九级数学中考冲刺班第五讲中考数学几何中的值问题目讲义word资料5页
中考数学三轮冲刺-真题集训:知识点47 几何最值(pdf版,含答案)
一、选择题1.(2019·长沙)如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +5的最小值是【 】A...D .10【答案】B二、填空题1.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD =120°,则CD 的最大值是()【解析】将△CAM 沿CM 翻折到△CA ′M ,将△DBM 沿DM 翻折至△DB ′M , 则A ′M =B ′M ,∠AMC =∠A ′MC ,∠DMB =∠DMB ′, ∵∠CMD =120°,∴∠AMC +∠DMB =∠A ′MC +∠DMB ′=60°,∴∠A ′MB ′=180°-(∠AMC +∠DMB +∠A ′MC +∠DMB ′)=60°, ∴△A ′MB ′是等边三角形,又∵AC =2,BD =8,AB =8.点M 为AB 的中点,知识点47——几何最值∴A ′B ′=A ′M =B ′M =AM =12AB =4,CA ′=AC =2,DB ′=DB =8,又CD ≤CA ′+A ′B ′+DB ′=2+4+8=14.三、解答题1.(2019山东威海,24,12分)如图,在正方形ABCD 中,AB =10cm ,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF ⊥AE ,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2cm 的速度运动,当点E 与点D 重合时,运动停止,设△BEF 的面积为ycm 2,E 点的运动时间为x 秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值.【解析】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N , ∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD ,∴MN ⊥AD ,MN ⊥BC ,∴∠AME =∠FNE =90°=∠NFE +∠FEN , ∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°,∴∠AEM =∠NFE , ∵∠DBC =45°,∠BNE =90°,∴BN =EN =AM ., ∴△AEM ≌△EFN (AAS ),∴AE =EF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADE =∠CDE , ∵DE =DE ,∴△ADE ≌△CDE (SAS ),∴AE =CE =EF .(2)在Rt △BCD 中,由勾股定理得:BD, ∴0≤x ≤.由题意,得BE =2x ,∴BN =EN x .由(1)知:△AEM≌△EFN,∴ME=FN,∵AB=MN=10,∴ME=FN=10x,如图(1),当0≤x∴BF=FN-BN=10x x=10-x. ∴y=12BF·EN=1(102−=-2x2+(0≤x;如图(2)x≤∴BF=BN-FN x-(10x)=x-10,∴y=12BF·EN=12−=2x2-x≤.∴222(02x xyx x−+≤≤=−<≤(1)(2)(3)y=-2x2+5x=-2(x2+254,∵-2<0,∴当x y有最大值是;即△BEF面积的最大值是;x≤y=2x2-=22(x-254,此时2>0,开口向上,对称轴为直线x∵对称轴右侧,y 随x 的增大而增大, ∴当x=y 最大值=50.∴当x=BEF 面积的最大值是50.25.(2019山东省威海市,题号25,分值12) (1)方法选择如图①,四边形ABCD 是OO 的内接四边形,连接AC ,BD .AB =BC =AC ,求证:BD =AD +CD . 小颖认为可用截长法证明:在DB 上截取DM =AD ,连接AM ..…… 小军认为可用补短法证明:延长CD 至点N ,使得DN =AD …… 请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .BC 是⊙O 的直径,AB =AC .试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,∠ABC =30°,则线段AD ,BD ,CD 之间的等量关系式是.图①图②B图③B图④B(3)拓展猜想如图④,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是O 0的直径,BC :AC :AB =a :b :c ,则线段AD ,BD ,CD 之间的等量关系式是.【思路分析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,由旋转全等得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴ND,由旋转全等得BN =CD ,∴BD =ND +BNAD +CD【探究2】数量关系为:BD =2ADCD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形, 由旋转相似得BP,∴BD =PD +BP =2ADCD (3)拓展猜想数量关系为:BD =abAD +c b CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,由旋转相似得=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =cb CD ,BQ =a b AD ,∴BD =PD +BP =abAD +c b CD【解析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,可得△AMD 为等边三角形,可证△BAM ≌△CAD (SAS )得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,∠BAN =答案图①答案图②B∠CAD ,可证△BAN ≌△CAD (SAS )得BN =CD ,∴BD =ND +BNAD +CD【探究2】数量关系为:BD =2ADCD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形,∴=tan 30AP ABAD AC=°,∠BAP =∠CAD ,可证△BAP ∽△CAD 得BPCD ,∴BD =PD +BP =2AD(3)拓展猜想数量关系为:BD =a b AD +c bCD 如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,可得∠BAQ =∠CAD ,∠ABQ =∠ACD ,∠ADQ =∠ACB ,∠BAC =∠QAD ∴△BAP ∽△CAD ,△ADQ ∽△ACB ∴=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =cb CD ,BQ =a b AD ,∴BD =PD +BP =a b AD +c bCD 2.(2019·益阳)如图,在半面直角坐标系x O y 中,矩形ABCD 的边AB =4,BC =6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动.(1)当∠O AD =30°时,求点C 的坐标;(2)设AD 的中点为M ,连接O M 、MC ,当四边形 O MCD 的面积为221时,求O A 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时c os ∠O AD 的值.答案图③B答案图④B第2题图 第2题备用图第2题答图1 第2题答图2【解析】(1)如图1,过点C 作CE ⊥y 轴,垂足为E .∵矩形ABCD 中,CD ⊥AD ,∴∠CDE +∠AD O=90°,又∵∠O AD +∠AD O=90°,∴∠CDE =∠O AD =30°.在R t △CED 中,CE =21CD =2,∴DE =32242222=−=−CE CD ; 在R t △O AD 中,∠O AD =30°,∴O D =21AD =3.∴点C 的坐标为(2,323+).(2)∵M 为AD 的中点,∴DM =3,6=DCM S △. 又∵221=OMCD S 四边形,∴29=ODM S △,∴9=OAD S △.设O A =x ,O D =y ,则 ==+9213622xy y x ,∴xy y x 222=+,即0)(2=−y x ,∴x =y .将x =y 代入3622=+y x 得182=x ,解得23=x (23−不合题意,舍去),∴O A 的长为23.(3)O C 的最大值为8.理由如下:如图2,∵M 为AD 的中点,∴O M =3,522=+=DMCD CM .∴O C ≤O M +CM =8,当O 、M 、C 三点在同一直线时,O C 有最大值8. 连接O C ,则此时O C 与AD 的交点为M ,过点O 作O N ⊥AD ,垂足为N . ∵∠CDM =∠O NM =90°,∠CMD =∠O MN ,∴△CMD ∽△O MN ,∴OMCMMN DM ON CD ==,即3534==MN ON , 解得59=MN ,512=ON ,∴56=−=MN AM AN . 在R t △O AN 中,∵55622=+=AN ON OA ,∴55cos ==∠OA OAD AN .3.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以cm /s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t (s ).过点P 作PE ⊥AC 于E ,连接PQ 交AC 边于D .以CQ 、CE 为边作平行四边形CQFE .(1)当t 为何值时,△BPQ 为直角三角形;(2)是否存在某一时刻t ,使点F 在∠ABC 的平分线上?若存在,求出t 的值,若不存在,请说明理由;(3)求DE 的长;(4)取线段BC 的中点M ,连接PM ,将△BPM 沿直线PM 翻折,得△B ′PM ,连接AB ′当t 为何值时,AB ′的值最小?并求出最小值.【解析】:(1)∵△ABC 为等边三角形,∴∠B =60°,∵BP ⊥PQ ,∴2BP =BQ 即2(6-t )=6+t ,解得t =2.∴当t 为2时,△BPQ 为直角三角形;(2)存在.作射线BF ,∵PE ⊥AC ,∴AE =0.5t .∵四边形CQFE 是平行四边形,∴FQ =EC =6-0.5t ,∵BF 平分∠ABC ,∴∠FBQ +∠BQF =90°.∵BQ =2FQ ,BQ =6+t ,∴6+t =2(6-0.5t ),解得t =3.(3)过点P 作PG ∥CQ 交AC 于点G ,则△APG 是等边三角形.∵BP ⊥PQ ,∴EG =12AG .∵PG ∥CQ ,∴∠PGD =∠QCD ,∵∠PDG =∠QDC ,PG =PA =CG =t ,∴△PGD ≌△QCD .∴GD =12GC .∴DE=12AC=3.(4)连接AM,∵△ABC为等边三角形,点M是BC的中点,∴BM=3.由勾股定理,得AM=.由折叠,得BM′=3.当A 、B′、M在同一直线上时,AB′的值最小,此时AB′=3.过点B′作B′H⊥AP于点H,则c os30°=AHAB′,,解得t=9-.∴t为9-时,AB′的值最小,最小值为-3.4.(2019·重庆A卷)如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A 在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+13PC取得小值时,把点P单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A OQ′′,其中边A Q′′交坐标轴于点G,在旋转过程中,是否存在一点G,使得OGQQ''∠=∠?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.【解析】(1)由题意得A(-1,0),B(3,0),C(0,-3),D(1,-4),直线BD:y=2x-6.如答图1,连接DN、BN,则S△BDN=12BD•MN,而BD为定值,故当MN最大时,S△BDN取最大值.此Q时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0).在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a x 轴上取点K (,0),连接KC ,易求直线KC :y =-x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP +13PC 最小值=HF +FR .在y =-x -3中,当y =-2,x ,于是FT =2.在R t △FTR 中,由FR FT =,得FR FT (2)=13,故HF +FP +13PC 最小值=2+13.(2)(,(,,.5.(2019·重庆B 卷)在平面直角坐标系中,抛物线242y ++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HK 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记作D ’,N 为直线DQ 上一点,连接点D ’,C ,N ,△D’CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.【解析】(1)∵2y x ++与x 轴交于A ,B 两点,∴当y =0时,即20+,∴122,4x x =−=,即A (-2,0),B (4,0), 设直线BC 的解析式为y =kx +b ,∵C (0,),B (4,0),∴40b k b =+=,∴b k = = ,∴直线BC的解析式为y +设点2(,4),P m m ++<< ∵PE ∥y 轴且点E 在直线BC上,∴(,E m +∠PEF =∠OCE ,∴2(04),PE m +<< ∵PF ⊥BC ,∴∠PFE =∠COB =90°,∴△PEF ∽△BCO , 设△PEF 的周长为1l ,△BCO 的周长为2l , 则12l PEl BC=,∵B (4,0),C (0,),∴BC=24l =+,∴21)(04),l m +<< ∴当m=2时,1l此时点P 的坐标为(2,), ∵A (-2,0),C (0,),∴∠ACO =30°,∠CAO =60°, 备用图图1图2∵BG∥AC,∴.∠BGD=30°,∠OBG=60°,∴G(0,−,直线B G解析式为y=−PM解析式为y=,过点G作GN⊥BG,过点P作PM⊥GN于点M,如图1,此时,点H为PM与对称轴的交点,K为PM与y轴的交点,点K与点O重合,则KM=OMKG,PH+HKKG的最小值为线段PM的长.(此问题是胡不归问题).解法一:(作一线三直角利用相似求解)如图2,过点P作PQ∥x轴交对称轴于点T,过点M作MQ⊥y轴交PT于点Q,过点G作GJ⊥MQ交MQ于点J.设点Q(n,),∴J(n,−,∴PQ=2-n,M2-n),∵GJ=-n,∴MJ=,∴MQ+MJ=CG=(−−,2-n)+()=,∴n=-3,∴Q(-3,),∴PQ=5,∴PM=2PQ=10,∴PH+HKKG的最小值为10,∵∠OGM=60°,∠PHT=30°,∠HPT=60°,∴PT=1,∴HTH(1.图1 N解法二:由上面的解法可知MG ⊥BG ,直线MG的解析式为:y x −如图3,过点P 作PR ⊥x 轴交MG 于点R ,∴R (2,), 由第一种解法可知∠PRG =60°,∴PMPR()=10, ∴PH +HKKG 的最小值为10,同理可求H (1.(2)这样的N 点存在.当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .【提示】由(1)可知∠AC O=30°,∠O AC =60°,图2NN又∵221)y x x ++−+D (1,∵抛物线按射线AC 的方向平移,设平移后顶点'(D a ++,平移后的抛物线解析式为21)y x a =−−++该抛物线经过原点,则201)a =−−+∴2280a a −−=,∴a =4或a =-2(舍去),即D .设点N (1,b )'CD ==CN =,'ND 如图4,当△'CD N 为等腰三角形时,分三种情况:①当'CD CN =,可得1N ,2N ;②当''CD D N =3N ,4N ,③当'CN D N =可得5N ,∴当△'CD N 为等腰三角形时,这样的N 有:1N ,2N ,3N ,4N ,5N .6.(2019·天津)已知抛物线y =x 2-bx +c (b ,c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,(1)当b =2时,求抛物线的顶点坐标;(2)点D (b ,y D )在抛物线上,当AM =AD ,m =5时,求b 的值;(3)点Q(1,2b +y Q)2QM +b 的值. 【解析】(1)∵抛物线y =x 2-bx +c 经过点A (-1,0),∴1+b +c =0,∴c =-1-b 当b =2时,c =-3,∴抛物线的解析式为y =x 2-2x -3,∴顶点坐标为(1,-4) (2)由(1)知,c =-1-b ,∵点D (b ,y D )在抛物线上,∴y D =-b -1, ∵b >0,∴b 02b >>,-b -1<0,∴D (b ,-b -1)在第四象限,且在抛物线对称轴2bx =的右侧.如图,过点D 作DE ⊥x 轴于E ,则E (b ,0),∴AE =b +1=DE ,所以AD 1)b +,∵m =5,∴AM =5-(-1)=6,∴1)b +,∴b =(3)∵点Q(1b ,2+y Q )在抛物线上,∴y Q=2113)()12224b b b b b +−+−−=−−(, ∴点Q (1b ,2+3-24b −)在第四象限,且在直线x =b 的右侧,2QM +,A (-1,0),∴取点N (0,1),如图, 过点Q 作Q H ⊥x 轴于H ,作QG ⊥AN 于G,QG 与x 轴交于点M ,则H (1b ,2+0),∠G AM =45°,∴G M AM , ∵M (m ,0),∴AM =m +1,MH =1b 2m +−,Q H =324b +,∵MH =Q H ,∴1b 2m +−=324b +,∴m =1-24b ,∴AM =13-12424b b +=+,Q M 3)24b +(2QM +33)))24244(b ++b +b =4.7.(2019·自贡)如图,已知直线AB 与抛物线:y =ax 2+2x +c 相交于点A (-1,0)和点B (2,3)两点.(1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;(3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.【解析】(1)将A(-1,0)和B(2,3)代入抛物线解析式得�aa−2+cc=04aa+4+cc=3解得,�aa=−1cc=3∴抛物线解析式为y=-x2+2x+3.(2)过M作MH∥y轴,交AB于H,设直线AB为y=kx+b,将A,B坐标代入得,�−kk+bb=02kk+bb=3解得,�kk=1bb=1.∴直线AB的解析式为y=x+1.设M为(m,-m2+2m+3),则H(m,m+1)∴MH=y M-Y H=(-m2+2m+3)-( m+1)=-m2+m+2.∴S△ABM=S△AMH+S△BMH=12·MH·(x B-x A)=12·(-m2+m+2)·(2+1)=-32(m2-m)+3=-32(m-12)2+278. ∵四边形MANB是以MA、MB为相邻的两边的平行四边形,∴△ABM≌△BAN.∴S四边形MANB=2 S△ABM=-3(m-12)2+274,∵a=-3<0且开口向下,∴当m=12时,S四边形MANB的最大值为274.此时,M坐标为(12,154). (3)存在,理由如下:过P作直线y=174的垂线,垂足为T,∵抛物线为y=-x2+2x+3=-(x-1)2+4.∴抛物线的对称轴为直线x=1,顶点坐标为(1,4).当P为顶点,即P(1.4)时,设F点坐标为(1,t),此时PF=4-t,PT=174-4=14.∵P到F的距离等于到直线y=174的距离,∴4-t=14,即t=154.∴F为(1,154)设P点为(a,-a2+2a+3),由勾股定理,PF2=(a-1)2+(-a2+2a+3-154)2=a4-4a3+132a2-5a+2516.又∵PT2=[174-(-a2+2a+3)]2= a4-4a3+132a2-5a+2516.∴PF2=PT2,即PF=PT.∴当F为(1,154)时,抛物线C上任意一点P到F的距离等于到直线y=174的距离. 8.(2019·淮安)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP= ;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【解析】(1)①由题意得,PE =PB ,∠BPE =80°,∴∠BEP =°=°−°50280180; ②如图所示,∵AB =AC ,D 是BC 的中点,∠BAC =100°,∴∠ABC =°=°−°402100180,∵∠BEP =50°,∴∠BCE =∠CBE =40°,∴∠ABC =∠BCE ,∴CE ∥AB . 答案:①50°;②平行(2)在DA 延长线上取点F ,使∠BF A =∠CF A =40°,总有△BPE ∽△BFC . 又∵△BPF ∽△BEC ,∴∠BCE =∠BFP =40°,∴∠BCE =∠ABC =40°,∴CE ∥AB .当点P 在线段AD 上运动时,由题意得PB =PE =PC , ∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上, 如图所示:∴AE 的最小值为AC =3.9.(2019·凉山州)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点 P 的坐标及△P AC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △P AM =S △P AC ,若存在,请求出点M 的坐标;若不存在,请说明理由.【解析】(1)由题知 ==++=+−30390c c b a c b a ,解得==−=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△P AC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴△P AC 的周长=AC +PC +P A = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△P AC 的周长为10+32;(3)存在.由题知AB =4,∴S △P AC =S △ABC -S △P AB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则=+=+−20n m n m ,解得==11n m ,∴AP :y =x +1.①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由++−=+=3232x x y x y 解得 ==3011y x ,==4122y x ,∴M (1,4); ②设抛物线对称轴交x 轴于点E (1,0),则S △P AC =21×2×2=2=S △P AC .过点E 作AP 的平行线交x 轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由 ++−=−=3212x x y x y 解得−−=−=2171217111y x (舍),+−=+=2171217122y x ,∴M (2171+,2171+−). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+−). 10.(2019·苏州,26,10)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =cm .如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示.(1)直接写出动点M 的运动速度为cm /s ,BC 的长度为cm;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm /s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2) ①求动点N 运动速度v (cm /s )的取值范围; ②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由.图① 图② 图③ 第27题答图 【解析】(1)∵t =2.5s 时,函数图象发生改变,∴t =2.5s 时,M 运动到点B 处,∴动点M 的运动速度为52.5=2cm /s ,∵t =7.5s 时,S =0,∴t =7.5s 时,M 运动到点C 处,∴BC =(7.5﹣2.5)×2=10(cm ), 故答案为2,10;(2)①∵两动点M ,N 在线段BC 上相遇(不包含点C ),∴当在点C 相遇时,v527.53=(cm /s ),当在点B 相遇时,v 5102.5+=6(cm /s ),∴动点N 运动速度v (cm /s )的取值范围为23cm /s <v ≤6cm /s ; AB ,交CD EF ∥BC ,EF =BC =10,∴AF APAB AC=,∵AC∴5AF =解得AF =2,∴DE =AF =2,CE =BF =3,PF 4,∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S 梯形PFBM ﹣S △ABM 12=×4×212+(4+2x ﹣5)×312−×5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM 12=×2×612+(6+15﹣2x )×312−×5×(15﹣2x )=2x ,∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x 154−)22254+,∵2.5154<<7.5,在BC 边上可取,∴当x 154=时,S 1•S 2的最大值为2254.11.(2019·巴中)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B ,C 两点的直线为y =x +n .①求抛物线的解析式;②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 描,求t 为何值时,△PBE 的面积最大,并求出最大值.③过点A 作AM ⊥BC 与点M ,过抛物线上一动点N (不与点B ,C 重合)作直线AM 的平行线交直线BC 于点Q,若点A ,M ,N ,Q 为顶点的四边形是平行四边形.求点N 的横坐标.分析:①由点A 和直线y =x +n 可得方程组,解出系数,求得二次函数的解析式;②根据题意表示出三角形面积,利用二次函数最值进行求解;③分析得到AM 平行且等于N Q,设出坐标,利用坐标关系列方程进行求解,并检验.【解析】①因为点B ,C 在y =x +n 上,所以B (-n ,0),C (0,n ),因为点A (1,0)在抛物线上,所以250505a b an bn n ì+-=ïï--=íï=-ïî,解得,a =-1,b =6,所以抛物线的解析式为:y =-x 2+6x -5.②由题意得:PB =4-t ,,BE =2t ,由①可知:∠O BC =45°,点P 到BC 上的高h =BP s in 45(4-t),所以S △PBE =12BE h 鬃=)22t --+当t =2时,S 取得最大值为③因为l BC :y =x -5,所以B (5,0), 因为A (1,0),所以AB =4,在R t △ABM 中,∠ABM =45°,AM AB =M (3,-3), 过点N 作x 轴的垂线交直线BC 于点P 交x 轴于点H , 设N (m ,-m 2+6m -5),则H (m ,0),P (m ,m -5),易证△P Q N 为等腰直角三角形,即N Q =P Q =所以PN =4.当NH +HP =4时,即-m 2+6m -5-(m -5)=4,解之得,m 1=1,m 2=4. 当m 1=1时,点N 与点A 重合,故舍去;当NH +HP =4时,即m -5-(-m 2+6m -5)=4,解得,m 1,m 2因为m >5,所以m当NH -HP =4,即-(-m 2+6m -5)-[-(m -5)]=4,解得,m 1,m 2因为m <0,所以m综上所述,要使点A ,M ,N ,Q 为顶点的四边形是平行四边形,点N 的横坐标为:412.(2019·淄博)顶点为M 的抛物线y =ax 2+bx +3与x 轴交于A (3,0),B (-1,0)两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D ,满足DA =OA ,过D 作DG ⊥x 轴于点G ,设△ADG 的内心为I ,试求CI 的最小值.【解析】(1)将A、B两点坐标代入抛物线表达式,得933030a ba b++=−+=,解得12ab=−=.∴y=-x2+2x+3.(2)假设存在点P,使△P AM是直角三角形.当点M为直角顶点,过M作CD⊥y轴,过A作AD⊥x轴,交CD于D,CD交y轴于C,∵∠AMP=90°,∴∠CMP+∠AMD=90,∴∠CMP=∠MAD,又∵∠DM=∠PCM,∴△CPM∽△DMA,∴CMAD=PCMD,∴14=2PC,∴PC=12,∴P1(0,72);当点A为直角顶点,过A作CD⊥x轴,过M作MD⊥y轴交AD于D,过P作PC⊥y轴交CD于C,同上△CP A∽△DAM,∴PCAD=ACMD,∴34=2AC,∴AC=32,∴P2(0,-32);当点P为直角顶点,过M作CM⊥y轴于C,∴△CPM∽△OAP,∴PCAO=CMPO,∴3PC=14-PC,∴PC=1或3,∴P3(0,3),P4(0,1).综上所述,使△P AM是直角三角形的点P的是P1(0,72),P2(0,-32),P3(0,3),P4(0,1).(方法1)由(1)得DA =OA =3,设D (x ,y ),△ADG 的内切圆半径为r ,则△ADG 的内心I 为(x +r ,r ), ∴DG =y ,AG =3-x由两点距离公式可得()2222339DA x y =−+==①由等面积法得r =()33+22y x DG AG DA +−−−==2y x−② ∴()()2223CI x r r =++−③由①②③得222312CI x y =−+−+2CI在312x y =−−最小,此时CI 也最小,min 32CI =(方法2)简解:如图,由内心易知:∠DIA =135°,∠DAI =∠OAI ,△DAI ≌△OAI (SAS ),∴∠DIA =∠OIA =135°,则I 在圆周角∠OIA =135°⊙T的圆周上运动,且半径R T 为(32,32),∴CI 在△CIA 中,CI ≥CT-IT=32,当C 、I 、T三点一线时,min 3=2CI .13.(2019·枣庄)已知抛物线y =ax 2+32x +4的对称轴是直线x =3,与x 轴相交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C .(1)求抛物线的解析式和A 、B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形DIGxy O1241234PB O C 的面积最大?若存在,求点P 的坐标及四边形PB O C 面积的最大值;若不存在,请说明理由. (3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点M 的坐标.解:(1)抛物线y =ax 2+32x +4的对称轴为:x =332224b a a a−=−=−=3,∴a =14−,∴抛物线的解析式为:y =14−x 2+32x +4,令y =0,得14−x 2+32x +4=0,解之,得,x 1=-2,x 2=8,∵点B 在点A 的右侧,∴A (-2,0),B (8,0);(2)连接BC ,在抛物线y =14−x 2+32x +4中,令x =0,得y =4,∴C (0,4),∴O C =4,O B =8,∴S △O BC =16,∵B (8,0),C (0,4),设l BC :y =kx +b ,得0=8k +b ,4=b ,∴k =12−,b =4,l BC :y =12−x +4,∴过点P 作PD ∥y轴交BC 于点D ,过点C 作CE 垂直PD 于点E ,过点B 作BF ⊥PD 于点F ,则S △PBC =S △PCD +S △PBD =12PD×CE +12PD ×BF =12PD ×(CE +BF )=12PD ×(x B -x C )=12PD ×8=4PD ,∵点P 在抛物线上,设点P (x ,14−x 2+32x +4),∵PD ∥y 轴,点D 在直线BC 上,∴D (x ,12−x +4),∵点P 在B ,C 间的抛物线上运动,∴PD =y P-y D =14−x 2+32x +4-(12−x +4)=14−x 2+2x ,S △PBC =4PD =4(14−x 2+2x )=-x 2+8x =-(x -4)2+16,当x =4时,S △PBC 最大16,∴S 四边形O BPC =S △O BC +S △PBC =32;∵MN ∥y 轴,∴设M ,N 的横坐标为m ,∵点M 在抛物线上,设点M (m ,n ),其中n =14−m 2+32m +4,点N 在直线BC 上,∴N (m ,12−m +4),∵点M 是抛物线上任意一点,∴点M 和点N 的上下位置关系不确定,∴MN =|14−m 2+32m +4-(12−m +4)|=|14−x 2+2x |,∵MN =3,∴|14−x 2+2x |=3,即14−x 2+2x =3或14−x 2+2x =-3,解这两个方程,得m 1=2, m 2=6, m 3=4+m 4=4-∴n 1=6, n 2=4, n 31, n 41,∴M 1(2,6), M 2(6,4), M 3(4+1), M 4(4--1).14.(2019·聊城)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (-2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线,线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△A O C 相似的点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求R t △PFD 面积的最大值.解:(1)由已知,将C (0,8)代入y =ax 2+bx +c ,∴c =8,将点A (-2,0)和B (4,0)代人y =ax 2+bx +8,得428016480a b a b −+= ++= ,解得12a b =−= ,∴抛物线的表达式为y =-x 2+2x +8; (2)∵A (-2,0),C (0,8),∴O A =2,O C =8,∵l ⊥x 轴,∠PEA =∠A O C =90°,∵∠P AE ≠∠CA O,只有当∠P AE =∠AC O 时,△PEA ∽△A O C .此时AE PECO AO=,∴AE =4PE .设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴O E =4k -2,P 点的坐标为(4k -2,k ),将P (4k -2,k )代入y =-x 2+2x +8,得-(4k -2)2+2(4k -2)+8=k ,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在R t △PFD 中,∠PFD =∠C O B =90°,∵l ∥y 轴,∴∠PDF =∠O CB ,∴R t △PFD ∽R t △B O C ,∴2PFD=S PDS BC△△BOC,∴S △PFD =2PD S BC ⋅△BOC ,由B (4,0)知O B =4,又∵O C =8,∴BC =又S △B O C =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B (4,0),C (0,8)可解得BC 所在直线的表达式为y =-2x +8,设P (m ,-m 2+2m +8),则D (m ,-2m +8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值.15.(2019·滨州)如图①,抛物线y =-x 2+x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D .(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P 到直线AD 的距离为时,求s in ∠P AD 的值.解:(1)当x =0时,y =4,则点A 的坐标为(0,4), 当y =0时,0=-x 2+x +4,解得x 1=-4,x 2=8, 则点B 的坐标为(-4,0),点C 的坐标为(8,0), ∴OA =OB =4,∴∠OBA =∠OAB =45°. ∵将直线AB 绕点A 逆时针旋转90°得到直线AD ,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0).设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=-x+4(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,-t2+t+4),则点N的坐标为(t,-t+4),∴PN=(-t2+t+4)-(-t+4)=-t2+t∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°.作PH⊥AD于点H,则∠PHN=90°,∴PH==(-t2+t)=t=-(t-6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,)即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是②当点P到直线AD的距离为时,如右图②所示,则t=,解得t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,-).当P1的坐标为(2,),则P1A==,∴s in∠P1AD==当P2的坐标为(10,-),则P2A==,∴s in∠P2AD==;由上可得,s in∠P AD的值是或。
人教部初三九年级数学上册 九年级中考备考数学知识模块专题复习-几何初步 名师教学PPT课件
说一说这节课自己的收获和疑问?
五、课堂小结,凝练归纳
六、课后练习,巩固拓展
1.已知∠A=70°,则∠A的补角为( A )
A.110°
B.70°
C.30°
D.20°
2.如图,如果∠1=∠3,∠2=60°,那么∠4的度数为( C )
A.60°
B.100°
C.120°
D.130°
3.如图,AB∥CD,∠FGB=154°,FG平分∠EFD,
若BC=6,AC=5,则△ACE的周长为( B )
A.8
B.11
C.16
D.17
6.如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分
即∠3=∠4,
∴BF∥CE.
4
三、拓展训练与变式,能力提升
考点三
角平分线与中垂线
3.如图,在△ABC中,BD是∠ABC的平分线,
80°?
40°
已知∠ABC=80°,则∠DBC=________.
1
3
变式3.1.如图,在△ABC中,∠C=90°,AC=8,DC= AD,
BD平分∠ABC,则点D到AB的距离等于( C )
= 110° −90°=20°.
∴ ∠2= ∠4 − ∠ACB
3
?
三、拓展训练与变式,能力提升
考点二
平行线的性质与判定
变式2.2.如图,AB⊥BC,BC⊥CD,BF和CE是射线,且∠1=∠2 .
求证:BF∥CE.
3
证明:∵AB⊥BC,BC⊥CD,
∴∠ABC=∠BCD=90°,
∵∠1=∠2,
∴∠ABC-∠2=∠DCB-∠1,
D∠1+∠2=90°
四、真题演练,增强信心
人教版九年级数学中考专题讲义: 最值问题
第5讲 最值问题(一)知识目标:目标一 掌握线段条件产生的隐圆问题的解题思路 目标二 掌握角度与线段条件的隐圆问题的解题思路模块一 线段条件产生的隐圆题型一 以等长线段构造隐圆 例1如图,四边形ABCD 中,AB =AC =AD ,E 是CB 中点,AE =EC ,∠BAC =3∠DBC ,BD = AB 的长度 .E DB A练已知四边形ABCD 中,AB ∥ CD ,BC =6,AB =AC =AD =5,则BD =D CBA题型二以定长线段构造隐圆例2在坐标系中,点A坐标为(4,0),点B为y轴正半轴上一点,点C是坐标系中一点,且AC=2,则∠BOC 度数取值范围.练在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△MNC,P,Q分别是AC、MN的中点,AC=2t,连接PQ,则旋转时PQ长度的最大值是A.B.C. D. 3tQPNMBCA模块二角度与线段条件中的隐图题型一定边对定角例31.在平面直角坐标系中,直线y=-x+6分别与x轴、y轴交于点A、B两点,点P在y轴左边,且∠APB=90,则点P的横坐标a的取值范围是.2.如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形的边长为2,则线段DH 长度的最小值是 .H GF EDCB A3.如图,线段AB 上有一动点M ,分别是以AM 、BM 为边作正方形AMFE 、MBCD ,正方形AMFE 、MBCD 的外接圆⊙O 、 ⊙O ′交于M ,N 两点,则直线MN 的情况是( )A .定直线B .经过定点C .一定不过定点D .以上都有可能例41.如图,⊙O 的半径为2,弦AB 的长为P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是.2.如图,△ABC 中,BC =4,∠BAC =45°,以B 、C 两点作⊙O ,连OA ,则线段OA 的最大值为 .练1.如图,P 为正方形ABCD 的边CD 上任意一点,E 为AP 上一点,BE =AB ,∠CBE 的平分线交AP 延长线于点Q ,若正方形的边长为a ,当点P 在CD 边上由C 移动到D 时,则点Q 到CD 的最大距离为 .QP ED CB A2.如图,已知在等边△ABC 中,AB =AC =BC =8,点D 、E 分别是边AC 、AB 上两点,且AE =CD ,BD 交CE 于F ,连接AF ,则AF 的最小值为 .FEDCBA例51.如图,在弓形BAC 中,∠BAC =60°,BC=A 在优弧BAC 上由点B 向点C 移动,记△ABC 的内心为I ,则△ABC 内切圆半径的最大值为.2.如图在扇形AOB中,OA⊥OB,D是AB上一动点,DE⊥OA于E,若OA=△DEO的内心为I,则△DEO内切圆半径的最大值为.B3.如图,已知△ABC,外心为O,BC=10,∠BAC=60°,分别以AB,AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE,CD交于点P,则OP的最小值是.题型二定边对动角例61.已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当∠ACB最大时,则点C的坐标为.2.如图,在展览大厅中,墙壁上的展品最高处点P距离地面2.5米,最低处点Q距地面2米,观赏者的眼睛(在E点)距离地面1.6米,当视角∠PEQ最大时,站在这个位置的观赏效果最理想,求此时E到墙壁的距离为米.3.如图,P 为的⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点,若⊙O 的半径长为3,OP,则弦BC 的最大值为( )A .B .3 CD .POCBA第5讲 【课后作业】 最值问题(一)1.如图,已知矩形ABCG (AB <BC )和矩形CDEF 全等,点B 、C 、D 在同一直线上,∠APE 的顶点在折线段B -D -E 上移动,使∠APE 为直角的点P 的个数是 .G F EDCBA2.如图,∠XOY =45°,一把直角三角尺ABC 的两个顶点A 、B 分别在OX 、OY 上移动,其中AB =10,那么点O 到AB 的距离的最大值为 .YO X CB A3.如图,正方形ABCD 的边长为4,∠AED =45°,P 为AB 的中点,当点E 运动时,求PE 的最值.PED CBA4.如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O上一动点,CF⊥AE与点F,当点E从点B出发顺时针运动到点D时,点F所经过的路径长为.5.如图,△ABC中,∠BAC=60°,∠ACB=45°,AC=D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC、于E、F,连接EF,则线段EF的最小值为.。
2021年九年级中考数学 三轮专题突破:正方形及四边形综合问题
2021中考数学三轮专题突破:正方形及四边形综合问题一、选择题1. 下列条件不能判断▱ABCD是正方形的是()A.∠ABC=90°且AB=ADB.AB=BC且AC⊥BDC.AC⊥BD且AC=BDD.AC=BD且AB=BC2. 如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形3. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A. 3B. 4C. 5D. 64. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.5. 如图正方形ABCD 中,E 为AB 中点,FE ⊥AB ,AF=2AE ,FC 交BD 于点O ,则∠DOC 的度数为 ( )A .60°B .67.5°C .75°D .54°6. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G 、F ,H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( ) A . 1个 B . 2个 C . 3个 D . 4个7. (2020·湖北孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°,到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G ,若BG=3,CG=2,则CE 的长为( )A. B.C.4D.8. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是( )A.3+318B.3+118C.3+36 D.3+16二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.11. 如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.12. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.13. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:________,使得▱ABCD为正方形.14. 如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQ S正方形AEFG的值等于________.15. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.16. 如图,正方形ABCD的面积为3 cm2,E为BC边上一点,∠BAE=30°,F 为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________cm.三、解答题17. 如图,正方形ABCD的对角线AC,BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.18. 如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED 交DE于点F,交CD于点G.(1)求证:△ADG≌△DCE;(2)连接BF,求证:AB=FB.19. 如图,已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图①,点E在CD上,点G在BC的延长线上,判断DM,EM的数量关系与位置关系,请直接写出结论.(2)如图②,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.20. 已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF =BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.21. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC 于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.2021中考数学三轮专题突破:正方形及四边形综合问题-答案一、选择题1. 【答案】B[解析]A.▱ABCD中,若∠ABC=90°,则▱ABCD是矩形,再由AB=AD 可得是正方形,故此选项错误;B.▱ABCD中,若AB=BC,则▱ABCD是菱形,再由AC⊥BD仍可得是菱形,不能判定为正方形,故此选项正确;C.▱ABCD中,若AC⊥BD,则▱ABCD是菱形,再由AC=BD可得是正方形,故此选项错误;D.▱ABCD中,若AC=BD,则▱ABCD是矩形,再由AB=BC可得是正方形,故此选项错误.故选B.2. 【答案】C[解析]∵点E,F,G,H分别是四边形ABCD中AD,BD,BC,CA的中点,∴EF=GH=AB,EH=FG=CD,∵AB=CD,∴EF=FG=GH=EH,∴四边形EFGH是菱形,故选C.3. 【答案】B【解析】设CH=x,∵BE∶EC=2∶1,BC=9,∴EC=3,由折叠可知,EH=DH=9-x,在Rt△ECH中,由勾股定理得:(9-x)2=32+x2,解得:x=4.4. 【答案】C[解析]连接EF.∵AE=AF,∠EAF=60°,∴△AEF为等边三角形,∴AE=EF.∵四边形ABCD为正方形,∴∠B=∠D=∠C=90°,AB=AD,∴Rt△ABE ≌Rt△ADF(HL),∴BE=DF,∴EC=CF.设CF=x,则EC=x,AE=EF==x,BE=1-x.在Rt△ABE中,AB2+BE2=AE2,∴1+(1-x)2=(x)2,解得x=-1(舍负).故选C.5. 【答案】A[解析]连接BF,∵E为AB中点,FE⊥AB,∴EF垂直平分AB,∴AF=BF.∵AF=2AE,∴AF=AB,∴AF=BF=AB,∴△ABF为等边三角形,∴∠FBA=60°,BF=BC,∴∠FCB=∠BFC=15°,∵四边形ABCD为正方形,∴∠DBC=45°,根据三角形的外角等于与它不相邻的两个内角的和得∠DOC=15°+45°=60°.序号逐项分析正误①在正方形ABCD中,AB=BC=CD=DA,∠DAB=∠B=∠BCD=∠CDA=90°,∠ACB=∠ACD=45°,∵EF∥AD,∴四边形EFDA、四边形EFCB是矩形,∴∠EFC=∠ADC=90°,EF=DC,在Rt△CGF中,∠ACD=45°,∴GF=CF,∴EF-GF=CD-CF,即EG=DF√②∵△GFC是等腰直角三角形,H是CG的中点,∴GH=FH,∠HGF=∠GFH=45°,∴∠EGH=∠DFH=135°,又由①知EG=DF,∴△EGH≌△DFH(SAS),∴∠HEF=∠FDH,∵∠AEH=∠AEF+∠HEF=90°+∠HEF,∠ADH=∠ADC -∠FDH=90°-∠FDH,∴∠AEH+∠ADH=180°√③由②可知EH=DH,FH=CH,又∵EF=DC,∴△EHF≌△DHC(SSS)√④∵△EGH≌△DFH,∴EH=DH,∠EHG=∠DHF,∴∠EHG+∠AHD=∠DHF+∠AHD=90°,即∠EHD=∠AHF=90°,∴△EHD为等腰直角三角形,∵AEAB=23,∴设AE=2x,AB=3x,则DE=(2x)2+(3x)2=13x,∴EH=DH=22×13x=262x,∴S△EDH=12EH2=12×132x2=134x2. 在△DHC中,设CD边上的高为h,则h=12CF=x2,则S△DHC=12CD·h=12×3x×x2=34x2,S△EDHS△DHC=134x234x2=133,即3S△EDH=13S△DHC√7. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x xx x +-=-+-,解得:x =154.故选B.8. 【答案】⎝ ⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ=D3Q+FD3=16+36=3+16.二、填空题9. 【答案】-1[解析]∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF-CD=-1.故答案为-1.10. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.11. 【答案】8[解析]如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD ⊥AC ,OD=OB=OA=OC , ∵AE=CF=2,∴OA -AE=OC -CF ,即OE=OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形, ∴DE=DF=BE=BF , ∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF 的周长=4DE=4×2=8,故答案为:8.12. 【答案】5[解析]∵四边形ABCD 是正方形,AC 为对角线,∴∠F AE=45°,又∵EF ⊥AC , ∴∠AFE=90°,∴∠AEF=45°, ∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2, 解得EC=5.13. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.14. 【答案】89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM =MB ,∴正方形MNPQ 的边长为a ,正方形AEFG的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89. 15. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOEAO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.16. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NG AE =NM,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图三、解答题17. 【答案】证明:在正方形ABCD中,AC⊥BD,∴∠AOF=∠BOE=90°.∵AM⊥BE,∴∠AME=90°,∴∠F AO+∠AEB=∠EBO+∠AEB=90°,∴∠F AO=∠EBO.在正方形ABCD中,AC=BD,OA=AC,OB=BD,∴OA=OB,∴△AOF≌△BOE(ASA),∴OE=OF.18. 【答案】证明:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA).(2)如图,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE.又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点.又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.19. 【答案】解:(1)结论:DM⊥EM,DM=EM.[解析]延长EM交AD于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)结论不变.DM⊥EM,DM=EM.证明:延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.20. 【答案】(1)证明:在△ADF 和△ABE 中,⎩⎨⎧AB =AD∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(3分)(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,(4分)设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎨⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,(6分)∴tan ∠AED =AH EH =x y =1.82.6=913.(8分)21. 【答案】【思维教练】求三条线段之间的关系,一般是线段的和差关系或线段平方的和差关系.由ABCD 是正方形,BD 是角平分线,可想到连接CG ,易得CG =AG ,再由四边形CEGF 是矩形可得AG 2=GE 2+GF 2;(2)给出∠AGF =105°,可得出∠AGB =60°,再由∠ABG =45°,可想到过点A 作BG 的垂线,交BG 于点M ,分别在两个直角三角形中得出BM 和MG 的长,相加即可得出BG 的长.解:(1)AG 2=GE 2+GF 2;(1分)理由:连结CG ,∵ABCD 是正方形,∴∠ADG =∠CDG =45°,AD =CD ,DG =DG ,∴△ADG ≌△CDG ,(2分)∴AG =CG ,又∵GE ⊥DC ,GF ⊥BC ,∠GFC =90°,∴四边形CEGF 是矩形,(3分)∴CF =GE ,在直角△GFC 中,由勾股定理得,CG 2=GF 2+CF 2,∴AG 2=GE 2+GF 2;(4分)(2)过点A 作AM ⊥BD 于点M ,∵GF⊥BC,∠ABG=∠GBC=45°,∴∠BAM=∠BGF=45°,∴△ABM,△BGF都是等腰直角三角形,(6分)∵AB=1,∴AM=BM=2 2,∵∠AGF=105°,∴∠AGM=60°,∴tan60°=AMGM,∴GM=66,(8分)∴BG=BM+GM=22+66=32+66.(10分)。
中考数学精学巧练备考秘籍 第5章 图形的性质 第24课时 直角三角形与勾股定理-人教版初中九年级全册
第5章 图形的性质【精学】考点一、直角三角形的性质 1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB∠C=90°3、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下: ⇒CD=21AB=BD=ADD 为AB 的中点4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+5、直角三角形等积公式:AB •CD=AC •BC考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
【巧练】题型一、勾股定理与直角三角形例1.(2015•某某)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B ,AD=,则BC 的长为( )A .﹣1 B .+1 C .﹣1 D .+1【答案】D【分析】根据∠ADC=2∠B ,∠ADC=∠B+∠BAD 判断出DB=DA ,根据勾股定理求出DC 的长,从而求出BC 的长. 【解答】解:∵∠ADC=2∠B ,∠ADC=∠B+∠BAD , ∴∠B=∠DAB , ∴DB=DA=,在Rt △ADC 中, DC===1;∴BC=+1.故选D .【点评】本题主要考查了勾股定理,同时涉及三角形外角的性质,二者结合,是一道好题.例2.(2015•某某市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .,,B .1,,C .6,7,8D .2,3,4【答案】B【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.题型二、几何图形表面最短路径例3.(2015•某某庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)【答案】【分析】:根据绕两圈到C,则展开后相当于求出直角三角形ACB的斜边长,并且AB的长为圆柱的底面圆的周长,BC的长为圆柱的高,根据勾股定理求出即可.解答:解:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.点评:本题考查了平面展开﹣最短路线问题和勾股定理的应用,能正确画出图形是解此题的关键,用了数形结合思想.题型三、含30°角的直角三角形的运用例4.(2015•某某市)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.【答案】2【分析】:根据角平分线性质求出∠BAD的度数,根据含30度角的直角三角形性质求出AD即可得BD.解答:解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.【点评】:本题考查了对含30度角的直角三角形的性质和角平分线性质的应用,求出AD的长是解此题的关键.题型四、直角三角形斜边中线的应用例5. (2015•某某宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.【答案】5【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.【点评】:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.【限时突破】1.(2016•某某)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.2.(2015•某某市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,43.(2015•某某)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A .B.2 C.3 D.+24.(2016·某某某某)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86 B.64 C.54 D.485. (2016·某某达州·3分)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()6.(2015•某某市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE 交AE的延长线于点F.若BF=10,则AB的长为.7.(2015•枣庄)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.8. (2015•东营,)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.【答案解析】1.【分析】直接利用勾股定理得出OC的长,进而得出答案.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则AC==,故点M对应的数是:.故选:B.2.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.【点评】此题主要考查了勾股定理,根据题意得出CO的长是解题关键.3.分析:根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.解答:解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.点评:本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.4.【分析】分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+B C2即可得出S1、S2、S3的关系.同理,得出S4、S5、S6的关系.【解答】解:如图1,S1=AC2,S2=BC2,S3=AB2.∵AB2=AC2+BC2,∴S1+S2=AC2+BC2=AB2=S3,如图2,S4=S5+S6,∴S3+S4=16+45+11+14=86.故选A.5.【分析】从点A,B,C,D中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC 是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选D.6.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.7.分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.解答:解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.8.分析:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB 与三角形A相似,由相似得比例得到MC=2NC,求出的长,利用勾股定理求出AC的长即可.解答:解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB 最短,∵△BCM∽△A,∴=,即==2,即MC=2NC,∴=MN=,word在Rt△A中,根据勾股定理得:AC==,故答案为:.点评:此题考查了平面展开﹣最短路径问题,涉及的知识有:相似三角形的判定与性质,勾股定理,熟练求出的长是解本题的关键.11 / 11。
2022年九年级中考数学冲刺-几何模型讲义
2022年中考几何模型一、角平分线模型知识精讲1. 过角平分线上一点向角的两边作垂线段,利用角平分线上的点到角两边的距离相等的性质来解决问题2. 若题目中已经有了角平分线和角平分线上一点到一边的垂线段(距离),则作另一边的垂线段,例:已知:AD是的平分线,,过点D于点E,则.3. 在角的两边上取相等的线段,结合角平分线构造全等三角形(角边等,造全等),已知:点D是平分线上的一点,在OA、OB上分别取点E、F,且,连接DE、DF4. 过角平分线上一点作角的一边的平行线,构造等腰三角形,例:已知:点D是平分线上的一点,过点D作三角形,即.5. 有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边所在直线于一点,也可构造等腰三角形,例:已知:OC平分,点D是OA上一点,过点D作交OB的反向延长线于点E,则.6. 从角的一边上的一点作角平分线的垂线,使之与角的另一边相交,则可得到一个等腰三角形,例:已知:OE平分∠AOB,点D在OA上,DE⊥OE,则可延长DE交OB于点F,则DE=EF,OD=OF,∠ODF=∠OFD.7. 有角平分线时,可将等角放到直角三角形中,构造相似三角形,也可以另加一对相等的角构造相似三角形,例:4321DA4231EFCB(1)已知:OC 平分,点E 、F 分别在OA 、OB 上,过点E M ,过点F N(2)已知:OC 平分,点E 、F 在OC 上,于点M ,于点N ,则(3)已知:OC 平分,点E 、F 在OC ,8. 利用“在同圆或等圆中,相等的圆周角(圆心角)所对的弦相等”可得相等线段,例:已知:∠BAC 是圆O 的圆周角,∠DOE 是圆O 的圆心角,AF 平分∠BAC ,OG 平分∠DOE ,连接BF 、CF 、DG 、EG ,则BF =CF ,DG =EG .9. 【内内模型】如图,两个内角平分线交于点D ,则.10. 【内外模型】如图,的一个内角平分线和一个外角平分线交于点D ,则.11. 【外外模型】如图,交于点D ,则.二、中点模型知识精讲1. 在等腰三角形中有底边中点或证明底边中点时,可以作底边的中线,利用等腰三角形的“三线合一”性质来解决问题.例:已知:在△ABC中,AB=AC,取BC的中点D,连接AD,则AD平分∠BAC,AD是边BC上的高,AD是BC边上的中线.【说明】应用等腰三角形“三线合一”的性质是证明两条直线垂直的重要方法.2. 在直角三角形中,有斜边中点或有斜边的倍分关系线段时,可以作斜边的中线解决问题,例:(1)如图,在Rt△ABC中,D为斜边AB的中点,连接CD,则CD=AD=BD.(2)如图,在Rt△ABC中,AB=2BC,作斜边AB上的中线CD,则AD=BD=CD=BC,△BCD是等边三角形.【总结】在直角三角形中,若遇到斜边的中点,则连接直角顶点与斜边的中点是解决问题的基本方法,作这条辅助线的目的是得到三条相等的线段及两对相等的角. 3. 将三角形的中线延长一倍,构造全等三角形或平行四边形(倍长中线),例:(1)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则△ADC≌△EDB.(2)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则四边形ABEC是平行四边形.4. 将三角形中线上的一部分延长一倍,构造全等三角形或平行四边形,例:如图,已知点E是△AD上的一点,延长AD至点F,使得DE=DF,连接BF、CF,则四边形BFCE为平行四边形或△BDF≌△CDE或△BED≌△CFD.【总结】证明两条线段相等常用的方法:①当要证明的两条线段是两个三角形的边时,一般通过证明这两条线段所在的两个三角形全等,通过三角形全等的对应边相等来证明两条线段相等;②当两条线段是同一个三角形的两条边时,一般证明这两条边所对的角相等,利用等角对等边证明两条线段相等.5. 有以线段中点为端点的线段时,可以倍长此线段,构造全等三角形或平行四边形,例:如图,已知点C边AE上一点,O为AB的中点,延长CO至点D,使得,连接AD、BD,四边形ADBC为平行四边形.6. 有三角形中线时,可过中点所在的边的两端点向中线作垂线,构造全等三角形,例:如图,AF为△ABC的中线,作BD⊥AF交AF延长线于点D,作CE⊥AF于点E,则△BDN≌△CEN.7. 在三角形中,有一边的中点时,过中点作三角形一边的平行线或把某条线段构造成中位线,利用已知的条件可求线段长,例:如图,D为AB的中点,过点D作DE∥BC,则DE为△ABC的中位线;过点B作BF∥DC 交AC的延长线于点F,则DC为△ABF的中位线.8. 有两个(或两个以上)中点时,连接任意两个中点可得三角形的中位线,例:如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则.9. 有一边中点,并且在已知或求证中涉及线段的倍分关系时,可以取另一边的中点,构造三角形的中位线,例:如图,点E是△ABC边BC的中点,取AC的中点F,连接EF,则EF∥AB,10. 当圆心与弧(或弦)的中点,可以利用垂径定理解决问题,例:(1)如图,,连接AC、OB,则OB⊥AC,OB平分AC.(2)如图,点C为弦AB的中点,连接OC,则OC⊥AB.三、平行模型知识精讲在一些有平行线却没有截线的问题中,通常需要添加辅助线构造“三线八角”,再运用平行线的有关知识解题,常见的辅助线添加方式如下:如果遇到两条平行线之间夹折线,一般应过折点作出与已知平行线平行的直线.1. 如图,已知AB∥CD,点E为AB、CD间的一点,过点E作EF∥AB,则∠A+∠C=∠AEC.2. 如图,已知AB∥CD,则∠A+∠AEC+∠C=360°.3. 如图,AB∥CD,则∠B=∠D+∠E.4. 如图,AB∥CD,则∠BEG+∠D+∠F=180°.5. 如图,AB∥CD,则∠ABE=∠D+∠E.四、垂直模型1. 在三角形中,若题目中已经有一边的高了,常作另一边上的高,然后用同角的余角相等证明角相等.例:如图,在△ABC中,AD⊥BC于点D,过点B作BE⊥AC交AC于点E,交AD于点F,则∠CBE=∠CAD,∠AFE=∠C=∠BFD.除了能得到角度间的关系外,还可以通过构造相似三角形来证明线段成比例或者用于求线段的长度.2. 在四边形中,如果有高线,可以再作垂线,构造特殊的四边形或者直角三角形.例:如图,在四边形ABCD中,AB⊥BC,DC⊥BC,过点D作DE⊥BC,垂足为点E,则四边形BCDE为矩形,△ADE为直角三角形.3. 在直角三角形中,常作斜边上的高,利用同角(等角)的余角相等,可得到相似三角形.例:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,则∠A=∠DCB,∠B=∠ACD,△ABC∽△CBD∽△ACD.4. 若题中已有直线的垂线时,可再作已知直线的垂线,得到两条平行线.例:如图,在△ABC中,AF⊥BC于点F,过AB上一点D作DE⊥BC于点E,则DE∥AF,∠BDE=∠BAF,∠ADE+∠BAF=180°,△BDE∽△BAF.5. 若存在过一条直线上两点同时向另一条直线作垂线,可以再作一条垂线,构造一组平行线,利用平行线等分线段定理解决问题.6. 当两条互相垂直的弦的交点恰好在圆上,构成90°的圆周角,可构造直径.例:如图,点A在圆O上,∠BAC=90°,连接BC,则BC就是圆O的直径.7. 当圆中有互相垂直的弦时,经常作直径所对的圆周角,可以得到垂直于同一条直线的两条直线,利用平行弦所夹的弧相等来解决问题.例:在圆O中,弦AB⊥CD于点E,连接CO并延长交圆O于点F,连接DF,则FD⊥CD,FD∥AB,.8. 当圆中有和弦垂直的线段时,作直径所对的圆周角,可以得到直角三角形,通过相似三角形来解决问题.例:如图,△ABC内接于圆O,CD⊥AB于点D,连接CO并延长交圆O于点E,连接AE,则△ACE∽△DCB.五、对角互补模型知识精讲1. 全等型—90º如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③2. 如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC 平分∠AOB.则可得到如下几个结论:①CD=CE,②OE-OD=OC,③.3. 全等型—60º和120º如图,已知∠AOB=2∠DCE=120º,OC平分∠AOB.则可得到如下几个结论:①CD=CE,②OD+OE=OC,③.4. 全等型—和如图,已知∠AOB=,∠DCE=,OC平分∠AOB.则可以得到以下结论:①CD=CE,②OD+OE=2OC·cos,③.5. 相似型—90º如图,已知∠AOB=∠DCE=90º,∠BOC=.结论:CE=CD·.六、半角模型知识精讲1. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则BE+DF=EF.2. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则AE平分∠BEF,AF平分∠DFE.3. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则4. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,过点A作AH⊥EF交EF于点H,则AH=AB.简证:由上述结论可知AE平分∠BEF,又∵AB⊥BC,∴AH=AB.5. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,. 简证:由结论1可得EF=BE+DF,CE+CF+EF=CE+CF+BE+DF=2AB.6. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:如图,将△AND绕点A顺时针旋90º得到△AGB,连接GM.通过证明△AMG≌△AMN得MN=MG,DN=BG,∠GBE=90º,即可证.7. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则△BME△DFN△AMN△BAN△DMA△AFE.简证:通过证明角相等得到三角形相似,要善于使用上述结论.8. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则简证:连接AC,∵∠DAF=∠EAC,∠ADB=∠ACB,∴△ECA△NDA,又∵△AMN△AFE,∴.【补充】通过面积比是相似比的平方比亦可得到9. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:由结论7可得△DAM△BNA,∴,即.10. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:设,在Rt△CEF中,,化简得,.11. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则当BE=DF时,EF.证明:如图,作△AEF的外接圆,点P为EF的中点,连接OA、OE、OF、PC,过点A作AH⊥EF.∵∠EAF=45º,∴∠EOF=90º,设,则,∴当点A、O、P、C四点共线时,即BE=DF,、EF大值.12. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N简证:由结论8可得△△ECA△NDA,同理可得补充:等腰直角三角形与“半角模型”如图所示,在等腰直角三角形ABC中,若∠DCE=45º,则.证明:如图,将△ACD绕着点C顺时针旋转90º得到△,连接.∵旋转,∴△ACD≌△,∴AD=,在△DCE与△中,ED=,∵∠BE=∠BC+∠EBC=∠DAC+∠EBC=90º,∴,.七、倍半角模型知识精讲一、二倍角模型处理方法1. 作二倍角的平分线,构成等腰三角形.例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形.2. 延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.二、倍半角综合1. 由“倍”造“半”已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可.如图,若,则()2. 由“半”造“倍”已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可.如图,在Rt△ABC(∠A<45º)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,则,在Rt△BCD中,由勾股定理可得,解得,故有.三、一些特殊的角度1. 由特殊角30º求tan15º的值如图,先构造一个含有30º角的直角三角形,设BC=1,,AB=2,再延长CA至D,使得AD=AB=2,连接BD,构造等腰△ABD,则∠D=∠BAC=15º,.2. 由特殊角45º求tan22.5º的值由图可得,.3. “345”三角形(1)如图1,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(2)如图2,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(3)如图3,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,.八、全等模型知识精讲一、几何变换中的全等模型1. 平移全等模型,如下图:2. 对称(翻折)全等模型,如下图:3. 旋转全等模型,如下图:二、一线三等角全等模型4. 三垂直全等模型,如图:5. 一线三直角全等模型,如图:6. 一线三等角与一组对应边相等全等模型,如图:三、手拉手全等模型7. 等腰三角形中的手拉手全等模型如图,△ABC与△ADE均为等腰三角形,且∠BAC=∠DAE,连接BD、CE,则△ABD ≌△ACE.8. 等边三角形中的手拉手全等模型如图,△ABC与△CDE均为等边三角形,点B、C、E三点共线,连接AE、BD,则△BCD≌△ACE.9. 一般三角形中的手拉手全等模型如图,在任意△ABC中,以AB为边作等边△ADB,以AC为边作等边△ACE,连接DC、BE,则△ADC≌△ACE.10. 正方形中的手拉手全等模型如图,在任意△ABC中,以AB为边作正方形ABDE,以AC为边作正方形ACFG,连接EC、BG,则△AEC≌△ABG.九、相似模型知识精讲1. A字型与反A字型相似2. 8字型与反8字型相似3. 蝴蝶型相似4. 共角共边相似模型5. 一线三等角6. 旋转相似模型拓展讲解:1. 射影定理(1)双垂直,如图:结论①△ABD∽△ACB,AB2=AD·AC;②△ADC∽△ACB,AC2=AD·AB;③△CDB∽△ACB,CB2=BD·BA.(2)斜射影相似结论:△ABD∽△ACB,AB2=AD·AC.2. 对角互补相似如图,在Rt△ABC中,∠C=90º,点O是AB的中点,若∠EOF=90º,则.证明:过点O作OD⊥AC于点D,OH⊥BC于点H,如图所示:通过△ODE∽△OHF即可得到3. 三平行相似如图,AB∥EF∥CD,若,则.证明:∵EF∥AB,∴△DEF∽△DAB,∴,即①同理△BEF∽△BCD,∴,即②①+②,得,.4. 内接矩形相似如图,四边形DEFG是△ABC的内接矩形,EF在BC边上,D、G分别在AB、AC边上,则△ADG∽△ABC,△ADN∽△ABM,△AGN∽△ACM,.十、倍长中线模型知识精讲1. 如图,在矩形ABCD中,若BD=BE,DF=EF,则AF⊥CF.2. 如图,四边形ABCD是平行四边形,BC=2AB,M为AD的中点,CE⊥AB于点E,则∠DME=3∠AEM.3. 如图,△ADE与△ABC均为等腰直角三角形,且EF=CF,求证(1)DF=BF;(2)DF⊥BF.4. 如图,△OAB∽△ODC,∠OAB=∠ODC=90º,BE=EC,求证:(1)AE=DE;(2)∠AED=2∠ABO.十一、弦图模型知识精讲1. 证法一以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于2. 证法二以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于3. 证法三以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于4. 证法四如图所示,分别以a、b为直角边,以c为斜边的四个直角三角形全等,图中3个正方形的边长分别为a、b、c,整个图形的面积为S5. 证法五分别以a、b为直角边,以c为斜边的四个直角三角形全等,将它们按如图所示拼成一个多边形,并延长AC交DF于点P.。
九年级中考数学三轮复习专题++锐角三角函数+课件
广 东 中 考
12.(2014广州)如图,在边长为1的小正方形组成的网格中,
△ ABC的三个顶点均在格点上,则tan A=( D
A.
3
5
B.
4
5
C.
3
D.
4
)
4
3
13.(2016广东)如图,在平面直角坐标系中,点A坐标
为(4,3),那么cos α的值是( D )
A.
3
4
B.
4
3
C.
3
5
D.
4
5
课 堂 测 评
cos
A30 30
2
2
B
sin 45
2
0 2
0
cos
B 45 45
2
3
tan 30
3
tan 450 1
0
0
0
3
C
sin 60
2
10
0
cos
C 60 60
2
0
tan 600
3
考 点 梳 理
3.(1)对于任意的锐角A,则有 sin A cos A 1
2
2
(2)已知∠A+∠B=90°,则有 sinA cos B
中考数学
复习专题
锐角三角函数
考 点 梳 理
1.锐角三角函数的概念
(1)锐角 A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.
(2)在△ABC 中,∠C=90°,
∠A 的正弦:sin A=
∠A 的邻边
∠A 的余弦:cos A=
斜边
∠A 的对边
斜边
,
(完整word)重点高中自招必备九年级专题24平面几何的定值问题
专题24平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值.解答定值问题的一般步骤是:1.探求定值;2.给出证明.【例题与求解】—^ PA + PC .【例1】如图,已知P为正方形ABCD的外接圆的劣弧AD上任意一点.求证:一后一为定值.PB解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.【例2】如图,AB为。
O的一固定直径,它把。
O分成上、下两个半圆,自上半圆上一点C作弦CD±AB,Z OCD的平分线交。
O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.等分DBD.随C点的移动而移动(济南市中考试题)解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.【例3】如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足.求证:不管ST滑到什么位置,Z SPM是一定角.(加拿大数学奥林匹克试题)解题思路:不管ST滑到什么位置,Z SOT的度数是定值.从探寻Z SPM与Z SOT的关系入手.【例4】如图,扇形OAB的半径OA=3,圆心角/AOB=90°.点C是箫上异于A, B的动点,过点C作CD±OA于点D,作CE±OB于点E.连接DE,点G, H在线段DE上,且DG=GH=HE.(1)求证:四边形OGCH是平行四边形;(2)当点C在箫上运动时,在CD, CG, DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3 CH2是定值. (广州市中考试题)解题思路:延长OG交CD于N,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON转化成线段CH的倍分关系,再以及△ OND为基础,通过勾股定理,使问题得以解决.【例5】如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,。
人教版九年级数学 中考数学考前冲刺精准练 解答题中的动点问题
人教版九年级数学中考数学考前冲刺精准练解答题中的动点问题1. 如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,点P的速度都是1cm/s,点Q的速度都是2cm/s当点P到达点B时,P、Q两点停止.求当t=__________时,△PBQ是直角三角形.2. 如图,已知菱形ABCD,∠ABC=60°,AB=2,点E,点F分别是边AB,AD上的动点,AE=DF,四边形AECF的面积是多少?3. 已知:数轴上点A表示的数是8,点B表示的数是–4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.4. 如图,已知A ,B 两点在数轴上,点A 表示的数为–10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发).(1)数轴上点B 对应的数是__________.(2)经过几秒,点M 、点N 分别到原点O 的距离相等?5. 如图,矩形ABCD 中,AB=a ,BC=b ,点M 、N 分别在边AB 、CD 上,点E 、F 分别在边BC 、AD 上,MN 、EF 交于点P. 记k=MN:EF.(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为21,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE=60°,MP=EF=3PE 时,求a :b 的值.6. 已知△ABC 中,AB=AC=BC=6,点P 是射线BA 上一点,点Q 是AC 的延长线上一点,且BP=CQ ,连接PQ ,与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P ,Q 分别在射线BA 和AC 的延长线上任意地移动过程中,线段BE ,DE ,CD 中是否存在长度保持不变的线段?请说明理由.7. 如图:在矩形ABCD中,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向C点移动,同时动点Q以1m/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动的时间为t秒(0<t<5).(1)t为多少时,以P、Q、C为顶点的三角形与△ABC相似?(2)在P、Q两点移动过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.8. 如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为多少?9.如图1,反比例函数y=kx(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.10. 如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是AB上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连接OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.11. 如图,抛物线(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C 两点的直线为.(1)求抛物线解析式;(2)动点P从点A出发,在线段AB上以每秒1个单位的速度向B运动,同时动点E从点B出发,在线段BC上以每秒2个单位的速度向C运动. 当其中一个点到达终点时,另一点也停止运动. 设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与B、C重合)作直线AM的平行线交直线BC于Q,若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.12. 如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.13. 如图,直线y=kx+6与x轴、y轴分别相交于点E、F,点E的坐标为(–8,0),点A的坐标为(–6,0),点P(x,y)是第二象限内的直线上的一个动点,(1)求k的值;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是278?14.如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AFAP的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ、BN,将△AQB绕点A旋转,使点Q旋转后的对应点Q’落在边AD上. 请判断旋转后B的对应点B’是否落在线段BN上,请说明理由.15.如图,抛物线(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C 两点的直线为.(1)求抛物线解析式;(2)动点P从点A出发,在线段AB上以每秒1个单位的速度向B运动,同时动点E从点B出发,在线段BC上以每秒2个单位的速度向C运动. 当其中一个点到达终点时,另一点也停止运动. 设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与B、C重合)作直线AM的平行线交直线BC于Q,若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.。
2023年九年级数学中考压轴复习专题几何综合——动点问题课件
∴
=
4
Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,
25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,
4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,
∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我
展
初三培优讲义5:几何综合(后附详细解析)
初三培优讲义5:几何综合一、选择题1. (2016 广东省深圳市)如图,CB=CA ,∠ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC=∠ABF ;④AD 2=FQ•AC,其中正确的结论的个数是( )A .1B .2C .3D .42. (2017 广东省佛山市) 如图3,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC分别落在x 、y 轴上,点B 坐标为()46,,反比例函数x y 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将BDE ∆沿DE 翻折至DE B '∆处,点B '恰好落在正比例函数kx y =图象上,则k 的值是( ))A ( 52-)B (211- )C (51-)D (241-3. (2019 广西贵港市)(3分)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为S 1,S 2,则下列结论错误的是( )A .S 1+S 2=CP 2B .4F =2FDC .CD =4PD D .cos ∠HCD =4. (2019 黑龙江省绥化市)(3分)如图,在正方形ABCD 中,E 、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB =4,EF =2,设AE =x .当△PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当x =0(即E 、A 两点重合)时,P 点有6个图3②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③5. (2019 湖北省黄石市)(3分)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD 折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.6. (2019 江苏省连云港市)(3分)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=MP;④BP=AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个 B.3个 C.4个 D.5个7. (2019 四川省达州市)(3分)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个8. (2019 四川省乐山市)如图5,抛物线4412-=x y 与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )()A 3 ()B 241 ()C 27 ()D 49. (2019 四川省眉山市)(3分)如图,在菱形ABCD 中,已知AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE =CF ;②∠EAB =∠CEF ;③△ABE ∽△EFC ;④若∠BAE =15°,则点F 到BC 的距离为2﹣2.则其中正确结论的个数是( )A .1个B .2个C .3个D .4个 10. (2019 新疆建设兵团)(5分)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则以下结论中:①S △ABM =4S △FDM ;②PN =;③tan ∠EAF =;④△PMN ∽△DPE ,正确的是( )A .①②③B .①②④C .①③④D .②③④11. (2019 重庆市綦江县)(4分)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为( )A .8B .4C .2+4D .3+212. (2019 四川省遂宁市)(4分)如图,四边形ABCD 是边长为1的正方形,△BPC 是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论:①∠BPD =135°;②△BDP ∽△HDB ;③DQ :BQ =1:2;④S △BDP =.图5其中正确的有( )A .①②③B .②③④C .①③④D .①②④二、填空题13. (2018 四川省眉山市)(3分)如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为(﹣10,0),对角线AC 和OB 相交于点D 且AC•OB=160.若反比例函数y=(x <0)的图象经过点D ,并与BC 的延长线交于点E ,则S △OCE :S △OAB = .14. (2019 江苏省宿迁市)(3分)如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .15. (2019 辽宁省沈阳市)(3分)如图,正方形ABCD 的对角线AC 上有一点E ,且4CE AE =,点F 在DC 的延长线上,连接EF ,过点E 作EG EF ⊥,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若5AB =,2CF =,则线段EP 的长是 .16. (2019 内蒙古包头市)(3分)如图,在Rt ABC ∆中,90ABC ∠=︒,3BC =,D 为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B 、C 重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若BDE BAC ∠=∠,4AB =,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30A ∠=︒,90BCE ∠=︒,则21DE =.其中正确的是 .(填写所有正确结论的序号)17. (2019 内蒙古通辽市)(3分)如图,在边长为3的菱形ABCD 中,60A ∠=︒,M 是AD 边上的一点,且13AM AD =,N 是AB 边上的一动点,将AMN ∆沿MN 所在直线翻折得到△A MN ',连接A C '.则A C '长度的最小值是 .18. (2019 浙江省台州市) 】.(5分)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且=,则m +n 的最大值为 .三、解答题19. (2019 湖南省长沙市)(10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B 为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.20. (2019 浙江省宁波市)(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.21. (2019 山东省济宁市)(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.22. (2019 山东省青岛市)(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q 作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.23. (2019 四川省资阳市)(12分)在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B →A→C的路径运动,运动时间为t(秒).过点E作EF⊥BC于点F,在矩形ABCD的内部作正方形EFGH.(1)如图,当AB=BC=8时,①若点H在△ABC的内部,连结AH、CH,求证:AH=CH;②当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.24. (2019 天津市)(10分)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).25. (2019 浙江省湖州市)(10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.26. (2019 四川省攀枝花市)(12分)在平面直角坐标系xOy中,已知(0,2)A,动点P在3y x=的图象上运动(不与O重合),连接AP.过点P作PQ AP⊥,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,QAP∠是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ∆为等腰三角形时,求点Q的坐标.初三培优讲义5:几何综合(答案)一、选择题1.分析由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.解答解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CEFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.点评本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.(B2.)3.分析根据勾股定理可判断A;连接CF,作FG⊥EC,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.解答解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠ECH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,∴HQ∥AB,∴=,即=,∴HQ=x,∴CD﹣HQ=x﹣x=x,∴cos∠HCD===,故结论D错误,故选:D.点评本题考查了正方形的性质,三角形全等的判定和性质三角形相似的判定和性质,勾股定理的应用以及平行线分线段成比例定理,作出辅助线构建等腰直角三角形是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)4.分析利用图象法对各个说法进行分析判断,即可解决问题.解答解:①如图1,当x=0(即E、A两点重合)时,P点有6个;故①正确;②当0<x<4﹣2时,P点最多有8个.故②错误.③当P点有8个时,如图2所示:当0<x<﹣1或﹣1<x<4﹣4或2<x<4﹣﹣1或4﹣﹣1<x<4﹣2时,P点有8个;故③错误;④如图3,当△PMN是等边三角形时,P点有4个;故④正确;当△PEF是等腰三角形时,关于P点个数的说法中,不正确的是②③,一定正确的是①④;故选:B.点评本题考查正方形的性质、等腰三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,有一定难度.5.分析设BD与AF交于点M.设AB=a,AD=a,根据矩形的性质可得△ABE、△CDE都是等边三角形,利用折叠的性质得到BM垂直平分AF,BF=AB=a,DF=DA=a.解直角△BGM,求出BM,再表示DM,由△ADM∽△GBM,求出a=2,再证明CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.建立平面直角坐标系,得出B(3,2),B′(3,﹣2),E(0,),利用待定系数法求出直线B′E的解析式,得到H(1,0),然后利用两点间的距离公式求出BH=4,进而求出==.解答解:如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.故选:B.点评本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称﹣最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH、CF的长是解题的关键.6.分析根据折叠的性质得到∠DMC=∠EMC,∠AMP=∠EMP,于是得到∠PME+∠CME=180°=90°,求得△CMP是直角三角形;故①正确;根据平角的定义得到点C、E、G在同一条直线上,故②错误;设AB=x,则AD =2x,得到DM=AD=x,根据勾股定理得到CM==x,根据射影定理得到CP==x,得到PC=MP,故③错误;求得PB=AB,故④,根据平行线等分线段定理得到CF=PF,求得点F 是△CMP外接圆的圆心,故⑤正确.解答解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM=AD=x,∴CM==x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP==x,∴PN=CP﹣CN=x,∴PM==x,∴==,∴PC=MP,故③错误;∵PC=x,∴PB=2x﹣x=x,∴=,∴PB=AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.点评本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.7.分析①根据矩形的性质即可得到OA=BC=2;故①正确;②由点D为OA的中点,得到OD=OA=,根据勾股定理即可得到PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,PE=a,则PF=EF﹣PE=2﹣a,根据三角函数的定义得到BE=PE=a,求得CE=BC﹣BE=2﹣a=(2﹣a),根据相似三角形的性质得到FD=,根据三角函数的定义得到∠PDC=60°,故③正确;④当△ODP为等腰三角形时,Ⅰ、OD=PD,解直角三角形得到OD=OC=,Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;于是得到当△ODP为等腰三角形时,点D的坐标为(,0).故④正确.解答解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.点评此题主要考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.(C8.)9.分析①只要证明△BAE≌△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.解答解:∵四边形ABCD是菱形,∴AB=BC,∠ACB=∠ACD,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ACD=∠ACB=60°,∴∠ABE=∠ACF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴AE=AF,BE=CF.故①正确;∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠AEB+∠CEF=∠AEB+∠EAB=60°,∴∠EAB=∠CEF,故②正确;∵∠ACD=∠ACB=60°,∴∠ECF=60°,∵∠AEB<60°,∴△ABE和△EFC不会相似,故③不正确;过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴∠ABE=∠ACF=120°,EB=CF=2﹣2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2﹣2,∴CH=﹣1.∴FH=(﹣1)=3﹣.∴点F到BC的距离为3﹣,故④不正确.综上,正确结论的个数是2个,故选:B.点评本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.10.分析①正确.利用相似三角形的性质解决问题即可.②正确.作PH⊥AN于H,求出PH,HN即可解决问题.③正确.求出EN,AN即可判断.④错误.证明∠DPN≠∠PDE即可.解答解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴=()2=4,∴S△ABM=4S△FDM;故①正确;由勾股定理可知:AF=DE=AE==,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN==,∴tan∠EAF==,故③正确,作PH⊥AN于H.∵BE∥AD,∴==2,∴PA=,∵PH∥EN,∴==,∴AH=×=,HN=,∴PN==,故②正确,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN与△DPE不相似,故④错误.故选:A.点评本题考查正方形的性质,全等三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.11.分析先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.解答解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.点评本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.12.分析由等边三角形及正方形的性质求出∠CPD=∠CDP=75°、∠PCB=∠CPB=60°,从而判断①;证∠DBP =∠DPB=135°可判断②;作QE⊥CD,设QE=DE=x,则QD=x,CQ=2QE=2x,CE=x,由CE+DE=CD 求出x,从而求得DQ、BQ的长,据此可判断③,证DP=DQ=,根据S△BDP=BD•PD sin∠BDP求解可判断④.解答解:∵△PBC是等边三角形,四边形ABCD是正方形,∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD,∴∠CPD=∠CDP=75°,则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°,∴∠DBP=∠DPB=135°,又∵∠PDB=∠BDH,∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E,设QE=DE=x,则QD=x,CQ=2QE=2x,∴CE=x,由CE+DE=CD知x+x=1,解得x=,∴QD=x=,∵BD=,∴BQ=BD﹣DQ=﹣=,则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°,∴∠PDQ=30°,又∵∠CPD=75°,∴∠DPQ=∠DQP=75°,∴DP=DQ=,∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.点评本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握等边三角形和正方形的性质、等腰三角形的判定与性质及相似三角形的判定等知识点.二、填空题13.分析△OAB与△OCE等高,若要求两者间的面积比只需求出底边的比,由AO=10知需求CE的长,即求点E的坐标,需先求反比例函数解析式,而反比例函数解析式可先根据菱形的面积求得点D的坐标,据此求解可得.解答解:作CG⊥AO于点G,作BH⊥x轴于点H,∵AC•OB=160,∴S菱形OABC=•AC•OB=80,∴S△OAC=S菱形OABC=40,即AO•CG=40,∵A(﹣10,0),即OA=10,∴CG=8,在Rt△OGE中,∵OC=OA=10,∴OG=6,则C(﹣6,8),∵△BAH≌△COG,∴BH=CG=8、AH=OG=6,∴B(﹣16,8),∵D为BO的中点,∴D(﹣8,4),∵D在反比例函数图象上,∴k=﹣8×4=﹣32,即反比例函数解析式为y=﹣,当y=8时,x=﹣4,则点E(﹣4,8),∴CE=2,∵S△OCE=•CE•CG=×2×8=8,S△AOB=•AO•BH=×10×8=40,∴S△OCE:S△OAB=1:5故答案为:1:5.14.分析由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.解答解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB ≌△EHG从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上作CM ⊥HN ,则CM 即为CG 的最小值作EP ⊥CM ,可知四边形HEPM 为矩形,则CM =MP +CP =HE +EC =1+=故答案为.点评本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G 的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.15.分析如图,作FH PE ⊥于H .利用勾股定理求出EF ,再证明CEF FEP ∆∆∽,可得2EF EC EP =g ,由此即可解决问题.解答解:如图,作FH PE ⊥于H .Q 四边形ABCD 是正方形,5AB =,52AC ∴=,45ACD FCH ∠=∠=︒,90FHC ∠=︒Q ,2CF =,CH HF ∴==4CE AE =Q ,EC ∴=,AE =,EH ∴=,在Rt EFH ∆中,2222252EF EH FH =+=+=,90GEF GCF ∠=∠=︒Q ,E ∴,G ,F ,C 四点共圆,45EFG ECG ∴∠=∠=︒,135ECF EFP ∴∠=∠=︒,CEF FEP ∠=∠Q ,CEF FEP ∴∆∆∽, ∴EF EC EP EF=, 2EF EC EP ∴=g ,EP ∴==点评本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.16.分析①由直角三角形斜边上的中线等于斜边的一半,得AD BD =,由BF CF =,BD CD =得DE 是BC 的垂直平分线,得BE CE =,再由勾股定理便可得结论,由此判断结论的正误;②证明ABC DBE ∆∆∽,求得BE ,再证明//DE AB ,得DE 垂直平分BC ,得CE BE =,便可判断结论的正误;③证明ABD CBE ∠=∠,再证明BE 与BC 或BC 与BE 两边的比不一定等于AB 与BD 的比,便可判断结论正误;④先求出AC ,进而得BD ,再在Rt BCE ∆中,求得BE ,进而由勾股定理求得结果,便可判断正误. 解答解:①90ABC ∠=︒Q ,D 为斜边AC 的中点,AD BD CD ∴==,AF CF =Q ,BF CF ∴=,DE BC ∴⊥,BE CE ∴=,QBE BD ⊥Q ,222BD BE DE ∴+=,222CE AD DE ∴+=,故①正确;②4AB =Q ,3BC =,5AC ∴==, ∴52BD AD CD ===,A BDE ∠=∠Q ,90ABC DBE ∠=∠=︒,ABC DBE ∴∆∆∽, ∴AB BCDB BE =, 即4352BE =.158BE ∴=,AD BD =Q ,A ABD ∴∠=∠,A BDE ∠=∠Q ,BDC A ABD ∠=∠+∠,A CDE ∴∠=∠,//DE AB ∴,DE BC ∴⊥,BD CD =Q ,DE ∴垂直平分BC ,BE CE ∴=,158CE ∴=,故②正确;③90ABC DBE ∠=∠=︒Q ,ABD CBE ∴∠=∠, Q 55248BD AB ==, 但随着F 点运动,BE 的长度会改变,而3BC =,3BE ∴3BE 或3BE 不一定等于58, ABD ∴∆和CBE ∆不一定相似,故③错误;④30A ∠=︒Q ,3BC =,30A ABD CBE ∴∠=∠=∠=︒,26AC BC ==,132BD AC ∴==, 3BC =Q ,90BCE ∠=︒,23cos30BC BE ∴==︒, 2221DE BD BE ∴=+=Q ,故④正确;故答案为:①②④.点评本题是三角形的一个综合题,主要考查了勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,解直角三角形,直角三角形的性质,线段垂直平分线的判定与性质,考试的内容多,难度较大,关键是综合应用以上性质灵活解题.17.分析过点M 作MH CD ⊥,由勾股定理可求MC 的长,由题意可得点A '在以M 为圆心,AM 为半径的圆上,则当点A '在线段MC 上时,A C '长度有最小值.解答解:过点M 作MH CD ⊥交CD 延长线于点H ,连接CM ,13AM AD =Q ,3AD CD == 1AM ∴=,2MD =//CD AB Q ,60HDM A ∴∠=∠=︒112HD MD ∴==,33HM HD == 4CH ∴=2219MC MH CH ∴=+=Q 将AMN ∆沿MN 所在直线翻折得到△A MN ',1AM A M '∴==,∴点A '在以M 为圆心,AM 为半径的圆上,∴当点A '在线段MC 上时,A C '长度有最小值A C '∴长度的最小值191MC MA '=-=-故答案为:191-点评本题考查了翻折变换,菱形的性质,勾股定理,确定A C '长度有最小值时,点A '的位置是本题的关键. 18.解答解:过B 作BE ⊥l 1于E ,延长EB 交l 3于F ,过A 作AN ⊥l 2于N ,过C 作CM ⊥l 2于M ,设AE =x ,CF =y ,BN =x ,BM =y ,∵BD =4,∴DM =y ﹣4,DN =4﹣x ,∵∠ABC =∠AEB =∠BFC =∠CMD =∠AND =90°,∴∠EAB +∠ABE =∠ABE +∠CBF =90°,∴∠EAB =∠CBF ,∴△ABE ∽△BFC ,∴,即=,∴xy =mn ,∵∠ADN =∠CDM ,∴△CMD ∽△AND ,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.三、解答题19.分析(1)令y=0,可得ax(x+6)=0,则A点坐标可求出;(2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠COE,则CE=DE;②设OE=m,由CE2=OE•AE,可得,由∠CAE=∠OBE可得,则,综合整理代入可求出的值.解答解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A、B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m﹣t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:,∴②,由①②得,整理得:t2+18t+36=0,∴t2=﹣18t﹣36,∴.点评本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.20.分析(1)根据等边三角形的性质和圆周角定理解答即可;(2)过点A作AG⊥BC于点G,根据等边三角形的性质和勾股定理解得即可;(3)①过点E作EH⊥AD于点H,根据三角函数和函数解析式解得即可;②过点O作OM⊥BC于点M,根据相似三角形的判定和性质解答即可.解答证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM﹣BE=ax﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,点评此题是圆的综合题,关键是根据等边三角形的性质、勾股定理和相似三角形的判定和性质解答.21.分析(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.(2)①证明△ADM∽△GMN,可得=,由此即可解决问题.②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题.解答解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①如图2中,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM∽△GMN,∴=,∴=,∴y=x2﹣x+10.当x=4时,y有最小值,最小值=2.②存在.有两种情形:如图3﹣1中,当MN=MD时,∵∠MDN=∠GMD,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∵MN=DM,∴DG=GM=10,∴x=AM=8﹣10.如图3﹣2中,当MN=DN时,作MH⊥DG于H.∵MN=DN,∴∠MDN=∠DMN,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵BH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得=,∴=,∴MG=,∴x=AM=8﹣=.综上所述,满足条件的x的值为8﹣10或.点评本题属于四边形综合题,考查了矩形的性质,翻折变换,解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.分析(1)当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.解答解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),。
2021年九年级中考数学复习专题---几何最值问题 课件
类型三 一箭穿心型
针对训练
1.如图,正方形ABCD中,AB=4 2 ,E,F分别为 AD,BC上的点,且EF平分正方形ABCD的面积,过 点A作AG⊥EF于点G,则DG的最小值是 2 5 - 2。
2.(中考题变式)
A
A. 5 -1
B. 2
C. 3
D. 6
2
5
类型四 转换型(胡不归与阿氏圆)
1
对于求 2 PA+PB形式的最值时,我们需要用转化的思路 当点P在直线上运动时称之为“胡不归”问题
,且满足以AC为对角线的四边形ADCE为平行四边形,则DE
的最小值为 ( A )
A.4
B.5
C.6
D.8
2.如图,在Rt△ABC中,∠BAC=90°,且AB=3,AC=4,点D是 斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于
点N,连接MN,则线段MN的最小值为( D )
5 15 20 12 A. 2 B. 2 C. 3 D. 5
胡不归模型:
类型四 转换型(胡不归与阿氏圆)
针对训练
1.如图,矩形ABCD中,AB=1,AD= 3 ,点E是BD上一点,
则CE+ 1 DE的最小值为( A )
A. 1 2 B. 3
C.2 D. 3 1
2.(中考题变式)
5 5
45
类型四 转换型(胡不归与阿氏圆)
53..如如图图Z2-35,正方形 ABCD 中,AB=2,点 P 是正方形 ABCD 内一点,且∠APB=90°,则 PC+12AB 的最小值
A
阿氏圆模型:
步骤:
P
1.连接动点于圆心
2.计算出线段OP与OB的比值即k
人教版九年级数学尖端班精品讲义
(2)已知 2m2
5m
1
0
,
1 n2
5 n
2
0 ,且
m≠n,求
1 m
1 n
的值.
题型二 利用艰系关系构造 例 5 (1)求一个一元二次方程,使它的两个根是 3 和 3.
2
(2)己知方程 x2-9x+8=0,求作一个一元二次方程,使它的一个根为原方程两个根和的倒 数,另一个根为原方程两根差的平方.
(3)设 x2-px+q=0 的两实数根为 、 ,求作以 3 、 3 为两根的一元二次方程.
练习 已知关于 x 的方程 4x2+4bx+7b=0 有两个相等的实数根,y1、y2 是关于 y 的方程
y2+(2-b)y+4=0 的两个根,求以 y1 、 y2 为根、二次项系数为 2 的一元二次方 程.
x1
+
x2
b a
,
x1 x2
b a
,由一元二次方程求根公式知:
x1,2
b
b2 4ac . 2a
法国数学家弗朗索瓦·韦达于 1615 年在著作《论方程的识别与订正》中改进了三、四 次方程的解法,还对 n=2、3 的情形,建立了方程根与系数之间的关系,现代称之为韦达定 理.
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定 理.韦达在 16 世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理 却是在 1799 年才由高斯作出第一个实质性的论性.
p、q,且
p2
q
pq2
6
,试求
这个二元二次方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 几何中的最值问题(讲义)
一、知识点睛
几何中最值问题包括:“面积最值”及“线段(和、差)最值”.
求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解;
求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.
一般处理方法:
常用定理: 两点之间,线段最短(两个定点)
垂线段最短(一个定点、一条定直线)
三角形三边关系(两边长固定或其和、差固定)
l B'B
A
P
l B'A B P
二、精讲精练 1. 如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则
线段和差、 几何变换、 构建
线段最值 ① 折转直;②集中线段长;
转化 PA +PB 最小, |PA -PB |最大,
蚂蚁到达蜂蜜的最短距离为______cm.
第1题图第2题图
2.如图,正方形ABCD的边长是4,∠DAC的平分线交DC
于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ 的最小值为 .
AB=,∠BAC=45°,∠BAC 3.如图,在锐角△ABC中,42
的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值为___________.
第3题图第4题图
4.如图,在菱形ABCD中,AB=2,∠A=120°,点P、Q、K
分别为线段BC、CD、BD上的任意一点,则PK+QK的最小值为 .
5.如图,当四边形PABN的周长最小时,a= .
第5题图第6题图
6.如图,正方形ABCD的边长为1,点P为边BC上任意一
点(可与点B或点C重合),分别过点B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则
BB′+CC′+DD′的最大值为,最小值
为.
7.如图,两点A、B在直线MN外的同侧,A到MN的距离
AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则PA PB
-的最大值等于.
第7题图第8题图
8.点A、B均在由面积为1的相同小矩形组成的网格的格
点上,建立平面直角坐标系如图所示.若P是x轴上
使得PA PB
-的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP OQ
⋅=.
9.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上
一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________.
第9题图第10题图
10.如图,已知AB=10,P是线段AB上任意一点,在AB的
同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.
11.如图,点P在第一象限,△ABP是边长为2的等边三角
形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.
第11题图第12题图
12.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,
折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.
13.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,
点E、F分别在线段AB、AD上,将△AEF沿EF翻折,
点A的落点记为P.
(1)当P落在线段CD上时,PD的取值范围为;(2)当P落在直角梯形ABCD内部时,PD的最小值等于多少?
14.如图,四边形ABCD是正方形,△ABE是等边三角形,M
为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)当M点在何处时,AM+CM的值最小;
(2)当M点在何处时,AM+BM+CM的值最小,并说明理由.
15.如图,已知平面直角坐标系中A,B两点的坐标分别为A(2,
-3),B(4,-1).
(1)若P(p,0)是x轴上的一个动点,则当p=________时,△PAB的周长最短;
(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=________时,四边形ABDC的周长最短;
(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0),N(0,n),使四边形ABMN的
周长最短?若存在,请写出m和n的值;若不存在,请说明理由.
三、回顾与思考
__________________________________________________ __________________________________________________ __________________________________________________ ____________
希望以上资料对你有所帮助,附励志名3条:
1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。
不如积阴德于冥冥之中,此乃万世传家之宝训也。
2、积德为产业,强胜于美宅良田。
3、能付出爱心就是福,能消除烦恼就是慧。