排序,跨组选取失误度 最小的 10 位评酒员组成新的评分组,其平均值认为比第二组更可靠,作为整个文章中 评价葡萄酒质量的标准指标。 在问题二中,由于红、白葡萄的理化指标有较大差异,分开考虑红白两种葡萄酒: 对于红葡萄酒,对应问题一得出的葡萄酒质量指标,从三个角度,即外观分析(又分为 由大分子因子决定的澄清度和基于 LAB 色彩模型的色调考虑到指标间存在的竞争关系 采用非线性回归分析和逐步回归分析) 、香气分析(Fisher 线性判别分析)和口感分析 (主成分分析和因子分析) ,后进行异常点检验,逐一剔除异常点来求解酿酒葡萄的量 化指标。对于白葡萄酒的三个指标采用 Fisher 判别分析求解。最后将三个方面得分加权 平均得到酿酒葡萄量化的总分,进行聚类分析,根据聚类分析结果将红葡萄和白葡萄各 分为四级。 在问题三中,为研究酿酒葡萄与葡萄酒的理化指标之间的联系,将葡萄酒的理化指 标用酿酒葡萄的理化指标来表示。根据指标间的相关性,剔除部分相关性不强的指标, 选择部分相关性较好的酿酒葡萄的指标作为自变量, 对不同的葡萄酒指标分别进行多元 线性回归、逐步回归和回归检验。根据指标本身的特点及 AIC 信息统计量,剔除不显著 的自变量,而达到用尽量少的葡萄的理化指标来表示葡萄酒的理化指标的目的。在求解 过程中,建立典型相关分析模型来分析红葡萄酒色泽指标间的关系,利用主成分分析将 白葡萄的多个指标综合为少数几个主成分,再进行回归分析。模型求解结果显示,葡萄 酒的每个指标都能用部分葡萄的指标来线性表示,且具有较好的拟合效果。 在问题四中,为了分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,结合问 题一、二、三的结果以及理化指标和芳香物质的化学意义,综合评估各个广义上的理化 指标(附件二和附件三) ,针对红葡萄酒和白葡萄酒的区别分别在酿酒葡萄和葡萄酒的 理化指标中选取对葡萄酒质量影响较大的指标, 通过线性回归分析将理化指标和葡萄酒 质量进行拟合,从而得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。为进一步 论证结果,首先,对模型进行残差分析以及拟合情况分析;其次,用分组样本检验方法, 将白葡萄酒的 28 个样本数据分成两组,采用用一组进行拟合,另一组进行结果回带分 析的方式,进一步论证用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的可靠性。通过 论证分析得出结论:葡萄和葡萄酒的理化指标可以用来评价葡萄酒的质量,但也有其不 足之处,如当从葡萄酒食用性方便角度考虑,用评酒员评价方法就更直接。 关键词:葡萄酒质量 识别聚类 失误度 非线性回归 逐步回归 Fisher 判别分析 主成 分分析 因子分析 显著性检验 残差分析 异常点检测

2012年全国数学建模竞赛A题第一问数据综合整理

2012年全国数学建模竞赛A题第一问数据综合整理
9.6
0.27
0.516398
第二组
10
9
9
9
8
9
10
9
9
9
91
9.1
0.32
0.567646
酒样品3
第一组
9
10
10
9
8
10
9
10
10
9
94
9.4
0.49
0.699206
第二组
10
9
9
9
8
9
8
9
9
9
89
8.9
0.32
0.567646
酒样品4
第一组
7
9
9
8
7
8
9
8
10
9
84
8.4
0.93
0.966092
0.40
0.632456
酒样品16
第一组
9
10
10
9
8
8
10
9
9
9
91
9.1
0.54
0.737865
第二组
9
9
9
9
9
8
8
9
9
9
88
8.8
0.18
0.421637
酒样品17
第一组
8
10
10
8
11
9
7
10
10
9
92
9.2
1.51
1.229273
第二组
9
9
9
9
9
8
10
9
9
9

2012年数学建模A题资料

2012年数学建模A题资料

(一)葡萄酒观察方法1 酒液总体观察1.1 澄清度观察衡量葡萄酒澄清程度的指标有透明度、浑浊度等,与之相关的指标还有是否光亮、有无沉淀等。

优良的葡萄酒必须澄清、透明(色深的红葡萄酒例外)、光亮。

a.澄清:是衡量葡萄酒外观质量的重要指标。

澄清表示的是葡萄酒明净清澈、不含悬浮物。

通常情况下,澄清的葡萄酒也具有光泽。

b.透明度:表示的是葡萄酒允许可见光透过的程度。

红葡萄酒如果颜色很深,则澄清的葡萄酒也不一定透明。

c.浑浊度:表示的是葡萄酒的浑浊程度,浑浊的葡萄酒含有悬浮物。

葡萄酒的浑浊往往是由微生物病害、酶破败或金属破败引起的。

浑浊的葡萄酒其口感质量也差。

d.沉淀:指的是从葡萄酒中析出的固体物质。

沉淀是由于在陈酿过程中,葡萄酒构成成份的溶解度变小引起的,一般不会影响葡萄酒的质量。

1.2 颜色观察葡萄酒的颜色受酒龄影响,新红葡萄酒由于源于果皮花色素苷的作用,通常颜色鲜艳,为紫红色和宝石红色,带紫色色调;在葡萄酒的成熟过程中,丹宁逐渐与游离花色素苷等结合而使成年葡萄酒带有黄色色调。

瓦红或砖红色为成年红葡萄酒的常有的颜色,而棕红色则为在瓶内陈酿10年以上的红葡萄酒的颜色。

因此,可根据颜色,判断葡萄酒的成熟状况。

葡萄酒的颜色和口感的变化存在着平行性,颜色和口感之间必须相互协调平衡。

颜色的深浅反应葡萄酒的结构、丰满度以及尾味和余味。

如在红葡萄酒中,颜色的深浅与丹宁的含量往往正相关。

如果红葡萄酒颜色深而浓,几乎处于半透明状态,多数情况下它必然醇厚、丰满、丹宁感强。

相反,色浅的葡萄酒,则味淡、味短。

当然,如果较柔和,具醇香,仍不失为好酒。

例如瓦红色的红葡萄酒,必须与浓郁的醇香和柔顺的口感同时存在,否则表明该酒是人工催熟条件下陈酿而未能表现出最佳感官质量。

带紫色的新葡萄酒往往口味平淡、瘦弱、尖酸、粗糙;褐色过重的成年葡萄酒,氧化过重、老化。

1.3 浑浊度观察观察葡萄酒有无下列情况:略失光,失光,欠透明,微混浊,极浑浊,雾状混浊,乳状混浊;1.4 沉淀观察观察葡萄酒有无下列情况:有无沉淀,沉淀类型:纤维状沉淀,颗粒状沉淀,絮状沉淀,酒石结晶,片状沉淀,块状沉淀。

2012年全国数学建模A题参考答案

2012年全国数学建模A题参考答案

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)答案仅供参考:1. 分析附件1中两组评酒员的评价结果有无显著性差异根据表1计算的各取样点葡萄质量综合评分结果, 结合当地气象资料,进行相关普查和回归分析, 挑选出相关性显著, 并通过0. 01显著性检验的11个因子, 果实着色期平均最低气温(Tn45 )、果实着色期平均日较差(D45 )、果实着色期平均相对湿度(U45 )、果实着色期降水量(R 45 )、果实着色期水热系数(K 45 )、全生育期平均相对湿度(Ug )、全生育期降水量(Rg )、全生育期水热系数(Kg )、7~ 8月份降水量(R 7- 8 )、日照时数( S7- 8 )、水热系数(K 7- 8 )。

利用DPS3. 01 数据处理系统对这些影响因素进行因子分析, 并进行倾斜旋转( promaxrotation)得到11种影响酿酒葡萄品质气象因子结构如表5。

2012年东北三省数学建模A题参考资料

2012年东北三省数学建模A题参考资料

表4-3 深圳市各年龄组死亡率(1/万)
年龄组 (岁) 合计
015101520253035404550556065-
合计
6034 184 130 55 42 116 191 207 229 324 358 352 338 368 400 405
2009
男性
3644 106 69 36 29 78 122 128 150 227 244 249 224 252 258 240
神经病
1.63 6.52 0.03 0.88 0.00 0.13 0.05 0.57 1.37
循环系统疾 病
8.82 35.33
1.05 33.48
0.39 31.22
3.04 32.82
45.92
心脏病 3.9315.76 0.6922.03 0.2821.94 2.0321.95 28.91
脑血管病 4.8819.57 0.3611.45 0.12 9.29 1.0010.86 17.01
2003 47.55 778.27 150.93 627.34
2004 52.04
800.8 165.13 635.67
2005 57.01 827.75 181.93 645.82
2006 61.37
871.1 196.83 674.27
2007 64.88 912.37 212.38 699.99
传染病、寄 生虫病
0.14 0.54
0.21 6.61
0.05 4.31
0.15 1.61
1.89
肿瘤
6.9227.72 0.9429.96 0.3023.82 2.2924.71 38.13
恶性肿瘤 6.9227.72 0.9429.96 0.3023.82 2.2624.43 38.08

2012高教社杯全国大学生数学建模竞赛全国一等奖A题

2012高教社杯全国大学生数学建模竞赛全国一等奖A题

2011高教社杯全国大学生数学建模竞赛城市表层土壤重金属污染分析摘要本文主要研究重金属对城市表层土壤污染的问题,我们根据题目所给定的一些数据和信息分析并建立了扩散传播模型、权重分配模型、对比模型和转换模型解决问题。

首先,我们利用Matlab 软件拟出该城区地势图(图1),根据所给数据绘出该地区的三维地势及采样点在其上的综合空间分布图。

之后将8种重金属的浓度等高线投影到该地区三维地形图曲面上,接着分别计算8种重金属在五个区域的平均值,立体图和平面图(图1附件)相结合便可得出8种重金属元素在该城区的空间分布。

其次,在确定该城区内不同区域重金属的污染程度时,我们运用两种方法进行解答。

先假设各重金属毒性及其它性质相同,运用公式ijij P C P ='求出各区域各金属相对于背景平均值的比值作为金属污染程度,再运用1ji ij j C C ==∑求出各区域重金属污染程度,并将各区进行比较。

之后,我们加上各重金属的毒性,对各重金属求出权数,再结合国标重金属污染等级和已知的各组数据来确定金属的污染程度。

由上述两种方法的对比,更准确地得出重金属对各区的影响程度。

即: 工业区>交通区>生活区>公园绿地区>山区 并根据第一个模型的数据来说明重金属污染的主要原因。

再次,对重金属污染物的传播特征进行了分析,判断出重金属污染物主要是通过大气、土壤和水流进行传播。

在分析之中,我们得出这三种状态的传播并不是孤立存在的,而是可以相互影响和叠加的,因此,我们分别建立三个传播模型,再对这三个传播模型进行了时间和空间上的拟合,得出重金属浓度最高的区域图,并结合各重金属的分布图(图6)来确定各污染源的位置。

最后,本题中只给出了重金属对土壤的污染,对于研究城市地质环境的演变模式,还需要搜集一些信息(图7)。

根据每种因素对地质环境的影响程度进行由定性到定量的转化。

建立同一地质时期地质环境中各因素的正影响和负影响的权重分配模型,再对这些权重进行验算和修正。

2012年数学建模A题

2012年数学建模A题

葡萄酒质量评定模型摘要葡萄酒质量的评定长久以来都是采用聘请品酒员,通过品酒员对葡萄酒各项指标打分求和来确定葡萄酒的质量。

葡萄酒的价格因品酒员评分高低的不同有显著的差别。

然而在这样的评定方式中人的主观因素对酒质量的评定占主导地位,葡萄酒质量的评定结果存在较大的不确定性。

随着人们对葡萄酒消费的增加及高质量化的追求,建立合理、规范、客观的葡萄酒质量评定模型显得尤为重要。

根据题中给出的相关数据,通过解决以下问题建立葡萄酒质量评定模型。

对于问题一:首先,将题目附录1中的数据经Excel处理,得到每组评酒员对每种酒样品的总分。

然后,对每一种酒样品运用两配对样本的非参数检验(符号秩和检验)对数据进行显著性差异分析,运用MATLAB软件比较各酒样品的两组数据发现两组结果差异显著。

其次,通过Excel求出每一种酒的品酒员所打总分的方差,得到两组品酒员分别对两类葡萄酒的方差走势图(见图1.1、1.2),根据总体方差最小,方差波动较小,确定第二组品酒员的评分更可信。

最后,采用SPSS软件作进一步检验,结果相同即模型合理。

对于问题二,选取一级理化指标作为酿酒葡萄分级参考,对理化指标运用主成分分析法降维,通过MATLAB计算得到红葡萄的主成分有8个,白葡萄的主成分有11个。

综合评分得到的葡萄酒质量影响,红葡萄的影响因素有9个,白葡萄的影响因素有12个。

然后,利用折衷型模糊决策模型,考虑到由主成分分析方法得到的酿酒葡萄的的主成分值在反应酿酒葡萄质量好坏问题上会有一定的偏差,利用三角模糊的表达方式对主成分指标值进行表示,分别将红、白两类酿酒葡萄按隶属度大小排序,在运用聚类分析的方法,利用SPSS软件将葡萄划分为五个等级(见表格2.1)。

对于问题三,数据的庞杂是解决该问题的难点。

我们运用问题二中的主成分分析方法将理化指标转化为几个主成分,并运用MATLAB编程求出具体的主成分数值,然后建立线性回归模型,求解出酿酒葡萄与葡萄酒理化指标主成分之间的相关关系,从而反映出酿酒葡萄与葡萄酒理化指标之间的联系。

2012数模国赛a题

2012数模国赛a题

2012数模国赛a题摘要:一、问题的背景和重要性1.2012 年数学建模国赛简介2.问题A 的出题背景和现实意义二、问题A 的具体内容1.问题A 的题目描述2.问题A 的关键词和难点分析三、解题思路和方法1.对问题A 的题目描述进行理解和抽象2.确定问题A 的研究目标和关键变量3.选择合适的数学模型和计算方法4.对计算结果进行分析和解释四、解题过程中的注意事项1.时间分配和团队合作2.对题目描述和计算方法的理解和选择3.对计算结果的分析和解释五、结论和建议1.对问题A 的解答和总结2.对数学建模竞赛的建议和展望正文:一、问题的背景和重要性2012 年数学建模国赛是我国高校数学建模竞赛中的一项重要赛事,旨在通过解决实际问题,提高学生的数学应用能力和创新能力。

问题A 是本次竞赛中的一道具有现实意义的问题,涉及到城市交通、人口流动等多个方面,对于提高学生的问题分析和解决能力具有很好的促进作用。

二、问题A 的具体内容问题A 的题目描述为:“假设某城市有N 个小区,每个小区的人口数量为P,小区之间的出行需求通过M 条道路连接。

现有一批居民需要从一个小区A 出发,到达另一个小区B。

请问如何规划这些居民的出行路线,使得总的出行时间最短?”三、解题思路和方法首先,我们需要对题目描述进行理解和抽象,明确题目中的关键变量和目标。

在本题中,关键变量包括小区的人口数量、道路的连接情况、居民的出行需求等,目标是最小化居民的出行时间。

其次,我们需要选择合适的数学模型和计算方法。

对于此类问题,常用的方法有最小生成树算法、最短路径算法等。

在本题中,我们选择了Dijkstra 算法来求解最短路径。

最后,我们需要对计算结果进行分析和解释。

在本题中,我们通过计算得到了每个小区到目标小区的最短出行时间,并对结果进行了分析和解释。

四、解题过程中的注意事项在解题过程中,我们需要注意时间分配和团队合作。

由于数学建模竞赛的时间有限,我们需要合理安排时间,确保每个步骤都能按时完成。

2012年高教杯数学建模竞赛a题

2012年高教杯数学建模竞赛a题

2012年高教杯数学建模竞赛A题文章包括以下内容:一、引言1. 对数学建模竞赛的介绍2. 2012年高教杯数学建模竞赛的背景3. A题的重要性和难度二、问题描述1. A题的具体内容和要求2. 问题背景和实际应用三、问题分析1. 对A题中涉及的数学知识和模型进行分析a. 需要运用的数学工具和方法b. 相关参数和变量的定义和意义c. 问题中存在的约束条件和假设2. 对A题中涉及的实际问题进行分析a. 现实场景的相关情况和特点b. 问题的实际意义和应用价值c. 对问题的可行性和局限性进行分析四、问题求解1. 根据问题分析确定相应的数学模型a. 求解问题所需建立的数学模型b. 模型的简化和推导过程2. 运用已知的数学方法和工具解决问题a. 使用数学软件进行模拟和计算b. 运用数学定理和理论进行证明和推演五、结果分析1. 求解结果的展示和分析2. 结果的合理性和可靠性分析3. 结果对实际问题的指导意义和应用价值六、总结与展望1. 对A题求解过程的总结和反思2. 对实际问题的展望和未来研究方向3. 对数学建模竞赛的意义和作用进行总结稿件要求:1. 语言流畅、准确,表达清晰、精炼,逻辑性强2. 论据充分,论证严谨,具有说服力3. 不得抄袭,不得侵犯他人著作权4. 投递稿件时请注明真实尊称和通信方式,以便我们及时与您取得联系注:以上为文章大纲及要求,具体内容请根据实际情况进行撰写。

2012年高教杯数学建模竞赛A题是一个具有挑战性和复杂性的问题,需要参赛者结合数学理论和实际问题进行分析和求解。

在本文中,我们将对A题进行深入的探讨,从问题描述到问题分析再到问题求解,最终得出结果分析和总结展望,全面展示对A题的理解和解决方案。

让我们来看A题的具体内容和要求。

A题涉及一个复杂的实际问题,需要参赛者运用数学工具和方法对其进行建模和求解。

这个问题背景和实际应用是一个现实场景中的情况,问题的实际意义和应用价值是非常明显的。

A题的重要性和难度也就显而易见了。

2012数学建模A 第一问数据分析

2012数学建模A 第一问数据分析

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题葡萄酒的评价
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:
1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?
附件1:葡萄酒品尝评分表(含4个表格)
附件2:葡萄和葡萄酒的理化指标(含2个表格)
附件3:葡萄和葡萄酒的芳香物质(含4个表格)。

2012数学建模A题葡萄酒答案

2012数学建模A题葡萄酒答案

图一的两组红葡萄酒的平均值、和标准差第二组红葡萄酒标准差平均值标准差酒样品1 9.638465 酒样品1 68.1 9.048634 酒样品2 80.3 6.307843 酒样品2 74 4.027682 酒样品3 80.4 6.769211 酒样品3 74.6 5.541761 酒样品4 68.6 10.39444 酒样品4 71.2 6.425643 酒样品5 73.3 7.874713 酒样品5 72.1 3.695342 酒样品6 72.2 7.728734 酒样品6 66.3 4.595892 酒样品7 71.5 10.17895 酒样品7 65.3 7.91693 酒样品8 72.3 6.634087 酒样品8 66 8.069146 酒样品9 81.5 5.739725 酒样品9 78.2 5.072803 酒样品10 74.2 5.51362 酒样品10 68.8 6.014797 酒样品11 61.7 7.91693 酒样品11 61.6 6.168018 酒样品12 53.9 8.924996 酒样品12 68.3 5.012207 酒样品13 74.6 6.703233 酒样品13 68.8 3.910101 酒样品14 73 6 酒样品14 72.6 4.812022 酒样品15 58.7 9.250225 酒样品15 65.7 6.429965 酒样品16 74.9 4.254409 酒样品16 69.9 4.483302 酒样品17 79.3 9.381424 酒样品17 74.5 3.02765 酒样品18 59.9 6.871034 酒样品18 65.4 7.089899 酒样品19 69.4 6.25744 酒样品19 72.6 7.426679 酒样品20 78.6 5.103376 酒样品20 75.8 6.250333 酒样品21 77.1 10.77497 酒样品21 72.2 5.95912 酒样品22 77.2 7.11493 酒样品22 71.6 4.926121 酒样品23 85.6 5.699903 酒样品23 77.1 4.976612 酒样品24 78 8.653837 酒样品24 71.5 3.27448 酒样品25 69.2 8.038795 酒样品25 68.2 6.613118 酒样品26 73.8 5.593647 酒样品26 72 6.44636 酒样品27 73 7.055337 酒样品27 71.5 4.527693图二两组白葡萄酒的平均值、和标准差第一组白葡萄酒第二组白葡萄酒干白品种平均值标准差干白品种平均值标准差酒样品1 82 9.60324 酒样品1 77.9 5.087021 酒样品2 74.2 14.1798 酒样品2 75.8 7.00476 酒样品3 85.3 19.10817 酒样品3 75.6 11.93687 酒样品4 79.4 6.686637 酒样品4 76.9 6.488451 酒样品5 71 11.24475 酒样品5 26.1 5.126185 酒样品6 68.4 12.75583 酒样品6 75.5 4.766783 酒样品7 77.5 6.258328 酒样品7 74.2 1.212265 酒样品8 71.4 13.54991 酒样品8 72.3 5.578729 酒样品9 72.9 9.631545 酒样品9 80.4 10.30857 酒样品10 74.3 14.58348 酒样品10 79.8 8.390471酒样品11 72.3 13.30873 酒样品11 71.4 9.371351 酒样品12 63.3 10.76052 酒样品12 72.4 11.83404 酒样品13 65.9 13.06777 酒样品13 73.9 6.838616 酒样品14 72 10.68748 酒样品14 77.1 3.984693 酒样品15 72.4 11.4717 酒样品15 78.4 7.351493 酒样品16 74 13.34166 酒样品16 53.1 9.06826 酒样品17 78.8 12.00741 酒样品17 80.3 6.201254 酒样品18 73.1 12.51177 酒样品18 76.7 5.498485 酒样品19 72.2 6.811755 酒样品19 76.4 5.103376 酒样品20 77.8 8.024961 酒样品20 43.2 7.07421 酒样品21 76.4 13.14196 酒样品21 79.2 8.024961 酒样品22 71 11.77568 酒样品22 79.4 7.321202 酒样品23 75.9 6.607235 酒样品23 77.4 3.405877 酒样品24 73.3 10.54145 酒样品24 76.1 6.208417 酒样品25 77.1 5.820462 酒样品25 79.5 10.31988 酒样品26 81.3 8.53815 酒样品26 74.3 7.532168 酒样品27 64.8 12.01666 酒样品27 77 5.962848 酒样品28 81.3 8.969702 酒样品28 79.6 5.037636描述统计量N 均值标准差方差统计量统计量标准误统计量统计量VAR00003 27 68.5185 1.50722 7.83174 61.336 VAR00004 27 74.4444 2.24201 11.64980 135.718 VAR00005 27 72.7037 2.70265 14.04338 197.217 VAR00006 27 65.2963 1.44393 7.50290 56.293 VAR00007 27 74.1852 2.64469 13.74223 188.849 VAR00008 27 72.7037 2.13091 11.07254 122.601 VAR00009 27 71.2222 1.51002 7.84628 61.564 VAR00010 27 72.0741 1.95456 10.15619 103.148 VAR00011 27 78.4444 1.23035 6.39311 40.872 VAR00012 0Zscore(VAR00003) 0Zscore(VAR00004) 0Zscore(VAR00005) 0Zscore(VAR00006) 0Zscore(VAR00007) 0Zscore(VAR00008) 0Zscore(VAR00009) 0Zscore(VAR00010) 0Zscore(VAR00011) 0Zscore(VAR00012) 0描述统计量N 均值标准差方差统计量统计量标准误统计量统计量VAR00003 27 68.5185 1.50722 7.83174 61.336 VAR00004 27 74.4444 2.24201 11.64980 135.718 VAR00005 27 72.7037 2.70265 14.04338 197.217 VAR00006 27 65.2963 1.44393 7.50290 56.293 VAR00007 27 74.1852 2.64469 13.74223 188.849 VAR00008 27 72.7037 2.13091 11.07254 122.601 VAR00009 27 71.2222 1.51002 7.84628 61.564 VAR00010 27 72.0741 1.95456 10.15619 103.148 VAR00011 27 78.4444 1.23035 6.39311 40.872 VAR00012 0Zscore(VAR00003) 0Zscore(VAR00004) 0Zscore(VAR00005) 0Zscore(VAR00006) 0Zscore(VAR00007) 0Zscore(VAR00008) 0Zscore(VAR00009) 0Zscore(VAR00010) 0Zscore(VAR00011) 0Zscore(VAR00012) 0有效的 N (列表状态)0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001个案处理摘要N变量处理摘要变量因变量自变量VAR00003 VAR00007 VAR00005 VAR00011 VAR00008 VAR00004 正值数27 27 27 27 27 27 零的个数0 0 0 0 0 0 负值数0 0 0 0 0 0 缺失值数用户自定义缺失0 0 0 0 0 0 系统缺失0 0 0 0 0 0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001个案处理摘要N个案总数27已排除的个案a0模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001模型描述模型名称MOD_2因变量 1 VAR000032 VAR000073 VAR000054 VAR000115 VAR00008方程 1 二次自变量VAR00004常数包含其值在图中标记为观测值的变量未指定用于在方程中输入项的容差.0001。

2012年全国数学建模竞赛题目

2012年全国数学建模竞赛题目

(全国竞赛2012年A题)确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4. 分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?∙赛题下载∙附件1: 葡萄酒品尝评分表∙附件2: 指标总表∙附件3: 芳香物质(全国竞赛2012年B题)在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。

不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

附件1-7提供了相关信息。

请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。

在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。

2012数学建模A题---葡萄酒评价---国家奖

2012数学建模A题---葡萄酒评价---国家奖

葡萄酒的评价摘要本文主要运用统计分析方法,解决与所酿葡萄酒有关的问题。

对于问题一,,分别对白酒和红酒的两组数据进行差异性检验。

构建一个能反应葡萄酒本身质量的量,对两组数据分别进行相关性分析,得到第二组评酒员的结果更可信。

对于问题二,先做聚类分析,再做线性回归分析,得到白、红葡萄分为4级和3级。

对于问题三,利用问题二中聚类得到的7个主成分,把每种葡萄酒的理化指标与酿酒葡萄之间的7个主成分进行相关性分析,得到7个回归方程,即为酿酒葡萄与葡萄酒的理化指标之间的联系。

对于问题四,首先建立模型:12W=a *Y +b *Y 。

其中a,b 分别为酿酒葡萄和葡萄酒对葡萄酒质量的贡献率,1Y ,2Y 分别为两种因素的贡献值。

然后,通过确定芳香物质是否对葡萄酒的评分有影响来论证能否用葡萄和葡萄酒的理化指标评价葡萄酒的质量。

问题一中,本文运用excel 做两组数据的显著性差异检验,得到两组评酒员在评论白酒和红酒都存在显著性差异,且通过了F 检验。

接着本文通过确定各指标的权重,构建一个能反应各葡萄酒实际平分的量,把两组数据与之做相关性分析,发现第二组与之相关性更大,故第二组评酒员的结果更可信。

问题二中,本文通过SPSS 做理化指标的聚类分析,得到7个主成分;再做指标与评分的线性回归分析,得到白葡萄的分级结果为4级:一级:白酿酒葡萄14,22;二级:白酿酒葡萄4,5,9,19,23,25,26,28;三级:白酿酒葡萄24,27;四级:白酿酒葡萄1,2,3,6,7,8,10,11,12,13,15,16,17,18,20。

红葡萄酒为3级:一级:红酿酒葡萄2,9;二级:红酿酒葡萄3,4,10,22,24;三级:红酿酒葡萄1,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,23,25,26,27。

问题三中,本文运用excel 将葡萄酒的一级指标分别与7个主成分进行相关性分析然后对每种主要成分利用SPSS 进行线性回归分析得到以下7个回归方程:()()()()()r1134r21367r3137r4136r6137r71Y =-39.542+1.727+21.850+3.9463Y =4.044+0.026-0.156-0.005-0.1954Y =2.807+0.021-0.030-0.1895Y =2.700+0.024-0.169-0.0056Y =0.069+0.001-0.006-0.0077Y =70.028-0.188+x x x x x x x x x x x x x x x x x ()()2347r8123560.841+0.280-0.187+1.7048Y =58.545-0.021-1.028+1.666+27.045-0.0049x x x x x x x x x 即为每种酿酒葡萄与葡萄酒理化指标之间的联系。

2012数学建模大赛a试题

2012数学建模大赛a试题

葡萄酒的评价模型摘要区分葡萄酒好坏的量化标准,主要采用百分制评分体系[1]。

该评分体系基于以下四个因素:外观,香气,风味,总体质量或潜力。

评酒员对葡萄酒进行品尝后按照酒的质量特点对其分类指标进行打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反应葡萄酒和酿酒葡萄的质量。

现对葡萄酒的评价问题进行分析研究,针对葡萄酒的各项指标数据进行统计和分析,建立起模糊综合评价模型,创建模糊关系矩阵:R=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯⋯⋯⋯mn 2m 1m n 22221n 11211r r r r r r r r r 运用SPSS 软件等数学工具,来讨论出葡萄酒的评价结果。

问题一,采用求方差的方法,S 2 =()112--∑=n x x ni将各组酒样品横向求方差,纵向求和,将两组的变异系数和进行比较。

得出“第二组的变异系数和更小”的结论,即第二组结果更为可信。

继而使用t-检验,t = 1-n (X - μ)/S对于红葡萄酒,t 值小于0.05,则红葡萄酒存在显著性差异;而白葡萄酒t 值大于0.05,则白葡萄酒不存在显著性差异。

问题二,运用了SPSS 软件中因子分析功能,得到红葡萄理化指标分析(附录1)、白葡萄理化指标分析(附录2),对附件二中的海量数据进行批处理,优化出6项最重要因素简化数据,最后运用聚类分析法分别得出红葡萄与白葡萄的等级分类。

问题三,为了求得酿酒葡萄与葡萄酒的理化指标之间的联系,运用了统计学原理,结合图表,将酿酒葡萄与葡萄酒的几大决定因素提取出来,将其绘制成成分矩阵,进行详细的数据分析,并得出“酿酒葡萄酿制成葡萄酒之后主要成分中的蛋白质与VC 消失,其余理化指标在不同程度上有所改变”的结论。

问题四,通过统计对比,结合数据折线图,直观反映并论证了两种理化指标对葡萄酒质量的影响,即葡萄酒的质量与酿酒葡萄、葡萄酒的各项理化指标呈正相关的关系,也就是葡萄酒的质量随着葡萄酒和酿酒葡萄中的各理化指标的综合变化情况而变化,当产生“峰值”时,存在产生负相关的可能性。

2012高教社杯全国大学生数学建模竞赛题目

2012高教社杯全国大学生数学建模竞赛题目

A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)B题太阳能小屋的设计在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。

不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。

因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。

附件1-7提供了相关信息。

请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。

在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。

2012年全国大学生数学建模优秀论文(A题) 2

2012年全国大学生数学建模优秀论文(A题) 2

地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。

本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。

首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。

在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。

将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。

纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。

通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。

进一步考虑实际储油罐,两端为球冠体顶。

把储油罐分成中间的圆柱体和两边的球冠体分别求解。

中间的圆柱体求解类似于第一问,要分为三种情况。

在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。

根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。

再利用附表2中的数据列方程组寻找α与β最准确的取值。

αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。

2012全国大学生数学建模A题

2012全国大学生数学建模A题

题目: A 队员:指导老师:学校:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2. .3. .指导教师或指导教师组负责人(打印并签名):教练组日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文对酿酒葡萄理化指标、葡萄酒的评价数据和理化指标数据进行了相关统计处理分析,在此基础上求出数据的相关关系,建立相关分析模型和利用数据拟合,得出各数据间的关系。

以此来评价各个数据和葡萄酒质量间的联系。

对问题一,我们先从评酒员对各组葡萄酒样品的打分角度出发,通过对各组数据进行样本方差,样本标准差,总体标准差(后称标准差),建立离差分析模型,求出各组数据的离散程度,得到散点图,初步确定第二组较第一组可信,然后在对其进行线性分析,利用EXCEL得出各组白葡萄酒和红葡萄酒的标准差比较折线图后,可明显看出第二组评酒员的打分标准差更小,两组评酒员的评价结果有显著差异,因此第二组的结果更加可信。

2012年数学建模A题

2012年数学建模A题

葡萄酒质量评定模型摘要葡萄酒质量的评定长久以来都是采用聘请品酒员,通过品酒员对葡萄酒各项指标打分求和来确定葡萄酒的质量。

葡萄酒的价格因品酒员评分高低的不同有显著的差别。

然而在这样的评定方式中人的主观因素对酒质量的评定占主导地位,葡萄酒质量的评定结果存在较大的不确定性。

随着人们对葡萄酒消费的增加及高质量化的追求,建立合理、规范、客观的葡萄酒质量评定模型显得尤为重要。

根据题中给出的相关数据,通过解决以下问题建立葡萄酒质量评定模型。

对于问题一:首先,将题目附录1中的数据经Excel处理,得到每组评酒员对每种酒样品的总分。

然后,对每一种酒样品运用两配对样本的非参数检验(符号秩和检验)对数据进行显著性差异分析,运用MATLAB软件比较各酒样品的两组数据发现两组结果差异显著。

其次,通过Excel求出每一种酒的品酒员所打总分的方差,得到两组品酒员分别对两类葡萄酒的方差走势图(见图1.1、1.2),根据总体方差最小,方差波动较小,确定第二组品酒员的评分更可信。

最后,采用SPSS软件作进一步检验,结果相同即模型合理。

对于问题二,选取一级理化指标作为酿酒葡萄分级参考,对理化指标运用主成分分析法降维,通过MATLAB计算得到红葡萄的主成分有8个,白葡萄的主成分有11个。

综合评分得到的葡萄酒质量影响,红葡萄的影响因素有9个,白葡萄的影响因素有12个。

然后,利用折衷型模糊决策模型,考虑到由主成分分析方法得到的酿酒葡萄的的主成分值在反应酿酒葡萄质量好坏问题上会有一定的偏差,利用三角模糊的表达方式对主成分指标值进行表示,分别将红、白两类酿酒葡萄按隶属度大小排序,在运用聚类分析的方法,利用SPSS软件将葡萄划分为五个等级(见表格2.1)。

对于问题三,数据的庞杂是解决该问题的难点。

我们运用问题二中的主成分分析方法将理化指标转化为几个主成分,并运用MATLAB编程求出具体的主成分数值,然后建立线性回归模型,求解出酿酒葡萄与葡萄酒理化指标主成分之间的相关关系,从而反映出酿酒葡萄与葡萄酒理化指标之间的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):哈尔滨工程大学参赛队员 (打印并签名) : 1. 涛2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文首先通过每一组十个评酒员的打分求出每个葡萄酒样品总分的均值与方差,然后对这两组数据进行正态性的检验,得出这两组数据基本符合正态分布,根据两个正态总体的双侧检验,对这两组数据的均值进行t检验,结果发现两组数据均值基本无差异,再对方差进行F检验,方差有显著性差异,说明这两组的评价结果有显著性差异,由于方差表示的是与均值差别的波动情况,因此方差越小,结果就越可靠,据此我们判断出方差小的一组评价结果更可信。

在对酿酒葡萄进行分级的过程中,首先对酿酒葡萄的理化指标进行聚类分析,根据国际准则得出葡萄酒的质量与葡萄级别之间的关系,结合酿酒葡萄的分类情况,我们把酿酒葡萄进行了分级。

在分析酿酒葡萄与葡萄酒的理化指标中,我们通过主成分分析对其中取决定因素的成分进行拟合,得到相互联系的关系式,从而得出彼此理化指标的联系。

通过对各种理化指标和与质量相互之间的关系综合分析,我们得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响并不是绝对的,葡萄酒的质量还与感官分析、芳香物质等有关,因此葡萄酒的质量是多种因素共同决定的。

关键词 t检验 F检验聚类分析主成分分析拟合一、问题重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?二、模型假设1. 假设这55种酒样品来自同一总体。

2.假设同一酒样品的质量一致。

3.假设两组品酒员的评酒时间、环境相同。

三、模型的建立与求解问题(一)通过对附件1给出的某一年份一些葡萄酒的评价结果进行深入的分析,对这两组品酒员的评分进行基于Excel的概率统计假设检验,判断两组评酒员评分结果的差异性. 首先,我们对每位品酒员对每一酒样品所打分数进行求和,然后分别求出同一组别同一酒样品的所有评酒员的总分的均值及方差。

其次,对第一组品酒员评分结果进行分析:将第一组红葡萄酒和白葡萄酒各样品酒总分均值进行汇总,得到一组均值数据,再用同种方法得到第二组红、白葡萄酒均值数据,将这两组数据导入SPSS软件系统里分别进行正态分布规律的检验,如图1.2:图1.2由图1.2知,这两组数据都满足正态分布规律。

T-检验由此,我们可以对这两组数据进行t-检验,以判断两组品酒员的评价结果是否有显著性差异。

检验结果如图1.3所示:图1.3 t-检验双样本等方差假设从Excel计算知,t Stat=0.077208408121589,t 单尾临界=1.659085144,t Stat小于t 单尾临界,无法判断两组数据是否存在显著性差异。

F-检验依据t-检验结果,无法判断两组评酒员评分结果是否存在显著性差异,故采用F检验法。

将第一组评酒员对红葡萄酒与白葡萄酒各酒样品评分结果的方差值(55个数据)作为第一组数据,第二组的作为第二组数据,对这两组方差值数据进行F-检验,得到如图1.4所示结果:图1.4 F-检验双样方差分析从Excel计算结果得知,F值为4.400393975,F 单尾临界为1.570883782,F值大于F 单尾临界值,否定原假设,接受备择假设,得结论:第一组品酒员的评分结果与第二组品酒员的评价结果存在显著性差异。

根据方差值比较,第一组方差值4082.71027大于第二组方差值927.8056,可判断第二组评分员评分结果更可信。

综上,两组品酒员的评价结果存在显著性差异,且第二组的结果更可信。

问题(二)葡萄酒的质量一般是通过一批有资质的品酒员分别对同一样品葡萄酒进行品尝后并对其分类指标打分,然后求和得到该葡萄酒的总分而确定的。

因为酿酒葡萄的好坏,与所酿葡萄酒的质量有直接的关系,所以我们尝试着对附件2的数据进行分析,并根据酿酒葡萄的理化指标和葡萄酒的质量,对这些酿酒葡萄进行分级。

由问题(一)分析结果可知,第二组品酒员的评价结果更可信,故采集第二组评分员评分结果,导入SPSS软件,利用聚类分析法进行数据分析。

对第二组评价的白葡萄酒分析,对其酿酒葡萄的理化指标进行聚类法分析。

结果如图2.1:图2.1依据树状图(图2.1)对葡萄样品分类:分为6类第1类:葡萄样品3第2类:葡萄样品5、15、24、27、28第3类:葡萄样品16、19、13、8、18、17、22、1第4类:葡萄样品25、26第5类:葡萄样品2、9、4、10、20第6类:葡萄样品6、7、11、12结合酿酒葡萄理化指标和评酒员感官分析确定白葡萄样品等级(表 I):表I 白葡萄等级划分对第二组红葡萄酒的酿酒葡萄的理化指标进行聚类分析:图2.2依据树状图(图2.2 )将葡萄样品分类:分成6类:第1类:葡萄样品3、21第2类:葡萄样品6第3类:葡萄样品12、18第4类:葡萄样品9、23、19、7、22、4、11、15、20、2第5类:葡萄样品1、8第6类:葡萄样品17、24、5、13、25、10、27、16、14、26结合酿酒葡萄理化指标和评酒员感官分析确定红葡萄样品等级(表 II):表II 红葡萄等级划分问题(三)在酿酒葡萄和葡萄酒的理化指标中,由于单宁、总酚、黄酮、白藜芦醇、DPPH是他们共有的五种物质,故可取这五种物质进行多项式拟合,得出这五种物质与样品的联系。

我们运用Origin 6.0 Professional软件对这五项指标性物质进行多项式拟合得出各指标物质与样品的函数关系式和曲线图。

在拟合的过程中我们以样品号为X轴,以各个物质在葡萄酒和酿酒葡萄的含量为Y轴进行拟合方程分析,根据方程和曲线图得出酿酒葡萄与葡萄酒的理化指标之间的联系 。

1. 对单宁:由图易知,单宁在葡萄酒的中的含量低于酿酒葡萄的含量。

单宁在葡萄酒里面的含量拟合方程988674654321046989.21018326.3107429.100528.009613.007451.117927.755139.2676202.4590429.14xx x x x x x x x y ---⨯+⨯-⨯+-+-+-+-=单宁在葡萄酒里面的含量拟合方程如下978574654321007504.11034392.11007738.702042.035113.067118.376798.2274025.7773987.1230093.44xx x x x x x x x y ---⨯+⨯-⨯+-+-+-+-=理化指标物质单宁在葡萄酒和酿酒葡萄中的含量满足上面两个方程式 总酚:Origin 6.0 Professional 软件作图拟合方程 如下:总酚在葡萄酒里面的含量拟合方程如下988674654321022495.21080799.21050099.100442.00781.084197.038527.583352.1896994.2999561.5xx x x x x x x x y ---⨯+⨯-⨯+-+-+-+-=Origin 6.0 Professional 软件作图拟合方程 如下:总酚在酿酒葡萄里面的含量拟合方程如下988674654321047867.5109309.61071642.3011.019578.013901.299052.1367267.5059852.8442493.22xx x x x x x x x y ---⨯+⨯-⨯+-+-+-+-=Origin 6.0 Professional 软件作图拟合方程 如下:Origin 6.0 Professional 软件作图拟合方程 如下:总黄酮在葡萄酒里面的含量拟合方程如下988674654321011103.41027228.51086443.200858.015431.06999.11967.1193826.4034973.7092665.30xx x x x x x x x y ---⨯+⨯-⨯+-+-+-+-=Origin 6.0 Professional 软件作图拟合方程 如下:葡萄总黄酮在葡萄酒里面的含量拟合方程如下988674654321024432.61083492.71014946.401207.020994.022913.212001.1472111.4935444.8348147.36xx x x x x x x x y ---⨯+⨯-⨯+-+-+-+-=Origin 6.0 Professional 软件作图拟合方程 如下:Origin 6.0 Professional软件作图拟合方程如下:白藜芦醇在葡萄酒里面的含量拟合方程如下9987756454321001182.71074343.71057514.31003493.901379.013276.08238.027685.336752.74454.2xxxxxxxxxy----⨯+⨯-⨯+⨯-+-+-+-=Origin 6.0 Professional软件作图拟合方程如下:白藜芦醇在葡萄酒里面的含量拟合方程如下988674654321067778.2103028.31067554.100449.006762.056072.027475.296772.294856.217816.1xx x x x x x x x y ---⨯-⨯+⨯-+-+-++-=Origin 6.0 Professional 软件作图拟合方程 如下:Origin 6.0 Professional 软件作图拟合方程 如下:DPPH 在葡萄酒里面的含量拟合方程如下9987766454321039936.11077425.11053092.91082357.200503.005485.035838.030218.122491.288031.0xx x x x x x x x y ----⨯+⨯-⨯+⨯-+-+-+-=Origin 6.0 Professional 软件作图拟合方程 如下:DPPH 自由基在葡萄酒里面的含量拟合方程如下91088766454321015248.51084243.61086603.31020912.100228.002628.018031.067718.016199.21716.0xx x x x x x x x y ----⨯+⨯-⨯+⨯-+-+-+-=问题四:理化指标是指产品的物理性质、物理性能、化学成分、化学性质、化学性能等技术指标,也是产品的质量指标。

相关文档
最新文档