传热学-9第9章4

合集下载

传热学-第九章 辐射计算

传热学-第九章 辐射计算

X1, 2
1,2 1,2 A 1,2 B
X1, 2i
i 1
n
A1 Eb1 X 1,2 A1 Eb1 X 1,2 A A1 Eb1 X 1,2 B X 1,2 X 1,2 A X 1,2 B
再来看一下2 对 1 的能量守恒情况: 2 ,1 2 A ,1 2 B ,1
X 1,2 X 2,1
1 A1 1 A2

A1
A2
X d 1, d 2 dA1 X d 2, d 1dA2
A
A1 1
1
cos 1 cos 2 dA1dA2
A2

A1
1 A2
A2

A1
r cos 1 cos 2 dA1dA2
2
(9-4a)
A2
r
2
(9-4b)
的电流、电位差和电阻比拟热辐射中的热流、热势差与热
阻,用电路来比拟辐射热流的传递路径。但需要注意的是, 该方法也离不开角系数的计算,所以,必须满足漫灰面、 物性均匀以及投入辐射均匀的条件。
热势差与热阻
上节公式(9-12):
J Eb ( 1)q
1

改写为:
Eb J q 1
1, 2 A1 Eb1 X 1, 2 A2 Eb 2 X 2,1 A1 X 1, 2 ( Eb1 Eb 2 ) 的热辐射 到达表面 2的部分 的热辐射 到达表面 1的部分
图9-13 黑体系统的 辐射换热
表面1发出 表面 2发出
例题9-4 一直径d=0.75m的圆筒形埋地式加热炉采用电加热。 在操作过程中需要将炉子顶盖移去一段时间,设此时筒身温 度为 500K ,筒底为 650K 。环境温度为 300K 。试计算顶盖移 去期间单位时间内的热损失。设筒身及底面均可作为黑体。

《传热学》第9章-辐射换热的计算

《传热学》第9章-辐射换热的计算
有效辐射: 单位时间内离开单位面积表面的总辐射能, 用符号J表示。
J = E + ρG = εEb + (1 − α )G
漫灰表面之间的辐射换热
单位面积的辐射换热量=?
应该等于有效辐射与投入辐射之差
Φ= A
也等于自身辐射力与吸收的投入辐射能之差
J− Φ A
G = εEb
α =ε
− αG
Φ
=
Aε 1−ε
X
1,
2

1 ε1
− 1
+1+
X
2.1

1 ε2
− 1
= ε s A1 X1,2 (Eb1 − Eb2 )
εs
=

X
1,
2

1 ε1
−1 + 1 +
X
2.1

1 ε2
− 1 −1
系统黑度
6
两个漫灰表面构成的封闭空腔中的辐射换热
两块平行壁面构成的封闭空腔
角系数的曲线图
(a)平行的等面积矩形
(c)垂直的两个矩形
2 角系数的性质
(1) 相对性 (2) 完整性
A1 X 1,2 = A2 X 2,1
-互换性
封闭空腔的所有表面的角系数之和等于1
n
∑ X i , j = X i ,1 + X i ,2 +L+ X i ,i +L + X i ,n = 1
j =1
黑体辐射
Lb
=
Eb π
角系数的定义式
∫ ∫ Φ1→2 =
A1
A2
Eb1
cosθ1 cosθ 2 πr 2

传热学 第九章 辐射换热的计算

传热学 第九章 辐射换热的计算
灰体——多次反射、吸收
9-2 两表面之间的辐射换热过程
1. 黑体表面之间的辐射换热
任意位置的两个黑体表面1、2,从表面1发出并直接投射
到表面2上的辐射能为
1 2 A1 X 1,2 E b1
从表面2发出并直接投射到表面1上的辐射能为
21 A2 X 2 ,1 E b 2
两个表面之间的直接辐射换热量为
X 1,2 X 2 ,1 1
A2 a
A1
9-1 角系数
4. 角系数的计算方法
(2) 代数法
由三个垂直于纸面方向无限长的非凹表面构成的封闭空腔,
三个表面的面积分别为A1、A2、A3 。
X i ,i 0
根据角系数的完整性
角系数的相对性
A1 X 1, 2 A1 X 1, 3 A1
A1 X 1,2 A2 X 2 ,1
Eb1 cos 1 cos 2 dA1dA2
1d 1
dd11
2
2 Lb1 dA1 cos
2
r
Eb1
dA2 cos 2
Lb1
d1
r2

9-1 角系数
2. 角系数的定义式
12
cos 1 cos 2
cos 1 cos 2
dA1dA2
E b1
dA1dA2 E b1
2
2
A1 A2
A1 A2
r
r
表面1对表面2的角系数为
X 1,2
12
A1 Eb1
1

A1
cos 1 cos 2
A1 A2 r 2 dA1dA2
1

A2
cos 1 cos 2

新大《传热学》复习题及解答第9章 辐射传热的计算

新大《传热学》复习题及解答第9章 辐射传热的计算

第9章辐射传热的计算(复习题解答)【复习题9-1]试述角系数的定义:”角系数是一个纯几何因子”的结论是在什么前提下得出的?答:表面1发出的辐射能中落到表面2的百分比称为表面1对表面2的角系数。

“角系数是一个纯几何因子”的结论成立的前提是(1)所研究的表面是漫射的;(2)在所研究表面的不同地点上向外发出的辐射热流密度是均匀的。

【复习题9-2】角系数有哪些特性?这些特性的物理背景是什么?答:角系数具有相对性、完整性和可加性。

相对性是在两物体处于热平衡时,净辐射换热量为零的条件下得出的。

完整性反映了一个由多表面组成的封闭系统中,任一表面所发出的辐射能,必全部落到封闭系统的各个表面上。

可加性表明从表面1发出的辐射,落到表面2的总能量,等于落到表面2上各部分的辐射能之和。

【复习题9-3]为什么计算一个表面与外界之间的净辐射传热量时要采用封闭腔的模型?答:因为任一表面与外界的辐射换热,包括该表面向空间各个方向发出的辐射,以及从空间各个方向投入到该表面上的辐射能。

【复习题9-4]实际表面系统与黑体系统相比,辐射传热计算增加了哪些复杂性?答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都使辐射换热的计算更加复杂。

【复习题9-5】什么是一个表面的自身辐射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射传热的计算有什么作用?答:由物体的内能转变而成的辐射能叫做自身辐射。

从外界投入到辐射表面的辐射能叫做投入辐射。

从一个辐射表面发出的辐射能(包括自身辐射和反射)叫做有效辐射。

引入有效辐射可避免实际物体辐射中出现的多次吸收和反射,从而简化计算。

【复习题9-6】对于温度已知的多表面系统,试总结求解每一表面净辐射传热量的基本步骤。

答:(1)画出等效的网络图;(2)列出节点的电流方程;(3)求解方程,得到各个节点电势;(4)确定每个表面的净辐射传热量。

传热学(第9章--对流换热)

传热学(第9章--对流换热)

— —
横向节距 纵向节距
23
9-3 流体有相变时的对流换热
一、凝结换热
1.特点:
——蒸汽和低于饱和温度的冷壁面相接触时会发 生凝结换热,放出凝结潜热。(如电厂中:凝汽 器和回热加热器内,管外蒸汽与管外壁的换热)
➢两种凝结方式:根据凝结液体依附在壁面上的形
态不同分.
tw ts
1)膜状凝结:凝结液体能润湿壁面,
腾换热设备安全经济的工作区为泡态沸腾区。
34
炉内高热负荷区水冷壁沸腾换热的强化
35
各种对流换热比较
液体对流换热比气体强;
对同一种流体,强制对流换热比自然对流换热强;
紊流换热比层流换热强;横向冲刷比纵向冲刷强;
有相变的对流换热比无相变换热强。
表9-5 各种对流换热平均换热系数的大致范围
换热系数 α[w/(m2.K)]
二是在蒸汽中混入油类或脂类物质。对紫铜管进行表面改 性处理,能在实验室条件下实现连续的珠状凝结,但在工 业换热器上应用,尚待时日。
26
2.影响蒸汽膜状凝结换热的因素:
(1)蒸汽中含有不凝结气体的影响 ➢ 蒸汽中含有不凝结气体(如空气)时,即使含量极微,
也会对凝结换热产生十分有害的影响。不凝结气体将会在 液膜外侧聚集而形成一层气膜,使热阻大大增加,从而恶 化传热。
21
(1)管束排列方式的影响
s1
s1
s2
顺排
s2
叉排
叉排:换热系数大,但流动阻力大. 顺排:换热系数小,但流动阻力小.
22
s1
s1
s2
s2
顺排
叉排
(2)流动方向上管排数的影响
后排管受前排管尾流的扰动作用对平均换热系 数的影响直到20排以上的管子才能消失。

传热学

传热学

传热学第一章绪论1.传热学的定义: 研究由于温度差而引起的热能传递规律的科学.2.热流量(heat transfer rate):单位时间内通过某一给定面积A的热量,记为Φ,单位为 W3.热流密度(或称面积热流量):通过单位面积的热流量,记为q,单位是 W/m24.稳态过程与非稳态过程稳态过程:热量传递系统中各点温度不随时间而改变的过程非稳态过程:各点温度随时间而改变的过程5.热传导的定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子热运动而产生的热量传递过程1)导热是物质的固有属性2)固、液、气等均具有一定的导热能力3)纯导热只发生在密实的固体和静止的流体中导热现象的判断?1)有温差;2)密实固体或静止流体6.模型一平壁稳态导热.影响因素:平壁面积,厚度,温差平壁稳态导热的计算公式:7.λ —热导率,又称导热系数.单位:W/(m·K) (热物理参数)8.热对流:流体中温度不同的各部分发生相互混合的宏观运动而引起的热量传递现象特点: 1)发生在流体中2)流体内部必须存在温差3)流体必须有宏观运动4)伴随着热传导9.对流传热:流动的流体与温度不同的固体壁面间的热量传递过程.(热对流的一种方式,传热学研究方式).分类:按流体流动的起因:1)自然对流、自由对流:流体冷、热各部分密度不同而引起的2)受迫对流、强迫对流:流体的流动是在外力(在泵或风机)作用下产生的技巧:给出流体速度的为强迫对流按流体有无相变:1)无相变的对流传热2)有相变的对流传热:沸腾换热、凝结换热10.如何判断对流传热1)发生在壁面和流体之间:参与物质类型2)壁面和流体存在温差:热量传递的前提3)流体要运动:速度体现一定不要遗漏自然对流11.对流传热的计算—牛顿冷却公式(对流传热的热量传递速率方程)当流体被加热时:当流体被冷却时:h-表面传热系数(过程量),W/(m2·K)13.热辐射:由于自身温度(热)的原因而发出辐射能的现象(heat radiation)1)辐射传热:物体之间因为相互辐射、相互吸收而引起的热量传递过程2)理想物体:绝对黑体,简称黑体(能够全部吸收投射到其表面上辐射能的物体)14.黑体辐射的斯忒藩-玻耳兹曼(Stefan-Boltamann)定律实际物体的辐射能力:注意:1)σ—斯忒藩-玻耳兹曼常数,5.67×10-8W/(m2·K4) 2)ε—发射率(emissivity),习惯上也称为黑度,物性参数15.理想模型2—两平行黑体平板间的辐射传热(相距很近,表面间充满了透明介质)16.理想模型3—非凹表面1包容在面积很大的空腔2中注意:1)辐射传热必须采用热力学温度2)注意公式的使用条件3)“动态平衡”的含义(p8)17.导热、对流与辐射的辨析:1)导热、对流只在有物质存在的条件下才能实现;热辐射不需中间介质(非接触性传热)2)辐射不仅有能量的转移,而且伴随能量形式的转换;3)辐射换热是一种双向热流同时存在的换热过程;4)辐射能力与其温度有关,导热、对流与温差有关;导热与对流的辨析:气、液、固均具有导热能力,纯导热只发生在静止的流体中;对流只发生在流动的流体中;18.传热过程:热量由固体一侧的高温流体通过固体壁面传给另一侧低温流体的热量传递过程 。

传热学 第9章-传热过程分析和换热器计算

传热学 第9章-传热过程分析和换热器计算

第九章 传热过程分析和换热器计算在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析得出它们的计算公式。

由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。

因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。

9-1传热过程分析在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。

在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。

对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式 t kF Q ∆=, 9-1式中,Q 为冷热流体之间的传热热流量,W ;F 为传热面积,m 2;t ∆为热流体与冷流体间的某个平均温差,o C ;k 为传热系数,W/(⋅2m o C)。

在数值上,传热系数等于冷、热流体间温差t ∆=1 o C 、传热面积A =1 m 2时的热流量值,是一个表征传热过程强烈程度的物理量。

在这一章中我们除对通过平壁的传热过程进行较为详细的讨论之外,还要讨论通过圆筒壁的传热过程,通过肋壁的传热过程,以及在此基础上对一些简单的包含传热过程的换热器进行相应的热分析和热计算。

对于后者,复合换热是定义为在同一个换热表面上同时存在着两种以上的热量传递方式,如气体和固体壁面之间的热传递过程,就同时存在着固体壁面和气体之间的对流换热以及因气体为透明介质而发生的固体壁面和包围该固体壁面的物体之间的辐射换热,如果气体为有辐射性能的气体,那么还存在固体壁面和气体之间的辐射换热。

这样,固体壁面和它所处的环境之间就存在着一个复合换热过程。

下面我们来讨论一个典型的复合换热过程,即一个热表面在环境中的冷却过程,如图9-1所示。

传热学知识点

传热学知识点

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5.牛顿冷却公式的基本表达式及其中各物理量的定义。

h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2) φ是导热量W6. 热辐射的特点。

a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

(w))(∞-=''t t h q w 2/)(m w t t Ah A q w ∞-=''=φ第一章 导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):dx dT k q x ∂∂-='' )(zT y T x T k T k q ∂∂+∂∂+∂∂-=∇-=''k j i T(x,y,z)为标量温度场nT k q n ∂∂-='' 圆筒壁表面的导热速率drdT rL k dr dT kA q r )2(π-=-= 垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

传热学第九章-传热过程分析和换热器热计算-2

传热学第九章-传热过程分析和换热器热计算-2
面总效率之间的区别. 3.已知肋化系数后, 通过肋面的传热系数的计算方法. 4.临界热绝缘直径的物理意义及计算方法. 5.换热器有那些主要形式? 6.换热器的对数平均温差计算方法 7.换热器热计算的基本方法. 8.什么是换热器的效能和传热单元数. 9.在换热器热计算中, 平均温差法和传热单元法各有什么
特点?
10.什么是污垢热阻? 工程实际中,怎样减小管路中的污垢 热阻? 举几个例子.
11.强化传热系数的原则是什么? 12.什么是有源强化换热(主动式强化换热)和无源强化换热
(被动式强化换热)? 13.怎样使用试验数据, 用威尔逊图解法求解传热过程分热
阻? 14.有那些隔热保温技术. 什么是保温效率?
1Cr
1Cr
上面的推导过程得到如下结果,对于顺流:
当 qmchhqmccc时
Cr
Cmin Cmax
Ch Cc
1exp
CkAh (1Cr
)
1Cr
当 qmchhqmccc时,同样的推导过程可得:
Cr
Cmin Cmax
Cc Ch
1exp
CkAc (1Cr
)
1Cr
上面两个公式合并,可得:
Cr
④ 利用NTU计算 ⑤ 利用(9-17)计算,利用(9-14)计算另一个 ⑥ 比较两个,是否满足精度,否则重复以上步骤
从上面步骤可以看出,假设的出口温度对传热量的影响 不是直接的,而是通过定性温度,影响总传热系数,从而 影响NTU,并最终影响 值。而平均温差法的假设温度 直接用于计算 值,显然-NTU法对假设温度没有平均温 差法敏感,这是该方法的优势。
传热学第九章-传热过程分析和换热器热计算
换热器的热计算有两种方法:平均温差法

传热学--复习

传热学--复习

第9章 辐射传热的计算
角系数:表面1发出的辐射能中落到表面2上的百分数称为表面1对表面
2的角系数,用符号X1,2 表示。
n 1 j x1 j 1 ② 完整性:对于n个面组成的封闭系统 j 1 1 j 1 n
① 相对性
A1 X 1, 2 A2 X 2,1
③可加性:
X 1.2 X 1, 2 a X 1, 2b
J1
J2
s A1 X 1,2 ( Eb1 Eb 2 )
s
1 1 1 1 X 1,2 1 X 2,1 1 1 2
Eb 2
表面辐射热阻
1 A1 X 1,2
ห้องสมุดไป่ตู้
1 2 2 A2
系统黑度
(或称为系统发射率)
1 1 A1 1 1 1 A2 2
kAtm qm1c p1 t1 t1 qm 2 c p 2 t2 t2
qm

4
d 2 u
传热强化与削弱:目的、途径
传热学复习
考试时间:元月2日(周四)晚7:00 考试地点:G2202
题型: 填空题:3'10 选择题:2'10 简答题:5' 3 计算题:35'
传热学复习—问答
导热
1.傅里叶导热定律的内容并写出其数学表达式? 2. 导热系数与导温系数的物理意义? t 2t 2t 2t 2 2 2 c x y z c 3. 导热微分方程的简化?
对流
1. 对流换热的影响因素? Nu c Re m Pr n (m 0, n 0) 2. 粘性大的流体一般Pr数也较大,由特征数关联式

传热学概念整理

传热学概念整理

传热学第一章、绪论1.导热:物体的各个部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。

2.热流量:单位时间内通过某一给定面积的热量称为热流量。

3.热流密度:通过单位面积的热流量称为热流密度。

4.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移、冷热流体相互掺混所导致的热量传递过程。

5.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。

6.热辐射:因热的原因而发出的辐射的想象称为热辐射。

7.传热系数:传热系数树枝上等于冷热流体见温差℃1=∆t ,传热面积21m A =时的热流量值,是表征传热过程强度的标尺。

8.传热过程:我们将热量由壁面一侧流体通过壁面传递到另一侧流体的过程。

第二章、导热基本定律及稳态导热1.温度场:各个时刻物体中各点温度所组成的集合,又称为温度分布。

2.等温面:温度场中同一瞬间温度相同的各点连成的面。

3.傅里叶定律的文字表达:在导热过程中,单位时间内通过给定截面积的导热量,正比于垂直该界面方向上的温度变化率和截面面积,而热量的传递方向则与温度升高的方向相反。

4.热流线:热流线是一组与等温面处处垂直的的曲线,通过平面上人一点的热流线与改点热流密度矢量相切。

5.内热源:内热源值表示在单位时间内单位体积中产生或消耗的热量。

6.第一类边界条件:规定了边界点上的温度值。

第二类边界条件:规定了边界上的热流密度值。

.第三类边界条件:规定了边界上物体与周围流体间的表面传热系数h 及周围流体的温度ft 7.热扩散率a :ca ρλ=,a 越大,表示物体内部温度扯平的能力越大;a 越大,表示材料中温度变化传播的越迅速。

8.肋片:肋片是依附于基础表面上的扩展表面。

第三章、非稳态导热1.非稳态导热:物体的温度随时间的变化而变化的导热过程称为非稳态导热。

2.非正规状况阶段:温度分布主要受出事温度分布的控制,称为非稳态导热。

传热学第九章辐射基本定律

传热学第九章辐射基本定律

绝对黑体(黑体) 吸收比 α=1 → 绝对黑体(黑体) 镜体(对于漫反射称为白体) 反射比 ρ=1 → 镜体(对于漫反射称为白体) 穿透比 τ=1 绝对透明体(透明体) → 绝对透明体(透明体)
10
2、黑体辐射 、
黑体的基本概念 辐射力和 辐射力和光谱辐射力 普朗克定律 维恩位移定律 斯蒂芬斯蒂芬-波尔兹曼定律 黑体辐射函数 兰贝特定律 小结
物体的黑度:ε=f(物质种类,表面温度,表面状况) 物体的黑度:ε=f(物质种类,表面温度,表面状况)
28
2)吸收热辐射的性质 2)吸收热辐射的性质

E λ (T2 )
αλ
T1
λ
投入辐射与吸收辐射的关系
λ
29
光谱吸收比:物体对某一特定波长投入辐射能的吸收份额 份额。 光谱吸收比:物体对某一特定波长投入辐射能的吸收份额。 吸收比:物体对投入辐射在全波长范围内的吸收份额 吸收比: α=f(自身表面性质与温度T 辐射源性质与温度T α=f(自身表面性质与温度T1,辐射源性质与温度T2)
24
黑度: ① 黑度:
实际物体的辐射力与同温 度下黑体辐射力的比值 称为实际物体的黑度, 称为实际物体的黑度, 又称发射率 记为ε。 发射率, 又称发射率,记为 。
E ∫0 Eλ dλ ∫0 ελ Ebλ dλ ε= = = 4 Eb σT σT 4
∞ ∞
⇒ E = εEb = εσT 4
对于实际物体来说,黑度仍是温度的函数, 对于实际物体来说,黑度仍是温度的函数,即实 际物体的辐射力不满足四次方关系。 际物体的辐射力不满足四次方关系。
8
t>0K 内 的物体 能
热辐射传播速度c、波长 和频率 之间的关系c=f·λ 和频率f之间的关系 热辐射传播速度 、波长λ和频率 之间的关系 热辐射的主要波谱: 热辐射的主要波谱:

传热学第五版完整版答案..

传热学第五版完整版答案..

1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。

2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。

白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。

4.现在冬季室内供暖可以采用多种方法。

就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。

答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。

传热学

传热学

第1章绪论热量传递过程由导热、对流、辐射3三种基本方式组成。

一导热导热又称热传导,是指温度不同的物体各部分无相对位移或不同温度的各部分直接紧密接触时,依靠物质内部分子、原子及自由电子等微观粒子的热运动而进行热量传递的现象。

1、傅里叶公式(W)λ——导热系数,。

(物理意义:单位厚度的物体具有单位温度差时,在单位时间内其单位面积上的导热量。

)2、热流密度(W/m2)二热对流热对流,依靠流体的运动,把热量从一处传递到另一处的现象。

1、对流换热对流换热:流体与温度不同的固体壁面接触时所发生的传热过程。

区别2、牛顿冷却公式h——对流换热系数,W/(m2·)。

(物理意义:流体与壁面的温差为1时,单位时间通过单位面积传递的热量。

)三热辐射物体表面通过电磁波(或光子)来传递热量的过程。

1、特点辐射能可以通过真空自由地传播而无需任何中间介质。

一切物体只要具有温度(高于0K)就能持续地发射和吸收辐射能。

不仅具有能量传递,还有能量的转换:热能——电磁波——热能。

2、辐射换热:依靠辐射进行的热量传递过程。

3、辐射力物体表面每单位面积在单位时间内对外辐射的全部能量。

(W/m2)C b——辐射系数,C b=5.67W/(m2·K4)。

4、辐射量计算四传热过程1、总阻2、总热流密度第2章导热问题的数学描述一基本概念及傅里叶定律1、基本概念等温面:由温度场中同一瞬间温度相同点所组成的面。

等温线:等温面上的线,一般指等温面与某一平面的交线。

热流线:处处与等温面(线)垂直的线。

2、傅里叶定律(试验定律)3、各向热流密度二导热系数1、定义式2、实现机理气体:依靠分子热运动和相互碰撞来传递热量。

非导电固体:通过晶体结构的振动来传递热量。

液体:依靠不规则的弹性振动传递热量。

3、比较同种物质:不同物质:4、温度线性函数三导热微分方程及定解条件1、导热微分方程拉普拉算子。

——热扩散率,。

分子代表导热能力,分母代表容热能力。

第9章 辐射传热的计算(杨世铭,陶文栓,传热学,第四版,答案)

第9章 辐射传热的计算(杨世铭,陶文栓,传热学,第四版,答案)

第9章 辐射传热的计算课堂讲解课后作业【9-6】试用简捷方法确定本题附图中的角系数X 1,2。

【解】 (1) 由于121=X ,1,222,11X A X A =0.42443424321211,222,1==⨯⨯⨯===ππl R l R A A A X A X(2) 由于121=X ,1,222,11X A X A =0.5212221211,222,1=====R R A A A X A X ππ (3) 根据(2)的结论,由于对称性125.00.5412,1=⨯=X(4) 假设球的顶部有一块无限大的平板存在,由于对称性0.52,1=X【9-8】已知:如图a 、b 。

求:角系数。

【解】(a) A,2A B A,A 1,21B 1,12B A,1A 1X A X A X A X A X A +++=+++由于对称性,则()1,21B 1,11,21B 1,12B A,1A 1222X A X A X A X A X A +=+=+++。

1A 12A A =+ ,1,2B 1,2B A,1X X X +=∴++B 1,2B A,11,2X X X -=++X =1,Y =2175.01,2=X(b) 扩充图(b),得1'由扩充图可知,2.021,='X ,由于对称性,可得:05.042.04121,1,2==='X X 1,222,11X A X A =2.005.041,21211,222,1=⨯===X A A A X A X【9-18】一管状电加热器内表面温度为900K 、ε=1,试计算从加热表面投入到圆盘上的总辐射能(见附图)。

【解】表面2发出而落到表面1上的辐射能应为2,11b 1X E A =Φ; 按角系数的对称性,1,222,11X A X A =;做虚拟表面3及4,则可有4,21,23,2X X X +=,即4,23,21,2X X X -=,其中3,2X ,4,2X 为两平行圆盘间辐射角系数。

[工学]第四版传热学第九章习题解答

[工学]第四版传热学第九章习题解答

第九章思考题1、试述角系数的定义。

“角系数是一个纯几何因子”的结论是在什么前提下得出的?答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。

“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。

2、角系数有哪些特性?这些特性的物理背景是什么?答:角系数有相对性、完整性和可加性。

相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。

任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之和。

3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型?答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个方向投入到该表面上的辐射能。

4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性?答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。

5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用?答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。

6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。

答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。

7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的?答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。

研究生传热学课第九章

研究生传热学课第九章
j表面有效辐射为: 表面有效辐射为: 上式还可写成: 上式还可写成:
n
∑J X
i =1 i
n
i, j
Fi = Fj ∑ X j ,i J i
i =1
n
J j = ε jσ bT j4 + (1 − ε j ) ∑ X j ,i J i
n i =1
εj 4 X j ,i J i − = σ bT j ∑ 1− ε j ε j −1 i =1 Jj
Example 9-4,9-5,9-6
cos θ1 cos θ 2 dQdF1 ,dF2 = QdF1 →dF2 − QdF2 →dF1 = ( Eb1 − Eb 2 ) dF1dF2 2 πr 微面积dF1 F2的辐射换热量为 dF1与 的辐射换热量为: 微面积dF1与F2的辐射换热量为:
微面积dF1与dF2的辐射换热量为: 微面积dF1与dF2的辐射换热量为: dF1 的辐射换热量为
(
)
example
• 9-2 and 9-3 • 车间的蒸气管道,长为1m,外径为50mm,管道 发射率为0.4,温度t1=50℃,墙面温度为15℃, 求管道与车间墙面的换热量
1 2
热 网 络
封 2-3 三 闭 个 空 灰 腔 表 辐 面 射 组 换 成
封闭空腔中多灰表面间的辐射换热
Eb 3
1− ε3 ε 3 F3
• 绝热面(重辐射面):净辐射换热量为0. 绝热面(重辐射面):净辐射换热量为0. ):净辐射换热量为 • 能量流动方向看:投射来的能量全部反射出去 能量流动方向看: • 数值取决于左右两个空间热阻的相对大小
Eb 3
1 X 1,3 A1 1 X 2,3 A2
Eb1

传热学第九章辐射换热的计算

传热学第九章辐射换热的计算
4 4 h TT TT 1 f 1 1 3
遮热罩的热平衡表达式
4 4 2 h T T TT f 3 3 3 2
联立求解以上两式可求得测温误差 Tf T ,结果为 44 K。可见,加 1 遮热罩后,相对测温误差由未加遮热罩的14.4%降低到4.4% 。
i 1 n
图9-2 角系数的完 整性
上式称为角系数的完整性。若表面1为非凹表面时,X1,1 = 0。
(3) 可加性
3 角系数的计算方法
4 求解角系数的方法通常有直接积分法、代数分析法。
(1) 直接积分法 dA1对A2角系数为:
X d 1 , 2

A 2
d 1 , d 2
d 1

9.3
辐射换热应用举例
1、控制表面热阻强化或削弱辐射换热:比如涂层(不同辐射 表面涂层的效果不同,为什么?举例说明); 2、控制空间热阻强化或削弱辐射换热:比如遮热板; 3、遮热板的原理。
遮热板的主要作用就是削弱辐射换热。下面以两块靠得很近
的大平壁间的辐射换热为例来说明遮热板的工作原理。 没有遮热板时,两块平 壁间的辐射换热有 2 个 表面辐射热阻、 1 个空 间辐射热阻。 在两块平壁之间加一块大 小一样、表面发射率相同 的遮热板3 如果忽略遮热板的导热热阻,则总辐射热阻增加了1倍, 辐射换热量减少为原来的1/2,即 12
d 1 , d 2 d 1
A 2
d 1 , d 2 X
A 2
A1对A2角系数为:
1 cos cos d A d A 1 2 1 2 1 X X d A 1 , 2 d 1 , d 2 1 2 A A A A A A r 1 1
1 2 1 2

传热学-辐射传热的计算

传热学-辐射传热的计算

X1,2
=
A1 + A2 − 2A1
A3
X1,3
=
A1 + A3 − 2A1
A2
X 2,3
=
A2
+ A3 − 2A2
A1
相对性
A1 X1,2 = A2 X 2,1 A1 X1,3 = A3 X 3,1 A2 X 2,3 = A3 X 3,2
三个非凹表面组成的封闭系统
由于垂直纸面方向的长度相同,则有:
从表面内部观察,该表面与外界的辐射
换热量应为: q = E1 − α1G1
J1
=
q
+
E1 − α1
q
=
E1 α1

⎛ ⎜ ⎝
1 α1

1
⎞ ⎟
q

注意:式中的各个量均是对
J
=
E α
−1−α α
q
=
Eb

(1 ε
−1)q
同一表面而言的,而且以向 外界的净放热量为正值。
9.2.3 两漫灰表面组成的封闭腔的辐射传热
n
∑ Φ1 = Φ1− j j =1
∑ ∑ Φ n 1− j
Φ j =1
1
=
n
x1− j = 1
j =1
X1,1 + X1,2 + X1,3 + + X1,n = 1
9.1.2 角系数的性质
1.角系数的相对性
两个有限大小表面之间角系数的相对性 Φ1,2 = A1 Eb1 X 1,2 − A2 Eb2 X 2,1
E b1 − +1
Eb2 + 1− ε2
ε 1 A1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据上节中的公式(d)
1, 2 A1 J1 X 1, 2 A2 J 2 X 2,1
A1 X 1,2 A2 X 2,1

1, 2
J1 J 2 A1 X 1, 2 ( J1 J 2 ) 1 A1 X 1, 2
J1 J 2 是空间热势差,
1 A1 X 1, 2

J1
则是空间辐射热阻, 图8-10
J Eb ( 1)q
1

改写为:
q
Eb J 1
or


Eb J 1 A
Eb J
1 or
称为表面热势差;

1 A
则被称为表面辐射热阻。
第9章 辐射换热的计算 21

Eb
1 A
图9-9
J1
表面辐射热阻
注意:每一个表面都有一个表面辐射热阻。
Eb1 J1 J 2 J1 J1 : 0 1 1 1 A1 1 A1 X 1, 2 Eb 2 J 2 J1 J 2 J2 : 0 1 2 1 A2 2 A1 X 1, 2
J1
基尔霍夫定律: 流入节点的电流总和等于零
Eb1
1, 2
1 A1, 2 X 1, 2



9-3
多表面系统辐射换热的计算
净热量法:两表面,也用于多表面情况 网络法(又称热网络法,电网络法等):简明、直观。
原理:是用电学中的电流、电位差和电阻比拟热辐射中的热
流、热势差与热阻,用电路来比拟辐射热流的传递路径。
条件:求角系数,必须满足漫灰面、等温、物性均匀以及投
射辐射均匀的四个条件。
第9章 辐射换热的计算
31

Eb
1 A

J1
J1
1 A1 X 1, 2
J2
注意:每一个表面都有一个表面辐射热阻。
每一对表面就有一个空间辐射热阻
1, 2
1 A1, 2 X 1, 2
第9章 辐射换热的计算
Eb1
J1
J2
Eb 2
1 1 A1 1
1 2 A2 2
32 32
9.3.1
等效网络图
两漫灰表面组成的封闭系统
再来看一下2 对 1 的 能量守恒情况:
图8-4 角系数的可加性
2,1 2 A,1 2 B ,1 A2 Eb 2 X 2,1 A2 A Eb 2 X 2 A,1 A2 B Eb 2 X 2 B ,1 X 1, 2 A2 A A2 B X 2 A,1 X 2 B ,1 A2 A2
角系数的相对性。
第9章 辐射换热的计算 7
(2)
完整性
前提:封闭系统
X1,1 X1,2 X1,3 X1, n X1,i 1
i 1 n
图8-3 角系数的完整性
上式称为角系数的完整性。若表面1为
非凹表面时,X1,1 = 0。
第9章 辐射换热的计算 8
(3) 可加性
X 1, 2
图8-6 两个非凹表面及 假想面组成的封闭系统
第9章 辐射换热的计算 14
(bc ad ) (ac bd ) X ab ,cd 2ab 交叉线之和 不交叉线之和 2 表面A1的断面长度
交叉线法。 注意:这里所谓的交叉线和不交叉线都是指虚拟面断面 的线,或者说是辅助线
角系数计算举例
dA1 cos1 cos2 X d 2, d 1 2 r
dA1 X d 1, d 2 dA2 X d 2, d 1
第9章 辐射换热的计算 6
两有限大小黑体表面
12 A1Eb1 X12 A2 Eb2 X 21
热平衡时, 12 0 T1=T2 Eb1=Eb2
A1 X1, 2 A2 X 2,1
第9章 辐射换热的计算 26
1,2
A1 ( Eb1 Eb 2 ) A 1 1 1 1 1 1 1 X 1,2 A2 2
1 1 1 1 X 1, 2 1 X 2,1 1 1 2
第9章 辐射换热的计算
2
9-1
辐射传热的角系数
两表面间辐射换热量与两表面间相对位 置的关系。
1.
角系数的定义
先复习两个概念 (1)投入辐射:单位时间投射到单位面积上的总辐射能,记为G。 (2)有效辐射:单位时间内离开单位表面积的总辐射能。记为J 参见图9-1 。 包括了自身的发射辐射E和反射辐射G。G为投射辐射。
A2 1 1 X 1, X 2, X 1, 2 1 2 A1 4 2 X 1, 2 1 8
X1, 0.5 2
9-2 两表面封闭系统的辐射换热

1.封闭腔模型
封闭腔表面可以是真实的 也可以是虚构的。 特例:两块无限接近大平板
第9章 辐射换热的计算 18



2.两黑体表面封闭系统
J2
Eb 2
1 1 A1 1
1 2 A2 2
33
第9章 辐射换热的计算
求解
J1 or J 2
计算净辐射热流,其中i 代表表面1或表面2。
注意:
(1)节点的概念;
Ebi J i i 1 i Ai i
(2)每个表面一个表面热阻,每对表面一个空间热阻;
第9章 辐射换热的计算
复习
基本概念:黑体、灰体、漫射体、
基本定律:斯忒藩-玻耳兹曼定律、普朗 克定律、维恩位移定律、兰贝特定律、 基尔霍夫定律;
第9章 辐射换热的计算
1
第九章 辐射换热的计算
假设:
(1)进行辐射换热的物体表面之间是不参与辐射 的介质(单原子或结构对称的双原子气体、空气)或真空 (2)每个表面都是漫射、灰体或黑体表面; (3)每个表面的温度、辐射特性及投入辐射分布 均匀。
第9章 辐射换热的计算 10
3
角系数的计算方法--代数分析法
直接积分法、代数分析法、几何分析法、MonteCarlo法。
直接积分法--查图(9-7至9-9)自学(有作业)。
代数分析法:角系数的各种性质,解代数方程。
第9章 辐射换热的计算 11
例1:三个非凹表面组成的封闭系统
X1, 2 X1,3 1 X 2,1 X 2,3 1 X 3,1 X 3, 2 1 A1 X1, 2 A2 X 2,1 A1 X1,3 A3 X 3,1 A2 X 2,3 A3 X 3, 2
X1, 2
A A2 A3 1 2A 1
图8-5 三个非凹表面 组成的封闭系统
第9章 辐射换热的计算 12
若系统横截面上三个表面的长度分别为l1,l2和l3, 则上式可写为
X1,2
l1 l2 l3 2l1
第9章 辐射换热的计算
13
例2:两非凹表面间的角系数
X ab, cd 1 X ab, ac X ab,bd ab ac bc X ab, ac 2ab ab bd ad X ab,bd 2ab
34
9.3.2 多表面封闭系统
1、首先需要画出等效网络, 2、列出各节点的电流方程。
第9章 辐射换热的计算
35
9-12 由三个表面组 成的封闭系统
9-13 三表面封闭 腔的等效网络图
第9章 辐射换热的计算 36
节点热流方程如下:
求解上面的方程组,再计算净换热量。
37
第9章 辐射换热的计算
总结上面过程,可以得到应用网络法的基本步骤如下: A B C D 画等效电路图; 列出各节点的热流(电流)方程组; 求解方程组,以获得各个节点的等效辐射; Ebi J i 利用公式 计算每个表面的净辐 i 1 i Ai i 射热流量。
(1) 表面1为凸面或平面,此时,X1,2=1,于是
s
1 1 1 X 1, 2 1 X 1, 2 1
1 = 1 A1 1 A1 1 1 1 1 A2 2 A2 2
(2) 表面积A1比表面积A2小得多,即A1/A2 0 于是
1 A1 X 1, 2
空间辐射热阻
第9章 辐射换热的计算
J2
每一对表面就有一个空间辐射热阻。
24
根据能量守恒有
J Eb (

1
1)q
1 J1 A1 A1 Eb1 11, 2 1 1 J 2 A2 A2 Eb 2 1 2,1 2 1, 2 2,1
X 1, 2i
i 1
n
图8-4 角系数的可加性
注意:表面2对表面1的角系数不存在可加性。
第9章 辐射换热的计算
9
1, 2 1, 2 A 1, 2 B A1 Eb1 X 1, 2 A1 Eb1 X 1, 2 A A1 Eb1 X 1, 2 B X 1, 2 X 1, 2 A X 1, 2 B
X d 1,d 2
I b1 cos1dA1d dA2 cos1 cos2 2 E b1dA1 r
类似地有
dA1 cos1 cos2 X d 2, d 1 2 r
图9-2
第9章 辐射换热的计算
两微元面间的辐射
5
2.
角系数性质
(1) 相对性
X d1, d 2
Lb1 cos1dA1d dA2 cos1 cos2 Eb1dA1 r2
系统黑度(或称为系统发射率)
sห้องสมุดไป่ตู้
1, 2 s A1 X1, 2 ( Eb1 Eb 2 )
1,2 A X1, 2 ( Eb1 Eb 2 ) 1 与黑体辐射换热比较,上式多了一个 s ,它是考虑由
相关文档
最新文档