七年级下册实数以及实数的运算讲义

合集下载

七年级下册实数数学知识点

七年级下册实数数学知识点

七年级下册实数数学知识点
实数是指包括有理数和无理数的数集。

在七年级下册数学学习中,我们需要掌握一些实数的基本概念和性质,下面将分六个部
分介绍这些知识点。

一、实数的分类
实数包括两类:有理数和无理数。

有理数包括整数、分数和小数,可以表示为分数形式,例如 5/7、-1/2、3.14;无理数不能表
示为分数形式,例如π、√2。

二、实数的四则运算
实数的四则运算包括加减乘除四种运算,其中加法和乘法满足
结合律、交换律和分配律,减法和除法的性质与其运算对象有关。

三、实数的比较
实数可以进行大小比较。

大于、小于、等于三种比较关系,若a>b,则 b<a。

当两个实数无法比较大小时,它们不是实数。

四、实数的绝对值
实数 a 的绝对值是 a 的非负数表示,用 |a| 表示,即
|a| = a (a≥0)
|a| = -a (a<0)
其中,绝对值的性质包括:非负性、正定性、乘法性和三角不等式。

五、实数的小数表示
实数可以用小数表示,分为有限小数和无限小数。

有限小数是指小数的值有限,例如 0.5、-3.14;无限小数是指小数的值无限循环或无限不循环,例如0.333…、√2。

六、实数的十进制展开式
实数可以用十进制展开式表示,即把实数写成一个整数和小数部分之和。

例如,3.14 的十进制展开式为
3.14 = 3 + 0.1×1 + 0.01×4
十进制展开式的性质包括:唯一性和完整性。

以上是七年级下册实数数学知识点的介绍,希望能帮助大家在学习数学时更好地理解和掌握实数。

七年级(下)数学 同步讲义 用数轴表示实数及运算

七年级(下)数学 同步讲义 用数轴表示实数及运算

1、 实数的绝对值、相反数(1)一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值.实数a 的绝对值记作a .(2)绝对值相等、符号相反的两个数叫做互为相反数;零的相反数是零.非零实数a 的相反数是a -.2、两个实数的大小比较 两个实数也可以比较大小,其大小顺序的规定同有理数一样. 负数小于零;零小于正数.两个正数,绝对值大的数较大;两个负数,绝对值大的数较小.从数轴上看,右边的点所表示的数总比左边的点所表示的数大.比较两数大小是中学数学中的基本类型和基本技能,以下介绍几种常用的方法: 1.近似值法:借用两个数的不足和过剩近似值来判别两个数大小的方法; 2.平方法:将两个数平方,再来判定两个数大小的方法;3.求差法:先求两个数的差,用差与0作比较来判定两个数大小的方法. 4.求商法:先求两个数的商,用商与1作比较判定两个数大小的方法.5.求倒数法:先求两个数的倒数,用倒数的大小来判定两个数大小的方法.即对于符号相同的a ,b 两数,若11a b <,则a b >;若11a b>,则a b <.知识结构知识精讲模块一:用数轴上的点表示实数用数轴上的点表示实数及实数的运算3、数轴上两点之间的距离在数轴上,如果点A 、点B 所对应的数分别为a 、b ,那么A 、B 两点之间的距离为 AB a b =-.【例1】 下列各组数中互为相反数的是( )A .22(2)--与B .328--与C .22(2)-与D .22-与【例2】 如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N【例3】 下列说法正确的是()A .一个有理数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数.【例4】 下列四个结论,中正确的是( ) A .355222<< B .553422<<C .35222<< D .55124<<例题解析10PQMN【例5】 填空:(1)若m ,n 互为相反数,则5m +5n -5=_________; (2)已知|x |=5,y =3,则x -y =_______________.【例6】 实数m 、n 在数轴上的位置如图所示,则下列不等关系正确的是().A .n <mB .n 2<m 2C .n 0<m 0D .| n |<| m |.【例7】 已知数轴上A 、B 、C 、D 四点所对应的实数分别为-2.5、2-、3、123.(1)在数轴上描出这四个点的大致位置;(2)求A 与D ,B 与C 两点间的距离.【例8】 填空:(1)已知数轴上A ,B ,C 三点表示的数分别是-2,2,3,则A 与B ,A 与C 两点之间的距离分别是__________;(2)A 、B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,则点B 对应的数为________.【例9】 比较下列各式的大小:① 3_____8___2-- ;②2________2(2)-;② 75-________53-;④20042003-_______20052004-.­1 mn­2b a【例10】 (1)已知实数n <m <0,比较m 、|n |、m -n 的大小; (2)如果71a a <<+,求整数a 的值.【例11】 已知实数 a 、b 在数轴上的位置如图所示:试化简2()a b a b --+.【例12】 如图,一辆小车从点A 沿数轴向右直爬2个单位到达点B ,点A 表示,设点B 所表示的数为m (1)求的值;(2)求的值.【例13】 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cdm ++-+的值.实数的运算在实数范围内,可以进行加减乘除乘方等运算,而且有理数的运算法则和运算律在实数2-m 01(6)m m -++模块二:实数的运算-2-110AB知识精讲范围内仍然成立.实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方、开方、再乘除,最后算加减,同级按从左到右顺序进行,有括号先算括号里的.实数运算的结果是唯一的.实数运算常用到的公式有:第一组:2()(0)a a a =≥;2a a =; 第二组:(00)ab ab a b =≥≥,;(00)a a a b b b=≥>,.【例14】 化简:(1)36164-+;(2)34181627-+; (3)25(2)32-+;(4)3510.00832--.【例15】 填空:(1)2(3)=_____________; (2)122÷_____________;(3)11()23-+=__________.【例16】 填空:(1)490.0025400-________;(2)2(25)=_________.【例17】 填空:(1)3625⨯=__________;(2)82⨯=_________.例题解析【例18】 不用计算器,计算:(1(2)(3(4)02)( 3.14)π+-.【例19】 化简求值:(1; (2)2(3-;(3;(4)05).【例20】 计算:(1)3111||(1)255--+;(2)⋅【例21】 如果3()2x -有平方根,且满足|21|6x -=,试求3()2x -的平方根.【例22】求值:(1(24÷.【例23】 计【例24】 计算:(1)341011|5|2927916--++; (2)20131(2)2()892---++--.【例25】 计算:(1)2277222288⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭;(2)()()201720171212-⋅+;(3)022(21)(53)(53)---⨯+.【例26】 已知2510x x -+=,求2212x x +-的算术平方根.【例27】 已知7210x =+,求654322232545x x x x x x ---+-+的值.一、填空题: 随堂检测【习题1】和数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【习题2】(1)1____________;相反数是___________;(2的数是_________;数轴上离原点的距离等于π的是_______.【习题3】【习题4】求出下列各数的绝对值和相反数:(1)(23;(3;(4)3.15π-.【习题5】比较大小:(1);(2)-4_______-(311;(4+2+【习题6】化简求值:(1)3π-(2)3(a<-6).【习题7】如果在数轴上点A表示的数是-2,点B表示的数是2,求数轴上所有到点A,点B的距离为3的点到原点的距离之和.【习题8】 实数a ,b ,c 在数轴上所对应的点的位置如图所示:(1)24b ac -的值是正数还是负数?为什么. (2)化简:||||||||a a b b c a c -++---【习题9】 求值:(1)5(52)-; (2)225(7)+;(3)2(52)-;(4)22(72)(72)-+.【习题10】 计算:(1)22(13)(13)--+; (2)22(23)(23)+⨯-;(3)233232⨯÷;(4)22(56)(56)+⋅-.【习题11】 计算:(1)233(6)46--+-;(2)203(7)(57)π-+-;(3)231553(2)8⨯÷+÷; (4)22(20162017)(20172016)+⋅-.【习题12】 已知:21xa =+,求22x xx xa a a a----的值.bac. O【作业1】 下列说法错误的是( )A .数轴上的点和全体实数是一一对应的B .a ,b 为实数,则0a b +>C .实数中没有最小的数D .实数中有绝对值最小的数【作业2】 (1)________;相反数是________;(2________________.【作业3】 下列计算正确的是()A 5=±BC .|3.13| 3.13ππ-=-D .11736÷=【作业4】 比较大小:(1);(2)47-_______(3)(4)3-【作业5】 实数a ,b 在数轴上所对应的点的位置如图所示,则2a _______0,a +b __________0,b a --________0,2a a b -+=________.【作业6】 数轴上有点A 、B ,它们所对应的数分别为1,点C 也在此数轴上,且C 、B 两点关于A 点对称.(1) 求点C 所对应的数;(2) 若点D 也在此数轴上,且CD =23BC ,求点D 所对应的数以及AD 的长. 【作业7】【作业8】 化简:(1)34-;(2)()a b b c c a a b c -+---<<.【作业9】 计算:(1; (2;(3)1143-- (4【作业10】【作业11】计算并化简:|3|x-【作业12】已知:x=y=求:(1)22+的值.x y353x xy y-+的值;(2)33。

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。

沪教版(五四制)七年级数学下册 第九讲 实数的概念及运算 讲义(无答案)

沪教版(五四制)七年级数学下册 第九讲  实数的概念及运算 讲义(无答案)

一、实数的分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 二、有理数的性质:⑴有理数的定义:可以写成两个整数p 与q (0q ≠)的比值的数.故所有的有理数都可以化成分数pq(0q ≠)的形式.⑵有理数进行加、减、乘、除四则运算的结果仍是有理数.即有理数集对于加减乘除四则运算具有封闭性.三、平方根和开平方:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 求一个数a 的平方根的运算叫做开平方,a 叫做被开方数. 开平方与平方互为逆运算.在实数范围内,一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的两个平方根可以用“a 的正平方根(又叫算术平方根),读作“根号a ”;a 的负平方根,读作“负根号a ”.=.,00,0,0a a a a a a >⎧⎪===⎨⎪-<⎩四、立方根和开立方:如果一个数的立方等于a,那么这个数叫做a a ”,其中a 叫做被开方数,“3”叫做根指数.2”第九讲实数的概念及运算a ”a ”. 求一个数a 的立方根的运算叫做开立方.在实数范围内,任何一个数都有且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.实数的概念【例题1】 将下列各数填入适当的括号内:220,0.23,,0.37377377737π∙∙---⑴整 数:{ };⑵非负数:{ }; ⑶有理数:{ };⑷无理数:{ } ⑸正实数:{ };⑹负实数:{ }【例题2】 平方根等于它本身的数是 ,算术平方根等于它本身的数是 ,立方根等于它本身的数是 ;平方根与立方根相等的数是 .①196的平方根是_____;②2( 2.5)-的平方根是 ;③2(的平方根是 ;______的相反数是 ;⑥的立方根是 .【例题3】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5)________= (6)________=【例题4】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5________= (6________=实数的性质【例题5】 (1)已知a ,b ,c ,d 是有理数,a c +=+a c =,b d =.(2)已知x ,y 是有理数,且11()()402332x y πππ+++--=,求x y -的值.(3)已知x ,y 是有理数,且11 2.25034x y ⎛⎛+--- ⎝⎭⎝⎭,求x ,y 的值.【例题6】 (1)若a 为自然数,b 为整数,且满足2()7a =-a = ,b = .(2,求a ,b 的值.【例题7】 (12(2)0ab -=,求111(1)(1)(2009)(2009)ab a b a b +++++++的值.(2)已知x ,y ,z 满足24402x y z z -+-++=,求()x y z +的值.【例题8】 (1)已知关于x 1a =有三个整数解,求a 的值.(2)若m =试确定m 的值.【例题9】 (1a ,小数部分是b ,求22a b a b-+的值.(2b ,求4321237620b b b b +++-的值.【例题10】 (1)求最小的正整数m 是一个自然数。

七年级下实数及实数的计算

七年级下实数及实数的计算

第三节 实数与实数的计算一、基础知识1、实数:有理数和无理数统称为实数.2、实数的运算 〔1〕加法法则:①互为相反数的两个数相加,和为0②同号相加,取相同的符号,再把它们的绝对值相加③异号相加,取绝对值较大的符号,然后用较大的绝对值减去较小的绝对值 ④任何数与0相加,结果仍是这个数〔2〕减法法则:减去一个数等于加上这个数的相反数 〔3〕乘法法则:①同号相乘为正〔如果有偶数个负数为因数,则积为正数〕 ②异号相乘得负〔如果有奇数个负数为因数,则积为负数〕 ③任何数与0相乘,积为0〔4〕除法法则:除以一个不为0的数,等于乘以这个数的倒数 〔5〕混合运算①先算幂,再乘除,后加减 ②如果有括号,要先算括号里面的 ③混合运算遵循交换律,结合律 3.分数指数幂正数的正分数指数幂的意义正数的负分数指数幂的意义注意:0的正分数指数幂等于0,0的负分数指数幂没有意义 4.实数的大小比较)1,,0(1>>=-n n m a aa nmnm 且是正整数、)1,,0(>>=n n m a a a n m nm 且是正整数、〔1〕差值比较法:a b ->0a ⇔>b ,a b -=0a b ⇔=,a b -<0a ⇔< b〔2〕商值比较法:若a b 、为两正数,则a b >1a ⇔>b ;1;aa b b=⇔=a b <1a ⇔<b〔3〕绝对值比较法:若a b 、为两负数,则a >b a ⇔<b a b a b a =⇔=;;<b a ⇔>b二、典型例题 1.当0<x <1时,21,,x x x的大小顺序是〔 〕 A .1x <x <2x ;B .1x <2x <x ;C .2x <x <1x ;D .x <2x <1x2.a 设是大于1的实数,若221,,33a a a ++在数轴上对应的点分别记作A 、B 、C,则A 、B 、C 三点在数轴上自左至右的顺序是〔 〕〔A 〕 C 、B 、A ;〔B 〕B 、C 、A ;〔C 〕A 、B 、 C ;〔D 〕C 、 A 、 B 3.设a 为实数,则|a+|a||运算的结果〔 〕(A ) 可能是负数〔B 〕不可能是负数〔C 〕一定是负数〔D 〕可能是正数.4.已知|a|=8,|b|=2,|a -b|=b -a,则a+b 的值是〔 〕(A ) 10 〔B 〕-6 〔C 〕-6或-10 〔D 〕-105.若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度〔℃〕可列式计算为A . 4―22 =-18 ; B.22-4=18 ;C. 22―〔―4〕=26 ;D.―4―22=-26 6.比较下列各组数的大小:〔1〕 错误!错误! <2> 错误!错误!错误!<3>a<b<0时, 错误!错误!7.用分数指数幂表示下列各式:<1>32x ; 〔2〕43)(b a +〔a+b>0〕 ;〔3〕32)(n m -;8.求值:4332132)8116(,,,,,,)41(,,,,,100,,,,,,8---.9.计算〔1〕32725.0-- 〔2〕327⨯-4 〔3〕5145203--〔4〕-509232+〔5〕<2+3> <2-3>〔6〕()2234|1|-+-+--π;〔7〕〔-1〕2010-| -7 |+ 错误!×〔错误!-π〕0+〔错误!〕-1〔8〕-0.252÷〔-错误!〕4+〔1错误!+2错误!-3.75〕×24;三、随堂练习1.下列各组数的比较中,错误的是〔 〕 A .-5>-6 B .3-1.732>0C .1.414-2>0D .π>3.142.实数7-,2-,3-的大小关系是…………………………………〔 〕A.7-<3-<2- B.3-<7-<2- C.2-<7-<3- D.3-<2-<7-2.比较大小 2-3-, 1.0--0.1,215-83.3.已知x<0,y>0,且y<|x|,用"<"连结x,-x,-|y|,y.4.用分数指数幂表示下列各式: 〔1〕4)(n m -〔m>n〕; <2>56q p ⋅〔p>0〕; <3>mm 3.6.用根式的形式表示下列各式<a>0>: 32534351,,,--aa a a7.计算〔1〕3922)8(+-- ; 〔2〕()()7277722--+-+〔3〕<2)12-; 〔4〕<-3>2× <1+3>43521-32811621258.5--),(),(,求值〔5〕32÷<-3>2+|-错误! |×<- 6>+错误!;〔6〕{2错误!〔-错误!〕-错误!× 错误!÷错误!}×〔-6〕;〔7〕错误!〔8〕0.3-1-〔-错误!〕-2+43-3-1+〔π-3〕〔9〕)1()32(3)21(01-+-+-+-,〔10〕1021|2|(π(1)3-⎛⎫-+⨯- ⎪⎝⎭〔11〕48373)27102(1.0)972(03225.0+-++--π.8.小王上周五买进某公司股票1000股,每股25元,在接下来的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:〔单位:元〕〔1〕星期二收盘时,该股票每股多少元?〔2〕本周内该股票收盘时的最高价、最低价分别是多少?〔3〕已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将传全部股票卖出,他的收益情况如何?章节练习卷一、填空题〔每空2分,共36分〕 1、0.04的正的平方根是___________ 2、81的平方根是______________ 3、求值:=-3125.0______________4、求值:=⎪⎭⎫⎝⎛-231______________5、如果a 的平方根是3±,那么a =_______________6、将3215-写成方根的形式是_________________7、一个正方体的体积扩大为原来的n 倍,则它的棱长扩大为原来的_________倍 8、710280.3⨯精确到________位,有________个有效数字9、已知数轴上A 、B 两点之间的距离为3,点A 对应的数是2,那么B 对应的数是_________10、如果一个正数的两个不同的平方根是3a-2和2a-13,那么这个正数是_________11、设11的小数部分为b, 则()6+b b 的值是_____________ 12、03=-++b b a ,则=-+a a ab b _____________ 13、小于55-的最大正整数是_______________ 14、若x x -+有意义,则1+x =____________15、比较大小:”)”,“”,“填“ =--(52________25 〔第16题〕 16、如图:图中每一个小正方形的面积是1,请利用图中的格点,画出..一个面积是5的正方形,这个正方形的边长是________二、选择题〔每题3分,共15分〕 17、在实数2,。

七年级下册实数全章知识点

七年级下册实数全章知识点

七年级下册实数全章知识点实数是指包括有理数和无理数在内的所有数的集合,是数学中一个重要的基础概念。

在七年级下册中,学生将接触到实数的相关知识点。

本文将对全章的实数知识进行详细介绍。

一、有理数在数轴上,有理数可以表示为有限小数或无限循环小数。

有理数包括正整数、负整数、正分数、负分数等。

下面是有理数的一些基本运算法则。

1、加减法:对于有理数a、b、c,有如下加减法法则:a +b = b + a(a + b) + c = a + (b + c)a + 0 = aa + (-a) = 0a -b = a + (-b)2、乘法:对于有理数a、b、c,有如下乘法法则:a · b = b · a(a · b) · c = a · (b · c)a · 1 = a0 · a = a · 0 = 0a · (-b) = (-a) ·b = -(a · b)3、除法:对于有理数a、b(c≠0),有如下除法法则:a/b = (a·c)/(b·c)当b=a时,有1/b=1/a二、无理数无理数是指不是有理数的数,无法表示成有限小数或无限循环小数。

常见的无理数有π、e、√2、√3等等。

下面是无理数的一些基本概念和性质。

1、无理数的加减法:无理数的加减法只能通过近似的方法来计算,即先将近似值带入计算,再将结果近似到足够的精度。

2、无理数的乘法:无理数的乘法可以进行近似计算,但无论多少次近似,都无法得到精确的结果。

因此,无理数的乘法可以用根式表示。

3、无理数的除法:无理数的除法同样需要用到根式表示。

三、实数运算实数运算包括加、减、乘、除等操作。

实数的基本性质如下:1、加法性质:对于任意实数a、b、c,有如下加法性质:a +b = b + a(a + b) + c = a + (b + c)存在“零元素”,即0+a=a对于任意实数a,存在一个元素-b,使得a+b=02、乘法性质:对于任意实数a、b、c,有如下乘法性质:a ·b = b · a(a · b) · c = a · (b · c)存在“单位元素”,即1 · a = a对于任意实数a(a≠0),存在一个元素1/a,使得a · 1/a = 1 3、分配律:对于任意实数a、b、c,有如下分配律:a · (b + c) = a · b + a · c(b + c) · a = b · a + c · a四、实数的大小比较实数的大小比较有以下三种情况:1、对于任意整数a、b,有a<b,当且仅当b-a是正整数;2、对于任意有理数a、b,有a<b,当且仅当a+b<0;3、对于任意实数a、b,有a<b,当且仅当a-b<0。

12.6 实数的运算 讲义

12.6 实数的运算  讲义

第十二章 第6讲 实数的运算学习目标理解实数的运算法则、性质和顺序并能根据相关知识进行实数运算;会利用平方根意义化简根式;掌握实数的加、减、乘、除、开方、乘方的运算;能辨别精确数与近似数,并能确定近似数的精确度,能求出近似数的有效数字。

知识精要1.实数的运算法则:在实数范围内,可以进行加、减、乘、除、乘方及开方运算,有理数的运算法则和运算性质在实数范围内仍然适用。

2.实数的运算顺序:实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方、开方,再乘除,最后算加减。

同级运算按照从左到右的顺序进行,有括号的要先算括号里面的。

3.实数的运算结果:对于涉及无限小数的运算,可以根据保留几位小数的要求,取无限小数的近似值(有限小数)进行运算,将实数的运算转化为有限小数的运算,逐步接近原来的运算结果;对于涉及无理数的运算,如果没有指明运算结果保留几位小数,那么通常是利用实数的运算法则和运算性质对算式进行化简,其结果可能是化简了的一个算式。

4.实数的运算性质: (1)⎪⎩⎪⎨⎧<-=>==)0(,)0(,0)0(,2a a a a a a a (2))0()(2≥=a a a (3))0,0(≥≥⋅=b a b a ab (4))0,0(>≥=b a ba b a 5.实数的精确度:一般来说,完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数(或近似值)。

近似数与准确数的接近程度即近似程度,对近似程度的要求叫做精确度。

近似数的精确度通常有以下两种表示方式:(1)精确到哪一数位,例如:精确到百分位,或精确到0.01;(2)保留几个有效数字。

有效数字:对于一个近似数,从左边第一个不为零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字。

经典题型精讲(一)实数的基本运算例1.不用计算器,计算: (1)520⨯ (2)33913÷ (3))32132(33-- (4)1523458⨯- (5)51107÷⨯ (6)42625)2(+- (7)0)14.3()23)(23(-+-+π (8)22)572()572(-+举一反三:计算下列各题: (1))32332(23-- (2)⎥⎦⎤⎢⎣⎡-+--)7721(737274 (3)2)2(16+ (4)2332⨯÷÷ (5)332332÷⨯ (6)332332÷⨯ (7)32053÷⨯ (8)[]2232)7(- (9)22)23()23(--+例2.化简:(1)347+ (2)2)549549(--+ (3)722341012--+举一反三:化简:(1)2)23(- (2)2)10(-π (3))7(962=+-x x x例3.已知:0981642=+-+-a a b a ,求实数b a 、的值。

初中数学七年级下册第六章:实数知识讲解

初中数学七年级下册第六章:实数知识讲解

举一反三:
【变式】已知 x、y 是实数,且 3x 4 +(y2-6y+9)=0,若 axy-3x=y,则实数 a 的值是( )
1
A.
4
1
B.-
4
7
C.
4
7
D.-
4
【答案】A. ∵ 3x 4 +(y-3)2=0,
3, 4
a3
1 1 3
.
4,
a4
1 . 1 4
1, 3
3
4
a5
1. 1 ( 1)
3, 4
a6
1 1 3
.
4, ……..三个一循环,因此 a2009
a2
1 1 ( 1)
3 .
4
3
4
3
类型三、实数大小的比较
3.若 a 2007 , b 2008 ,试不用将分数化小数的方法比较 a、b 的大小.
2008
要点诠释:
若 a a, 则 a 0、 a -a, 则 a 0、 a-b 表示的几何意义就是在数轴上表示数 a 与数 b 的点之间
的距离.
考点三、实数与数轴 规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可. 每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.
C.3 个
D.4 个
【答案】C;
【解析】在上面所给的实数中,只有 3 , ,-0.1010010001…这三个数是无理数,其它五个数都是
2
有理数,故选 C. 【点评】对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即
“无限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,如 4 =2 是

七年级下册实数以及实数的运算讲义

七年级下册实数以及实数的运算讲义

环球雅思教育学科教师讲义无理数都是无限小数; 带根号的数都是无理数;④ 有理数都是实数,实数不都是有理数; ⑤ 实数都是无理数,无理数都是实数; ⑥ 实数的绝对值都是非负实数; ⑦ 有理数都可以表示成分数的形式2. 实数的几个有关概念:① 相反数:a 与—a 互为相反数,0的相反数是0。

a+b=0 a 、b 互为相反数。

1② 倒 数:若a 0,则-称为a 的倒数,0没有倒数。

ab 1 a 、b 互为倒数。

a ③ 绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数, 0的绝对值是0。

3. 实数和数轴上的点的对应关系:实数和数轴上的点 ---- 对应,即每一个实数都可以用数轴上的一个点表示. 数轴上的每一个点都可以表示一个实数.2的画法:画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况: 2尺规可作的无理数;n 尺规不可作的无理数,只能近似地表示4. 实数的运算:有■理蚱I 分频riE^K I 1负分数'无脖教jiE 无fiESS匡勺'迎卓1E 吩数 疋实数疑无理数例2.判断下面的语句对不对?并说明判断的理由 ①无限小数都是无理数;容内运算法则余•数数晦行案实方 也进正负次 郭以 而S 爲r 吋加J:囂*(1〉零指数、员整数指 数的直义,阪止以下 错耳①3疋=②2a~2= v ⑵遇 到绝对值一般要先去 掉绝对值符号.再进 行計算;(3)兀论何种 运算,都要注意先定 符号后运算运算順序一后的要最内・乘算运诬算先级也 再要_轴 k号在就开括轟乘截有以1例 2.计算;9- - 5 0+ ( - 1) 2012.L1[解析]由9= 3,—5 = 1, ( — I)?。

1 — 1可顺利求解.解:原式=3— 1 + 1 = 3. 练习:1.计算(1) 3 (1 + 42) -23(2) 32 12.计算-9 - 3X 3+ 12X 、.32 + 322 3例 3.若 3<x<6,化简:|x 3 |x 6 |x 40练习:1.比较下列各组数的大小:①2和 3(2)常用方法:差值比较法设a 任直两实数,则白一—jfKOe 曰5 &_b=Q ◎曰=b商值比较法设N 躍两正实数.贝I] a/b >1<=>a>A ; a/b —1 少应=血 a/h 绝对值比较法 设2雇两负实数,则|引>|创0*5 |日| =I b\| a | < | A | ^a>b其他方法除此之外,还有平方法、倒数法等方法例4. 一、平方法:比较-和73的大小2、求差法:J5 1 比较 ------ 和1的大小2三、求商法:比较-5和11的大小3例7.已知实数a、b在数轴上表示的点如上图,化简a b + J(a b 1)2-1 a 0 1 b练习:1. 化简1 冏v5|= ____________2. 计算:3 1 0.973 ( 10)22、12 3 8。

七年级实数的运算知识点

七年级实数的运算知识点

七年级实数的运算知识点实数是指整数、分数和无理数的总称。

实数的运算是数学中的基础,掌握实数的运算方法对于学习其他数学知识也非常重要。

下面就来介绍一下七年级实数的运算知识点。

一、加减法整数、分数和小数的加减法都是很基础的知识点。

具体方法如下:1. 整数加减法:同号相加、异号相减;2. 分数加减法:通分后进行加减运算;3. 小数加减法:对其进行补位,使小数点对齐后进行加减运算。

例如:计算 3/4 + 7/8通分后得到:3/4 × 2/2 + 7/8 × 1/1 = 6/8 + 7/8 = 13/8二、乘法实数的乘法包括整数、分数和小数的乘法。

具体方法如下:1. 整数乘法:乘数相乘后乘积与被乘数正负相同;2. 分数乘法:将分子相乘得到新分子,分母相乘得到新分母,再将新分子新分母约分;3. 小数乘法:对其进行竖式计算,把小数点后的位数相加得到最终结果。

例如:计算 0.5 × 0.40.5 × 0.4 = 0.2三、除法实数的除法也包括整数、分数和小数的除法。

具体方法如下:1. 整数除法:除数不能为0,商的符号与被除数、除数正负性有关;2. 分数除法:将除数转化为倒数,然后乘以被除数即可;3. 小数除法:小数除以小数时,先将除数乘以10,直到除数变成整数,再进行竖式计算。

例如:计算 0.4 ÷ 0.50.4 ÷ 0.5 = 0.8四、乘方乘方就是把一个数自乘n次。

例如2的3次方是2×2×2=8。

具体方法如下:1. 正数的乘方:将底数乘以自己n次方;2. 负数的乘方:先把负号提取出来,变成正数的乘方,再判断指数n的奇偶性,若为偶数,则结果为正数,否则结果为负数;3. 零的乘方:任何数的零次方等于1,0的任何次方都是0。

五、根号根号也是一种运算符号,它表示求某个数的根。

例如√9表示求9的平方根,结果为3。

具体方法如下:1. 求平方根:利用连续试探法或二分法等方法求出结果;2. 求立方根、四次方根等:按照同样的方法进行计算。

初中数学七年级数学第六章实数(全章节图文详解)

初中数学七年级数学第六章实数(全章节图文详解)

实 数
有理数
正整数 0 自然数 负整数 正分数
无理数
无限不循环小数
一般有三种情况
负分数 正无理数 负无理数 (1)含π 的数
2 开方开不尽的数
(3)有规律但不循环的无限小数
七年级数学第六章实数
也可以这样来分类: 正实数 实 数 0
负有理数 正有理数
正无理数
负实数
负无理数
七年级数学第六章实数
七年级数学第六章实数
几个基本公式:(注意字母 的取值范围)
a a =
2
a
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
a a
3
3
a为任何数 a为任何数 a为任何数
a
3
a =
-3 a
七年级数学第六章实数
区别
你知道算术平方根、平方根、立方根联系和区别吗?
3 47 9 11 5 3, , , , , 5 8 11 90 9
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
事实上,任何一个有理数都可以写成有限小数或 无限循环小数。

4
3 0.13

(2)无理数集合: (3)整数集合: (4)负数集合: (5)分数集合: (6)实数集合: 9
3
5

64
3
3
9
9
3
3 4
9
3 4
0. 6
3

0.13
3 0. 6 4

七年级(下)数学 同步讲义 实数的运算及分数指数幂

七年级(下)数学 同步讲义 实数的运算及分数指数幂

近似数的精确度、分数指数幂及运算知识结构模块一近似数的精确度知识精讲知识点:有关概念1.准确数概念:一般来说,完全符合实际地表示一个量多少的数叫做准确数.2.近似数概念:与准确数达到一定接近程度的数叫做近似数(或近似值).☆在很多情况下,很难取得准确数,或者不必使用准确数,而可使用近似数.☆取近似数的方法:四舍五入法,进一法,去尾法(根据具体实际情况使用)3.精确度概念:近似数与准确数的接近程度即近似程度,对近似程度的要求,叫做精确度.☆近似数的精确度通常有两种表示方法:(1)精确到哪一个数位;(2)保留几个有效数字.4.有效数字概念:对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字.例题解析【例1】一个正数的平方是3,这个数的准确数_________;近似数(精确到千分之一位)是_______;近似数的有效数字有_______位,有效数字是_______.【例2】写出下列各数的有效数字,并指出精确到哪一位?1)2000;2)4.523亿;3)5⨯;4)0.00125.7.3310【例3】用四舍五入法,按括号内的要求对下列数取近似值.(1)0.008435(保留三个有效数字) ≈_________;(2)12.975(精确到百分位) ≈_________;(3)548203(精确到千位) ≈_________;(4)5365573(保留四个有效数字) ≈_________.π=,按四舍五入法取近似值.【例4】已知 3.1415926(1)π≈__________(保留五个有效数字);(2)π≈_________(保留三个有效数字);(3)0.045267≈_________(保留三个有效数字).【例5】【例6】用四舍五入法得到:小智身高1.8米与小智身高1.80米,两者有什么区别?【例7】下列近似数各精确到哪一位?各有几个有效数字?(1)3.201;(2)0.0010;(3)2.35亿;(4)10⨯.7.6010【例8】废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记数法表示为________立方米.1、有理数指数幂把指数的取值范围扩大到分数,我们规定:(0)m nmna a a =≥,1(0)m nnmaa a-=>,其中、n 为正整数,1n >.上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 2、有理数指数幂的运算性质:设0a >,0b >,p 、q 为有理数,那么 (1)p q p q a a a +⋅=,p q p q a a a -÷=; (2)()p q pq a a =;(3)()pppab a b =,()pp p a a b b=.【例8】 把下列方根化为幂的形式:(1)32;(2)310-; (3)28(5)-;(4)37--;(5)3a -;(6)a -.【例9】 把下列分数指数幂化为方根形式:知识精讲模块二:分数指数幂例题解析(1)131()27-;(2)238()27;(3)121()16-;(4)3121)64(.【例10】化简:(1);(2)8【例11】计算下列各值:(1(2)201713(4aa-+.【例12】计算下列各值:(1)1225232---+(2)11222[(23)(2]-++.【例13】计算:(1;(2)1112444111()()()242a a a-⋅++;(3)1521216636333(2)(4)x y x y x y÷-⨯.111362a a a÷【例14】4249a b==,,求1222b a -的值.【例15】 已知13x x -+=,求下列各式的值:(1)1122x x -+;(2)3322x x -+.【例16】 若11112333342133a a a a ---=⨯⨯++,求的值.【例17】 化简:a b c【例18】【例19】 已知122a =,132b =,123c =,133d =,试用a b c d 、、、的代数式表示下列各数值.(1; (2; (3 (4【例20】 已知:210(0)x x xx xa a a a a a --+=>-,求的值.【例21】 材料:一般地,个相同的因数a 相乘:n a aa 个记为n a ,记为n a .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若n a b =(0a >且 1a ≠,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4);(1)计算以下各对数的值:log 24=______,log 216=______,log 264=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式,log 24、log 216、log 264之间又 满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗? log log a a M N +=______;(且1a ≠,M >0,N >0).在实数范围内,可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方.开方.再乘除,最后算加减,同级按从左到右顺序进行,有括号先算括号里的.实数运算的结果是唯一的.实数运算常用到的公式有:2a a =;(0,0)ab ab a b =≥≥;(0,0)a aa b b b=≥>;2()(0)a a a =≥.【例22】 5的整数部分为a ,小数部分为b ,则a b =_________.【例23】 计算:(1)321232416(80.1)3(2)(2)81-⎡⎤-÷-⨯---+-⎣⎦;(2)20152014(76)(67)+-; (3)()()2356315-++-.【例24】 计算:2x xy yx y x yx y-+----.知识精讲模块三:实数的运算例题解析【例25】 计算:(1)11032238[1(0.2)]4271000π--+--⨯-(2112133211127883---⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎝⎭⎝⎭⎝⎭.【例26】 设:73121(3)(3)(1)8433M =÷-⨯-÷-,42211(2)(2)5()0.25326N =-÷+⨯--试比较113M 与1N -的大小.【例27】 已知实数x 、y 满足1142(3)(5)0x y x y -+++-=,求51238x y -+的值.【例28】 已知实数a 、b 、x 、y 满足21y a +=-,231x y b -=--,求22x y a b +++的值.【例29】 先阅读下列的解答过程,然后再解答:a 、b ,使a b m +=,ab n =,使得22m +==()a b >,这里7m =,12n =,由于4+3=7,4312⨯=即227+=2=(12;(3.【例30】已知111333421a=++,求12333a a a---++的值.【难度】★★★【答案】【解析】一、填空题:【习题1】 下列根式与分数指数幂的互化中,正确的是()A .12()(0)x x x -=-> B .1263(0)y y y =< C .33441()(0)x x x-=>D .133(0)xx x -=-≠【习题2】 下列近似数各精确到哪一个数位?各有几个有效数字? (1)2015;(2)0.6180;(3)7.20万;(4)55.1010⨯.【习题3】 把下列带根号的数写成幂的形式,分数指数幂化为带根号的形式:()432,13-,()754,536, 322-,343,324-,237.【习题4】 比较大小: (1)与;(2)322+与26+.【习题5】 把下列方根化为幂的形式. (1)22;(2)()323ab ab;(3)235a ab ab .【习题6】 计算:(1)2334(9);(2)113339⨯;(3)1442(35)÷;62+53+随堂检测(4)11632(32)-⨯;(5)833324(25)⨯;(6)7511266323(2)x y x y ÷.【习题7】 利用幂的性质运算:(1)111222133()()()5525-⨯⨯;(2;(3).【习题8】 计算:(1(2)111111332222113113⎛⎫⎛⎫-⋅+ ⎪ ⎪⎝⎭⎝⎭;(3)20142015⋅; (4))11-+【习题9】 =,其中0ab ≠【习题10】 化简求值:(1)已知:15a a -+=,求22a a -+;1122a a -+;1122a a --;(2)已知:223a a -+=,求88a a -+.【作业1】若2a=a的小数部分是b,则a b⋅的值是()A.0B.1C.-1D.2【作业2】下列语句中正确的是()A.500万有7个有效数字B.0.031用科学记数法表示为3-⨯3.110C.台风造成了7000间房屋倒塌,7000是近似数D.3.14159精确到0.001的近似数为3.141【作业3】按照要求,用四舍五入法对下列各数取近似值:(1)0.76589(精确到千分位);(2)289.91(精确到个位);(3)320541(保留三个有效数字);(4)4⨯(精确到千位).1.42310【作业4】计算:(1;(2(3.【作业5】计算:(1(2.【作业6】 计算:(1)1029()25- ;(2)111344|882-⨯ (3)11123227()([(]64----+;(4)11222[(23)(2]-++.【作业7】 计算:(1;(20)a >.【作业8】 设2的整数部分为a ,小数部分为b ,求2816b ab --的立方根.【作业9】 如果223311320x a x b x x ⎛⎫⎛⎫-++++= ⎪ ⎪⎝⎭⎝⎭,求232(43)a b b +-的值.【作业10】已知21xa ,求33x xx xa a a a --++的值.【作业11】若[]x表示不超过x的最大整数(如2[]3[2]33π=-=-,等),求++的值.。

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点
实数是数学中非常重要的一个概念,其涉及到数学中的各个领域。

在七年级下册的第六章中,我们主要学习了实数的相关知识。

1. 实数的概念
实数是指所有可以表示成有限小数、无限循环小数或无限不循环小数的数。

简单来说,实数包括整数、分数、小数、无理数等。

2. 实数的分类
根据实数的性质,可以将实数分为有理数和无理数两类。

有理数是可以表示成分数形式的实数,包括整数、分数和循环小数。

无理数是不能表示成分数形式的实数,例如根号2、π等。

3. 实数的运算
实数的运算包括加、减、乘、除四种基本运算。

对于任意两个实数a和b,它们的和、差、积、商分别为:
a+b,a-b,ab,a÷b(b≠0)
此外还有实数的乘方运算,即a的n次方(n为正整数),表示a 连乘n次的结果。

4. 实数的比较
实数之间可以进行大小比较。

对于任意两个实数a和b,若a>b,则a称为大于b,b称为小于a。

若a=b,则a与b相等。

若a<b,则a称为小于b,b称为大于a。

5. 实数的表示
实数可以用数轴上的点表示。

数轴是一条直线,上面的每个点都
与一个实数一一对应。

数轴上的原点表示0,向右表示正数,向左表示负数。

以上就是七年级下册第六章实数的相关知识点。

实数是数学中非常基础的概念,掌握好实数的相关知识对于后续的学习非常重要。

七年级下册实数知识点

七年级下册实数知识点

七年级下册实数知识点实数是数学中非常重要的一个概念,是指所有的有理数和无理数的总和。

在七年级下册中,我们将学习有关实数的基本概念和性质,包括实数的分类与比较,实数的运算及其性质,实数的绝对值和数轴等。

一、实数概论实数是数学中的基本概念之一。

它包括有理数和无理数两类数。

其中有理数包括所有可以表示为两个整数的比的数,无理数则是不能表示为有理数的数。

实数的集合符号为R。

二、实数的分类与比较我们可以通过大小关系将实数分为三类,正数、负数和零数。

其中正数指大于0的实数,负数指小于0的实数,零数指等于0的实数。

在比较大小方面,我们要注意实数的绝对值大小关系,绝对值大的实数更大。

三、实数的运算及其性质1. 实数的加法:对于任意实数a和b,它们的和a+b仍然是一个实数,满足交换律和结合律。

2. 实数的减法:对于任意实数a和b,它们的差a-b仍然是一个实数。

3. 实数的乘法:对于任意实数a和b,它们的积ab仍然是一个实数,满足交换律和结合律。

4. 实数的除法:对于非零实数a和b,a/b仍然是一个实数,不满足交换律和结合律。

5. 实数运算的性质:实数运算满足分配律、吸收律和消去律。

四、实数的绝对值和数轴实数的绝对值是指一个实数到原点的距离。

对于任意实数a,其绝对值表示为|a|,满足非负性、正定性和三角不等式。

实数的绝对值可以用数轴来表示,数轴上0点为原点,左侧为负数,右侧为正数,每个实数对应数轴上的一个点。

实数a的绝对值可以表示为a在数轴上到原点的距离。

总结:七年级下册学习实数知识点,包括实数的基本概念和性质,实数的分类与比较,实数的运算及其性质,实数的绝对值和数轴等。

实数是数学中的重要概念,它是所有有理数和无理数的总和。

在实数的学习中,我们要注意实数的分类和大小关系、实数运算的基本性质和绝对值的概念及其在数轴上的表示。

七年级数学下册第六章实数6.3实数讲义(新人教版)本.ppt

七年级数学下册第六章实数6.3实数讲义(新人教版)本.ppt
6.3 实 数 (二)
1 …核…心…目…标…..

2…课…前…预…习…..

3 …课…堂…导…学…..

4 …课…后…巩…固…..

5 …培…优…学…案…..

1
核心目标
能熟练进行实数运算,会比较两个实数的大小,了 解实数与数轴上的点一一对应的关系.
2
课前预习
1.实数与数轴上的点是_一___一__对__应__关系,即每一个实 数都可以用数轴上的点来表示;反过来,数轴上的 每一个点都表示___一__个__实__数_____.
A.3
B.-3
C. 1
3
10.3 27 的相反数是 ( B )
A.-3
B.3
C.±3
D.

1 3
D.2 3
10
课后巩固
11.下列运算正确的是
A. 9 =±3 C. 3 (3)3=3
(D )
B. (2)2=-2
D. ︱-π︱=π
12.下列各组数中,互为相反数的是 ( D )
A.-3与 1
3
则、运算律相同.
7
课堂导学
对点训练二 6.计算: (1)3 3+5 3 =___8___3____; (2) 5-( 5-2)=____2_____;
(3)(3 2 - 3 )+ 3 =___3__2____;
(4)︱3- 5︱+3 5 =__3__2__5__.
8
课堂导学
7.计算:
(1)
1 3
C.-3与 3 27
B.-5与 25 D.︱-6︱与-6
11
课后巩固
13.化简︱2- 3︱+ 3 =
(A )
A.2

实数的有关概念和性质以及实数的运算

实数的有关概念和性质以及实数的运算

实数的概念实数可以分为有理数与无理数两类,或代数数与超越数两类,或正实数,负实数与零三类。

实数集通常用黑正体字母R 表示。

而表示n 维实数空间。

实数是不可数的。

实数是实数理论的核心研究对象。

实数可以用来测量连续的量。

理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后n 位,n为正整数)。

在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

实数的运算法则1、加法法则:(1)同号两数相加,取相同的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用①加法交换律:两个数相加,交换加数的位置,与不变.即:②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,与不变.即:2、减法法则:减去一个数等于加上这个数的相反数。

即a-b=a+(-b)3、乘法法则:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用①乘法交换律:两个数相乘,交换因数的位置,积不变.即:.②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即:。

③分配律:一个数同两个数的与相乘,等于把这个数分别同这两个数相乘,再把积相加.即:.4、除法法则:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

即(3)0除以任何数都等于0,0不能做被除数。

5、乘方:所表示的意义是n个a相乘,即正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

实数(2)——实数的性质及运算

实数(2)——实数的性质及运算

只有符号不同的两个数,其中一个是另一个的相反数.
②绝对值
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
③倒数
如果两个数的积是1,则这两个数互为倒数 .
思考:无理数也有相反数吗?怎么表示?有绝对值 吗?怎么表示?有倒数吗?怎么表示?
讲授新课
一 实数的性质
在实数范围内 ,相反数、倒数、绝对值的
2.①一个正实数的绝对值是它本身; ②一个负实数的绝对值是它的相反数; ③0的绝对值是0.
a, 当a 0时; a 0, 当a 0时;
a, 当a 0时.
例2 求下列各数的相反数和绝对值:
3,π 3.14.
解: 因为 ( 3) 3, (π- 3.14)= 3.14 π,
所以, 3,π 3.14 的相反数分别为
(8)a(b+c) = ab+ac (乘法对于加法的分配律), (b+c)a = ba+ca (乘法对于加法的分配律);
(9)实数的减法运算规定为a-b = a+ (-b) ;
(10)对于每一个非零实数a,存在一个实数b, 满足a·b = b·a =1,我们把b叫作a的__倒_数__;
(11)实数的除法运算(除数b≠0),规定为
意义和有理数范围内的相反数、倒数、绝对值的
意义完全一样.
例如:
2 与 2 互为相反数
35

1 35
互为倒数
| 3 | 3, | 0 | 0,| |
典例精析
例1:分别求下列各数的相反数、倒数和绝对值.
(1) 3 64 ; (2) 225 ;
(3) 11 .
解:(1)∵ 3 64 =-4,
∴3 64 的相反数是4,倒数是 1 ,绝对值是4. 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环 球 雅 思 教 育 学 科 教 师 讲 义
年 级 : 上 课 次 数 :
学 员 姓 名 : 辅 导 科 目 : 学 科 教 师 : 课 题
课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段
教 学 内 容
【基础知识网络总结与新课讲解】
6.2 实 数
知识点一 无理数的概念
定义:无限不循环小数叫做无理数,如π=3.1415926…,2 1.414213=,-1.010010001…,都
是无理数。

注意:
①既是无限小数,又是不循环小数,这两点必须同时满足;
②无限不循环小数与有限小数、无限循环小数的本质区别是:前者不能化成分数,而后两者都可以化成分数;
③凡是整数的开不尽的方根都是无理数,如2、3等。

例1 3322
7
8,3, 3.141,,
,,2,0.1010010001,1.414,0.020202,7378
π-----
有理数{ } 无理数{ }
想一想:有理数与无理数的区别?
注意:判断一个数是否为无理数,不能只从形式上看,带根号的不一定是无理数,只有开方开不尽的数是无理数。

练习:下列说法正确的是( )
A.分数是无理数
B.无限小数是无理数
C.不能写成分数形式的数是无理数
D.不能再数轴上表示的数是无理数
知识点二 实数
1. 实数:有理数和无理数统称为实数 实数的分类:
① 按定义分类: ② 按大小分类
例2.判断下面的语句对不对?并说明判断的理由。

①无限小数都是无理数;
②无理数都是无限小数;
③带根号的数都是无理数;
④有理数都是实数,实数不都是有理数;
⑤实数都是无理数,无理数都是实数;
⑥实数的绝对值都是非负实数;
⑦有理数都可以表示成分数的形式。

2. 实数的几个有关概念:
①相反数:a与-a互为相反数,0的相反数是0。

a+b=0⇔a、b互为相反数。

②倒数:若0
a≠,则
1
a
称为a的倒数,0没有倒数。

1
ab a
=⇔、b互为倒数。

③绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。


()
()
()
00
a a
a a
a a
>


==


-<

3.实数和数轴上的点的对应关系:
实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.
数轴上的每一个点都可以表示一个实数.
2的画法:画边长为1的正方形的对角线
在数轴上表示无理数通常有两种情况:2尺规可作的无理数;π尺规不可作的无理数,只能近
似地表示
4.实数的运算:
例2.计算9-⎝ ⎛⎭
⎪⎫
-150+(-1)2012.
[解析] 由9=3,⎝ ⎛⎭⎪⎫-150
=1,(-1)2012=1可顺利求解.
解:原式=3-1+1=3. 练习:1.计算(1)3(1+2)-2(
)
32- (2)()123+--ππ
2.计算-9÷3×3+⎪⎭

⎝⎛-3221×
()2
3+2
3
例3.若3<x<6,化简:463-+-+-x x x 。

3.实数大小比较 (1)实数的大小比较
(2)常用方法:
例4.一、平方法: 比较2
3
和3的大小
二、求差法: 比较2
1
5 和1的大小
三、求商法: 比较53
4
和11的大小
练习:1.比较下列各组数的大小:
① 2-和3- ② 3和23-
③ 15和5
4
3 ④ 7-和-2.45

327-与3
1
2.2,3,2
15
的大小关系是( )
A .22315<<
B .21235<<
C .22135<<
D .2
3125
<<
例5. (1) 2.02· ________2.020020002…; (2)-3
3________-2;
(3) ||3-5________5-3; (4)π-3________0.14.
[解析] (1)∵2.02·=2.02222222…, ∴2.02·>2.020020002…;
(2) ∵3
3≈1.442,2≈1.414,1.442>1.414, ∴-3
3<-2; (3) ∵3<5, ∴3-5<0,
∴||3-5=-(3-5)=5-3; (4)∵π-3≈3.142-3=0.142,0.142>0.14, ∴π-3>0.14.
例6.当2
1
≤a 时,化简 |12|4412-++-a a a
例7.已知实数a 、b 在数轴上表示的点如上图, 化简 b a ++2)1(+-b a
练习: 1.化简122323-+
-+-=____________
2.计算:83122)10(97
3.0123+--⨯-
b
10a -1。

相关文档
最新文档