竞赛课件5:物系相关速度

合集下载

高中物理竞赛课件5:关联速度29页PPT

高中物理竞赛课件5:关联速度29页PPT
ห้องสมุดไป่ตู้
高中物理竞赛课件5:关联速度
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

高一物理竞赛讲义-直线运动专题5 物系相关速度1

高一物理竞赛讲义-直线运动专题5 物系相关速度1

物系相关速度国内、外中学物理竞赛中多见求解物系相关速度,或解题的“瓶颈”卡在物系相关速度的试题,这类问题往往叙述简洁而条件隐蔽,情景相像而方法各异,使参赛者思路混沌,无从入手.例如:类型1 质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.(全国中学物理竞赛试题)图5-1 图5-2类型2 绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度.(全国中学生奥林匹克物理竞赛试题) 类型3 直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)图5-3图5-4以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循.首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关.根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论.结论1 杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度.我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论.结论2 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方向的平移速度.同理,若直线b固定,直线a移动,交点P的移动速度与直线a沿直线b方向平动的速度相同.根据运动合成原理,当两直线a、b各自运动,交点P的运动分别是两直线沿对方直线方向运动的合运动.于是我们可以得到下面的结论.图5-5结论3 线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和.这样,我们将刚体的力学性质、刚体运动的速度法则运用于三类相关速度问题,得到了这三类相关速度特征,依据这些特征,并运用速度问题中普遍适用的合成法则、相对运动法则,解题便有了操作的章法.下面我们对每一类问题各给出3道例题,展示每一条原则在不同情景中的应用.例1 如图5-6所示,杆AB的A端以速度v做匀速运动,在杆运动时恒与一静止的半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及杆上与半圆相切点C的速度.图5-6分析与解 考察切点C的情况.由于半圆静止,杆上点C速度的法向分量为零,故点C速度必沿杆的方向.以点C为基点,将杆上点A速度v分解成沿杆方向分量v1和垂直于杆方向分量v2(如图5-7所示),则v1是点A与点C相同的沿杆方向平动速度,v2是点A对点C的转动速度,故可求得点C的速度为图5-7vC=v1=v·cosθ,又 v2=v·sinθ=ω·AC.由题给几何关系知,A点对C点的转动半径为AC=R·cotθ,代入前式中即可解得ω=(vsin2θ)/(Rcosθ).例2 如图5-8所示,合页构件由三个菱形组成,其边长之比为3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶点B2的速度vB2.图5-8分析与解 顶点B2作为B2A1杆上的一点,其速度是沿B2A1杆方向的速度v1及垂直于B2A1杆方向速度v1′的合成;同时作为杆B2A2上的一点,其速度又是沿B2A2杆方向的速度v2及垂直于B2A2杆方向的速度v2′的合成.由于两杆互成直角的特定条件,由图5-9显见,v2=v1′,v1=v2′.故顶点B2的速度可通过v1、v2速度的矢量和求得,而根据杆的约束的特征,得图5-9v1=(/2)vA1;v2=(/2)vA2,于是可得由几何关系可知vA1∶vA2∶vA3=A0A1∶A0A2∶A0A3=3∶5∶6,则 vA1=v/2,vA2=(5/6)v,由此求得 vB2=(/6)v.图5-10上述解析,我们是选取了速度为沿杆方向的某一点为基点来考察顶点B2的速度的.当然我们也可以选取其他合适的点为基点来分析.如图5-10所示,若以A1、A2点为基点,则B2点作为B2A1杆上的点,其速度是与A1点相同的平动速度vA1和对A1点的转动速度vn1之合成,同时B2点作为B2A2杆上的点,其速度是与A2点相同的平动速度vA2和对A2点的转动速度vn2之合成,再注意到题给的几何条件,从矢量三角形中由余弦定理得而由矢量图可知vn1=(/2)(vA2-vA1),代入前式可得 vB2=(/6)v.两解殊途同归.例3 如图5-11所示,物体A置于水平面上,物体A上固定有动滑轮B,D为定滑轮,一根轻绳绕过滑轮D、B后固定在C点,BC段水平.当以速度v拉绳头时,物体A沿水平面运动,若绳与水平面夹角为α,物体A运动的速度是多大?图5-11分析与解 首先根据绳约束特点,任何时刻绳BD段上各点有与绳端D相同的沿绳BD段方向的分速度v,再看绳的这个速度与物体A移动速度的关系:设物体A右移速度为vx,则相对于物体A(或动滑轮B的轴心),绳上B点的速度为vx,即vBA=vx,方向沿绳BD方向;而根据运动合成法则,在沿绳BD方向上,绳上B点速度是相对于参照系A(或动滑轮B的轴心)的速度vx与参照系A对静止参照系速度vxcosα的合成,即v=vBA+vxcosα;由上述两方面可得vx=v/(1+cosα).例4 如图5-12所示,半径为R的半圆凸轮以等速v 0沿水平面向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其顶点.求当∠AOP=α时,AB杆的速度.图5-12 图5-13分析与解 这是接触物系相关速度问题.由题可知,杆与凸轮在A点接触,杆上A点速度vA是竖直向上的,轮上A点的速度v0是水平向右的,根据接触物系触点速度相关特征,两者沿接触面法向的分速度相同,如图5-13所示,即vAcosα=v0sinα,则 vA=v0tanα.故AB杆的速度为v0tanα.例5 如图5-14所示,缠在线轴上的绳子一头搭在墙上的光滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线轴中心O的运动速度vO.设线轴的外径为R,内径为r,线轴沿水平面做无滑动的滚动.分析与解 当线轴以恒定的速度v拉绳时,线轴沿顺时针方向运动.从绳端速度v到轴心速度vO,是通过绳、轴相切接触相关的.考察切点B的速度:本题中绳与线轴间无滑动,故绳上B点与轴上B点速度完全相同,即无论沿切点法向或切向,两者均有相同的分速度.图5-15是轴上B点与绳上B点速度矢量图:轴上B点具有与轴心相同的平动速度vO及对轴心的转动速度rω(ω为轴的角速度),那么沿切向轴上B点的速度为rω-vO sinα;而绳上B点速度的切向分量正是沿绳方向、大小为速度v,于是有关系式,即图5-14 图5-15rω-vOsinα=v. ①又由于线轴沿水平地面做纯滚动,故与水平地面相切点C的速度为零,则轴心速度为vO=Rω, ②由①、②两式可解得vO=(Rv)/(r-Rsinα).若绳拉线轴使线轴逆时针转动,vO=(Rv)/(r-Rsinα),请读者自行证明.例6 如图5-16所示,线轴沿水平面做无滑动的滚动,并且线端A点速度为v,方向水平.以铰链固定于点B的木板靠在线轴上,线轴的内、外径分别为r和R.试确定木板的角速度ω与角α的关系.图5-16 图5-17分析与解 设木板与线轴相切于C点,则板上C点与线轴上C点有相同的法向速度vn,而板上C点的这个法向速度正是C点关于B轴的转动速度,如图5-17所示,即vn=ω·BC=ω·Rcot(α/2). ①现在再来考察线轴上C点的速度:它应是C点对轴心O的转动速度vCn和与轴心相同的平动速度vO的矢量和,而vCn是沿C点切向的,则C点法向速度vn应是vn=vOsinα. ②又由于线轴为刚体且做纯滚动,故以线轴与水平面切点为基点,应有v/(R+r)=vO/R. ③将②、③两式代入①式中,得ω=(1-cosα)/(R+r)v.例7 如图5-18所示,水平直杆AB在圆心为O、半径为r的固定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑环M的速度,设OM与竖直方向的夹角为φ.图5-18分析与解 当小环从圆圈顶点滑过圆心角为φ的一段弧时,据交叉点速度相关特征,将杆的速度u沿杆方向与圆圈切线方向分解,则M的速度为v=u/sinφ.例8 如图5-19所示,直角曲杆OBC绕O轴在如图5-19所示的平面内转动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10cm,曲杆的角速度ω=0.5rad/s,求φ=60°时,小环M的速度.图5-19 图5-20分析与解 本题首先应该求出交叉点M作为杆BC上一点的速度v,而后根据交叉点速度相关特征,求出该速度沿OA方向的分量即为小环速度.由于刚性曲杆OBC以O为轴转动,故其上与OA直杆交叉点的速度方向垂直于转动半径OM、大小是v=ω·M=10cm/s.将其沿MA、MB方向分解成两个分速度,如图5-20所示,即得小环M的速度为vM=vMA=v·tanφ=10cm/s.例9 如图5-21所示,一个半径为R的轴环O1立在水平面上,另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个轴环紧邻第一个轴环.图5-21 图5-22分析与解 轴环O2速度为v,将此速度沿轴环O1、O2的交叉点A处的切线方向分解成v1、v2两个分量,如图5-22,由线状相交物系交叉点相关速度规律可知,交叉点A的速度即为沿对方速度分量v1.注意到图5-22中显示的几何关系便可得。

物理竞赛课件5:物系相关速度

物理竞赛课件5:物系相关速度

相对速度的应用
在分析力学问题、运动学 问题以及日常生活中的应 用,如交通工具的速度计 算等。
绝对速度
绝对速度
绝对速度的计算
描述一个物体相对于地面或参考系的 速度。
通过测量和计算得出,不受其他物体 运动状态的影响。
绝对速度的特点
不受参考系选择的影响,是绝对的物 理量。
平均速度与瞬时速度
平均速度
描述一段时间内物体运动的平均速度 。
物理竞赛课件5物系 相关速度
目 录
• 相关速度概念 • 相关速度在生活中的应用 • 相关速度在物理实验中的应用 • 相关速度的物理意义 • 相关速度的物理公式
01
相关速度概念
定义
01
02
03
相关速度
当一个物体在另一个物体 上运动时,另一个物体的 速度。
相对速度
一个物体相对于另一个物 体的速度。
实验原理
牛顿第二定律
物体加速度的大小跟作用力成正比,跟物体的质量成反比。
相对速度
当两个物体以不同的速度运动时,它们之间的相对速度可以通过连接两物体的运 动轨迹的线段与垂直于该线段的直线的交角来计算。
实验步骤
01
02
03
04
1. 将滑轮固定在一个稳定的 平面上,用细线的一端连接滑 轮,另一端悬挂一个砝码。
绝对速度
一个物体相对于地面或静 止参考系的速度。
特点
相关速度与参考系的 选择有关。
相关速度的大小和方 向可以通过几何方法 确定。
相关速度是相对速度 和绝对速度的合成。
计算Байду номын сангаас法
平行四边形法则
用于合成两个速度。
三角形法则
用于合成三个速度。

高中物理竞赛课件5:关联速度共29页文档

高中物理竞赛课件5:关联速度共29页文档


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
高中物理竞赛课件5:关联速度
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
29

物理竞赛课件5:物系相关速度

物理竞赛课件5:物系相关速度
vmax 2 R 1 2

2 1 v

如图,由两个圆环所组成的滚珠轴承,其内环半径为R2,外 环半径为R1,在二环之间分布的小圆球(滚珠)半径为r,外环以线速度v1顺时针 方向转动,而内环则以线速度v2顺时针方向转动,试求小球中心围绕圆环的中心顺 时针转动的线速度v和小球自转的角速度ω,设小球与圆环之间无滑动发生.
2
如图所示,合页构件由三个菱形组成,其边长之比为 3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶 点B2的速度vB2. B1 B2 这是杆约束相关速度问题 B3 v 分析顶点A2、A1的速度: A A A 3 1 2 A
专题5-例2
由图示知
顶点B2,既是A1B2杆上的点, 又是A2B2杆上的点,分别以A1、 A2为基点,分析B2点速度:
专题5-例1
这是杆约束相关速度问题
考察杆切点C,由于半圆 静止,C点速度必沿杆! 杆A点速度必沿水平! B C R θ A v2 θ v
以C为基点分解v:
由杆约束相关关系:
v c v1 v cos
v2是A点对C点的转动速度,故
v sin Rcot
v sin R cos
考察绳、轴接触的切点B速度 轴上B点具有与轴心相同的平动 速度v0与对轴心的转动速度rω: 绳上B点沿绳方向速度v和与轴 B点相同的法向速度vn: 由于绳、轴点点相切,有
线轴沿水平面做纯滚动
A α R r O α v B
v0
C
v v0 sin r v0 R
若线轴逆时针滚动,则
R v0 v O R sin r rω R v0 v r R sin
♠ 研究对象

物系相关速物理竞赛必看PPT学习教案

物系相关速物理竞赛必看PPT学习教案
物系相关速物理竞赛必看
会计学
1
例 如图,一个球以速度v沿直角斜槽ACB的棱角做无滑动的滚动. AB等效于球的瞬时转轴.试问球上哪些点的速度最大?这最大速度 为多少?
本题属刚体各点速度问题
球心速度为v, 则对瞬时转轴AB:
v 2 R
2
则球角速度
2v R
根据刚体运动的速度法则:
OR
A
45
B
C
球表面与瞬时转轴距离最大的点有最大速度!
第2页/共12页
vt
θ vn v
vn
A
v1
Oαvv2D1dBd v1d
C
v2
v0
v2d
例1
如图所示,AB杆的A端以匀速v运动,在运动时杆恒与一
半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及
杆上与半圆相切点C的速度.
这是杆约束相关速度问题
考察杆切点C,由于半
B
圆静止,C点速度必沿
另一个同样的轴环O2以速度v从这个轴环旁通过,试求两轴环上部交 叉点A的速度vA与两环中心之距离d之间的关系.轴环很薄且第二个 轴环紧傍第一个轴环.
本题求线状交叉物系交叉点A速度
A
轴环O2速度为v,将此速度沿轴 环O1、O2的交叉点A处的切线方
O2 O1
O2
dv
向分解成v1、v2两个分量:
v2
由线状相交物系交叉点相关
杆与凸轮接触点有相同的法向速度!
根据接触物系触点速度相关特
征,两者沿接触面法向的分速度相
同,即
α
ωr
r sin v杆 cos
v杆 r tan
B
v杆K
A rα
nM

更高更妙的物理冲刺全国高中物理竞赛-专题5-物系相关速度

更高更妙的物理冲刺全国高中物理竞赛-专题5-物系相关速度
v m ax 2 R 1 2

2 1 v

如图,由两个圆环所组成的滚珠轴承,其内环半径为R2,外 环半径为R1,在二环之间分布的小圆球(滚珠)半径为r,外环以线速度v1顺时针 方向转动,而内环则以线速度v2顺时针方向转动,试求小球中心围绕圆环的中心顺 时针转动的线速度v和小球自转的角速度ω,设小球与圆环之间无滑动发生.
2
R co s
如图所示,合页构件由三个菱形组成,其边长之比为 3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶 点B2的速度vB2. B1 B2 这是杆约束相关速度问题 B3 v 分析顶点A2、A1的速度: A1 A2 A3 A
0
专题5-例2
v1
2 2
v A1
v2
v=rω,r是对基点的转动半径,ω是刚体转动角速度. 刚体各质点自身转动角速度总相同且与基点的选择无关.
杆或绳约束物系各点速度的相关特征是: 在同一时刻必具有相同的沿 杆、绳方向的分速度.
v2 v0
θ
θ
v1
接触物系接触点速度的相关特征是: 沿接触面法向的分速度必定相 同,沿接触面切向的分速度在 无相对滑动时相同.
A O C α v0 V α
B
v0
V0
vn
VA
V0
v 0 R V 0 cos
由于纯滚动,有

v0 r cos R V0 r r cos R v0
V0 r
图中的AC、BD两杆以匀角速度ω分别绕相距为l的A、 B两固定轴在同一竖直面上转动,转动方向已在图上示出.小环M 套在两杆上,t=0时图中α=β=60°,试求而后任意时刻t(M未落地) M运动的速度大小.

高中物理专题:物系相关速度PPT30页

高中物理专题:物系相关速度PPT30页
事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
高中物理专题:物系相关速 度
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
55、 为 中 华 之 崛起而 读书。 ——周 恩来

人教版高中物理课件-物系相关速度

人教版高中物理课件-物系相关速度

根據接觸物系觸點速度相關特 徵,兩者沿接觸面法向的分速度相 同,即
vA cos v0 sin
vA v0 tan
vA
α PA α O
α
v0
v0
專題5-例5 如圖所示,纏線上軸上的繩子一頭搭在牆上的光
滑釘子A上,以恒定的速度v拉繩,當繩與豎直方向成α角時,求線
軸中心O的運動速度v0.線軸的外徑為R、內徑為r,線軸沿水平面做 無滑動的滾動.
3∶2∶1,頂點A3以速度v沿水準方向向右運動,求當構件所有角都為直角時,頂
點B2的速度vB2.
這是杆約束相關速度問題
分析頂點A2、A1的速度:
A0
B1 A1
B2
B3
A2 A3
v
2
2
v1 2 vA1 v2 2 vA2
頂點B2,既是A1B2杆上的點,
v1 v 2
又是A2B2杆上的點,分別以A1、 A2為基點,分析B2點速度:
A
軸環O2速度為v,將此速度沿軸環 O1、O2的交叉點A處的切線方向
O2 O1
O2
dv
分解成v1、v2兩個分量:
v2
由線狀相交物系交叉點相關
速度規律可知,交叉點A的速度
A v
即為沿對方速度分量v1! 由圖示幾何關係可得:
R
θ
vA
v
2 sin
v 2
R
O1 θ
v1
d
R2
d 2
2
R v
4R2 d 2
O2
頂杆AB可在豎直滑槽K內滑動,其下端由凸輪M推 動.凸輪繞O軸以勻角速ω轉動,在圖示時刻,OA=r,凸輪輪緣與 A接觸處法線n與OA之間的夾角為α,試求頂杆的速度.

高中物理竞赛课件5:关联速度共29页文档

高中物理竞赛课件5:关联速度共29页文档

高中物理竞赛课件5:关联速度
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

最新物系相关速度(物理竞赛必看)

最新物系相关速度(物理竞赛必看)
线状相交物系交叉点的速度是:
相交双方沿对方切向运动分速 度的矢量和.
vt
θ vn v
vn
A
v1
Oαvv2D1dBd v1d
C v2
v0
v2d
例1
如图所示,AB杆的A端以匀速v运动,在运动时杆恒与一
半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及
杆上与半圆相切点C的速度.
这是杆约束相关速度问题
由一条光线上各点转动角速
度相同:
v影 sin vA sin
R
r
H
r v An
α vA
由几何关系
R H r Hh
hR
M
H v影 H h vA
α
vvn影
小试身手 3 如图,A、B、C三位芭蕾演员同时从边长为l的三角形顶点A、
B、C出发,以相同的速率v运动,运动中始终保持A朝着B,B朝着C,C朝着A.试 问经多少时间三人相聚?每个演员跑了多少路程?
由三位舞者运动的对称性可知, vn A 他们会合点在三角形ABC的中心O
每人的运动均可视做绕O转动的
Ovt
同时向O运动,
B 考虑A处舞者沿AO方向分运动考虑,到达O点历时
C
AO 2l
t
v cos 30 3v
由于舞者匀速率运动,则
2l s vt
3
小试身手 4 如图所示,一个半径为R的轴环O1立在水平面上,
♠研究对象
不发生形变的理想物体
实际物体在外力作用下发生的形变效应不显著可被忽略 时,即可将其视作刚体.
具有刚体的力学性质,刚体上任意两点之间的相对距 离是恒定不变的; 任何刚体的任何一种复杂运动都是由平动与转动复合 而成的.

竞赛课件5物系相关速度

竞赛课件5物系相关速度

03
物系相关速度的计算方法
相对速度的计算
相对速度
指某一物体相对于另一物体的速度, 可以用矢量表示。
相对速度的计算公式
相对速度的应用
在物理实验和工程领域中,经常需要 计算两个物体之间的相对速度,以了 解它们之间的相互作用和运动关系。
Vr = V1 - V2,其中Vr表示相对速度 ,V1和V2分别表示两个物体的速度。
物体抛射的速度计算
投掷速度
在体育比赛中,如标枪、铁饼等 投掷项目的成绩与抛射速度密切 相关,需要通过科学训练来提高 。
炮弹速度
火炮发射的炮弹速度取决于火炮 的类型和口径,以及炮弹的重量 和推进剂的燃烧速度。
物体自由落体的速度计算
自由落体速度
自由落体运动的速度与重力加速度和 下落时间有关,根据公式v²=2gh, 可以计算出物体下落的速度。
详细描述
当物体在空间中运动时,其速度的大小和方向共同决定 了物体的运动轨迹。速度越大,物体在相同时间内通过 的路程越长,运动轨迹也越长。例如,投掷标枪时,标 枪出手时的速度越快,其在空中的飞行轨迹就越长,投 掷的距离也越远。同时,速度的方向决定了物体的运动 方向,当速度方向改变时,物体的运动方向也会相应改 变。例如,汽车转弯时,由于速度方向的变化,汽车的 运动轨迹也会相应改变。
速度的单位
总结词
速度的国际单位是米/秒(m/s),其他常用单位还有公里/小时(km/h)、英 里/小时(mile/h)等。
详细描述
速度的单位是距离单位除以时间单位,国际上通用的距离单位是米,时间单位 是秒。其他常用的速度单位多用于日常生活中,如公里/小时用于表示汽车、火 车等交通工具的速度,英里/小时用于表示飞机速度等。
1 2

高中物理竞赛课件5:关联速度

高中物理竞赛课件5:关联速度

根据接触物系触点速度相关特 征,两者沿接触面法向的分速度相 同,即
vA cos v0 sin
vA v0 tan
vA
α PA α O
α
v0
v0
专题5-例5 如图所示,缠在线轴上的绳子一头搭在墙上的光
滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线
轴中心O的运动速度v0.线轴的外径为R、内径为r,线轴沿水平面做 无滑动的滚动.
线状相交物系交叉点的速度是:
相交双方沿对方切向运动分速 度的矢量和.
vt
θ vn v
vn
A
v1
Oαvv2D1dBd v1d
C v2
v0
v2d
专题5-例1 如图所示,AB杆的A端以匀速v运动,在运动时杆恒与一
半圆周相切,半圆周的半径为R,当杆与水平线的交角为θ时,求杆的角速度ω及 杆上与半圆相切点C的速度.
对方切向运动分速度的矢量和,
φ
滑环速度即为杆沿圆圈切向分速
u
度:
u
v
sin
专题5-例8 如图所示,直角曲杆OBC绕O轴在图示平面内转
动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10 cm,
曲杆的角速度ω=0.5 rad/s,求φ=60°时,小环M的速度.
这是线状交叉物系交叉点相关速度问题
由图示知 2 2 2
A1
2
B2
v1
v1
vA1 A2
vB2 vA2
vB2 2 vA1 2 vA2
由几何关系
v A1
v 2 ,vA2
5v 6
vB2
17 6
专题5-例3 如图所示,物体A置于水平面上,物A前固定有动滑轮B,D

更高更妙的物理竞赛ppt课件竞赛课件物系相关速度

更高更妙的物理竞赛ppt课件竞赛课件物系相关速度
和物理素养。
物系相关速度在日常生活和工 程领域也有广泛应用,如车辆 运动分析、航空航天等领域。
对未来发展的展望与建议
01
深入研究物系相关速度的原理和应用,拓展其在不同领域的应 用范围。
02
加强物理竞赛中物系相关速度的培训和教学,提高学生对该领
域的理解和掌握程度。
鼓励学生在解决实际问题时运用物系相关速度的知识,培养其
相对于地面或绝对静止参考系
的速度。
02
在经典物理学中,绝对速度是存在的,但在相对论中
,由于光速不变原理,绝对速度的概念被舍弃。
03
绝对速度的大小和方向是绝对的,不依赖于观察者的
参考系。
速度的叠加原理
速度的叠加原理是指当两个物体在同一方向上运动时,它们的相对速度等于它们各 自速度的矢量和。
详细描述
在碰撞实验中,我们需要精确测量和计算物体的速度,以便了解碰撞过程中的能量交换、动量传递和散射角度等 参数。通过高速摄影技术和计算机模拟,科学家可以更准确地分析碰撞实验中的速度数据,从而提高实验的精度 和可靠性。
粒子加速器的速度控制
总结词
粒子加速器的速度控制是实现高能物理实验的关键技术之一。
详细描述
在高速测量中,速度的变化会导致时间的测 量出现误差,从而影响测量的精度。为了提 高测量精度,科学家需要采用高精度的计时 设备和高速数据采集技术,同时对测量数据 进行后处理和校准,以减小速度变化对测量 精度的影响。此外,还需要考虑温度、气压
和湿度等环境因素对速度的影响。
05
物系相关速度的未来发展
当两个物体在相反方向上运动时,它们的相对速度等于它们各自速度的矢量差。
速度的叠加原理适用于经典物理学中的低速运动,但在相对论中,由于光速不变原 理,该原理不再适用。

更高更妙的物理竞赛课件5:物系相关速度

更高更妙的物理竞赛课件5:物系相关速度
航速限制
船舶在航行过程中受到航速限制 ,以确保船舶的安全和减少对海
洋环境的影响。
经济航速
为了降低燃油消耗和提高航行效率 ,船舶通常会选择经济航速进行航 行。
加速和减速
船舶在进出港口、通过狭窄水道或 执行特定任务时需要加速或减速, 以适应不同的航行条件和任务需求 。
03
物系相关速度在科学实验 中的应用
在道路和交通环境中,车辆的速度受 到法定限制,以确保交通安全和减少 事故风险。
限速标志识别
驾驶员需要具备识别限速标志的能力 ,以便在规定的速度范围内行驶,避 免超速行驶。
安全车距
为了保持安全,驾驶员需要保持与前 车足够的车距,以便在紧急情况下有 足够的时间和空间采取必要的避险措 施。
飞机的速度与飞行性能
05
物系相关速度的数学模型 与解析
物系相关速度的数学描述
物系相关速度是指物体相对于参考系的速度,可以用矢量表示,包括大小和方向。
物系相关速度可以通过几何关系或物理定律进行计算,如距离、角度、加速度等。
物系相关速度的数学描述通常采用矢量或矩阵形式,以便进行复杂的运动学和动力 学分析。
物系相关速度的解析方法
近似计算可以大大提高计算效率和精 度,但需要注意其适用范围和误差范 围。
近似计算是一种简化计算的方法,通 过忽略次要因素或采用近似公式来简 化计算过程。
THANKS
感谢观看
原子光谱分析中的速度测量
原子光谱分析是研究原子结构和性质的重要手段,其中速度测量是关键技术之一 。通过测量原子光谱的频率和波长,可以推导出原子内部电子的运动速度和能级 结构。
原子光谱分析中的速度测量涉及到高精度的光谱仪器和测量技术,以及复杂的数 学和物理模型。这些技术为研究原子结构和性质提供了重要手段,推动了化学、 生物学和材料科学等领域的发展。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图所示,水平直杆AB在圆心为O、半径为r的固 定圆圈上以匀速u竖直下落,试求套在该直杆和圆圈的交点处一小滑 环M的速度,设OM与竖直方向的夹角为φ.
专题5-例7
这是线状交叉物系交叉点相关速度问题 将杆的速度u沿杆方向与圆圈切 线方向分解: 滑环速度即交叉点速度,方向沿 圆圈切向; 根据交叉点速度是相交双方沿 对方切向运动分速度的矢量和, 滑环速度即为杆沿圆圈切向分速 度:
17 vB 2 v 6
如图所示,物体A置于水平面上,物A前固定有动滑轮B,D 为定滑轮,一根轻绳绕过D、B后固定在C点,BC段水平,当以速度v拉绳头时, 物体A沿水平面运动,若绳与水平面夹角为α,物体A 运动的速度是多大? v D
专题5-例3
这是绳约束相关速度问题
绳BD段上各点有与绳端D相同 的沿绳BD段方向的分速度v; A 设A右移速度为vx,即相对于 A,绳上B点是以速度vx从动 滑轮中抽出的,即 v BA v x
本题属线状交叉物系交叉点速度问题
因两杆角速度相同,∠AMB=60°不变 套在两杆交点的环M所在圆周半径为
D
C M R θβ B l
杆D转过θ圆周角,M点转过同弧上2θ的圆心角 A
l l R 2cos 30 3
vM

60° O
α
环M的角速度为2ω! 环M的线速度为
2 3 2 l 3 3
R

A
r
H h
α
vA
α
由几何关系
R
M
R H r H h
v影
H vA H h
v影 vn
如图所示,缠在线轴A上的线被绕过滑轮B以恒定速率 v0拉出,这时线轴沿水平面无滑动地滚动.求线轴中心O点的速度随 线与水平方向的夹角α的变化关系.线轴的内、外半径分别为R与r.
考察绳、轴接触的切点A速度 轴上A点具有对轴心的转动速度 V=Rω和与轴心相同的平动速度V0: 绳上A点具有沿绳方向速度v0和 与轴A点相同的法向速度vn: 由于绳、轴点点相切,有
v2
v
O2
顶杆AB可在竖直滑槽K内滑动,其下端由凸轮M推 动.凸轮绕O轴以匀角速ω转动,在图示时刻,OA=r,凸轮轮缘与 A接触处法线n与OA之间的夹角为α,试求顶杆的速度.
杆与凸轮接触点有相同的法向速度! 根据接触物系触点速度相关特 征,两者沿接触面法向的分速度相 同,即
B
v杆K
α
r sin v杆 cos
A O C V
v0 α
B
v0
V0
α
vn
VA
V0
v0 R V0 cos
由于纯滚动,有
V0 r
v0 r cos R
r V0 v0 r cos R
图中的AC、BD两杆以匀角速度ω分别绕相距为l的A、 B两固定轴在同一竖直面上转动,转动方向已在图上示出.小环M 套在两杆上,t=0时图中α=β=60°,试求而后任意时刻t(M未落地) M运动的速度大小.
B
vx

C
引入中介参照系-物A ,在沿绳BD方向上,绳上B点速度v 是其相对于参照系A的速度vx与参照系A对静止参照系速度 vxcosθ的合成, 即
v v BA v x cos
v vx 1 cos
由上
如图所示,半径为R的半圆凸轮以等速v0沿水平面 向右运动,带动从动杆AB沿竖直方向上升,O为凸轮圆心,P为其 顶点.求当∠AOP=α时,AB杆的速度.
专题5-例1
这是杆约束相关速度问题
考察杆切点C,由于半圆 静止,C点速度必沿杆! 杆A点速度必沿水平! B C R θ A v2 θ v
以C为基点分解v:
由杆约束相关关系:
v c v1 v cos
v2是A点对C点的转动速度,故
v sin Rcot
v sin R cos
本题属刚体各点速度及接触点速度问题
滚珠球心速度为v,角速度为ω,
根据刚体运动的速度法则:
滚珠与内环接触处A速度 滚珠与外环接触处B速度
v A v r v 2 v B v r v1
R1
r ω B ω A r R2 v ω v2
v1
∵滚珠与两环无滑动,∴两环 与珠接触处A、B切向速度相同
考察板、轴接触的切点C速度
C
vn BC R cot 2
vn
A
v
B
α
vCn
C
C
vn v0 sin
Байду номын сангаасvn
α
v0 r R v0
v
线轴为刚体且作纯滚动,故以线轴 与水平面切点为基点,应有
v0 v R v0 v Rr R Rr
1 cos v Rr
D
专题5-例5
考察绳、轴接触的切点B速度 轴上B点具有与轴心相同的平动 速度v0与对轴心的转动速度rω: 绳上B点具有沿绳方向速度v和 与轴上B点相同的法向速度vn: 由于绳、轴点点相切,有
线轴沿水平面做纯滚动
A α R r O α v
v0
C
v v0 sin r v0 R
若线轴逆时针滚动,则
M
φ O
B
φ
u v sin
u
如图所示,直角曲杆OBC绕O轴在图示平面内转 动,使套在其上的光滑小环沿固定直杆OA滑动.已知OB=10 cm, 曲杆的角速度ω=0.5 rad/s,求φ=60°时,小环M的速度. C 这是线状交叉物系交叉点相关速度问题 C M O vMAA O A 由于刚性 曲杆 OBC 以 O 为 60° 轴 转 动 , 故 BC 上 与 OA 直 vMB 30° 杆交叉点 M 的速度方向垂 vBCM B 直于转动半径OM、大小是: B
v1 v2 v 2 v1 v2 2r
一片胶合板从空中下落,发现在某个时刻板上a 点速度和b点 速度相同:va=vb=v,且方向均沿板面;同时还发现板上 c点速度大小比速度 v大一 倍,c点到a、b两点距离等于a、b两点之间距离.试问板上哪些点的速度等于3v?
本题属刚体各点速度问题
∵板上a、b两点速度相同,故a、 b连线即为板瞬时转动轴!
2
如图所示,合页构件由三个菱形组成,其边长之比为 3∶2∶1,顶点A3以速度v沿水平方向向右运动,求当构件所有角都为直角时,顶 点B2的速度vB2. B1 B2 这是杆约束相关速度问题 B3 v 分析顶点A2、A1的速度: A A A 3 1 2 A
专题5-例2
由图示知
顶点B2,既是A1B2杆上的点, 又是A2B2杆上的点,分别以A1、 A2为基点,分析B2点速度:
v
b
c
v
xa x
根据刚体运动的速度法则,C点 速度为:
vC v vCn
2
同理,速度为3v的点满足
3 2v v 2 l 2v 板角速度 l
2 2
vcn= v
3 l 2
vn=xω
vc=2v V=3v
3v
2
v x
2
2 2
2 v1 v A1 2
2 v2 v A2 2
0
v1 v 2
v1
A1
B2
v1
vB2 vA2 vA1 A2
2 2 vB 2 2 v A1 2 v A2 由几何关系 v A1 v , v A 2 5 v
2 6
考虑A处舞者沿AO方向分运动,到达O点历时
O
vt C
B
2l t 3v v cos 30
由于舞者匀速率运动,则
AO
2l s vt 3
如图所示,一个圆台,上底半径为r,下底半径为R 其母线 AB长为 L,放置在水平地面上,推动它以后,它自身以角速 度ω旋转,整体绕O点作匀速圆周运动,若接触部分不打滑,求旋转 半径OA及旋转一周所需时间T.
2
x 2l
如图,A、B、C三位芭蕾演员同时从边长为l的三角形顶点A、 B、C出发,以相同的速率v运动,运动中始终保持A朝着B,B朝着C,C朝着A.试 问经多少时间三人相聚?每个演员跑了多少路程?
由三位舞者运动的对称性可知, 他们会合点在三角形ABC的中心O
每人的运动均可视作绕O转动的
vn
A
同时向O运动,
专题5-例9
本题求线状交叉物系交叉点A速度
轴环O2速度为v,将此速度沿轴环 O1、O2的交叉点A处的切线方向 分解成v1、v2两个分量:
A O2 O1
O2 d v
由线状相交物系交叉点相关 A 速度规律可知,交叉点A的速度 即为沿对方速度分量v1! R θ 由图示几何关系可得: v1 O1 θ v v R vA d 2 2sin 2 R 2 d v R 2 4 R2 d 2
l
如图,一个球以速度v沿直角斜槽ACB的棱角作无滑 动的滚动.AB等效于球的瞬时转轴.试问球上哪些点的速度最大? 这最大速度为多少?
本题属刚体各点速度问题
球心速度为v, 则对瞬时转轴AB:
则球角速度
2 v R 2
2v R
A
O
R
45
B
C
根据刚体运动的速度法则: 球表面与瞬时转轴距离最大的点有最大速度!
专题5-例4
这是接触物系接触点相关速度问题 根据接触物系触点速度相关特 征,两者沿接触面法向的分速度相 同,即
vA
P
B
α A v0
v A cos v0 sin
α v0
α
O
v A v0 tan
如图所示,缠在线轴上的绳子一头搭在墙上的光 滑钉子A上,以恒定的速度v拉绳,当绳与竖直方向成α角时,求线 轴中心O的运动速度v0.线轴的外径为R、内径为r,线轴沿水平面做 无滑动的滚动.
相关文档
最新文档