第二章 牛顿运动定律

合集下载

物理学第二章牛顿运动定律

物理学第二章牛顿运动定律

l m
l
l
a2
m
a1

m

解:(1)以小球为研究对象,当小车沿水平方向作匀加速运
动时,分析受力:

在竖直方向小球加速度为零,水平方向的
T1
加速度为a。建立图示坐标系:
利用牛顿第二定律,列方程:
m
x方向: T1sinm1a
y方向: T 1co m s 0 g
解方程组,得到:
mg
直角坐标系中的分量形式
Fx mddvtx mdd2t2x
Fy mddvty
d2y mdt2
Fz mddvtz mdd2t2z
自然坐标系中的分量形式
Ft mat mddvt
Fn

man

mv2

2、牛顿第二定律的微分形式
牛顿第二定律原文意思:运动的变化与所加的动力成正 比,并且发生在这力所沿直线的方向上。
§2-1 牛顿第一定律和第三定律
1、牛顿第一定律
任何物体都保持静止或匀速直线运动的状态,直到其它物 体对它作用的力迫使它改变这种状态为止。
几点说明和注意
1、第一定律说明任何物体都具有惯性,牛顿第一定律又叫惯性 定律。
2、当物体受到其他物体作用时才会改变其运动状态,即其他物 体的作用是物体改变运动状态的原因。
大小:取决于绳的收紧程度。

T
方向:沿着绳指向绳收紧的方向。
(3)弹簧的弹力;
弹性限度内,弹性 力满足胡克定律:
Fkx
方向:指向要恢复 弹簧原长的方向。
O
x
F
F
3、 摩擦力
摩擦力:两个相互接触的物体在沿接触面相对运动
时,或者有相对运动趋势时,在它们的接触面间所 产生的一对阻碍相对运动或相对运动趋势的力。

第二章 牛顿定律

第二章 牛顿定律

F0 dF
0
F0
1 1 2 2 m 2 L S xdx S L 2 2
2
负号表示拉力方向与x的正方向相反,即指向转轴。
此拉力的大小是旋翼所受重力的倍数:
F0 2 L ( 2 400 / 60)2 5.97 534 mg 2g 2 9.8
l
m'
m
F
(1)绳作用在物体上的力
解 设想在点 P 将绳分为两段
其间张力 FT 和 FT' 大小相等,方向相反
(1)
m'
FT0
FT0'
FT'
P
FT
F
m
a
F a m' m m' FT0 F m' m
a
FT0 FT0'
a FT0 m'
F FT0' ma
v vL (1 0.05) 0.95vL
y
F0 b
v
t
一般认为 t 3 m b ,
v vL
o
若球体在水面上是具有竖直向 下的速率 v0 ,且在水中的重力与 浮力相等, 即 FB P . 则球体在 水中仅受阻力 Fr bv 的作用 这种情况下的速度呢?
FB Fr
mg FB 6πrv ma 令 F mg F b 6 πr 0 B
dv F0 bv m dt F0 dv b (v ) dt m b
FB 为浮力
FB Fr
P
v
y
F0 dv b (v ) dt m b
dv b dt v ( F0 b) m
F Ft et Fnen
F ma m(at an )

2牛顿运动定律

2牛顿运动定律

第二章 牛顿运动定律(Newton’s Laws of Motion )§1 牛顿运动定律▲第一定律(惯性定律)(First law ,Inertia law ): 任何物体都保持静止或作匀速直线运动的状态,除非作用在它上面的力迫使它改变这种状态。

⎩⎨⎧概念定性给出了力与惯性的定义了“惯性系” 惯性系(inertial frame ):牛顿第一定律成立的参考系。

力是改变物体运动状态的原因,而并非维持物体运动状态的原因。

▲第二定律(Second lawF ρ:物体所受的合外力。

m :质量(mass ),它是物体惯性大小的量度,也称惯性质量(inertial mass )。

若m = const. ,则有:a m F ρρ= a ρ:物体的加速度。

第一定律▲第三定律(Third Law ):2112F F ρρ-=说明:1.牛顿定律只适用于惯性系;2.牛顿定律是对质点而言的,而一般物体可认为是质点的集合,故牛顿定律具有普遍意义。

Δ§2 SI 单位和量纲(书第二章第2节)Δ§3 技术中常见的几种力(书第二章第3节)Δ§4基本自然力(书第二章第4节)m 1 m 2 F 12 F 21§5 牛顿定律应用举例书第二章第2节的各个例题一定要认真看,下面再补充一例,同时说明作题要求。

已知:桶绕z轴转动,ω= const.水对桶静止。

求:水面形状(z - r关系)解:▲选对象:任选表面上一小块水为隔离体m ;▲看运动:m作匀速率圆周运动raρρ2ω-=;▲查受力:受力gmρ及Nρ,水面⊥Nρ(∵稳定时m受周围水及空气的切向合力为零);▲列方程:⎩⎨⎧-=-=-)2(sin)1(cos2rmNrmgNzωθθ向:向:θtg为z(r)曲线的斜率,由导数关系知:rzddtg=θ(3)由(1)(2)(3)得:rgrz2ddtgωθ==分离变量: r r gz d d 2ω= 积分: ⎰⎰=zz rr r g z 002d d ω得: 0222z r g z +=ω(旋转抛物面) 若已知不旋转时水深为h ,桶半径为R ,则由旋转前后水的体积不变,有: ⎰=⋅R h R r r z 02d 2ππ⎰=+Rh R r r z r g 02022d 2)2(ππω 得 g R h z 4220ω-=▲验结果: 0222z r g z +=ω ·单位:[2ω]=1/s 2 ,[r ]=m ,[g ]=m/s 2][m m/sm )/s 1(]2[2222z g ==⋅=ω,正确。

2.第二章牛顿运动定律

2.第二章牛顿运动定律

例1(补): 复式阿特武德机 三个物体质量已知 滑轮质 补 复式阿特武德机. 三个物体质量已知, 量不计, 轴处无摩擦力.求释放后 求释放后m 量不计 轴处无摩擦力 求释放后 1的加速度 a1和m2对B 的加速度a. 的加速度 解:以地为参照系, 分别建立坐标系 以地为参照系 如图所示
A T1
m1 T2 m2
r r r r F → a,v, r r r r r r →v, a → F
r rr r r a →v, r 重点是a, F
r r r (2)受变力, F(r )(万有引力或弹性力等 , F(t ) 受变力, 受变力 万有引力或弹性力等), 万有引力或弹性力等 r r (碰撞或强迫振动等 ,或 F(v)(粘滞力等 , 碰撞或强迫振动等), 粘滞力等), 碰撞或强迫振动等 粘滞力等
τ v0
n
r N r
rr
R

t µ dv ∫v0 − v2 = ∫0 Rdt v
v dv −µ = R dt

dS Q v= dt S t t Rv0 R t d(R + µv0t) ∫0 dS = ∫0 vdt = ∫0 R+ µv0tdt = µ ∫0 R+ µv0t
R + µ v0t S = ln µ R R
几种常见的力(自学) §2-2 几种常见的力(自学)
力 接触力: 接触力: 弹性力和摩擦力 非接触力(场力): 万有引力, 非接触力(场力): 万有引力, 电力和磁力
1. 万有引力
m1m2 F =G 2 r
m1
r
m2
说明: 两个有一定形状大小的物体间的万有引力, 说明: 两个有一定形状大小的物体间的万有引力,是构成物 体所有质点间的引力的合力. 体所有质点间的引力的合力. 重力: 地球对表面物体的万有引力mg 重力: 地球对表面物体的万有引力

中国矿业大学(北京)《大学物理》课件-第二章 牛顿运动定律

中国矿业大学(北京)《大学物理》课件-第二章 牛顿运动定律
惯性系只能通过实验来确定。
★实验表明:地球是一个近似程度很高的惯性系。 ★实验还表明:相对地球做匀速直线运动的物体也 是惯性系。
中国矿业大学(北京)
8/52
牛顿第三定律
2、牛顿第三定律
两个物体之间的作用力 F 和反作用力 F 沿
同一直线,大小相等,方向相反,分别作用在两
个物体上。
F F
两点说明:
摩擦系数为 ,拉力F作用于物体上。
求:F与水平面之间的夹角 为多大时,能使物体获
得最大的加速度?
F
解:建立直角坐标系oxy,
N
根据牛顿第二定律列式:
f
F cos f ma
G
N F sin mg 0
y
f N
ox
中国矿业大学(北京)
28/52
例题2-2
可解得: f μ(mg F sin ),
瞬时加速度。两者同时存在,同时消失。
F
m
d
v
dt
中国矿业大学(北京)
11/52
牛顿第二定律
(3)矢量性的理解:
F
ma
m
d
v
dt
直角坐标系中的
自然坐标系中的
分量形式
分量形式
Fx
max
m dvx dt
d2 x m dt2
,
Fy
may
m dvy dt
m
d2 dt
y
2
,
Fz
maz
m dvz dt
最大静摩擦力 fmax 0N 滑动摩擦力 f N
0:静摩擦系数,:滑动摩擦系数。与接触面的 材料和表面粗糙程度有关,还和相对速度有关。
0 1
中国矿业大学(北京)

大学物理第2章 牛顿运动定律

大学物理第2章 牛顿运动定律
1、第一定律(物体在没有外力作用的情况下会保持原有的状态);
推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt

高一物理章节内容课件 第二章质点动力学

高一物理章节内容课件 第二章质点动力学

地面的加速度是多少?(以竖直向上为
正)
解:以绳为参照系,设绳对地 的加速度为 a绳对地
T '
T a绳对地
人 T mg (ma绳对地) ma0 物 Mg T (Ma绳对地) M 0
Mg ♕ mg
▲ 注意:ห้องสมุดไป่ตู้于滑轮这种左右两边的情形, 左右两边的正方向应相反
3 a绳对地 g a0 方向:右向上,左向下
★ 作用于桌面的压力
N1 N m已落下部分g , 3gm已落下的部分
4. 质点系的动量定理 任意一段时间间隔内质点系所受合外力 的冲量等于在同一时间间隔内质点系内 所有质点的动量矢量和的增量。
5.动量守恒定律(Law of Conservation of Momentum) (1)※
度,是Vx
N mg CyVx2

N
CxVx2

m
dVx dt
(mg CyVx2 ) CxVx2

m dVx dx
dx dt
dx dt
(mg CyVx ) CxVx m
2
2 dVx dx
条件:Vx V0 90km/ h时,
Vx
N

0
mg

C yV02
解:★ 注意 摩此擦M力分r布F在整个圆盘上,因
第一步:在距轴为 r 处取质量元 dm ,它受到
的摩擦力为 df
df kdm g
方向:
df

r
第二步:求 df 产生的摩擦力矩 dM 大小、方向
dM rdf sin rkdm g 方向:沿轴
dm

m
R2

河海大学《大学物理》第二章 牛顿运动定律1

河海大学《大学物理》第二章 牛顿运动定律1
以设计标准速度行驶时,无侧向摩擦力
N0
y
mg
f

N
'
x
mv0 2 x方 向 N 0 sin v0 tg R Rg y方 向 N 0 cos mg 0
以v行驶时,有侧向摩擦力
2 mv x方 向 N ' si n f cos R
2
mg
y方向 N ' cos f sin mg 0
例1. 如图所示,两木块质量分别为mA=1.0kg, mB= 2.0kg。A、B间的摩擦系数1= 0.20。B与 桌面的摩擦系数2= 0.30。若木块滑动后它们 的加速度大小均为0.15 m·s-2。求作用在B物 上的拉力? y
受力分析:
mA g T
A
A B
F
x
mBg
f1 N1
f1
T f2
B
N1
第二章 牛顿运动定律
概述
研究运动与相互作用之间的关系。 以牛顿运动定律为基础
英国伟大的物理学家、 数学家、 天文学家。恩格斯说: “牛 顿由于发现了万有引力定律而创立了天文学,由于进行光的分 解而创立了科学的光学,由于创立了二项式定理和无限理论而 创立了科学的数学,由于认识了力学的本性而创立了科学的力 学。”的确,牛顿在自然科学领域里作了奠基性的贡献,堪称 科学巨匠。 牛顿出生于英国北部林肯郡的一个农民家庭。 1661 年考上 剑桥大学特里尼蒂学校,1665 年毕业,这时正赶上鼠疫,牛顿 回家避疫两年,期间几乎考虑了他一生中所研究的各个方面, 特别是他一生中的几个重要贡献:万有引力定律、经典力学、 微积分和光学。 牛顿发现万有引力定律,建立了经典力学,他用一个公式将宇宙中最大天体的运动和最小粒

第二章-牛顿运动定律

第二章-牛顿运动定律

Fi 0
( 静力学基本方程 )
二. 牛顿第二定律
某时刻质点动量对时间的变化率正比与该时刻作用在质点上
所有力的合力。
Fi
d(mv) dt
Fi
k
d(mv) dt
取适当的单位,使 k =1 ,则有
Fi
d(mv) dt
dmv dt
m
dv dt
当物体的质量不随时间变化时
Fi
m
dv dt
ma
• 直角坐标系下为
例 一柔软绳长 l ,线密度 ρ,一端着地开始自由下落.
求 下落到任意长度 y 时刻,给地面的压力为多少?
解 在竖直向上方向建坐标,地面为原点(如图).
取整个绳为研究对象 设压力为 N
N gl dp p p yv
y
dt
N gl d( yv) dy v gt
dt dt
y
l
d( yv) dyv dv y v 2 yg dt dt dt
• 同时性 —— 相互作用之间是相互依存,同生同灭。
讨论
第三定律是关于力的定律,它适用于接触力。对于非接触的 两个物体间的相互作用力,由于其相互作用以有限速度传播, 存在延迟效应。
§2.2 力学中常见的几种力
一. 万有引力
质量为 m1、m2 ,相距为 r 的 两质点间的万有引力大小为
m1
F12
r r0
l
λΔ lg
T (l)
T
N
f2
四. 摩擦力
1. 静摩擦力 当两相互接触的物体彼此之间保持相对静止,且沿接触面有 相对运动趋势时,在接触面之间会产生一对阻止上述运动趋 势的力,称为静摩擦力。
说明
静摩擦力的大小随引起相对运动趋势的外力而变化。最大 静摩擦力为 fmax=µ0 N ( µ0 为最大静摩擦系数,N 为正压力) 2. 滑动摩擦力 两物体相互接触,并有相对滑动时,在两物体接触处出现 的相互作用的摩擦力,称为滑动摩擦力。

第二章牛顿定律

第二章牛顿定律

第二章 牛顿定律【基本内容】一、牛顿运动定律概述1、牛顿第一定律定律内容:任何物体都保持静止或匀速直线运动状态,除非作用在它上面的力迫使它改变这种状态。

定律意义:引入了惯性的概念,惯性——物体保持其原有运动状态的一种属性;定性确定了力的概念,力——是使物体的运动状态发生改变的原因。

2、牛顿第二定律定律内容:运动的变化与所加的动力成正比,且发生在该力所沿的直线上。

定律意义:定量确定了力的概念;引入了质量的概念,质量——是物体惯性大小的量度。

定律的数学形式am F =在直角坐标系下:yyy xxx madtdv m F madtdv mF ====,在自然坐标系下:nn mavmF madtdv mF ====ρττ2,3、牛顿第三定律当物体A 以力1F作用在物体B 上时,物体B 必以力2F 作用在物体A 上,且1F 与2F大小相等、方向相反,并在同一直线上。

二、力学中常见的力1、万有引力2211221/1067.6,kgmN G rm m GF ⋅⨯==-若忽略地球的自转,则地球表面附近的物体所受的万有引力叫重力。

2RM Gg g m P ==2、弹力 包括拉力、支撑力等。

胡克定律 kxf -=,k 叫弹簧的倔强系数。

3、摩擦力 滑动摩擦力:kk k N f μμ,=——滑动摩擦系数。

静摩擦力:ss s N f μμ,max=——静摩擦系数。

注意:静摩擦力)0(N f μ≤≤是一个范围概念,只有最大静摩擦力才能用等式Nf μ=max 表示。

惯性系中,静摩擦力由平衡条件求出。

三、惯性系与非惯性系惯性系:牛顿定律适用的坐标系称为惯性系。

相对于惯性系作匀速直线运动的参照系均为惯性系。

非惯性系:相对于惯性系作加速度运动的参照系为非惯性系。

【典型例题】如物体处于惯性系,首先进行受力分析,根据具体情况将力分解,再运用牛顿定律,写出微分方程并求解;如物体处于非惯性系,首先引入惯性力(或利用加速度变换将非惯性系转化为惯性系),再按上面步骤求解。

3 牛顿运动定律

3 牛顿运动定律

解出: 解出:
ax = F= m2 g
2 2 m1 − m2 2 2 m1 − m2
( m1 + m2 + M )m2 g
=784N
例3:在倾角为 θ 的圆锥体的侧面放一质量 : 的小物体, 为m 的小物体,圆锥体以角速度 ω 绕 竖直轴匀速转动。 竖直轴匀速转动。轴与物体间的距离 为 R ,为了使物体能在锥体该处保持 静止不动, 静止不动,物体与锥面间的静摩擦系 数至少为多少? 数至少为多少?并简单讨论所得到的 结果。 结果。 解: 建立图示坐标系,并作受力分析 建立图示坐标系, 列方程: 列方程:
Rn θ = ω 2 R cosθ + µω 2 R sin θ
∴µ = g sin θ + ω 2 R cosθ g cosθ − ω 2 R sin θ
ω
y
N
讨论: 讨论: 可得: 由µ>0 , 可得:
g cosθ − ω 2 R sin θ > 0 g
fs
x
mg
⇒− ⇒ m V d( mg − F − kV ) m V = − ln( mg − F − kV ) V = t ∫V0 0 k k mg − F − kV
k t ( A−V0 ) V = A−e m −
A=
mg − F k
的小车D,其上有一定滑轮C 例2:水平面上有一质量为 51kg 的小车 ,其上有一定滑轮 ,通过绳在 : 的物体A 滑轮两侧分别连有质量为 m1=5kg 和 m2=4kg 的物体 和B。其中物体 。 A 在小车的水平面上,物体 被绳悬挂,系统处于静止瞬间,如图所 在小车的水平面上,物体B 被绳悬挂,系统处于静止瞬间, 各接触面和滑轮轴均光滑。 示。各接触面和滑轮轴均光滑。 以多大力作用在小车上,才能使物体A 与小车D 之间无相对滑动。 求:以多大力作用在小车上,才能使物体 与小车 之间无相对滑动。 滑轮和绳的质量均不计,绳与滑轮间无滑动) (滑轮和绳的质量均不计,绳与滑轮间无滑动) 解: 建立坐标系并作受力分析图: 建立坐标系并作受力分析图:

牛顿运动定律学习 (3)

牛顿运动定律学习 (3)

Fy = ma y
F n = ma
n
v = m r
第二章 牛顿定律
例1 阿特伍德机 (1)如图所示滑轮和绳子的质量均 不计, 不计,滑轮与绳间的摩擦力以及滑轮与 轴间的摩擦力均不计. 轴间的摩擦力均不计.且 m1 > m2 . 求 重物释放后,物体的加速度和绳的张力. 重物释放后,物体的加速度和绳的张力. 解 以地面为惯性系 画受力图、 画受力图、选取坐标如图
(1)作用力、反作用力互为对方存在的条件,同时 作用力、反作用力互为对方存在的条件, 产生,同时消失。 产生,同时消失。 (2)作用力、反作用力分别作用在相互作用的两个 作用力、 物体上,因此不能互相抵消。 物体上,因此不能互相抵消 (3)作用力、反作用力属同种性质的力。 作用力、反作用力属同种性质的力。
F
mg sinθ = ma cosθ N − mgcosθ = masinθ
此种方法更简单。 此种方法更简单。
解得: 解得:
a = gtgθ
N = mg / cosθ
第二章 牛顿定律
雨滴下落时受空气阻力, 例3 雨滴下落时受空气阻力,若阻力与其速度 大小成正比,求雨滴的速度并讨论其最终速度。 大小成正比,求雨滴的速度并讨论其最终速度。 解 设雨滴质量为m 设雨滴质量为 取坐标如图
v t
F0 − kt ∴ dv = dt m
F0 k 2 F0 − kt 积分: 积分: t dt v = t − ∫ dv = ∫ m 2m m 0 0 dx 有 v= 由 dx = vdt dt x t F0 k 2 F0 2 k 3 t )dt x = t − t ∫ dx = ∫ ( t − m 2m 0 0 2m 6m
第二章 牛顿定律
4.应用举例 4.应用举例

大学物理牛顿运动定律

大学物理牛顿运动定律

大学物理牛顿运动定律质点动力学动力学是在运动学的基础上,进一步研究物体的运动和产生这种运动的原因。

第二章牛顿运动定律是质点动力学的基本定律。

2-1牛顿运动定律一、牛顿运动定律的基本内容1、运动三定律:第一定律:任何物体都保持静止或匀速直线运动状态,直到其它物体作用在它上面的力迫使它改变这种状态为止。

力是改变物体运动状态的原因。

第二定律:物体受到外力作用时,其加速度大小与合外力成正比,与质量成反比;方向与合外力同向。

第三定律:FFimai如果物体A以力F作用于物体B,则物体B也必定同时以一力F’作用于物体A。

两个物体间的作用力和反作用力,大小相等、方向相反、在同一直线上。

FF'2、基本概念(1)惯性;物体不受力时保持静止或匀速直线运动状态的特性,是物体的基本属性。

(2)质量:描述物体惯性的物理量,是物体惯性大小的量度。

(3)力:描述物体间相互作用的物理量。

力的效果是使物体产生加速度或发生形变。

力有施、受者,要判清施力者和受力者。

力是矢量,它有大小、方向、作用点三要素。

二、应用牛顿运动定律应注意的问题。

1、正确地受力分析:FFimai力为合外力注意用“隔离体”方法进行受力分析。

力学中三种常见力:(1)万有引力重力PGm1m2FG2rM地mR2mgGM地g2R(2)弹力F某0FF(某)k某(3)摩擦力两个物体相互接触,并有相对运动或相对运动趋势时,接触面上产生阻碍相对运动的力。

静摩擦力N0ffma某Ff滑动摩擦力fma某NfkkN打击力:FF(t)阻尼力:FF(v)kv方程不是简单的代数式,描述的是F 和之间的瞬时关系。

方程是关于2、注意方程Fma的瞬时性一般情况下F是变力弹力:FF(某)k某ar(t)的二阶微分方程。

2drdvdpFm2mdtdtdt3、牛顿第二定律的微分形式drdvdpFm2mdtdtdt2dpFdt4、注意方程Fma的矢量性在应用时应根据实际情况,选择适当的正交坐标系,将矢量方程沿各坐标轴分解成标量(分量)方程。

第2章 -牛顿定律 1 非惯性系2 2

第2章 -牛顿定律 1 非惯性系2  2

l
dm
dx

F
T
l mF dT x dx (m' m)l
T dm T dT
dx
13
x F T (m' m ) l m' m
§2 牛顿运动定律的应用
解题的基本思路
(1)确定研究对象,并且进行受力分析; 对于连带运动,进行隔离物体受力分析,画受力图。
(2)选取适当的坐标系;
越大,
利用此原理,可制成蒸汽机的调速器(如图所示)。
例3
于定点 o , t 0 时小球位于最低位置,并具有水平速度 v 0 ,
求小球在任意位置的速率及绳的张力。
如图长为 l 的轻绳,一端系质量为 m 的小球,另一端系

T mg cos man
mg sin ma
1 dv dv dv ( ) gdt gdt 2 k 2 k k 1 v 1 v y 1 v mg mg mg mg k mg k ln(1 v) ln(1 v) 2 gt c k mg k mg
2
d
o
fd


mg
t=0 时 选讲
v0
c0
F (t ) ma (t )
动量为 p 的物体,在合外力 F 的作用下,其动量随时
间的变化率应当等于作用于物体的合外力 。
dp(t ) F (t ) , p(t ) mv(t ) dt

v c
时,m为常量。
4
——是架起了质点运动学和动力学的桥梁。
dv F (t ) m ma dt dv y dv x dvz F m i m j m k dt dt dt 即 F ma x i ma y j maz k

大学物理 第二章牛顿运动定律

大学物理 第二章牛顿运动定律
gravitational force
赵 承 均
万有引力定律 任意两质点相互吸引,引力的大小与两者质量乘积成正比, 任意两质点相互吸引,引力的大小与两者质量乘积成正比,与其距离的 平方成反比,力的方向沿着两质点连线的方向。 平方成反比,力的方向沿着两质点连线的方向。
r m1m2 r F = −G 3 r r
赵 承 均
&& mx = p sin ωt
o
v Fx
x
x
即:
m
dv = p sin ωt dt
重 大 数 理 学 院
r r F ( t ) = ma ( t ) r & = mv ( t ) r && ( t ) = mr
此微分形式表明:力与加速度成一一对应关系。 此微分形式表明:力与加速度成一一对应关系。
赵 承 均
牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于宏观低速情况, 牛顿第二定律适用于宏观低速情况,而在微观 ( l ≤ 1 0 − 1 0 m 情况与实验有很大偏差。 高速 ( v ≥ 1 0 − 2 c ) 情况与实验有很大偏差。 牛顿第二定律适用于惯性系,而对非惯性系不成立。 牛顿第二定律适用于惯性系,而对非惯性系不成立。
赵 承 均
牛顿第二定律 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 与物体的质量成反比,方向与力的方向相同。 与物体的质量成反比,方向与力的方向相同。
r r F = ma
在国际单位中,质量的单位为kg(千克),长度的单位为m 在国际单位中,质量的单位为kg(千克),长度的单位为m(米), kg ),长度的单位为 时间的单位为s ),这些是基本单位。力的单位为N 牛顿), 这些是基本单位 ),是 时间的单位为s(秒),这些是基本单位。力的单位为N(牛顿),是导 出单位: 出单位: =1kg× 1N =1kg×1m/s2

第2章-牛顿定律

第2章-牛顿定律

v 2gx 1gx2 2l
x = l 时: v (22 1)gl 2
(2) 最大深度时有 v = 0
0 2gx 1gx2 2l
x 22l 1
(3)
求极值
2g 2 1g x
dv
2l 0
dx 2 2gx 1gx2
2l
2g 21g x 2l
第二章
动力学基本定律
提纲
牛顿运动定律 动量守恒定律 角动量守恒定律 能量守恒定律
在前一章用位移、速度和加速度等概念描述物体
的运动,但没有涉及物体运动状态变化的原因。 从现在开始,我们将研究物体间的相互作用,以 及这种相互作用所引起的物体运动状态变化的规 律。力学的这部分内容叫做动力学。
描述物体状态的量:动能,动量,角动量,能量
外界作用量:冲量,角冲量,功,作用量将改变
物体的状态量。
系统不受外界作用时, 动量,角动量,能量守恒
── 三个守恒定律。
§2-1 牛顿定律
牛顿(Isaac Newton,1642 -1727),英国伟大的物理学 家,一生对科学事业所做的 贡献,遍及物理学、数学和 天文学等领域。在物理学上, 牛顿在伽利略、开普勒等人 工作的基础上,建立了牛顿 三定律和万有引力定律,并 建立了经典力学的理论体系。
f1 1N1
f2 2N2
由A式: 1mAg T mAa
由B式: F 1mAg 2 (mA mB )g T mBa
解得:
F 13.2N
例2.质量为m的小球最初位于A点,然后沿半径为R的
光滑圆弧面下滑。求小球在任一位置时的速度和对圆
弧面的作用。
解: mg cos m dv

大学物理第二章牛顿定律

大学物理第二章牛顿定律

2-2
几种常见的力
m1 r m2
一, 万有引力
mm2 F =G 12 r
引力常数 重力 地表附近
−11
G = 6.67×10 N⋅ m ⋅ kg
2
−2
P= mg,
Gm g ≈ 2E ≈ 9.80m⋅s-2 R
Gm g = 2E r
二. 弹性力 由物体形变而产生的. 由物体形变而产生的. 常见弹性力有:正压力、张力、弹簧弹性力等. 常见弹性力有:正压力、张力、弹簧弹性力等. 弹簧弹性力
3 dimG = L M−1T−2
o
dv t ↑ v↑ ↓, dt mg − F = =恒 量 kA
讨论潜艇运 动情况: 动情况:
t = 0 v = 0, t →∞ v = vmax
极限速率(收尾速率) 极限速率(收尾速率)
例3:一小钢球,从静止开始自光滑圆柱形轨道的顶 :一小钢球, 点下滑。 小球脱轨时的角度θ 点下滑。求:小球脱轨时的角度
三. 力学相对性原理 (1)在有些参照系中牛顿定律成立,这些系 在有些参照系中牛顿定律成立, 在有些参照系中牛顿定律成立 称为惯性系。 (2) 凡相对于惯性系作匀速直线运动的一切 ) 参考系都是惯性系.作加速直线运动为非惯性系 速直线运动为非惯性系. 参考系都是惯性系.作加速直线运动为非惯性系 (3) 对于不同惯性系,牛顿力学的规律都具有 ) 对于不同惯性系, 相同的形式, 相同的形式,与惯性系的运动无关 伽利略相对性原理. 伽利略相对性原理.
F f c mg
o
dv mg − F −kAv = m dt v t mv d ∫ mg −F −kAv = ∫dt 0 0
+
m m -F g -kA v − =t l n kA m −F g m − F −kA g v =e m −F g

第二章_牛顿定律

第二章_牛顿定律

第二章 牛顿运动定律2-1 一木块能在与水平面成α角的斜面上匀速下滑。

若使它以速率υ0沿此斜面向上滑动,试证明它能沿该斜面向上滑动的距离为υ20 /(4gsin α)。

知识点窍 牛顿第二定律:F=m a逻辑推理 物体沿斜面运动。

匀速下滑时∑F=0,可知摩擦力f 与重力G 滑斜面分力平衡,沿斜面上滑时,因物体所受各力均为恒力且方向沿斜面向下,物体作匀减速运动。

由∑F=ma 及υ2=υ2+2a s 可求出物体上滑的距离。

解题过程 物体沿斜面匀速下滑(如图a ) Mgsin a -f=0 ①物体沿斜面下滑(如图b ) -mgsin a -f =m a ②υ2=υ02+2a s ③ 且滑到最高点时,υ=0 ④由①②③④可得: S=υ02/4gsina 2—2 假使地球自转速度加快到能使赤道上的物体处于失重状态,一昼夜的时间有多长?知识点窍 圆周运动向心力公式:F=mV 2/r圆周运动周期: T=2πr V逻辑推理 当赤道物体所受重力全部提供物体做圆周运动的向心力时,物体处于失重状态。

而一昼夜的时间,即为物体做圆周运动的周期。

解题过程 物体处于失重状态时,向心力为重力mg=m 2V r① T=2πr V ②整理①②可得 T=2π1.4h 即地球自转一天所需要的时间约为1.4h2—3 一枚质量为3.03×103㎏的火箭,在与地面成58.0o倾角的发射架上,点火后发动机以恒力61.2kN 作用与火箭,火箭的姿态始终与地面成58.0o夹角。

经48.0s 后关闭发动机,计算此时火箭的高度和距发射点的距离。

(忽略燃料质量和空气阻力)知识点窍 动力学方程矢量式: F åx =m a xF åy =m a y匀速直线有动位移公式:S=V 0t+12a t 2逻辑推理 火箭所受的推力和重力都是恒力,所以火箭竖直平面内作匀加速直线运动。

利用力的分析,可列出的水平、竖直两方向的动力学方程,结合匀加速直线运动位移公式即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 牛顿运动定律
质点运动状态变化的加速度是与作用在质点上的力有关的,这部分内容就是属于牛顿定律的范围。

本章将概括的阐述牛顿定律的内容及其在质点运动方面的初步应用。

2-1 牛顿定律 2-2 几种常见的力 2-3 惯性参考系
2-4 牛顿定律的应用举例 2-5 非惯性系 惯性力
掌握牛顿定律及其应用条件。

能用微积分方法求解一维变力作用下的简单的质点动力学问题。

了解惯性力的概念和非惯性系中应用牛顿定律的方法。

一、基本练习
1 下列说法中哪一个是正确的?( )
(A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变
2 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如右图所示,斜面倾角多大时,物体滑到斜面底部的速率最大()
(A )30o
(B)45
o
(C)60o
(D )各倾角斜面的速率相等。

3 如右图所示,一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为2
121 ,m m m m >且和,此时系统的加速度为a ,今用一竖直向下
的恒力
m 1
=F 代替
1
m ,
a ',
若不计滑轮质量及摩擦力,则有( ) (A )a a =' (B )a a >' (C )a a <'
(D )条件不足不能确定。

4 一原来静止的小球受到下图1
F 和
2
F 的作用,设力的作用时间为5s ,问下列哪种情况下,
小球最终获得的速度最大( )
(A )N 61=F ,
2=F (B )0
1=F ,
N
62=F
(C )N
821==F F
(D )
N
61=F ,
N
82=F
5 三个质量相等的物体A 、B 、C 紧靠一起置于光滑水平面上,如下图,若A 、C 分别受到水平力
1
F 和
2
F 的作用(F 1>F 2),则A 对B 的作用力大小( )
(A )
2
1F F -
(B )2
1F F 31
3
2+ (C )2
1F F 313
2- (D )2
1F F 323
1+
6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作
用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( )
(A )1cos =θ (B )1sin =θ (C )μ
θ=tg (D )
μ
θ=ctg
7 一质量为m 的猫,原来抓住用绳子吊着的一根垂直长杆,杆子的质量为m ',当悬线突然断裂,小猫沿着杆子竖直向上爬,以保持它离地面的距离不变,如图所示,则此时杆子下降的加速度为( )
(A)g (B)g m m
' (C)g m m m ''+ (D) g
m m m '-'
8 一弹簧秤,下挂一滑轮及物体
1
m 和
2
m ,且
2
1m m ≠,如右图所示,若不计滑轮和
绳子的质量,不计摩擦,则弹簧秤的读数( )
(A )小于
g
m m )(21+
(B )大于g
m m )(21+ (C )等于
g
m m )(21+ (D )不能确定
9 质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( )
(A )mg (B )mg μ (C ))(a g m +μ (D ))(a g m -μ
10 水平面转台可绕通过中心的竖直轴匀速转动。

角速度为ω,台上放一质量为m 的物体,它与平台间的摩擦因数为μ,如果m 距轴为R 处不滑动,则ω满足的条件是( )
(A )R g
μ2
≤ (B )
R g
μ≤
(C )
g
R μ≤
(D )
g
R μ21≤
11 水平放置的轻质弹簧,劲度系数为k ,其一端固定,另一端系一质量为m 的滑块A ,A 旁又有一质量相同的滑块B ,如下图所示,设两滑块与桌面间无摩擦,若加外力将A 、B 推进,弹簧压缩距离为d ,然后撤消外力,则B 离开A 时速度为( )
(A )k d
2 (B )
m k d
(C )
m k d
2 (D )m
k d
3
12 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态
13 水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( )
(A )不得小于gR
μ (B )不得大于gR
μ (C )必须等于gR
μ2 (D )必须大于
gR
μ3
14 如下图所示,1
m 与
2
m 与桌面之间都是光滑的,当1
m 在斜面上滑动时,
1
m 对
2
m 的作用
力为( )
(A )大于θcos 1g m (B )等于
θ
cos 1g m
(C )小于
θ
cos 1g m (D )无法确定
二、选做练习
1 如图,用水平力F 把木块压在竖直墙面上并保持静止,当F 逐渐增大时,木块所受的摩擦力( )
(A )恒为零 (B )不为零,但保持不变 (C )随F 成正比地增大
(D )开始时随F 增大,达到某一最大值后,就保持不变
2 质量为0. 25kg 的质点受力i
t F )S N 1(1-⋅=的作用,0=t 时刻,质点以j
v )s m 2(1-⋅=,的速度通过坐标原点,则该质点任意时刻的位置矢量是( )
(A )j i m )2()s m 2(2
2
+⋅-t (B )j
i )m s 2()s m 32
(122--+⋅t
(C )j i 4444)m s 32()s m 43(t t --+⋅ (D )j
i 2233)m s 43
()s m 31(t t --+⋅ 3 一个沿Ox 轴上正向以-1
s 5m ⋅的速度匀速运动的物
体,在0=x 到m x 10=间受到一个如图所示的y 方向的力的作用,物体的质量为kg
0.1,则物体到达m x 10=处,物体的速度在x 方向的分量为 ,在y 方向上的分量为 。

4 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正的常数,该下落物体的极限速度是 。

5 在光滑水平面上,固定放置一板壁,板壁与水平面垂
直,它的AB 和CD 部分是平板,BC 部分是半径为R 的半圆柱面。

质量为m 的物体在光滑的水平
面上以速率0v
由点A 沿壁滑动,物体与壁面间的摩擦因数为μ,如图所示,求物体沿板壁从D 点滑出时的速度大小。

相关文档
最新文档