电机学(3.7)
电机学公式整理范文
电机学公式整理范文电机学是电力工程和自动控制领域中的重要学科之一,涉及到电机的基本原理、转子动力学、电动机调速、电机转矩计算等内容。
在学习电机学的过程中,我们需要熟悉一些基本公式和理论知识。
下面将对电机学常用的公式进行整理。
1.电动机转矩电动机的转矩计算是电机学中最基本的问题之一,转矩公式如下:T=K×φ×I其中,T为电动机的转矩,K为电机常数,φ为磁通量,I为电流。
2.电动机功率电动机的功率可以通过转矩和转速计算得到,公式如下:P=Tω其中,P为电机的功率,T为电机的转矩,ω为电机的角速度。
3.磁动势和磁通量磁动势(F)和磁通量(φ)的关系可以用下面的公式表示:F=N×Iφ=F/μ其中,F为磁动势,N为匝数,I为电流,μ为相对磁导率。
4.磁动势和磁场强度磁动势和磁场强度(H)的关系可以用下面的公式表示:F=H×l其中,F为磁动势,H为磁场强度,l为磁路长度。
5.电动机的磁场电动机产生的磁场可以通过下面的公式计算:B=μ×H其中,B为磁场的磁感应强度,μ为相对磁导率,H为磁场强度。
6.电动机的反电动势电动机的反电动势(E)可以通过下面的公式计算:E=K×φ×ω其中,E为反电动势,K为电机常数,φ为磁通量,ω为电机的角速度。
7.电动机的效率电动机的效率(η)可以通过下面的公式计算:η = (Pout/Pin)×100%其中,Pout为输出功率,Pin为输入功率。
8.电动机的转速电动机的转速(N)可以通过下面的公式计算:N=(120f/P)×(1-s)其中,f为电机的电源频率,P为电机的极对数,s为滑差。
9.电动机的滑差电动机的滑差(s)可以通过下面的公式计算:s=(N1-N2)/N1其中,N1为输入转速,N2为输出转速。
10.电动机的线圈电压电动机的线圈电压(V)可以通过下面的公式计算:V=E-IR其中,V为线圈电压,E为反电动势,I为电流,R为电阻。
电机学课程教学大纲
电机学课程教学大纲一、课程基本信息课程编号:201404118课程中文名称:电机学课程英文名称:Electrical Machinery课程性质:专业核心课程开课专业:电气工程及其自动化开课学期:4总学时:72(其中理论64学时,实验8学时)总学分:4.5二、课程目标目标1:掌握磁路的基本定律、常用铁磁材料的特性及交、直流磁路的特点,能够对变压器和三种旋转电机(直流电机、异步电机和同步电机)的磁路问题进行分析;掌握变压器和三种旋转电机的基本工作原理、基本结构、参数,以及典型电机的磁场、电路、力矩与功率等基本理论,能够对变压器和三种旋转电机及相关领域的复杂工程问题进行正确的定义与分析。
(对应指标点1-4)目标2:掌握典型电机的基本方程、等效电路图、相量图等工程分析与计算方法;掌握及变压器及发电机的并联方法等工程原理和方法,并能够将其运用到变压器和三种旋转电机的运行分析与计算,并获得有效结论。
(对应指标点2-3)目标3:掌握典型电机的参数测试与特性实验技能和实验分析能力,能够运用其解决电机技术相关的复杂工程问题。
(对应指标点4-1)通过本门课程的学习,使学生掌握电机的基本理论知识、基本分析方法和基本实验技能;培养学生具备应用电机分析与应用的能力。
使学生掌握典型电机的工作原理和主要结构;掌握电机的基本分析理论,包括磁场、电路、功率、转矩和运行性能的分析;培养学生具备必要的分析、计算和实践技能,为后续深入学习电力系统和电力拖动系统相关知识打下理论基础。
三、教学基本要求1、通过学习电机学的基础知识和专业知识,能够对变压器和三种旋转电机及相关领域的复杂工程问题进行正确定义与分析。
掌握磁路的基本定律、常用铁磁材料的特性及交、直流磁路的特点;掌握变压器和三种旋转电机的基本结构;掌握变压器和三种旋转电机的额定值、主要性能指标和主要参数的范围等;掌握变压器中的主磁场和漏磁场、三种旋转电机中气隙磁场的性质和时空关系;掌握变压器和三种旋转电机正常稳态运行时的运行原理、以及对磁场、电路、力矩与功率等形成基本认识,并应用所学基础知识和专业知识进行变压器和三种旋转电机的复杂工程问题进行正确定义与分析。
电机学学习课件教学课件PPT直流电动机
一、基本方程式
(1)电流方程 (2)电势平衡式
I I f Ia
U
I
Te,n
If Ia
Ea Ra
Rf
电枢回路: U Ea Ia (Ra R )
励磁回路:
U I f Rf
U > Ea
重要的转速公式
n U Ia (Ra R ) Ce
School of Electrical and Engineering , Jiangsu University
Electrical Machinery
人为特性的几点补充
(1)考虑电枢反应时,会使机械特性上翘。影响稳定 性。通过补偿绕组改善。
(2)机械特性的确定。特殊点(n0,0),(nN,TN)
(3)通过电机的数据铭牌估算机械特性
n0
UN Ce N
,
Ce N
EaN nN
UN
I N Ra nN
School of Electrical and Engineering , Jiangsu University
Te CT
Ra
n
U Ce
Ra CeCT 2
Te
n
可得
Ra CeCT 2
机械特性是稍下降的直线, 计及饱和, 成为水平或上翘。
Te
School of Electrical and Engineering , Jiangsu University
Electrical Machinery
硬特性:从并励电动机转速随所需电磁转矩的增加而 稍有变化。
Electrical Machinery
电枢回路串电阻的人为机械特性
电枢串电阻人为特性的特点: (1)理想空载转速n0与固有机械特性的n0相同;
电机学知识点总结
电机学知识点总结电机是一种将电能转化为机械能的设备,广泛应用于各种工业和家用设备中。
本文将对电机学知识进行总结,包括电机的分类、工作原理、性能参数、调速控制等方面的内容。
一、电机的分类根据电机的工作原理和结构特点,电机可以分为直流电机和交流电机两大类。
1. 直流电机:直流电机是利用直流电源供电的电动机,其工作原理是利用磁场和电流的相互作用产生转矩,将电能转化为机械能。
直流电机具有简单的结构、良好的速度调节性能和较高的启动转矩,广泛用于需要精密调速和大启动转矩的场合,如印刷设备、纺织设备、混凝土搅拌机等。
2. 交流电机:交流电机是利用交流电源供电的电动机,其工作原理是利用交流电流在磁场中产生旋转磁动力,从而驱动转子旋转。
交流电机具有结构简单、成本低、维护方便等优点,广泛应用于家用电器、工业生产线、汽车空调压缩机等领域。
二、电机的工作原理电机是利用电流通过导体时所产生的磁场力来实现能量转换的装置。
其主要工作原理包括磁动力原理和电磁感应原理。
1. 磁动力原理:磁动力原理是指在磁场中的导体内产生电流或者在电流中的导体内产生磁场时,力的作用。
根据此原理,电机内部的磁场和电流相互作用,从而产生力矩,驱动转子旋转。
2. 电磁感应原理:电磁感应原理是指导体在磁场中运动时会产生感应电动势,而感应电动势又会产生感应电流。
根据此原理,电机内部的磁场和感应电动势相互作用,从而产生转矩,驱动转子旋转。
三、电机的性能参数电机的性能参数是衡量其工作性能的重要指标,主要包括额定功率、转速、效率、启动转矩、额定电流等。
1. 额定功率:电机在额定工作条件下所能输出的功率,通常用单位千瓦(kW)或者马力(HP)来表示。
2. 转速:电机在额定工作条件下的输出转速,通常用单位转每分钟(r/min)来表示。
3. 效率:电机在额定工作条件下所能输出的功率与其输入的功率之比,通常用百分比来表示。
4. 启动转矩:电机在启动时所能输出的最大转矩,通常用单位牛顿·米(N·m)来表示。
电机学概念以及公式总结
电机学概念以及公式总结电机学是研究电动机的相关理论和应用的学科,它涉及到电动机的原理、结构、工作特性、控制方法和应用等方面的内容。
以下是电机学的一些基本概念和公式的总结。
一、基本概念:1.磁通:按照安培环路定理,磁通是由电流所激励在磁路中存在的物理量,用Φ表示。
2.磁场强度:磁场强度是单位长度磁通中所含有的磁通量,用H表示。
3.磁感应强度:磁感应强度是磁场中的单位面积磁通量,用B表示。
4.磁阻:磁阻是磁路中阻碍磁通流动的物理量。
5.磁导率:磁导率是衡量磁场介质导磁特性的物理量,用μ表示。
6.线圈电磁力:线圈电磁力是电流在磁场中受到的力,用F表示。
二、基本公式:1.安培环路定理:磁通Φ等于通过环路的总磁动势和环路上电流线圈数目的乘积,即Φ=ΣNi,其中Ni是第i个电流线圈的匝数。
2.磁感应定律:磁感应强度B等于磁通Φ对所围面积S的导数,即B=dΦ/dS。
3.奥姆定律:在磁通不变的情况下,线圈的电磁力F等于线圈中的电流I与线圈中的磁场强度H的乘积,即F=I*H。
4.磁场强度和磁导率的关系:磁场强度H等于磁感应强度B与磁导率μ的商,即H=B/μ。
三、常见公式:1.额定电磁力:F=K*N*I,其中K是常数,N是线圈的匝数,I是线圈中的电流。
2.磁通和磁势的关系:Φ=B*S,其中Φ是磁通,B是磁感应强度,S是所围面积。
3. 电动势和磁通的关系:E = N * dΦ / dt,其中E是电动势,N是线圈的匝数,Φ是磁通,t是时间。
4.磁场能量:W=(1/2)*Φ*I,其中W是磁场能量,Φ是磁通,I是线圈中的电流。
四、应用公式:1.转矩公式:T=k*Φ*I,其中T是电机的转矩,k是常数,Φ是磁通,I是线圈中的电流。
2.功率公式:P=T*ω,其中P是电机的输出功率,T是电机的转矩,ω是电机的角速度。
3. 电磁动力学方程:U - R * I - L * (dI / dt) = E,其中U是电机的电压,R是电机的电阻,L是电机的电感,I是电机的电流,E是电机的电动势。
《电机学》习题解答(吕宗枢) 03章
第3章思考题与习题参考答案3.1 三相组式变压器和三相心式变压器的磁路结构各有何特点?在测取三相心式变压器的空载电流时,为什么中间一相的电流小于其它两相的电流?答:三相组式变压器的三相磁路彼此独立,互不关联,且各相磁路几何尺寸完全相同;三相心式变压器的三相磁路彼此不独立,互相关联,各相磁路长度不等,三相磁阻不对称。
在外加对称电压时,由于中间相磁路长度小于其它两相的磁路长度,磁阻小,因此,中间一相的空载电流小于其它两相的电流。
3.2 变压器出厂前要进行“极性”试验,如题3.2图所示,在U1、U2端加电压,将U2、u2相连,用电压表测U1、u1间电压。
设变压器额定电压为220/110V,如U1、u1为同名端,电压表读数为多少?如不是同名端,则读数为多少?答:110V,330V题3.2图极性试验图3.3 单相变压器的联结组别有哪两种?说明其意义。
答:有I,I0;I,I6两种。
I,I0说明高、低压绕组电动势同相位;I,I6说明高、低压绕组电动势反相位。
3.4 简述三相变压器联结组别的时钟表示法。
答:把三相变压器高压侧某一线电动势相量看作时钟的长针,并固定指向“0”点,把低压侧对应线电动势相量看作时钟的短针,它所指向的时钟数字便是该变压器的联结组别号。
3.5 试说明为什么三相组式变压器不能采用Y,y联结,而小容量三相心式变压器可以采用Y,y联结?答:因为三相组式变压器三相磁路彼此独立,采用Y,y联结时,主磁路中三次谐波磁通较大,其频率又是基波频率的三倍,所以,三次谐波电动势较大,它与基波电动势叠加,使变压器相电动势畸变为尖顶波,其最大值升高很多,可能危及到绕组绝缘的安全,因此三相组式变压器不能采用Y,y联结。
对于三相心式变压器,因为三相磁路彼此相关,所以,三次谐波磁通不能在主磁路(铁心)中流通,只能通过漏磁路闭合而成为漏磁通。
漏磁路磁阻很大,使三次谐波磁通大为削弱,主磁通波形接近于正弦波,相电动势波形也接近正弦波。
电机学知识点总结
电机学知识点总结电机学知识点总结电机学课程是高等学校电气类专业的一门重要技术基础课课程的特点是理论性强、概念抽象、专业性特征明显它涉及的基础理论和知识面较广牵涉电、磁、热、机械等综合知识。
下面请看小编带来的电机学知识点总结。
电机学知识点总结直流电动机知识点1、直流电动机主要结构是定子和转子;定子主要包括定子铁心、励磁绕组、电刷。
转子主要包括转子铁心、电枢绕组、换向器。
2、直流电动机通过电刷与换向器与外电路相连接。
3、直流电动机的工作原理:通过电刷与换向器之间的切换,导体内的电流随着导体所处的磁极性的改变而同时改变其方向,从而使电磁转矩的方向始终不变。
4、通过电刷和换向器将外部通入的直流电变成线圈内的交变电流的过程叫做“逆变”。
5、励磁方式分为他励式和自励式;自励式包括并励式、串励式和复励式。
(只考他励式和并励式,掌握他励式和并励式的图形)6、直流电机的额定值:①额定功率PN 对于发电机额定功率指线端输出的电功率;对于电动机额定功率指轴上输出的机械功率。
②额定电压、额定电流均指额定状态下电机的线电压线电流。
7、磁极数=电刷数=支路数(2p=电刷数=2a,p为极对数,a为支路对数)8、空载时电极内的磁场由励磁绕组的磁动势单独作用产生,分为主磁通和漏磁通两部分。
9、电枢反应:负载时电枢磁动势对气隙主磁场的影响。
10、电刷位置是电枢表面电流分布的分界线。
11、交轴电枢反应的影响:①使气隙磁场发生畸变;②物理中线偏离几何中线;③饱和时具有一定的去磁作用。
12、电刷偏离几何中线时,出现直轴。
13、Ea=CeΦn Te=CTΦIa CT=9.55Ce14、发电机 Ea=U+IaRa电动机 U=Ea+IaRa15、他励发电机的特性(主要掌握外特性U=f(I))曲线向下倾斜原因①U=Ea‐IaRa;随着负载电流I增大,电枢电阻压降 IaRa随之增大,所以U减小。
②交轴电枢反应产生一定的去磁作用;随着负载的增加,气隙磁通Φ和电枢电动势Ea将减小,再加上IaRa的.增大使电压的下降程度增大。
电机学概念以及公式总结
电机学概念以及公式总结电机学是一个研究电动机工作原理和运行特性的学科。
电动机是一种将电能转化为机械能的装置,它是现代工业中不可或缺的设备之一、在电机学中,我们需要掌握一些基本概念和公式来分析和计算电动机的性能。
1.电机概念:(1)励磁:通过电流在电动机的励磁线圈中产生磁场。
(2)动极转子:电机的转子部分,通常由电流产生的磁场与定子磁场相互作用来产生转矩。
(3)定子:电机的静态部分,包括固定的线圈和磁场。
(4)动极转子感应电动势:当动极转子旋转时,转子线圈就会受到磁场的影响,产生感应电动势。
(5)动极转子电感电动势:当动极转子上的线圈传输电流时,就会在线圈中产生感应电动势。
2.电机公式:(1)电动势公式:U=E+I*R,其中U是电源电压,E是感应电动势,I 是电流,R是电阻。
(2) 电动机效率公式:η = (Pout / Pin) * 100%,其中Pout是输出功率,Pin是输入功率。
(3)转矩公式:T=k*I*φ,其中T是转矩,k是转矩系数,I是电流,φ是磁通量。
(4)电流-转速方程:N=(U-E)/k*φ,其中N是转速,U是电源电压,E是感应电动势,k是电机常数,φ是磁通量。
(5) 转矩-转速特性公式:T = (Pout * 60) / (2 * π * N),其中T是转矩,Pout是输出功率,N是转速。
3.电机类型:(1)直流电动机:通过直流电源供电,具有较大的转矩和调速范围。
(2)交流电动机:通过交流电源供电,具有简单的结构和较小的体积。
(3)三相异步电动机:最常用的电动机类型,通过三相交流电源供电。
(4)步进电机:通过脉冲信号驱动,可精确控制转动角度和位置。
4.电机特性:(1)转速特性:描述电机在不同负载下的转速变化情况。
(2)转矩特性:描述电机在不同负载下的输出转矩变化情况。
(3)效率特性:描述电机在不同负载下的能源转换效率。
5.电机控制:(1)转速控制:通过调节电源电压、频率和电流来控制电机转速。
电机学
《电机学》复习重点各章习题为作业题(答案全部要求手写)第一章绪论本章介绍了有关磁场、磁路的基本概念,磁路的基本定律和电机电磁基本关系。
一、电机-能量转换装置,电机的用途广泛,种类很多,按照电机在应用中的能量转换职能来分,电机可以分为下列各类。
(1)将机械功率转换为电功率――发电机。
(2)将电功率转换为机械功率――电动机。
(3)将电功率转换为另一种形式的电功率,又可分为:①输出和输入有不同的电压――变压器;②输出与输入有不同的波形,如将交流变为直流――变流机;③输出与输入有不同的频率――变频机;④输出与输入有不同的相位――移相机。
(4)不以功率传递为主要职能,而在电气机械系统中起调节、放大和控制作用的各种控制电机。
按照所应用的电流种类,电机可以分为直流电机和交流电机。
电机还可以按原理和运动方式来分,同步速度决定于该电机的极数和频率,同步速度的确切意义将在后文说明。
电机可分类如下。
(1)没有固定的同步速度――直流电机。
(2)静止设备――变压器。
(3)作为电动机运行时,速度永远较同步速度为小,作为发电机运行时,速度永远较同步速度为大――异步电机。
(4)速度等于同步速度――同步电机。
(5)速度可以在宽广范围内随意调节,可以从同步速度以下调至同步速度以上――交流换向器电机。
二、磁场、磁路运动电荷(电流)的周围空间存在着一种特殊形态的物质,人们称之为磁场。
在电机和变压器里,常把线圈套装在铁芯上,当线圈中流过电流,在线圈周围的空间就会形成磁场,如图1-1所示,其中铁芯由铁磁材料构成,导磁性能比空气好得多,磁通几乎全部在铁芯中流通,而在空气中只存在少量分散的磁通。
所以在一般工程计算中,电机中的磁场常简化为磁路来处理。
三、磁感应强度(磁通密度)、磁通量磁场的大小和方向可用基本物理量磁感应强度来描述,用符号表示,单位是(特斯拉),是一个矢量。
通过磁场中某一面积的磁感应线数称为通过该面积的磁通量,简称磁通,用符号表示。
电机学
第四节 交流磁路的特点
交流磁路除了会在铁心中产生损耗外,还有以下两 个效应: 1)磁通量随时间变化,在励磁线圈中产生感应电 动势。 2)磁饱和现象会导致电流、磁通和电动势波形畸 变。
本章作业:1.1~1.7
第二章 直流电机
本章主要讨论直流电机的基本结构和工作 原理,讨论直流电机的磁场分布、感应电动 势、电磁转矩、电枢反应及影响,从应用角 度分析直流发电机的运行特性和直流电动机 的工作特性。
电磁转矩
电磁功率
电磁转矩和电磁功率在机电能量转换中起重要 用,而它们都是通过气隙磁场的作用而产生
总结
第一节 磁路的基本定律
• 电机是进行机电能量转换的装置 • 机电能量转换的媒介是磁场,磁场的路径称
为磁路。在工程中,通常将磁场问题简化为 磁路问题。
一. 磁场的几个常用量
磁感应强度(又称磁通密度)B —— 表征磁场强弱 及方向的物理量。单位:Wb/m2
磁滞回线——当H在Hm和- Hm 之间反复变化时,呈现磁滞现
象的B-H闭合曲线,称为磁滞
回线。
3、基本磁化曲线
对同一铁磁材料,选择不同的Hm反复磁化,得到不同 的磁滞回线。将各条回线的顶点连接起来,所得曲线称为 基本磁化曲线。
三、铁磁材料
1、软磁材料
2、硬磁材料
四、铁心损耗
1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩 擦而消耗的能量。
2.1 直流电机的基本工作原理和结构
2.1.1直流电机的主要结构
第二类问题求解:给定磁动势大小,求磁通和磁密
假定一个磁通值,计算出相应得磁动势,迭代完成 假定一个磁通φ’
计算出磁动势F’
| FF' |
电机学(张广溢)3,4,5章完全答案
第 3 章3.1 三相变压器组和三相心式变压器在磁路结构上各有什么特点?答:三相变压器组磁路结构上的特点是各相磁路各自独立,彼此无关;三相心式变压器在磁路结构上的特点是各相磁路相互影响,任一瞬间某一相的磁通均以其他两相铁心为回路。
3.2三相变压器的联结组是由哪些因素决定的?答:三相变压器的联结组是描述高、低压绕组对应的线电动势之间的相位差,它主要与(1)绕组的极性(绕法)和首末端的标志有关;(2)绕组的连接方式有关。
3.4 Y ,y 接法的三相变压器组中,相电动势中有三次谐波电动势,线电动势中有无三次谐波电动势?为什么?答:线电动势中没有三次谐波电动势,因为三次谐波大小相等,相位上彼此相差003601203=⨯,即相位也相同。
当采用Y ,y 接法时,线电动势为两相电动势之差,所以线电动势中的三次谐波为零。
以B A ,相为例,三次谐波电动势表达式为03.3.3.=-=B A AB E E E ,所以线电动势中没有三次谐波电动势。
3.5变压器理想并联运行的条件有哪些?答:变压器理想并联运行的条件有:(1) 各变压器高、低压方的额定电压分别相等,即各变压器的变比相等;(2) 各变压器的联结组相同;(3) 各变压器短路阻抗的标么值Z k *相等,且短路电抗与短路电阻之比相等。
上述三个条件中,条件(2﹚必须严格保证。
3.6 并联运行的变压器,如果联结组不同或变比不等会出现什么情况? 答:如果联结组不同,当各变压器的原方接到同一电源,副方各线电动势之间至少有30°的相位差。
例如Y ,y0和Y ,d11两台变压器并联时,副边的线电动势即使大小相等,由于对应线电动势之间相位差300,也会在它们之间产生一电压差U ∆, 如图所示。
其大小可达U ∆=U N 22sin15°=0.518U N 2。
这样大的电压差作用在变压器副绕组所构成的回路上,必然产生很大的环流(几倍于额定电流),它将烧坏变压器的绕组。
第三章三相变压器_电机学讲解
绕组名称
首端
末端
中性点
高压绕组
A,B,C
X,Y,Z
O
低压绕组
a,b,c
x,y,z
o
三相电力变压器广泛采用星形和三角形联接
2、联接组 单相变压器的高低压绕组都绕在同一个铁心柱
上,它们被同一个主磁通所交链。在高低压绕组 中的感应的电动势的相位关系只有两种可能:
EA (EAX )和Ea (Eax )同相位 或
对于单相变压器而言,由 于磁化曲线的非线性,可 以近似认为:
电流为正弦波时,磁通含 三次谐波;
反之,磁通为正弦波时, 电流含三次谐波。
正弦波电流产生的磁通波形
三、三相变压器绕组联接法和磁路系统对空载 电动势波形的影响
Yy联接的三相变压器 在三相系统中,三相电流的三次谐波在时
间上同相位,在一次侧为Y接的三相绕组中, 三次谐波不能流通,即励磁电流不含有三次谐 波而接近正弦波。
三相变压器
3.7 三相变压器的磁路、联接组、电动势波形
三相变压器的磁路系统 三相变压器的电路系统——联接组 三相变压器绕组联接法和磁路系统对空载电动势波形的影响相变压器的磁路、联接组、电动势波形
一、三相变压器的磁路系统
三相变压器按磁路可分为组式变压器和心式变 压器两类。
A
a
b O
c
C
B
Yd11联接组
4. Dy5联接组(求绕组的联接) (1)作出Dy5联接组的相量图 (2)将高压侧绕组联接成三角形接法 (3)根据相量图,联接低压侧绕组
A
ABC
c
b O
a
C
B
X YZ xyz
abc
Yy联接组号有0、2、4、6、8、10共六个偶数 联接组号,Yd联接法共有1、3、5、7、9、11六个 奇数联接组号。
电机学概念公式范文
电机学概念公式范文电机学是一门研究电机工作原理、结构和应用的学科。
在电机学中,有一些重要的概念和公式,下面将详细介绍一些常用的电机学概念和公式。
1.电磁感应定律电磁感应定律是描述电磁场和电流之间相互作用的基本定律。
它有两种形式:(1)法拉第电磁感应定律:当一个导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
公式:ε = - dΦ/dt其中,ε是感应电动势,Φ是磁通量,t是时间。
(2)楞次定律:任何变化的磁场都引起周围的闭合电路中感应电动势,这个感应电动势的方向总是使其自身产生的磁通量变化降低。
公式:ε = -N dΦ/dt其中,N是线圈的匝数。
2.物质力矩和电磁力矩物质力矩和电磁力矩是描述力矩的重要概念。
(1)物质力矩:当电流通过导体时,导体感受到力矩的作用。
物质力矩可以通过以下公式计算:公式:T = BILsinθ其中,T是物质力矩,B是磁感应强度,I是电流,L是导体长度,θ是导体与磁场的夹角。
(2)电磁力矩:当传导电流的导体处于磁场中时,磁场会施加一个力矩使导体转动。
电磁力矩可以通过以下公式计算:公式:T = NBIlsinθ其中,T是电磁力矩,N是线圈的匝数,B是磁感应强度,I是电流,l是线圈长度,θ是线圈与磁场的夹角。
3.电磁转矩电磁转矩是电机中最基本的概念之一,它描述了电机在电流通过导体时产生的转矩大小。
电磁转矩可以通过以下公式计算:公式:T=kφI其中,T是电磁转矩,k是比例常数,φ是磁通量,I是电流。
4.功率和效率电机的功率和效率是电机性能评估的重要指标。
(1)功率:功率表示单位时间内做的功。
电机的功率可以通过以下公式计算:公式:P=VI其中,P是功率,V是电压,I是电流。
(2)效率:效率表示输入和输出能量的比率。
电机的效率可以通过以下公式计算:公式:η = (Pout/Pin) x 100%其中,η是效率,Pout是输出功率,Pin是输入功率。
5.转速和转矩电机的转速和转矩是电机运行状态的两个重要指标。
电机基础学 3.7
3.7三相感应电动机的机械特性3.7.1电磁转矩三种表达式 1、物理表达式感应电动机电磁转矩的物理表达式描述了电磁转矩与主磁通、转子有功电流的关系。
T =P e Ω1=m 1E 2′I 2′cos φ2Ω1=pm 12πf 14.44f 1N 1k w 1ϕm I 2′cosφ2=4.44pm 1N 1k w 1ϕm I 2′cosφ2=C T ϕm I 2′cosφ2即T =C T ϕm I 2′cosφ2式中,C T=4.44pm 1N 1k w 12π称为转矩常数,由电动机结构决定。
2、参数表达式感应电动机电磁转矩的参数表达式描述了电磁转矩与常数的关系,运用感应电动机的简化电路其推导过程如下。
因为,I 2′=U 1(R 1+R 2′s)2+(X 1+X 2′)2所以电磁功率P e 为;P e =m 1I 2′2R 2′=m 1U 12R 2′s(R 1+R 2′s )2+(X 1+X 2′)2电磁转矩为T =P e Ω1=m 1pU 12R 2′s2πf 1[(R 1+R 2′s )2+(X 1+X 2′)2]在电压U 1、频率f 1为常数时,电动机的参数可以认为是常数,电磁转仅与s 有关,其关系曲线T=f(s),如图3.16所示,第Ⅰ象限,旋转磁场的转向与转子转向一致,而0<n <n 1,转差率0<s <1。
电磁转矩T 及转子转速n均为正,电动机处于正向电动运行状态。
第Ⅱ象限,旋转磁场的转向与转子转向一致,但n >n 1,故s <0;T <0,n >0,电动机处于制动运行状态,称为回馈制动。
第Ⅲ象限,与正向电动运行状相似,旋转磁场的转向与转子转向一致,而0< n < n 1 ,转差率s 仍在0~1之间,电磁转矩T 与转速n均为负,同方向,称为反向电动运行状态。
第Ⅳ象限,旋转磁场的转向与转子转向相反,n 1>0,n <0,转差率s >1。
此时T >0,n <0,电动机处于制动状态,称为反接制动。
《电机学》复习要点
第 1 页/共 6 页一、主要内容磁场、磁感应强度,磁场强度、磁导率,全电流定律,磁性材料的B-H 曲线,铁心损耗与磁场储能,电感,电磁感应定律,电磁力与电磁转矩。
二、基本要求结实控制以上概念对本课程学习是必须的。
三、注重点1、欧姆定律:作用于磁路上的磁动势等于磁阻乘以磁通m F Φ=Λ,1m m S R lμΛ== 2、2222m SfN SN l X L N l μμωωπω==Λ==3、随着铁心磁路饱和的增强,铁心磁导率µFe 减小,相应的磁导、电抗也要减小。
一、主要内容额定值,感应电动势、电压变比,励磁电流,电路方程、等效电路、相量图,绕组归算,标幺值,空载实验、短路实验及参数计算,电压变化率与效率。
三相变压器的联接组判别。
三相变压器绕组的联接法和磁路系统对相电势波形的影响。
二、基本要求熟练控制变压器的基本电磁关系,变压器的各种平衡关系。
三种分析手段:基本方程式、等效电路和相量图。
正方向决定,基本方程式、相量图和等效电路间的一致性。
理解变压器绕组的归算原理与计算。
熟练控制标幺值的计算及数量关系。
认识变压器参数的测量主意,运行特性分析主意与计算。
控制三相变压器的联接组表示与决定。
三、注重点1、变压器的额定值对三相变压器来说电压、电流均为线值,功率是三相视在功率,计算时一定要注重。
三相变压器参数计算时,必须换成单相数值,最后结果再换成三相值。
2、励磁阻抗的物理意义,与频率和铁心饱和度的关系。
3、变压器的电势平衡、磁势平衡和功率平衡(功率流程图)。
4、变压器参数计算(空载实验普通在低压侧做,短路实验普通在高压侧做。
在哪侧做实验,测出来的就是哪侧的数值,注重折算!)5、变压器的电压调节率和效率的计算(负载因数1I β*=)。
6、单相变压器中励磁电流、主磁通和感应电势的波形关系,三相变压器的铁心结构和电势波形。
7、联接组别的判别。
8、变压器负载与二次侧接线方式要一致,若不一致,必须将负载∆-Y 变换。
电机学知识要点
认识电机一、电机的概念与分类1.电机概念电机是借助于电磁原理(原理)工作的能量转换(功能)设备。
只有给电机输入能量,它才会输出能量,并且在其输入和输出的能量中至少应该有一方是电能。
可见“电机”一词本质上是电磁机的简称。
2.电机种类电机分类方法很多,这里按其功能以及电能性质等综合地将其分成以下种类: 变压器:是利用电磁原理将交流电能转换成同频但电压等级不同的交流电能的设备。
发电机:是利用电磁原理将机械能转换成电能的设备。
其中,将机械能转换成直流电能的发电机称为直流发电机;将机械能转换成交流电能的发电机称为交流发电机。
交流发电机又可分成同步发电机(转速pfn n 601==同步速)和异步发电机(转速1n n >同步速),实际中以同步发电机最为通用,而异步发电机则很少使用。
电动机:是利用电磁原理将电能转换成机械能的设备。
它可分成直流电动机与交流电动机。
交流电动机又可分成异步电动机(转速1n n <同步速)和同步电动机,实际中以异步电动机最为普及,同步电动机相对较少。
无论发电机还是电动机都与机械能有关,这就要求它们的结构中有运动部件,为降低这两类电机的制造成本,运动部件通常都作旋转运动,称为转子;相应地固定部件就称为定子;而把发电机和电动机统称为旋转电机。
变压器不涉及机械能,所以它是静止电器。
要点:电机的基本作用原理是电磁原理,作用是能量转换;各类电机的具体功能。
二、电机的损耗、发热与冷却电机是能量转换设备而非能源,所以应该用单位时间内转换的能量即功率来度量。
其中,单位时间内输入电机的能量称为输入功率,用P 1表示;单位时间内电机输出的能量称为输出功率,用P 2表示。
P 1与P 2的差值称为功率损耗,用ΔP 或p ∑表示,即有ΔP=21P P -,功率损耗乘以工作时间就是能量损耗,这两种损耗通常不加区分地统称为电机的损耗。
P 2与P 1的比值称为电机的效率,用η表示,即有η=12/P P 。
电机学_精品文档
《电机学》课程学习指导资料编写曾成碧适用专业: 电气工程及自动化使用层次: 网络学院专科学生四川大学网络教育学院二003年11月《电机学》课程学习指导资料编写: 曾成碧审稿(签字):审批(主管教学负责人签字):本课程学习指导资料根据该课程教学大纲的要求, 参考现行教材《电机学》(严震池主编, 中国电力出版社出版, 2000年)以及课程学习光盘, 并结合远程网络业余教育的教学特点和教学规进行编写, 适用于电气工程专业专科学生。
第一部分课程的学习目的及总体要求一、课程的学习目的《电机学》是电气工程类专业的一门主干课和必修技术基础课, 通过这门的学习, 使学生掌握各类电机的运行性能和实验技巧, 一方面为学习本专业的有关专业课准备必要的基础知识, 另一方面为学生在今后从事专业技术工作中, 保证电机工作稳定、可靠和经济运行打下扎实基础。
二、应先修课程: 电路、磁路、高等数学、线性代数。
熟悉各种电路、磁路参数的物理意义及其规交流电路分析(含相量图)及计算(含复数运算)、电磁感应原理、电磁力定及特磁性物质的磁化性能等;掌握微分、一阶线性微分方程、傅立叶级数、线性代数的矩阵运算。
三、电气工程专业的后续课程有: 发电厂电气主系统、电力系统基础、电力系统继电保护、电力系统自动装置、高电压技术、同步电机励磁系统等。
四、课程的总体要求1、《电机学》是理论性、实践性、综合性均较强的一门课程, 通过本课程的学习, 使学生在理论基础、基本知识和基本技能方面得到较好的培养和锻炼。
2、全面深入理解各种电机的电磁作用原理和机、电能量转换关系, 既要掌握各种电机的共性, 又要掌握各种电机的个性和特点;3、系统的获得电机学中电动势平衡、磁动势平衡和转矩平衡关系。
能应用自如地用基本方程、相量图和等效电路三个工具来分析奠基的各种运行状态、并掌握的运行特性4、掌握这种电机主要参数的物理意义及其对运行性能的影响5、获得用工程观点来处理工程实际问题的初步锻炼通过实验, 应具备掌握电机的基本试验技能和操作技能第二部分课程学习的基本要求及重点难点内容分析第一篇变压器本篇的主要内容:变压器的基本工作原理与结构;单相变压器运行原理与运行特性;三相变压器;变压器运行;其它变压器;(1)1.本篇学习要求应熟悉的内容:熟悉变压器的基本工作原理、结构及分类;变压器的额定容量、额定电压和额定电流的关系;三相变压器的磁路系统、绕组连接方式和铁心结构对空载电势波形的影响;变压器的不对称运行;三绕组变压器;自耦变压器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
25
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
26
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
27
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
28
9
3.7 直流电动机的运行特性
二、串励直流电动机的运行特性
转速调整率:
n1/ 4 -nN n= 100% nN
《电机学》 第三章 直流电机 10
3.7 直流电动机的运行特性
二、串励直流电动机的运行特性
特点:随着转矩的增加转速迅速下降
《电机学》 第三章 直流电机
11
3.7 直流电动机的运行特性
注意:并励电动机在运行中 励磁绕组绝对不能断开
《电机学》 第三章 直流电机
6
3.7 直流电动机的运行特性
一、并励直流电动机的运行特性
U UN
R f 常值
n f (Te )
饱和时曲线下降程度降低并可能水平或上翘
《电机学》 第三章 直流电机
7
3.7 直流电动机的运行特性
二、串励直流电动机的运行特性
《电机学》 第三章 直流电机
20
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
21
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
22
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
23
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
n, Te , f ( P2 ) U UN
n U I a ( Ra R f ) Ce K f I f Ra R f U n Ce K f I a Ce K f
n f (Ia )
串励:I a I f I
K f I f K f Ia
n U I a ( Ra R f ) Ce
《电机学》 第三章 直流电机
3%~8% 恒速
3
3.7 直流电动机的运行特性
一、并励直流电动机的运行特性
实际
略微下降
转矩与电流大致线性关系
《电机学》 第三章 直流电机
4
3.7 直流电动机的运行特性
一、并励直流电动机的运行特性
《电机学》 第三章 直流电机
5
3.7 直流电动机的运行特性
一、并励直流电动机的运行特性
《电机学》 第三章 直流电机
8
3.7 直流电动机的运行特性
二、串励直流电动机的运行特性
U UN Te f ( I a )
轻载时,磁路不饱和时
2 Te CT K f I f I a CT K f I a
负载增加,磁路饱和时
近似常值
' Te CT I a
《电机学》 第三章 直流电机
三、复励直流电动机的运行特性
通常是积复励,既有并励绕组又存在复励绕组
《电机学》 第三章 直流电机
12
3.7 直流电动机的运行特性
《电机学》 第三章 直流电机
13
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
14
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
15
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
16
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
17
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
18
3.8 直流电动机的起动、调速和制动
《电机学》 第三章 直流电机
19
3.8 直流电动机的起动、调速和制动
电机学
1
3.7 直流电动机的运行特性
一、并励直流电动机的运行特性
n, Te , f ( P2 ) n, Te , f ( I a )
《电机学》 第三章 直流电机 2
3.7 直流电动机的运行特性
一、并励直流电动机的运行特性
n f (Ia )
转速调整率:
n0 -nN n= 100% nN