(精校版)2019年北京卷理数高考试题文档版(无答案)

合集下载

2019北京卷理科数学高考真题

2019北京卷理科数学高考真题

⎧5(B )4(A ) 15(D ) 67m2019 年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共 5 页,150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数 z =2+i ,则 z ⋅ z =(A ) 3(B ) 5 (C )3 (D )5(2)执行如图所示的程序框图,输出的 s 值为(A )1 (B )2 (C )3 (D )4(3)已知直线 l 的参数方程为 ⎨x = 1 +3t, ⎩ y = 2 + 4t (t 为参数),则点(1,0)到直线 l 的距离是25(C )5(4)已知椭圆 x 2 y 2+ a 2 b 21 = 1 (a >b >0)的离心率为 ,则2(A )a 2=2b 2(B )3a 2=4b 2 (C )a =2b (D )3a =4b(5)若 x ,y 满足 | x |≤ 1- y ,且 y ≥−1,则 3x+y 的最大值为(A )−(B )1 (C )5 (D )7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足 m 2− 1= 5 2Elg 1 ,E2r其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为(A)1010.1(B)10.1(C)lg10.1(D)10−10.1uuur uu u uuur uuur uuur(7)设点A,B,C不共线,则“AB与AC的夹角为锐角”是“|AB+AC|>|BC|”的(A)充分而不必要条件(C)充分必要条件(B)必要而不充分条件(D)既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是(A)①(B)②(C)①②(D)①②③第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2019北京卷理科数学高考真题【高考真题】

2019北京卷理科数学高考真题【高考真题】

2019年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数z =2+i ,则z z ⋅=(A (B (C )3(D )5(2)执行如图所示的程序框图,输出的s 值为(A )1(B )2(C )3(D )4(3)已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是(A )15(B )25(C )45(D )65(4)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则(A )a 2=2b 2(B )3a 2=4b2(C )a =2b (D )3a =4b(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 (A )−7(B )1(C )5(D )7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 (A )1010.1(B )10.1(C )lg10.1(D )10−10.1(7)设点A ,B ,C 不共线,则“AB u u u r 与AC uuur 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 (A )①(B )②(C )①②(D )①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年高考理数真题试卷(北京卷)

2019年高考理数真题试卷(北京卷)

2019年高考理数真题试卷(北京卷)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(共8题;共40分)1.(5分)已知复数z=2+i,则z·z−=()A.√3B.√5C.3D.52.(5分)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.43.(5分)已知直线l的参数方程为{x=1+3ty=2+4t(t为参数),则点(1,0)到直线l的距离是()A.15B.25C.45D.654.(5分)已知椭圆x2a2+y2b2=1(a>b>0)的离心率为12,则()A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b 5.(5分)若x,y满足|x|≤1-y,且y≥-1.则3x+y的最大值为()A .-7B .1C .5D .76.(5分)在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足m 2-m 1= 52lg E1E 2,其中星等为m k 的星的亮度为E k (k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1B .10.1C .lg10.1D .10-10.17.(5分)设点A ,B ,C 不共线,则“ AB ⃗⃗⃗⃗⃗⃗ 与 AC ⃗⃗⃗⃗⃗ 的夹角为锐角”是“| AB ⃗⃗⃗⃗⃗⃗ + AC ⃗⃗⃗⃗⃗ |>| BC ⃗⃗⃗⃗⃗ |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(5分)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任一点到原点的距离都不超过 √2 ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A .①B .②C .①②D .①②③二、填空题共6小题,每小题5分,共30分。

【数学】2019年高考真题——北京卷(理)(精校版)

【数学】2019年高考真题——北京卷(理)(精校版)

2019年普通高等学校招生全国统一考试(北京卷)理科数学一、选择题1.已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B 等于( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2}答案 A解析 ∵A ={x ||x |<2}={x |-2<x <2}, ∴A ∩B ={0,1}. 故选A.2.在复平面内,复数11-i 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D 解析11-i =1+i (1-i )(1+i )=12+i 2,其共轭复数为12-i 2,对应的点位于第四象限.故选D.3.执行如图所示的程序框图,输出的s 值为( )A.12 B.56 C.76 D.712答案 B解析 第一步:s =1-12=12,k =2,k <3;第二步:s =12+13=56,k =3,输出s .故选B.4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展作出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于12 2.若第一个单音的频率为f,则第八个单音的频率为()A.32f B.322f C.1225f D.1227f答案 D解析由题意知,这十三个单音的频率构成首项为f、公比为122的等比数列,则第八个单音的频率为(122)7f=1227f.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2 C.3 D.4答案 C解析由三视图得到空间几何体,如图所示,则P A⊥平面ABCD,平面ABCD为直角梯形,P A=AB=AD=2,BC=1,所以P A⊥AD,P A⊥AB,P A⊥BC.又BC⊥AB,AB∩P A=A,AB,P A⊂平面P AB,所以BC⊥平面P AB.又PB⊂平面P AB,所以BC⊥PB.在△PCD中,PD=22,PC=3,CD=5,所以△PCD为锐角三角形.所以侧面中的直角三角形为△P AB,△P AD,△PBC,共3个.故选C.6.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件 答案 C解析 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2, 即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 又a ,b 均为单位向量,所以a 2=b 2=1, 所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |.所以“|a -3b |=|3a +b |”是“a ⊥b ”的充要条件. 故选C.7.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( ) A .1 B .2 C .3 D .4 答案 C解析 由题意知,点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离⎝⎛⎭⎪⎫d 1=21+m 2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3. 故选C.8.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A答案 D解析 若点(2,1)∈A ,则不等式x -y ≥1显然成立,且同时要满足⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,即⎩⎪⎨⎪⎧a >32,a ≥0,解得a >32.即点(2,1)∈A ⇒a >32,其等价命题为a ≤32⇒点(2,1)∉A .故选D. 二、填空题9.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________. 答案 a n =6n -3(n ∈N *)解析 方法一 设公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴通项公式a n =a 1+(n -1)d =6n -3(n ∈N *). 方法二 设公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6.∵a 1=3,∴通项公式a n =6n -3(n ∈N *).10.在极坐标系中,直线ρcos θ+ρsin θ=a (a >0)与圆ρ=2cos θ相切,则a =________. 答案2+1解析 直线的直角坐标方程为x +y =a ,圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1,圆心C (1,0),半径r =1. ∵直线与圆相切,∴d =|1-a |12+12=1,∴|a -1|=2.又a >0,∴a =2+1.11.设函数f (x )=cos ⎝⎛⎭⎫ωx -π6(ω>0).若f (x )≤f ⎝⎛⎭⎫π4对任意的实数x 都成立,则ω的最小值为________. 答案 23解析 ∵f (x )≤f ⎝⎛⎭⎫π4对任意的实数x 都成立,∴当x =π4时,f (x )取得最大值,即f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫π4ω-π6=1, ∴π4ω-π6=2k π,k ∈Z , ∴ω=8k +23,k ∈Z .∵ω>0,∴当k =0时,ω取得最小值23.12.若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________. 答案 3解析 由条件得⎩⎪⎨⎪⎧x +1≤y ,y ≤2x ,即⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0, 作出可行域,如图中阴影部分所示.设z =2y -x ,即y =12x +12z ,作直线l 0:y =12x 并向上平移,显然当l 0过点A (1,2)时,z 取得最小值,z min =2×2-1=3.13.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________. 答案 f (x )=sin x (答案不唯一)解析 设f (x )=sin x ,则f (x )在⎣⎡⎦⎤0,π2上是增函数,在⎣⎡⎦⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin 0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.14.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________. 答案3-1 2解析 方法一 双曲线N 的渐近线方程为y =±n m x ,则nm =tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b 2=1,得x 2=a 2b 23a 2+b2.如图,设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a 2-⎝⎛⎭⎫b 2a 22=0,解得b 2a2=23-3.∴椭圆M 的离心率e 2满足e 22=1-b 2a2=4-23.∴e 2=3-1.方法二 双曲线N 的渐近线方程为y =±nm x ,则nm=tan 60°= 3. 又c 1=m 2+n 2=2m ,∴双曲线N 的离心率为c 1m=2.如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点,设正六边形的边长为1,则|FC |=2c 2=2,即c 2=1.又E 为椭圆M 上一点,则|EF |+|EC |=2a ,即1+3=2a , ∴a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.三、解答题15.在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2,所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.16.如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC =5,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值; (3)证明:直线FG 与平面BCD 相交. (1)证明 在三棱柱ABC -A 1B 1C 1中, 因为CC 1⊥平面ABC , 所以四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, 所以AC ⊥EF . 又AB =BC ,所以AC ⊥BE ,又BE ,EF ⊂平面BEF ,BE ∩EF =E , 所以AC ⊥平面BEF .(2)解 由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC , 所以EF ⊥平面ABC . 因为BE ⊂平面ABC , 所以EF ⊥BE .如图,以E 为原点,EA 所在直线为x 轴,EB 所在直线为y 轴,EF 所在直线为z 轴,建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),E (0,0,0),F (0,0,2),G (0,2,1). 所以BC →=(-1,-2,0),BD →=(1,-2,1). 设平面BCD 的法向量为n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,即⎩⎪⎨⎪⎧-x 0-2y 0=0,x 0-2y 0+z 0=0.令y 0=-1,则x 0=2,z 0=-4. 于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角, 所以其余弦值为-2121. (3)证明 由(2)知平面BCD 的法向量为n =(2,-1,-4), FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.17.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系.解 (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的部数是200×0.25=50. 故所求概率为502 000=0.025.(2)设事件A 为“从第四类电影中随机选出的电影获得好评”,事件B 为“从第五类电影中随机选出的电影获得好评”.故所求概率为P (A B +A B )=P (A B )+P (A B )=P (A )·(1-P (B ))+(1-P (A ))P (B ).由题意知P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)D (ξ1)>D (ξ4)>D (ξ2)=D (ξ5)>D (ξ3)>D (ξ6). 18.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞.19.已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意知Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2.直线P A 的方程为y -2=y 1-2x 1-1(x -1),令x =0,得点M 的纵坐标为yM =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为yN =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →,得λ=1-yM ,μ=1-yN . 所以1λ+1μ=11-yM +11-yN=x 1-1(k -1)x 1+x 2-1(k -1)x 2 =1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k2+2k -4k 21k 2=2.所以1λ+1μ为定值.20.设n 为正整数,集合A ={α|α=(t 1,t 2,…,t n ),t k ∈{0,1},k =1,2,…,n }.对于集合A 中的任意元素α=(x 1,x 2,…,x n )和β=(y 1,y 2,…,y n ),记M (α,β)=12[(x 1+y 1-|x 1-y 1|)+(x 2+y 2-|x 2-y 2|)+…+(x n +y n -|x n -y n |)].(1)当n =3时,若α=(1,1,0),β=(0,1,1),求M (α,α)和M (α,β)的值;(2)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M (α,β)是奇数;当α,β不同时,M (α,β)是偶数,求集合B 中元素个数的最大值; (3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M (α,β)=0.写出一个集合B ,使其元素个数最多,并说明理由. 解 (1)因为α=(1,1,0),β=(0,1,1),所以M (α,α)=12[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2,M (α,β)=12[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.(2)设α=(x 1,x 2,x 3,x 4)∈B , 则M (α,α)=x 1+x 2+x 3+x 4.由题意知x 1,x 2,x 3,x 4∈{0,1},且M (α,α)为奇数, 所以x 1,x 2,x 3,x 4中1的个数为1或3,所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}. 将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1). 经验证,对于每组中两个元素α,β,均有M (α,β)=1. 所以每组中的两个元素不可能同时是集合B 中的元素. 所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)对于rk =(z k 1,z k 2,…,z kn )∈B (k =1,2,3,…,n ),z kk =1,其它位置全是0;rn +1=(0,0,…,0),可以验证M (ri ,rj )=0(i ,j =1,2,…,n +1)且i ≠j .下面证明:当B 中元素个数大于等于n +2时,总存在α,β∈B ,M (α,β)≠0, 设rk =(z k 1,z k 2,…,z kn )∈B (k =1,2,3,…,n +1,…,m )(m ≥n +2); 则S k =z k 1+z k 2+…+z kn (k =1,2,3,…,n ),可以得到S 1+S 2+…+S m ≥0+n +2.C k =z 1k +z 2k +…+z mk (k =1,2,3,…,n ),可以得到C 1+C 2+…+C n ≥n +2,所以存在C t ≥2,t ∈{1,2,3,…,n };即存在α,β∈B (α≠β),使得α,β在同一个位置同为1, 即M (α,β)≥1≠0,矛盾. 所以B 中元素个数最多为n +1. 一、选择题1.已知复数z =2+i ,则z · 等于( ) A. B. C .3 D .5 答案 D解析 ∵z =2+i ,∴ =2-i ,z · =(2+i)(2-i)=5. 故选D.2.执行如图所示的程序框图,输出的s 值为( )A.1 B.2 C.3 D.4答案 B解析执行程序框图,k=1,s==2;k=2,s==2;k=3,s==2,跳出循环.输出的s=2.故选B.3.已知直线l的参数方程为=+,=+(t为参数),则点(1,0)到直线l的距离是()A. B. C. D..答案 D解析由题意得,直线l的普通方程为4x-3y+2=0,则点(1,0)到直线4x-3y+2=0的距离d==.故选D.4.已知椭圆+=1(a>b>0)的离心率为,则()A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b答案 B解析由题意,得=,∴=,又a2=b2+c2,∴=,=,∴4b2=3a2.故选B.5.若x,y满足|x|≤1-y,且y≥-1,则3x+y的最大值为()A.-7 B.1 C.5 D.7答案 C解析令z=3x+y,画出约束条件--,即-,,-或--,,-表示的平面区域,如图中阴影部分(含边界)所示,作出直线y=-3x,并平移,数形结合可知,当平移后的直线过点C(2,-1)时,z=3x+y取得最大值,z max=3×2-1=5,故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1 C.lg 10.1 D.10-10.1答案 A解析由题意可设太阳的星等为m2,太阳的亮度为E2,天狼星的星等为m1,天狼星的亮度为E1,则由m2-m1=lg ,得-26.7+1.45=lg ,则lg =-25.25,∴lg=-10.1,lg =10.1,∴=1010.1.故选A.7.设点A,B,C不共线,则“与的夹角为锐角”是“|+|>||”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析若|+|>||,则|+|2>||2,2+2+2·>||2,∵点A,B,C不共线,∴线段AB,BC,AC构成一个△ABC,设内角A,B,C对应的边分别为a,b,c,则由平面向量的数量积公式及余弦定理可知,2+2+2·>||2,即c2+b2+2bc·cos A>c2+b2-2bc·cos A,∴cos A>0,又A,B,C三点不共线,故与的夹角为锐角.反之,易得当与的夹角为锐角时,|+|>||,∴“与的夹角为锐角”是“|+|>||”的充要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③答案 C解析曲线的方程x2+y2=1+|x|y可看成关于y的一元二次方程y2-|x|y+x2-1=0,由题图可知该方程必有两个不相等的实根,∴Δ=|x|2-4(x2-1)>0,∴x2<,满足条件的整数x可取-1,0,1.当x=-1时,y=0或1,∴曲线C经过的整点有(-1,0),(-1,1);当x=0时,y=-1或1,∴曲线C经过的整点有(0,-1),(0,1);当x=1时,y=0或1,∴曲线C经过的整点有(1,0),(1,1).故曲线C恰好经过6个整点,①正确;∵x2+y2=1+|x|y≤1+,∴x2+y2≤2,∴≤,当且仅当|x|=y,即=,=或=-,=时取等号,则曲线上的点到原点的最大距离为,故②正确;顺次连接(-1,0),(-1,1),(0,1),(1,1),(1,0),(0,-1),(-1,0),所围成的区域如图中阴影部分所示,其面积为3,显然曲线C所围成的“心形”区域的面积要大于3,故③不正确,故选C. 二、填空题9.函数f(x)=sin22x的最小正周期是________.答案解析∵f(x)=sin22x=,∴f(x)的最小正周期T==.10.设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=________,S n的最小值为________.答案0-10解析设等差数列{a n}的公差为d,∵即∴∴a5=a1+4d=0,∵S n=na1+d=(n2-9n)=,∴当n=4或n=5时,S n取得最小值,最小值为-10.11.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.答案40解析如图所示的正方体ABCD-A1B1C1D1的棱长为4,去掉四棱柱MQD1A1-NPC1B1(其底面是一个上底为2,下底为4,高为2的直角梯形)所得的几何体为题中三视图对应的几何体,故所求几何体的体积为43-×(2+4)×2×4=40.12.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 答案若l⊥m,l⊥α,则m∥α(答案不唯一)解析若l⊥α,l⊥m,则m∥α,显然①③⇒②正确;若l⊥m,m∥α,则l∥α,l与α相交但不垂直都可以,故①②⇒③不正确;若l⊥α,m∥α,则l垂直于α内所有直线,在α内必存在与m平行的直线,所以可推出l⊥m,故②③⇒①正确.13.设函数f(x)=e x+a e-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是________.答案-1(-∞,0]解析∵f(x)为奇函数,∴f(-x)=-f(x),e-x+a e x=-e x-a e-x,∴(1+a)e-x+(1+a)e x=0,∴a=-1;∵f(x)在R上单调递增,∴f′(x)=e x-a e-x=≥0,∴e2x-a≥0,a≤0,故a 的取值范围是(-∞,0].14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.答案13015解析①顾客一次购买草莓和西瓜各1盒,总价为60+80=140(元),又140>120,所以优惠10元,顾客实际需要付款130元.②设顾客一次购买的水果总价为m元,由题意知,当0<m<120时,x=0,当m≥120时,(m-x)×80%≥m×70%,得x≤对任意m≥120恒成立,又≥15,所以x的最大值为15.三、解答题15.在△ABC中,a=3,b-c=2,cos B=-.(1)求b,c的值;(2)求sin(B-C)的值.解(1)由余弦定理b2=a2+c2-2ac cos B,得b2=32+c2-2×3×c×.因为b=c+2,所以(c+2)2=32+c2-2×3×c×,解得c=5.所以b=7.(2)由cos B=-,得<B<π,sin B=.由正弦定理,得sin C=sin B=.在△ABC中,∠B是钝角.所以∠C为锐角.所以cos C==.所以sin(B-C)=sin B cos C-cos B sin C=×+×=.16.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,AD⊥CD,AD∥BC,P A=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且=.(1)求证:CD⊥平面P AD;(2)求二面角F-AE-P的余弦值;(3)设点G在PB上,且=.判断直线AG是否在平面AEF内,说明理由.(1)证明因为P A⊥平面ABCD,所以P A⊥CD.又因为AD⊥CD,AD∩P A=A,AD,P A⊂平面P AD,所以CD⊥平面P AD.(2)解过A作AD的垂线交BC于点M.因为P A⊥平面ABCD,所以P A⊥AM,P A⊥AD.如图,以A为坐标原点,,,的方向为正方向,建立空间直角坐标系A-xyz,则A(0,0,0),B(2,-1,0),C(2,2,0),D(0,2,0),P(0,0,2).因为E为PD的中点,所以E(0,1,1).所以=(0,1,1),=(2,2,-2),=(0,0,2).所以==,=+=.设平面AEF的法向量为n=(x,y,z),则即令z=1,则y=-1,x=-1.于是n=(-1,-1,1).又因为平面P AE的法向量为p=(1,0,0),所以cos〈n,p〉==-.由题意知,二面角F-AE-P为锐二面角,所以其余弦值为.(3)解直线AG在平面AEF内.因为点G在PB上,且=,=(2,-1,-2),所以==,=+=.由(2)知,平面AEF的法向量n=(-1,-1,1),所以·n=-++=0.所以直线AG在平面AEF内.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1 000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2 000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2 000元的人数有变化?说明理由.解(1)由题意知,样本中仅使用A的学生有18+9+3=30(人),仅使用B的学生共有10+14+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为=0.4.(2)X的所有可能值为0,1,2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1 000元”.由题设知,事件C,D相互独立,且P(C)==0.4,P(D)==0.6.所以P(X=2)=P(CD)=P(C)P(D)=0.24,P(X=1)=P(C∪D)=P(C)P()+P()P(D)=0.4×(1-0.6)+(1-0.4)×0.6=0.52,P(X=0)=P()=P()P()=0.24.所以X的分布列为故X的数学期望E(X)=0×0.24+1×0.52+2×0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2 000元”.假设样本仅使用A的学生,本月支付金额大于2 000元的人数没有变化,则由上个月的样本数据得P(E)==.答案示例1:可以认为有变化,理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2 000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.18.已知抛物线C:x2=-2py经过点(2,-1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y =-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.(1)解由抛物线C:x2=-2py经过点(2,-1),得p=2.所以抛物线C的方程为x2=-4y,其准线方程为y=1.(2)证明抛物线C的焦点为F(0,-1).设直线l的方程为y=kx-1(k≠0).由得x2+4kx-4=0,Δ=16k2+16>0恒成立.设M(x1,y1),N(x2,y2),则x1x2=-4.直线OM的方程为y=x.令y=-1,得点A的横坐标x A=-.同理得点B的横坐标x B=-.设点D(0,n),则=,=,·=+(n+1)2=+(n+1)2=+(n+1)2=-4+(n+1)2.令·=0,即-4+(n+1)2=0,得n=1或n=-3.所以以AB为直径的圆经过y轴上的定点(0,1)和(0,-3).19.已知函数f(x)=x3-x2+x.(1)求曲线y=f(x)的斜率为1的切线方程;(2)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(3)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.(1)解由f(x)=x3-x2+x,得f′(x)=x2-2x+1.令f′(x)=1,即x2-2x+1=1,得x=0或x=.又f(0)=0,f=,所以曲线y=f(x)的斜率为1的切线方程是y=x与y-=x-,即x-y=0和x-y-=0.(2)证明令g(x)=f(x)-x,x∈[-2,4].由g(x)=x3-x2,得g′(x)=x2-2x.令g′(x)=0,得x=0或x=.当x∈[-2,4]时,g′(x),g(x)的变化情况如下表:所以g(x)的最小值为-6,最大值为0,故-6≤g(x)≤0,即x-6≤f(x)≤x.(3)解由(2)知,当a<-3时,M(a)≥F(0)=|g(0)-a|=-a>3;当a>-3时,M(a)≥F(-2)=|g(-2)-a|=6+a>3;当a=-3时,M(a)=3.综上,当M(a)最小时,a=-3.20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若<<…<,则称新数列,,…,为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n}的长度为p的递增子列的末项的最小值为,长度为q的递增子列的末项的最小值为.若p<q,求证:<;(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n}的通项公式.(1)解1,3,5,6.(答案不唯一)(2)证明设长度为q末项为的一个递增子列为,,…,-,.由p<q,得≤-<.因为{a n}的长度为p的递增子列末项的最小值为,又,…,是{a n}的长度为p的递增子列,所以≤.所以<.(3)解由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设,,…,,2m-1是数列{a n}的长度为m末项为2m-1的递增子列,则,,…,,2m-1,2m是数列{a n}的长度为m+1,末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为=2m-1<2m.与已知矛盾.最后证明:2m排在2m-3之后(m≥2为整数).假设存在2m(m≥2),使得2m排在2m-3之前,则{a n}的长度为m+1且末项为2m+1的递增子列的个数小于2m,与已知矛盾.综上,数列{a n}只可能为2,1,4,3,…,2m-3,2m,2m-1,….经验证,数列2,1,4,3,…,2m-3,2m,2m-1,…符合条件.所以a n=+,为奇数,-,为偶数。

2019年北京卷理数高考试题

2019年北京卷理数高考试题

2019年普通高等学校招生全国统一考试数 学(理)(北京卷)一、选择题共8小题,每小题5分,共40分。

(1)已知复数z =2+i ,则z z ⋅=(A(B (C )3(D )5(4)已知椭圆2222 1x y a b +=(a >b >0)的离心率为12,则(A )a 2=2b 2(B )3a 2=4b 2(C )a =2b(D )3a =4b(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 (A )1010.1(B )10.1(C )lg10.1(D )10−10.1(7)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是 (A )①(B )②(C )①②(D )①②③二、填空题共6小题,每小题5分,共30分。

(9)函数f(x)=sin22x的最小正周期是__________.(10)设等差数列{a n}的前n项和为S n,若a2=−3,S5=−10,则a5=__________,S n的最小值为__________.(11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.(12)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.(13)设函数f(x)=e x+a e−x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是___________.(14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.三、解答题共6小题,共80分。

2019北京高考试题解析版-数学(理)(纯word)

2019北京高考试题解析版-数学(理)(纯word)

2019北京高考试题解析版-数学(理)(纯word )注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!数学〔理〕〔北京卷〕本试卷共5页,150分、考试时长120分钟、考试生务必将答案答在答题卡上,在试卷上作 答无效、考试结束后,将本试卷和答题卡一并交回、第一部分〔选择题共40分〕【一】选择题共8小题,每题5分,共40分、在每题列出的四个选项中,选出符合题目要求的一项、1、集合{}|320A x x =∈+>R ,()(){}|130B x x x =∈+->R ,那么A B =〔〕A 、()1-∞-,B 、213⎧⎫--⎨⎬⎩⎭, C 、233⎛⎫- ⎪⎝⎭,D 、()3+∞,【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。

因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A 、应选D 、 【答案】D2、设不等式组0202x y ⎧⎨⎩≤≤,≤≤表示的平面区域为D 、在区域D 内随机取一个点,那么此点到坐标原点的距离大于2的概率是〔〕A 、π4B 、π22-C 、π6D 、4π4-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,应选D 。

【答案】D3、设a b ∈R ,、“0a =”是“复数i a b +是纯虚数”的〔〕A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件【解析】当a =0时,如果b 也等于0,那么i a b +是实数,不是纯虚数,因此不是充分条件;而如果i a b +为纯虚数,那么一定有a =0,所以是必要条件,选B 。

2019年高考北京卷理科数学高考试题及答案解析(word打印版) 2019高考语文试卷北京卷答案

2019年高考北京卷理科数学高考试题及答案解析(word打印版) 2019高考语文试卷北京卷答案

2019高考语文试卷北京卷答案绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(A)①(B)②(C)①②(D)①②③第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(12)已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.(13)设函数f(x)=ex+ae-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是___________.(14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(16)(本小题14分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD 的中点,点F在PC上,且.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F-AE-P的余弦值;(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.支付金额(元)支付方式(Ⅰ)求曲线的斜率为1的切线方程;(Ⅱ)当时,求证:;(20)(本小题13分)已知数列{an},从中选取第i1项、第i2项、…、第im项(i1(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{an}的长度为p的递增子列的末项的最小值为,长度为q的递增子列的末项的最小值为.若p(Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{an}的通项公式.2019年普通高等学校招生全国统一考试一、选择题(共8小题,每小题5分,共40分)X12P0.240.520.242019高考语文试卷北京卷答案。

2019年北京卷理数高考试题文档版有答案【高考试卷】

2019年北京卷理数高考试题文档版有答案【高考试卷】

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数z =2+i ,则z z ⋅=(A (B (C )3 (D )5(2)执行如图所示的程序框图,输出的s 值为(A )1 (B )2 (C )3 (D )4(3)已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是 (A )15 (B )25 (C )45 (D )65(4)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则 (A )a 2=2b 2 (B )3a 2=4b 2 (C )a =2b (D )3a =4b(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为(A )−7 (B )1 (C )5 (D )7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为(A )1010.1 (B )10.1 (C )lg10.1 (D )10−10.1(7)设点A ,B ,C 不共线,则“AB u u u r 与AC uuu r 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的(A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是(A )① (B )② (C )①② (D )①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年北京市高考数学试卷(理科)

2019年北京市高考数学试卷(理科)

2019年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(5分)已知复数2z i =+,则(z z = ) ABC .3D .52.(5分)执行如图所示的程序框图,输出的s 值为()A .1B .2C .3D .43.(5分)已知直线l 的参数方程为13,(24x t t y t=+⎧⎨=+⎩为参数),则点(1,0)到直线l 的距离是()A .15B .25C .45D .654.(5分)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =5.(5分)若x ,y 满足||1x y -…,且1y -…,则3x y +的最大值为( ) A .7-B .1C .5D .76.(5分)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足121252Em m lg E -=,其中星等为k m 的星的亮度为(1,2)k E k =.已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为( ) A .10.110B .10.1C .10.1lgD .10.110-7.(5分)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(5分)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③二、填空题共6小题,每小题5分,共30分。

(精校版)2019年北京卷理数高考试题文档版(无答案)

(精校版)2019年北京卷理数高考试题文档版(无答案)

绝密★启用前2019年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数z =2+i ,则z z ⋅=(A(B (C )3(D )5(2)执行如图所示的程序框图,输出的s 值为(A )1 (B )2 (C )3 (D )4(3)已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是(A )15(B )25(C )45(D )65(4)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则(A )a 2=2b 2(B )3a 2=4b 2(C )a =2b(D )3a =4b(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为(A )−7 (B )1 (C )5 (D )7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 (A )1010.1(B )10.1(C )lg10.1(D )10−10.1(7)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 (A )①(B )②(C )①②(D )①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年北京卷理数高考试题文档版有答案-真题

2019年北京卷理数高考试题文档版有答案-真题

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数z =2+i ,则z z ⋅=(A (B (C )3 (D )5(2)执行如图所示的程序框图,输出的s 值为(A )1 (B )2 (C )3 (D )4(3)已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是 (A )15 (B )25 (C )45 (D )65(4)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则 (A )a 2=2b 2 (B )3a 2=4b 2 (C )a =2b (D )3a =4b(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为(A )−7 (B )1 (C )5 (D )7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为(A )1010.1 (B )10.1 (C )lg10.1 (D )10−10.1(7)设点A ,B ,C 不共线,则“AB u u u r 与AC uuu r 的夹角为锐角”是“||||AB AC BC +>u u u r u u u r u u u r ”的(A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是(A )① (B )② (C )①② (D )①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2019年普通高等学校招生全国统一考试
数 学(理)(北京卷)
本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数z =2+i ,则z z ⋅= (A )3
(B )5
(C )3
(D )5
(2)执行如图所示的程序框图,输出的s 值为
(A )1 (B )2 (C )3 (D )4
(3)已知直线l 的参数方程为13,
24x t y t
=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是
(A )
15
(B )
25
(C )
45
(D )
65
(4)已知椭圆22
22 1x y a b
+=(a >b >0)的离心率为12,则
(A )a 2=2b 2
(B )3a 2=4b
2
(C )a =2b (D )3a =4b
(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为
(A )−7 (B )1 (C )5 (D )7
(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=
52lg 2
1E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 (A )10
10.1
(B )10.1 (C )lg10.1
(D )10
−10.1
(7)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件
(D )既不充分也不必要条件
(8)数学中有许多形状优美、寓意美好的曲线,曲线C :22
1||x y x y +=+就是其中之一(如图).给出
下列三个结论:
①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 (A )①
(B )②
(C )①②
(D )①②③
第二部分(非选择题共110分)
二、填空题共6小题,每小题5分,共30分。

(9)函数f (x )=sin 2
2x 的最小正周期是__________.
(10)设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. (11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长
为1,那么该几何体的体积为__________.
(12)已知l,m是平面α外的两条不同直线.给出下列三个论断:
①l⊥m;②m∥α;③l⊥α.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.(13)设函数f(x)=e x+a e−x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是___________.
(14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃、价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为
__________.
三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分)
在△ABC中,a=3,b−c=2,cos B=
1
2 -.
(Ⅰ)求b,c的值;
(Ⅱ)求sin(B–C)的值.
(16)(本小题14分)
如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD
的中点,点F在PC上,且
1
3 PF
PC
=.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F –AE –P 的余弦值; (Ⅲ)设点G 在PB 上,且
2
3
PG PB =.判断直线AG 是否在平面AEF 内,说明理由.
(17)(本小题13分)
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:
交付金额(元) 支付方式
(0,1000]
(1000,2000]
大于2000
仅使用A 18人 9人 3人 仅使用B
10人
14人
1人
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. (18)(本小题14分)
已知抛物线C :x 2
=−2py 经过点(2,−1).
(Ⅰ)求抛物线C 的方程及其准线方程;
(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. (19)(本小题13分)
已知函数3
21()4
f x x x x =
-+.
(Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;
(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值. (20)(本小题13分)
已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数
列12m i i i a a a ⋅⋅⋅,,
,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;
(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1
个(s =1,2,…),求数列{a n }的通项公式.。

相关文档
最新文档