八年级数学上册 7.2 定义与命题 第2课时 定理与证明练习 (新版)北师大版
八年级数学上册 7.2 定义与命题(第2课时 命题的证明)课件 (新版)北师大版
15.如图,点 O 为直线 AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.
(1)求∠COD 的度数; (2)判断 OD 与 AB 的位置关系,并说明理由.
解:(1)∠COD=45° (2)OD⊥AB(可以推出∠AOD=90°)
16.如图,点A,O,B在一条直线上,OC平分∠BOD, OE⊥OC,垂足为点O.试判断∠AOE与∠DOE有怎样的数量关系, 并说明理由.
10.如图,直线 AB 与 CD 相交于点 O,∠EOB=90°,则 图中∠1 与∠2 的关系是( C )
A.对顶角 B.互补的两个角 C.互余的两个角 D.相等的角
11.下列说法不正确的是( A ) A.若∠1=∠2,则∠1,∠2是对顶角 B.若∠1,∠2都是直角,则∠1=∠2 C.若∠1=∠2,则∠1+∠3=∠2+∠3 D.若∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2
解: ∠AOE=∠DOE.理由如下:∵OE⊥OC,∴∠1+∠3=90 °.又∠AOB=180°,∴∠2+∠4=90°,又∠1=∠2,∴∠3 =∠4,即∠AOE=∠DOE
17.把一根长度为143 cm的铁丝截成几段,若每一段至少1 cm 长,且任意三段都不能构成三角形,试判断最多可截多少段?
解:前两段取1 cm,1 cm,若任三段不能构成三角形,只需第 三段为前两段之和即2 cm,以此类推,可得以后的线段长为3 cm,5 cm,8 cm,13 cm,21 cm,34 cm,55 cm,所以铁丝 最多可以截成10段
A.需要证明的命题 B.公理 C.定理 D.定义 4.下列语句中属于定理的是( D ) A.在直线AB上取一点E B.如果两个角相等,那么这两个角是对顶角 C.同位角相等 D.同角的补角相等
八年级数学上册7.2定义与命题习题课件(新版)北师大版
18.举例说明下列命题是假命题.
(1)若a2=b2,则a=b; (2)相等的角是对顶角;
(3)直角三角形两边的平方和等于第三边的平方.
解:(1)(-1)2=12,但-1≠1 (2)等腰三角形中,两底角相等,但它们不是对顶角
第七章
平行线的证明
7.2 定义与命题
1.下列命题中,属于定义的是( D )
A.两点确定一条直线 B.同角的余角相等
C.两直线平行,内错角相等
D.点到直线的距离是该点到这条直线的垂线段的长度
2.下列语句是命题的是( B )
A.过一点能作无数条直线吗 B.直角大于锐角
C.作∠A的平分线
D.在线段AB上截取AC
C
5.把“整数一定是实数”改写成“如果……,那么……”的形式. 解:如果一个数是整数,那么它一定是实数
6.下列命题中,是真命题的是( C ) A.两个锐角之和为钝角 B.两个锐角之和为锐角 C.钝角大于它的补角 D.锐角小于它的余角
7.(2014· 襄阳)下列命题错误的是( C ) A.所有的实数都可用数轴上的点表示 B.等角的补角相等 C.无理数包括正无理数、0、负无理数 D.两点之间,线段最短 假 命题,我们可以举出 8.“互补的两个角一定有一个角是钝角”是____ 反例: ∠A=90°,∠B=90°,∠A+∠B=180°,但∠A,∠B都是直角__ .
15.命题“同旁内角互补”的条件是 两个角是同旁内角 , 结论是 这两个角互补 ,这是一个____ 假 命题(填“真”或“假”).
16.判断下列语句是否为命题. (1)狗有三只耳朵;
(2)禁止吸烟;
(3)整数分为偶数和奇数; (4)如果a+b=c+b,那么a=c;
初中数学北师大版八年级上册第七章 平行线的证明2 定义与命题-章节测试习题
章节测试题1.【答题】命题“垂直于同一条直线的两条直线互相平行”的条件是()A.如果两条直线垂直于同一条直线B.两条直线互相平行C.两条直线互相垂直D.两条直线垂直于同一条直线【答案】D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【解答】命题“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.选D.2.【答题】下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0D.对顶角相等【答案】C【分析】根据逆命题是否为真命题逐一进行判断即可.【解答】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,选C.3.【答题】把命题”对顶角相等”写成“如果……那么……”的形式是______.【答案】如果两个角是对顶角,那么这两个角相等【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”,故答案为:如果两个角是对顶角,那么两个角相等.4.【答题】命题“两个锐角的和是直角”是______命题(填“真”或“假”).【答案】假【分析】根据真、假命题的定义判断即可。
【解答】两个锐角的和可能是锐角,直角或钝角,即两个锐角的和是直角是假命题.5.【题文】判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)如果一个数是偶数,那么这个数是4的倍数.(2)两个负数的差一定是负数.【答案】(1)假命题(2)假命题【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,假命题举出反例即可.【解答】解:(1)假命题.反例:6是偶数,但6不是4的倍数.(2)假命题.反例:(-5)-(-8)=+3.6.【题文】把命题改写成“如果……那么……”的形式.(1)对顶角相等.(2)两直线平行,同位角相等.(3)等角的余角相等.【答案】见解答【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线平行,那么同位角相等.(3)如果两个角同为等角的余角,那么这两个角相等.7.【题文】指出下列命题的条件和结论.(1)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.(3)锐角小于它的余角.【答案】见解析【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)条件:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(2)条件:∠1=∠2,∠2=∠3;结论:∠1=∠3.(3)条件:一个角是锐角;结论:这个角小于它的余角.8.【答题】下列句子中,不是命题的是()A. 两点之间,线段最短B. 对顶角相等C. 同位角相等D. 连结A.B两点【答案】D【分析】判断一件事情的语句叫做命题.【解答】解:A、B、C都符合命题的概念,故正确;D、没有作出判断,故错误.选D.9.【答题】下列语句不是命题的()A. 鲸鱼是哺乳动物B. 植物都需要水C. 你必须完成作业D. 实数包括零【答案】C【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,是,因为可以判定这是个真命题;B,是,因为可以判定其是真命题;C,不是,因为这是一个陈述句,无法判断其真假;D,是,可以判定其是真命题;选C.10.【答题】“两条直线相交只有一个交点”的题设是()A. 两条直线B. 相交C. 只有一个交点D. 两条直线相交【答案】D【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【解答】解:“两条直线相交只有一个交点”的题设是两条直线相交.选D.11.【答题】命题“同位角相等,两直线平行”中,条件是______,结论是A. 同位角相等;两直线平行B. 同位角不相等;两直线平行C. 同位角不相等;两直线不平行D. 同位角相等;两直线不平行【答案】A【分析】由命题的题设和结论的定义进行解答.【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行,选A.12.【答题】如果两条直线相交,那么它们只有一个交点.这个命题的条件是______,结论是______.A. 两条直线不相交;它们不只有一个交点B. 两条直线不相交;它们只有一个交点C. 两条直线相交;它们只有一个交点D. 两条直线相交;它们不只有一个交点【答案】C【分析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.【解答】解:这个命题的条件是两条直线相交,结论是它们只有一个交点,选C.13.【答题】命题:“内错角相等,两直线平行”的题设是______,结论是______.A. 内错角相等;两直线平行B. 内错角相等;两直线不平行C. 内错角不相等;两直线平行D. 内错角不相等;两直线不平行【答案】A【分析】根据题设与结论的定义即可判断.【解答】解:内错角相等,两直线平行”的题设是:内错角相等,结论是:两直线平行.故答案是: A.14.【答题】命题“直角三角形两个锐角互余”的条件是______,结论是______.A. 两个锐角互余,则这两个锐角不在一个直角三角形中B. 一个直角三角形中的两个锐角;这两个锐角互余C. 一个直角三角形中的两个锐角;这两个锐角互补D. 两个锐角互补,则这两个锐角在一个直角三角形中【答案】B【分析】命题有条件和结论两部分组成,条件是已知的,结论是结果.【解答】解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余,选B.15.【答题】把命题“等角的补角相等”改写成“如果…那么…”的形式是(______ )A. 如果两个角相等,那么它们是等角的补角B. 如果两个角是补角,那么它们相等C. 如果两个角是等角的补角,那么它们相等D. 如果两个角相等,那么它们是等角的余角【答案】C【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为: C.16.【答题】命题“等角的余角相等”写成“如果…,那么…”的形式(______)A. 如果两个角的补角相等,那么这两个角相等B. 如果两个角的余角相等,那么这两个角相等C. 如果两个角相等,那么这两个角的余角相等D. 如果两个角相等,那么这两个角的补角相等【答案】C【分析】任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论.【解答】解:命题“等角的余角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”.故命题“等角的余角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的余角相等,选C.17.【答题】下列语句中不是命题的是()A. 两点之间线段最短B. 连接A,B两点C. 两条直线相交有且只有一个交点D. 对顶角不相等【答案】B【分析】找到不是判断一件事情的语句的选项即可.【解答】解:A、判断出两点之间,线段最短,是命题,不符合题意;B、没有做出任何判断,不是命题,符合题意;C、由两条直线相交可得只有一个交点,是命题,不符合题意;D、判断是对顶角不相等,是命题,不符合题意;选B.18.【答题】下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,选C.19.【答题】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A. ∠1=50°,∠2=40°B. ∠1=50°,∠2=50°C. ∠1=∠2=45°D. ∠1=40°,∠2=40°【答案】C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A,满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故错误;B、不满足条件,故错误;C、满足条件,不满足结论,故正确;D、不满足条件,也不满足结论.选C.20.【答题】a、b是实数,下列命题是真命题的是()A. a≠b,则a2≠b2B. 若a2>b2,则a>bC. 若|a|>|b|,则a>bD. 若|a|>|b|,则a2>b2【答案】D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、假命题,反例:2≠-2,但2 2 =(-2)2;B、假命题,反例:-3 2>0 2,但-3<0;C、假命题,反例:|-9|>|0|,则-9<0;D、真命题,|a|>|b|,则a 2>b 2.选D.。
八年级数学上册 7.2 第2课时 定理与证明习题课件 (新版)北师大版
8.下列推理正确的是( B ) A.∵a2=b2,∴a=b B.∵ a+ b=0,∴a=b=0 C.∵a≠b,∴a2≠b2 D.∵ac=bc,∴a=b
9.证明命题“三角形任意两边的和大于第三边”成立的依据 是
两点之间线段最短
.
10.将下面证明中每一步的理由写在括号里: 如图,AB=DE,AB∥DE,BE=CF. 求证:∠A=∠D. 证明:∵AB∥DE(已知), ∴∠B=∠DEF(两直线平行,同位角相等). ∵BE=CF(已知), ∴BE+EC=EC+CF(等式的性质), 即BC=EF. ∵在△ABC和△DEF中,AB=DE(已知),∠B=∠DEF(已证), BC=EF(已证),∴△ABC≌△DEF(SAS), ∴∠A=∠D(全等三角形的对应角相等).
B.两角及其夹边分别相等的两个三角形全等
C.全等三角形的面积相等 D.同位角相等,两直线平行
4.某工程队在修建高速公路时,有时需将弯曲的道路改直,根据什么公
理可以说明这样做能缩短路程( C ) A.直线的公理
B.直线的公理或线段最短的公理
C.线段最短的公理 D.以上都不对 公理.(填“定理”或“公理”) 5.“两点之间线段最短”是____
11.下面关于公理和定理的联系,说法不正确的是( B )
A.公理和定理都是真命题
B.公理就是定理,定理也是公理 C.公理和定理都可以作为推理论证的依据
D.公理的正确性不需证明,定理的正确性需证明
12.下列命题:①两直线平行,同旁内角互补;②同角的余角相等;
③等边对等角;④垂线段最短,可作为定理的有( D )
6.下列各项:①公理;②已学过的定理;③定义;④等量代换;⑤等
最新北师大版八年级数学上册7.2定义与命题第2课时定理与证明学案
7.2 定义与命题第2课时定理与证明1.学习目标(1)了解命题的构成,能区分命题中的条件和结论(2)掌握真、假命题及反例的概念,并能判断命题的真假。
(3)了解本教材所采用的公理2.重难点重点:找出命题的条件和结论难点:用“如果……那么……”表示命题一、自学过程温故知新叫定义。
叫命题。
观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。
1.如果两个三角形的三条边对应相等,那么这两个三角形全等。
2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
4.如果一个四边形的对角线相等,那么这个四边形是矩形。
5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。
自主学习(1)预习课本168---170页内容(2)_____________ 称为公理。
______________称为定理。
______________称为证明小组合作学习下列说法中不正确的是()A.证实命题正确与否的推理过程叫做证明B.命题是判断一件事情的句子C.公理的正确与否必须用推理的方法来证实D.要证明一个命题是假命题,只要举出一个反例即可教师精讲1、公理、定理及证明公理:公认的真命题称为公理,它不需要证明。
定理:经过证明的真命题称为定理。
证明:演绎推理的过程称为证明。
2、本书中我们已经认识的8条公理如下:①两点确定一条直线。
②两点之间线段最短。
③同一平面内,过一点有且只有一条直线与已知直线垂直。
④两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.⑤过直线外一点有且只有一条直线与这条直线平行.⑥两边及其夹角对应相等的两个三角形全等.⑦两角及其夹边对应相等的两个三角形全等.⑧三边对应相等的两个三角形全等.此外,等式的有关性质和不等式的有关性质也作为公理。
3、从这些基本事实出发,我们可以证明下面的定理:定理:同角(或等角)的补角相等。
同角(或等角)的余角相等。
八年级数学上册7.2定义与命题第2课时定理与证明教学设计 (新版北师大版)
八年级数学上册7.2定义与命题第2课时定理与证明教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册7.2定义与命题的第2课时,主要学习定理与证明。
定理是数学中经过证明的命题,是数学推理的基础。
本节课通过学习定理与证明,让学生理解数学命题的本质,培养学生的逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了七年级和八年级上册的数学知识,对命题和定理有一定的了解。
但是,对于如何进行数学证明,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生理解证明的过程,培养学生的逻辑推理能力。
三. 教学目标1.理解定理的概念,知道定理的定义和定理的证明过程。
2.能够运用所学的定理进行问题的解决。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.定理的概念和定理的证明过程。
2.如何运用所学的定理解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考,从而达到理解定理的目的;通过案例教学,让学生了解定理的证明过程,掌握证明的方法;通过小组合作学习,培养学生的团队协作能力,提高学生的逻辑推理能力。
六. 教学准备1.PPT课件2.相关案例和问题3.小组合作学习资料七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾命题和定理的概念,为新课的学习做好铺垫。
2.呈现(10分钟)呈现本节课的学习目标,让学生明确本节课的学习内容。
然后,通过PPT课件,介绍定理的概念和定理的证明过程。
在呈现过程中,引导学生关注定理的证明方法,让学生理解证明的过程。
3.操练(10分钟)通过案例教学,让学生了解定理的证明过程,掌握证明的方法。
在这个过程中,教师要引导学生积极参与,提出自己的观点,培养学生的逻辑思维能力。
4.巩固(10分钟)让学生分组进行合作学习,运用所学的定理解决实际问题。
教师在这个过程中,要引导学生进行合理的分工,指导学生解决问题,培养学生的团队协作能力。
2017秋八年级数学上册 7.2 定义与命题 第2课时 定理与证明教案1 (新版)北师大版
第2课时 定理与证明1.了解公理、定理与证明的概念并了解本套教材所采用的公理;(重点) 2.体会命题证明的必要性,体验数学思维的严谨性. 一、情境导入体验证明的步骤:对于命题“如果一条直线与两条平行线中的一条垂直,那么这条直线也和另一条垂直”是否正确?转化为如图所示的图形,已知条件为AB∥CD,AB ⊥EF ,请问CD 与EF 垂直吗?为什么?二、合作探究探究点一:公理与定理下列平行线的判定方法中是公理的是( )A .平行于同一条直线的两条直线平行B .同位角相等,两直线平行C .内错角相等,两直线平行D .在同一平面内,不相交的两条直线叫做平行线解析:A 是由公理推出的定理;C 是由B 推出的平行线的判定定理;D 是平行线的定义,只有B 是由画图实践得来的,符合公理的定义,故选B.方法总结:公理是不需要推理判断的公认的真命题;定理是需要用推理的方法来判断其正确的命题.探究点二:证明【类型一】直接证明非文字题如图所示,在直线AC 上取一点O ,作射线OB ,OE 和OF分别平分∠AOB 和∠BOC.求证:OE⊥OF.解析:要证明某个结论,可从条件入手分析,也可以从结论逆推进行分析.要证OE⊥OF,只需证∠EOF=90°,而∠EOF=∠EOB+∠BOF,因此只需证∠EOB+∠BOF=90°.由OE 、OF 平分∠AOB 和∠BOC 可得∠EOB+∠BOF=12(∠AOB+∠BOC)=90°,所以得证OE⊥OF.证明:∵OE 和OF 分别平分∠AOB 和∠BOC,∴∠EOB =12∠AOB ,∠BOF =12∠BOC.又∵∠AOB +∠BOC =180°,∴∠EOB +∠B OF =12(∠AOB +∠BOC)=12×180°=90°,即∠EOF=90°,∴OE ⊥OF. 方法总结:从结论逆推进行分析得出条件,反过来的过程就是证明结论的过程.【类型二】直接证明文字题求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC 中,∠C =90°.求证:∠A 与∠B 互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A +∠B=180°-∠C=90°.∴∠A 与∠B 互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.2三、板书设计命题⎩⎪⎨⎪⎧分类⎩⎪⎨⎪⎧公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.。
北师大版 八年级 上册 7-2 定义与命题 练习(带答案)
定义与命题练习一、选择题1.以下四个命题: ①如果一个数的相反数等于它本身,则这个数是0; ②一个数的倒数等于它本身,则这个数是1; ③一个数的算术平方根等于它本身,则这个数是1或0; ④如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有()A. 1个B. 2个C. 3个D. 4个2.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=33.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线4.下列正确的选项是()A. 命题“同旁内角互补”是真命题B. “作线段AC”这句话是命题C. “对顶角相等”是定义D. 说明命题“若x>y,则a2x>a2y”是假命题,只能举反例a=05.下列语句不是命题的是()A. 两直线平行,同位角相等B. 面积相等的两个三角形全等C. 同旁内角互补D. 作线段AB=CD6.下列命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②内错角相等;③在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;④相等的角是对顶角.其中,真命题有()A. 1个B. 2个C. 3个D. 4个7.下列命题是真命题的是()A. 两直线平行,同位角相等B. 面积相等的两个三角形全等C. 同旁内角互补D. 相等的两个角是对顶角8.对假命题“若a>b,则a2>b2”举反例,正确的反例是()A. a=−1,b=0B. a=−1,b=−1C. a=2,b=1D. a=−1,b=−29.下列命题正确的是()A. 有一个角是直角的平行四边形是矩形B. 四条边相等的四边形是矩形C. 有一组邻边相等的平行四边形是矩形D. 对角线相等的四边形是矩形10.要说明命题“两个无理数的和是无理数”,可选择的反例是()A. 2,−3B. √2,√3C. √2,−√2D. √2,√211.下列说法:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个12.下列判断正确的是()A. 北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B. 一组数据6,5,8,7,9的中位数是8C. 甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D. 命题“既是矩形又是菱形的四边形是正方形”是真命题13.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A. x=−2B. x=−1C. x=1D. x=214.若命题“有两边分别相等,且_________的两个三角形全等”是假命题,则以下选项填入横线正确的是()A. 两边的夹角相等B. 周长相等C. 其中相等的一边上的中线也相等D. 面积相等二、填空题15.命题“全等三角形的面积相等”的逆命题是:______,它是______(填入“真”或“假”)命题.16.命题“如果a=b,那么|a|=|b|”的逆命题是______(填“真命题“或“假命题”).17.命题“若a=b,则−a=−b”的逆命题是______.18.用一组a,b的值说明命题“若ab>1,则a>b”是错误的,这组值可以是a=______,b=______.三、解答题19.(1)完成下面的推理说明:已知:如图,BE//CF,BE、CF分别平分∠ABC和∠BCD.求证:AB//CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=12∠______,∠2=12∠______(______ ).∵BE//CF(______ ),∴∠1=∠2(______).∴12∠ABC=12∠BCD(______).∴∠ABC=∠BCD(等式的性质).∴AB//CD(______ ).(2)说出(1)的推理中运用了哪两个互逆的真命题.20.在△ABC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,如有三个关系式①AE//DF②AB=CD③CE=BF(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确性.21.把下列命题改成“如果……那么……”的形式.(1)三角形内角和是180°.(2)同角的补角相等.(3)两个相反数的和为0.答案和解析1.【答案】B【解答】解:如果一个数的相反数等于它本身,则这个数是0,所以①正确;一个数的倒数等于它本身,则这个数是1或−1,所以②错误;一个数的算术平方根等于它本身,则这个数是1或0,所以③正确;如果一个数的绝对值等于它本身,则这个数是正数或0,所以④错误.故选B.2.【答案】B【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且−3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>−1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且−1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.3.【答案】D【解答】解:命题“垂直于同一条直线的两条直线互相平行”的条件是两条直线垂直于同一条直线;故选D.4.【答案】D【解答】解:A、因为只有两条线平行时形成的同旁内角才互补,所以“同旁内角互补”是假命题,故A错误;B.“作线段AC”这句话不是命题,故B错误;C.“对顶角相等”不是定义,是命题,故C错误;D.说明命题“若x>y,则a2x>a2y”是假命题,只能举反例a=0,正确,故D正确,故选D.5.【答案】D【解答】解:ABC都是命题,D.作线段AB=CD,是作图,没有对一件事情做出判断,所以不是命题.故选D.6.【答案】B【解析】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①为真命题;两直线平行,内错角相等,所以②为假命题;在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,所以③为真命题;相等的角不一定为对顶角,所以④为假命题.7.【答案】A【解析】解:A、两直线平行,同位角相等,所以A选项为真命题;B、面积相等的两个三角形不一定全等,所以B选项为假命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、相等的两个角不一定为对顶角,所以D选项为假命题.8.【答案】D【解析】解:用来证明命题“若a>b,则a2>b2是假命题的反例可以是:a=−1,b=−2,因为−1>−2,但是(−1)2<(−2)2,所以D符合题意;9.【答案】A【解析】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;10.【答案】C【解析】解:两个无理数的和是无理数是假命题,例如互为相反数的两个无理数和为0,0是有理数,11.【答案】A【解答】解:①负数有立方根,错误;②一个实数的立方根不是正数就是负数或0,错误;③一个正数或负数的立方根与这个数的符号一致,正确;④如果一个数的立方根等于它本身,那么它一定是±1或0,错误;其中正确的是③,有1个;故选A.12.【答案】D【解析】解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.13.【答案】A【解答】解:因为x=−2满足|x|>1,但不满足x>1,所以x=−2可作为说明命题“若|x|>1,则x>1”是假命题的反例.故选:A.14.【答案】D【解析】【试题解析】解;A.若命题“有两边分别相等,且两边的夹角相等的两个三角形全等”是真命题,B.若命题“有两边分别相等,且周长相等的两个三角形全等”是真命题,C.若命题“有两边分别相等,且其中相等的一边上的中线也相等的两个三角形全等”是真命题,D.若命题“有两边分别相等,且面积相等的两个三角形全等”是假命题.故选:D.15.【答案】面积相等的三角形是全等三角形;假【解答】解:“全等三角形的面积相等”的逆命题是:面积相等的三角形是全等三角形,它是假命题.故答案为面积相等的三角形是全等三角形;假.16.【答案】假命题【解析】【试题解析】解:如果a=b,那么|a|=|b|的逆命题是:如果|a|=|b|,则a=b是假命题.17.【答案】若−a=−b,则a=b【解析】解:命题“若a=b,则−a=−b”的逆命题是若−a=−b,则a=b,18.【答案】−2−1【解析】案不唯一,如解:当a=−2,b=−1时,满足ab>1,但a<b.19.【答案】ABC BCD角平分线的定义已知两直线平行,内错角相等等量代换内错角相等,两直线平行【解析】解:(1)∵BE、CF分别平分∠ABC和∠BCD(已知)∴∠1=12∠ABC,∠2=12∠BCD(角平分线的定义)∵BE//CF(已知)∴∠1=∠2(两直线平行,内错角相等)∴12∠ABC=12∠BCD(等量代换)∴∠ABC=∠BCD(等式的性质)∴AB//CD(内错角相等,两直线平行)故答案为:ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD,再根据平行线的判定,即可得出AB//CD;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.20.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③, 证明:∵AE//DF , ∴∠A =∠D , ∵AB =CD ,∴AB +BC =BC +CD ,即AC =DB , 在△ACE 和△DBF 中, {∠E =∠F ∠A =∠D AC =DB, ∴△ACE≌△DBF(AAS), ∴CE =BF ;若选择如果①③,那么②, 证明:∵AE//DF , ∴∠A =∠D ,在△ACE 和△DBF 中, {∠E =∠F ∠A =∠D EC =FB, ∴△ACE≌△DBF(AAS), ∴AC =DB ,∴AC −BC =DB −BC ,即AB =CD .21.【答案】解:(1)如果一个图形是三角形,那么这个图形的内角和是180°;(2)如果两个角是同一个角的补角,那么这两个角相等; (3)如果两个数互为相反数,那么它们的和为0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时定理与证明基础题
知识点1 公理、定理
1.下面关于公理和定理的联系,说法不正确的是()
A.公理和定理都是真命题
B.公理就是定理,定理也是公理
C.公理和定理都可以作为推理论证的依据
D.公理的正确性不需证明,定理的正确性需证明
2.“内错角相等,两直线平行”是()
A.定义B.定理
C.公理D.需要判断的命题
3.在证明过程中可以作为推理根据的是()
A.命题、定义、公理B.定理、定义、公理
C.命题D.真命题
4.下列语句中,属于定理的是()
A.在直线AB上取一点E
B.如果两个角相等,那么这两个角是对顶角
C.同位角相等
D.同角的补角相等
5.下列所学过的真命题中,不是公理的是()
A.对顶角相等
B.两个角及其夹边分别对应相等的两个三角形全等
C.同位角相等,两直线平行
D.三边分别对应相等的两个三角形全等
6.某工程队,在修建兰定高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程()A.直线的公理
B.直线的公理或线段最短公理
C.线段最短公理
D.平行公理
7.“两点之间线段最短”是________(填“定义”“公理”或“定理”).
知识点2 证明
8.下面关于“证明”的说法正确的是()
A.“证明”是一种命题
B.“证明”是一种定理
C.“证明”是一种推理过程
D.“证明”就是举例说明
9.如图,直线a、b被直线c所截,下列说法正确的是()
A.当∠1=∠2时,一定有a∥b
B.当a∥b时,一定有∠1=∠2
C.当a∥b时,一定有∠1+∠2=90°
D.当∠1+∠2=180°时,一定有a∥b
10.下列说法不正确的是()
A.若∠1=∠2,则∠1,∠2是对顶角
B.若∠1,∠2都是直角,则∠1=∠2
C.若∠1=∠2,则∠1+∠3=∠2+∠3
D.若∠1+∠3=90°,∠2+∠3=90°,则∠1=∠2
11.已知∠1+∠2=90°,∠3+∠2=90°,则∠1=∠3,理由是________________.
12.如图,已知AC ⊥BC ,C 为垂足,E 是BC 上一点,并且∠1=∠2.试问:DE 与BC 有何位置关系?请说明理由.
中档题
13.“垂线段最短”有下列说法:①是命题;②是假命题;③是真命题;④是定理.其中正确的说法是( )
A .①③
B .①③④
C .③④
D .①②④
14.下列命题可以作定理的有( )
①2与6的平均值是8;②能被3整除的数字能被6整除;③5是方程12x +7=9x +26
的根;④三角形内角和是180°;⑤等式两边加上同一个数仍是等式.
A .2个
B .3个
C .4个
D .5个
15.填空:
如图,已知AB ∥CD ,∠A =∠C ,则可推得AD ∥BC ,理由如下:
∵AB ∥CD (已知),
∴∠A +∠____=180°(________________).
∵∠A =∠C(已知),
∴∠C +∠____=180°(________________).
∴AD ∥BC(________________).
16.如图所示,如果∠1=∠2,那么AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.
17.请你完成命题“邻补角的角平分线互相垂直”的证明.(画出图形,写出已知、求证,并完成证明)
综合题
18.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.
请你从这四个条件中选出三个作为条件,另一个作为结论,组成一个真命题,并给予证明.
条件________;结论________.(均填写序号)
参考答案
1.B 2.B 3.B 4.D 5.A 6.C 7.公理 8.C 9.D 10.A 11.同角的余角相等
12.DE ⊥BC.理由:因为∠1=∠2,所以AC ∥DE(内错角相等,两直线平行).
因为AC ⊥BC ,所以∠ACE =90°.
所以∠DEC =90°.
故DE ⊥BC.
13.B 14.A 15.D 两直线平行,同旁内角互补 D 等量代换 同旁内角互补,两直线平行
16.假命题,添加BE ∥DF.
理由:∵BE ∥DF ,∴∠EBD =∠FDN.
∵∠1=∠2,
∴∠EBD -∠1=∠FDN -∠2.
∴∠ABD =∠CDN.
∴AB ∥CD.
17.已知:如图,AB ,CD 相交于点O ,OE ,OF 分别平分∠AOC ,∠AOD.
求证:OE ⊥OF.
证明:∵OE 平分∠AOC ,
∴∠AOE =12∠AOC. ∵OF 平分∠AOD ,
∴∠AOF =12
∠AOD. ∵∠AOC +∠AOD =180°,
∴∠EOF =∠AOE +∠AOF =12∠AOC +12∠AOD =12(∠AOC +∠AOD)=12
×180°=90°. ∴OE ⊥OF.
18.①②③ ④
证明:∵BF =CE ,
∴BF +CF =CE +CF ,即BC =EF.在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,
∴△ABC ≌△DEF.
∴∠1=∠2.。