高中数学第一章计数原理1.3.1二项式定理2学案无答案新人教A版选修2_3
高中数学 第一章 计数原理 1.3 二项式定理教学设计 新人教A版选修2-3(2021年整理)
重庆市高中数学第一章计数原理1.3 二项式定理教学设计新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市高中数学第一章计数原理1.3 二项式定理教学设计新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市高中数学第一章计数原理1.3 二项式定理教学设计新人教A版选修2-3的全部内容。
二项式定理一、教学目标1、知识与技能:(1)理解二项式定理是代数乘法公式的推广;(2)理解并掌握二项式定理,能利用组合思想证明二项式定理.2、过程与方法:通过学生参与和探究二项式定理的形成过程,培养学生观察、猜想、归纳的能力,以及学生的化归意识与方法迁移的能力,体会从特殊到一般的思维方式.3、情感、态度与价值观:培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造的过程,体会数学语言的简洁和严谨.二、教学重点、难点重点:用组合思想分析2)a+的展开式,得到二项式定理.(ba+、3)(b难点:用组合思想分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.三、教学手段制作多媒体课件,以增加课堂容量,提高学生的兴趣,使学生加深对定理、概念的理解.四、课型:新授课.五、教学过程(一)提出问题,引入课题(提问):若今天是星期三,今天是第一天,那么第108天是星期几?【设计意图】把问题作为教学的出发点,引出课题,激发学生的求知欲,明确本课题要解决的问题.复习引入:初中学习的完全平方式是什么?你能写出3)a+的展开式吗?(ba+、4)(b【设计意图】通过复习旧知识,自然引入,在这里设计了层层递进多项式展开问题,目的是为了让学生了解知识发生、发展的过程,激发学生的认知的冲突,让学生明白n b a )(+实质上是多项式的乘法.(二)引导探究,发现规律;2222)(b ab a b a ++=+.32232333)()()(b ab b a a b a b a b a +++=++=+探究1:仿照上述过程,请你推导4)(b a +的展开式.(再提问)5)(b a +,6)(b a +,…,100)(b a +的展开式呢?(太无聊了吧!我们应该寻求一个能代表这些式子的一个通式)【提出问题】求)()(*N n b a n ∈+的展开式探究2:通过组合思想来分析这两个式子的展开式.观察此式:.222222)()()(b ab a b ba ab a b a b a b a ++=+++=+⋅+=+【问题1】:有几项?【问题2】:展开式中各项字母的形式是什么?【问题3】:展开式中项的次数是什么?【问题4】:怎么得到2a 项,ab 项,2b 项?【问题5】:2a 项,2b 项前的系数为什么是1,ab 项前的系数为什么是2?能否用学过的组合知识分析这个问题?由多项式乘法知,其展开式的每一项是由2个)(b a +各取一项相乘而得,故每一项都是)210(2,,=-k b a k k 形式,即2a ,ab ,2b .各项系数是由相同的项合并而成,有几项其系数就是几,故当0=k 时,22a b a k k =-,是由2个)(b a +中都不选b 得到的,相当于从2个)(b a +中取0个b (即都取a )的组合数02C ,因此2a 只有1个,系数为:02C ;当1=k 时,ab b a k k =-2,是由一个)(b a +中选a ,另一个)(b a +中选b 得到的,由于b 选定后,a 的选法也随之确定,因此,ab 出现的次数相当于从2个)(b a +中取1个b 的组合数,即ab 共有12C 个,系数为:12C ;当2=k 时,22b b a k k =-,是由2个)(b a +中都选b 得到的,相当于从2个)(b a +中取2个b 的组合数22C ,因此2b 只有1个,系数为:22C .从而可得:222122022)(b C ab C a C b a ++=+ 【问题6】仿照上述过程,请你推导3)(b a +的展开式.【问题7】能猜想写出4)(b a +的展开式吗?【设计意图】通过几个问题的层层递进,引导学生用组合思想对2)(b a +、3)(b a +的展开式进行再思考,分析各项的形成,项的个数,这也为推导n b a )(+的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.(三)形成定理,说理证明探究3:仿照上述过程,请你猜想n b a )(+的展开式 【问题8】n b a )(+的展开式又是怎样的呢?引导学生回答:可以对b 分类:取0个b ,取1个b ,取2个b ,…,取k 个b ,…,取n 个b 将这1+n 个式子相加,可得二项式定理.)()(*1110N n b C b a C b a C a C b a n n n k k n k n n n n n n ∈+++++=+--【问题9】如何证明这个猜想呢?证明:n b a )(+是n 个)(b a +相乘,每个)(b a +在相乘时,有两种选择,选a 或选b ,由分步计数原理可知展开式共有n 2项(包括同类项),其中每一项都是)210(n k b a k k n ,,,,=-的形式,对于每一项,它是由k 个)(b a +选了b ,k n -个)(b a +选了a 得到的,它出现的次数相当于从n 个)(b a +中取k 个b 的组合数k n C ,将它们合并同类项,就得二项展开式,这就是二项式定理.【设计意图】通过仿照3)(b a +,4)(b a +展开式的探究方法,由学生类比得出n b a )(+的展开式.二项式的定理的证明采用“说理"的方法,从计数原理的角度对展开过程进行分析、概括出项的形式,用组合知识分析展开式中具有同一形式的项的个数,从而得出用组合数表示的展开式.(四)概念剖析1、二项式定理的公式特征:(由学生归纳,让学生熟悉公式)(1)项数:共有1+n 项;(2)各项次数:各项的次数都等于n ;(3)各项中a 、b 的幂排列:字母a 按降幂排列,次数由n 递减到0;字母b 按升幂排列,次数由0递增到n .2、二项展开式的通项:式中的k k n k n b a C -叫做二项展开式的通项,用1+k T 表示.即通项为展开的第1+k 项,k k n k n k b a C T -+=1.(a 、b 的位置不能对换)3、二项式系数:依次为,,,,,,,n n k n n n n C C C C C 210这里)210(n k C k n ,,,,=称为二项式系数.(注意:二项式系数与项的系数的区别)4、二项式定理是个恒等式,定理中字母a 、b 可表示数或式,其中*N n ∈.(提问)写出n x )1(-的展开式. 【设计意图】对定理的特点加以说明,可使学生能熟练掌握定理的特点,以便今后在应用定理解决问题时能得心应手.解决课前提出的问题:10109109110100101010777)17(8C C C C ++++=+=1)77(791081109010++++=C C C ∴第108天是星期三.(五)熟悉定理,简单应用例1 求6)12(x x -的展开式.思考1:展开式的第3项的系数是多少?思考2:展开式的第3项的二项式系数是多少?思考3:你能否直接求出展开式的第3项?思考4:求展开式中3x 的.【设计意图】例1目的在于对定理中字母a 、b 所表示的数或式的领会及提高运用定理的能力,熟悉二项展开式,培养学生的运算能力;从思考1与思考2中体会项的系数与二项式系数的区别;思考3与思考4是通项的应用.例2 (1)求5)2(b a +展开式的第4项 ;(1)求5)2(a b +展开式的第4项 ;【设计意图】例2二题着重于学生对通项公式的掌握,体会二项式定理n b a )(+的展开式中a 与b 位置不能对换,并注意到例2(1)的结论正是例2(2)展开式中的倒数第4项.(六)课堂小结 (由学生归纳本课学习的内容及体现的数学思想)1、公式:.)()(*1110N n b C b a C b a C a C b a n n n k k n k n n n n n n ∈+++++=+--2、思想方法:(1)从特殊到一般的思维方式;(2)用组合思想分析二项式的展开过程.(七)课后作业 巩固性作业:课本36页习题31⋅A 组1、2、3;思维拓展型作业:二项式系数n n k n n n n C C C C C ,,,,,, 210有何性质.(八)板书设计(九)教学反思设计说明二项式定理是初中乘法公式的推广,是排列组合知识的具体应用,是学习概率的基础.本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题——探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律的四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面的二项式展开式的推导作铺垫.再以2)a+为对象(ba+,3)(b进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导n(+的展开a)b式提供了一种方法,使学生在后续的学习过程中有“法"可依.总之,本节课遵循学生的认识规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题、发现问题、归纳推理问题的能力,从而形成良好的数学思维能力.。
高中数学 第一章 计数原理 1.3.1 二项式定理学案 新人教A版选修2-3(2021年最新整理)
高中数学第一章计数原理1.3.1 二项式定理学案新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理1.3.1 二项式定理学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理1.3.1 二项式定理学案新人教A版选修2-3的全部内容。
1.3。
1 二项式定理[学习目标]1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题.[知识链接]1.二项式定理中,项的系数与二项式系数有什么区别?答二项式系数与项的系数完全是不同的两个概念.二项式系数是指C错误!,C错误!,…,C错误!,它只与各项的项数有关,而与a,b的值无关,而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.2.二项式(a+b)n与(b+a)n展开式中第r+1项是否相同?答不同.(a+b)n展开式中第r+1项为C错误!a n-r b r,而(b+a)n展开式中第r+1项为C错误!b n-r a r.[预习导引]1.二项式定理公式(a+b)n=C0,n a n+C错误!a n-1b+…+C错误!a n-k b k+…+C错误!b n(n∈N*)叫做二项式定理.2.二项式系数及通项(1)(a+b)n展开式共有n+1项,其中各项的系数C错误!(k∈{0,1,2,…,n})叫做二项式系数.(2)(a+b)n展开式的第k+1项叫做二项展开式的通项,记作T k+1=C k,n a n-k b k.要点一二项式定理的正用、逆用例1 (1)求(3x+错误!)4的展开式;(2)化简(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).解(1)法一(3错误!+错误!)4=C错误!(3错误!)4+C错误!(3错误!)3·错误!+C错误!(3错误!)2·(错误!)2+C错误!(3错误!)·(错误!)3+C错误!·(错误!)4=81x2+108x+54+错误!+错误!。
高中数学 第一章 计数原理 1.3 二项式定理 1.3.3 二项式定理习题课教案 新人教A版选修2-
二项式定理习题课教学目标知识与技能1.能熟练地掌握二项式定理的展开式及其有关概念.2.会用二项式定理解决与二项展开式有关的简单问题.3.能熟练掌握杨辉三角及二项式系数的有关性质.4.会用二项式系数的性质解决一些简单问题,并能熟练地使用赋值法.过程与方法1.能解决二项展开式的有关概念问题:项、二项式系数、系数、有理项、无理项、常数项、整数项等.2.能用二项式定理解决诸如整除、近似值、求和等有关问题.3.能用二项式系数的有关性质,解决诸如:最值、二项式系数和、系数和等问题.情感、态度与价值观1.培养学生对整个数学知识的驾驭能力,能在一定高度上进行数学知识的应用.2.培养学生观察、归纳的能力以及分析问题与解决问题的能力.3.进一步提升学生学好数学用好数学的积极性,进一步提升学生学习数学的兴趣.重点难点教学重点:掌握二项展开式,掌握二项式系数的有关性质,掌握解决二项式定理性质等有关问题的方法.教学难点:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题.教学过程复习巩顾前面我们学习了二项式定理,请回顾:1.(a+b)n=________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的______________,其中C r n(r=0,1,2,…,n)叫做______________,通项是指展开式的第__________________项,共有____________项.其中二项式系数是____________,系数是____________.2.二项式系数的四个性质(杨辉三角的规律) (1)对称性:____________________. (2)性质2:______________________.(3)二项式系数的最大值________________________.(4)二项式系数之和____________________,所用方法是____________________. 答案:1.(a +b)n=C 0n a n+C 1n an -1b +C 2n an -2b 2+…+C r n an -r b r+…+C n n b n(n∈N )、展开式、二项式系数、r +1、n +1、C rn 、变量前的常数2.(1)C mn =-mn (2)C rn +1=C r -1n +C rn(3)当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n 最大(4)C 0n +C 1n +C 2n +…+C rn +…+C nn =2n赋值法典型示例类型一:二项展开式的有关概念 例1试求:(1)(x 3-2x 2)5的展开式中x 5的系数;(2)(2x 2-1x)6的展开式中的常数项;(3)在(3x +32)100的展开式中,系数为有理数的项的个数.思路分析:理解二项展开式的有关概念,什么是二项式系数,什么是系数,什么是项,什么是常数项、有理项、无理项等,其实都是由通项入手,根据变量的系数、指数进行判断,当指数为0时是常数项,当指数是整数时是有理项,当指数是分数时是无理项.解:(1)T r +1=C r5(x 3)5-r(-2x2)r =(-2)r C r 5x 15-5r ,依题意15-5r =5,解得r =2.故(-2)2C 25=40为所求x 5的系数.(2)T r +1=C r 6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r ,依题意12-3r =0,解得r =4.故(-1)4·22C 26=60为所求的常数项.(3)T r +1=C r 100(3x)100-r(32)r =C r100·350-r 2·2r 3x 100-r ,要使x 的系数为有理数,指数50-r 2与r 3都必须是整数,因此r 应是6的倍数,即r =6k(k∈Z ),又0≤6k≤100,解得0≤k≤1623(k∈Z ),∴x 的系数为有理数的项共有17项.点评:求二项展开式中具有某特定性质的项,关键是确定r 的值或取值X 围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.[巩固练习]试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(|x|+1|x|-2)3的展开式中的常数项.解:(1)∵(x+2)10=x 10+20x 9+180x 8+…,∴(x+2)10(x 2-1)的展开式中x 10的系数是-1+180=179.(2)∵(|x|+1|x|-2)3=(|x|-1|x|)6,∴所求展开式中的常数项是-C 36=-20.类型二:二项展开式的有关应用——简单应用例2求(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数. 解:∵(x-1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=x -1{1-[-x -1]5}1-[-x -1]=x -1+x -16x ,∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数-C 36=-20.点评:这是一组将一个二项式扩展为假设干个二项式相乘或相加,或扩展为简单的三项展开式的问题,求解的关键在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.能够最大限度地考查学生对知识的把握程度.[巩固练习](1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中x 3项的系数是( )A .74B .121C .-74D .-121 解析:先求和:(1-x)5+(1-x)6+(1-x)7+(1-x)8=1-x 5[1-1-x4]1-1-x=1-x5[4x -6x 2+4x 3-x 4]x,分子的展开式中x 4的系数,即为原式的展开式中x 3项的系数,(-1)×1+4×(-C 15)-6C 25+4×(-C 35)=-1-20-60-40=-121,所以选D.答案:D类型三:二项展开式的有关应用:整除、不等式、近似值等问题 例3证明:(1)2≤(1+1n)n <3,其中n∈N *;(2)证明:对任意非负整数n,33n-26n -1可被676整除.思路分析:对于二项式中的不等式,通过展开式,分析其中的特殊项,可以证明一些简单的不等式问题;对于整除问题同样如此,关键是把二项式拆成676的形式;对于比较麻烦的数列问题,我们经常采用的方法就是数学归纳法,此题也不例外.证明:(1)(1+1n )n =1+C 1n ·1n +C 2n (1n )2+…≥2(当且仅当n =1时取等号).当n =1时,(1+1n)n=2<3显然成立;当n≥2时,(1+1n )n =C 0n +C 1n ·1n +C 2n ·1n 2+…+C nn ·1n n =2+n(n -1)2!1n 2+n(n -1)(n -2)3!1n 3+…+n(n -1)…2·1n !1n n =2+12!n n n -1n +13!n n n -1n n -2n +…+1n !n n n -1n …2n 1n <2+12!+13!+…1n !<2+11×2+12×3+…+1n(n -1)=2+(1-12)+(12-13)+…+(1n -1-1n )=3-1n <3.综上所述:2≤(1+1n)n <3,其中n∈N *.(2)当n =0,n =1时33n-26n -1=0,显然33n-26n -1可被676整除.当n≥2时,33n-26n -1=27n-26n -1=(1+26)n-26n -1=1+26n +C 2n ·262+…+C nn ·26n-26n -1=C 2n ·262+C 3n ·263+…+C nn 26n=676(C 2n +26C 3n +…+26n -2C nn).综上所述:对任意非负整数n,33n-26n -1可被676整除.点评:用二项式定理解决整除问题是二项式定理的一大特色,这是二项展开式的一种基本应用,通过对二项式的拆解,我们可以解决一些看似很难但易解决的问题.[巩固练习]m ,n 是正整数,f(x)=(1+x)m+(1+x)n的展开式中x 的系数为7, (1)试求f(x)中的x 2的系数的最小值;(2)对于使f(x)中的x 2的系数为最小的m ,n ,求出此时x 3的系数; (3)利用上述结果,求f(0.003)的近似值(精确到0.01). 解:根据题意得:C 1m +C 1n =7,即m +n =7.(*)(1)x 2的系数为C 2m+C 2n=m(m -1)2+n(n -1)2=m 2+n 2-m -n2.将(*)变形为n =7-m 代入上式得:x 2的系数为m 2-7m +21=(m -72)2+354.故当m =3或4时,x 2的系数的最小值为9.(2)当m =3,n =4或m =4,n =3时,x 3的系数为C 33+C 34=5. (3)f(0.003)≈2.02.类型四:二项式系数的最大值、系数的最大值问题 例4求(x -1)9的展开式中系数最大的项.思路分析:二项式系数最大的项我们可以根据公式求解,但是系数最大的项怎么求呢?观察此题中二项式系数与系数之间的关系,我们发现它们只不过相差一个负号而已,所以可以通过二项式系数的大小反映系数的大小,只不过要注意正负号.解:T r +1=(-1)r C r 9x 9-r .∵C 49=C 59=126,而(-1)4=1,(-1)5=-1,∴T 5=126x 5是所求系数最大的项.点评:此类问题仍然是利用二项展开式的通项公式来求解,但在解题过程中要注意一些常用方法和数学思想的应用.[巩固练习] 求(x +124x)8展开式中系数最大的项.解:记第r 项系数为T r ,设第k 项系数最大,那么有⎩⎪⎨⎪⎧T k ≥T k -1,T k ≥T k +1,又T r =C r -182-r +1,那么有⎩⎪⎨⎪⎧C k -182-k +1≥C k -282-k +2,C k -182-k +1≥C k 82-k ,即⎩⎪⎨⎪⎧8!(k -1)!(9-k)!≥8!(k -2)!(10-k)!×2,8!(k -1)!(9-k)!×2≥8!k !(8-k)!,∴⎩⎪⎨⎪⎧1k -1≥2k -2,29-k ≥1k .解得3≤k≤4,∴系数最大的项为第3项T 3=7x 52和第4项T 4=7x 72.类型五:二项式系数之和、系数之和等问题例5假设(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,那么(a 0+a 2+a 4)2-(a 1+a 3)2的值等于__________;思路分析:注意到与系数的和差有关,所以可以用赋值法求得奇数项的系数之和与偶数项的系数之和,注意使用平方差公式.解:令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=[(3+2)(3-2)]4=1.点评:在二项式系数的性质应用中,尤其是系数和的问题,我们经常使用赋值法,这是一种奇妙的方法,可以帮助我们在不用计算每一个系数的前提下,求出各个系数的和.[巩固练习](1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7, 求(1)a 0+a 1+…+a 7的值;(2)a 0+a 2+a 4+a 6及a 1+a 3+a 5+a 7的值; (3)各项二项式系数和.解:(1)令x =1,那么a 0+a 1+…+a 7=-1.(2)令x =-1,那么a 0-a 1+a 2-a 3+…+a 6-a 7=2 187. 那么a 1+a 3+a 5+a 7=-1 094;a 0+a 2+a 4+a 6=1 093. (3)各项二项式系数和C 07+C 17+…+C 77=27=128. [拓展实例]例1(1+3x)6(1+14x)10的展开式中的常数项为( )A.1 B.46 C.4 245 D.4 246思路分析:对于非一般的二项式问题,要注意转化成二项式问题解决.此题虽然有两个式子相乘,只要我们写出整个式子的通项,令指数为0,即可求得常数项.解:先求(1+3x)6的展开式中的通项.T r+1=C r6(x13)r=C r6xr3,r=0,1,2,3,4,5,6.再求(1+14x )10的展开式中的通项.T k+1=C k10(x-14)k=C k10x-k4,k=0,1,2,3,4,…,10.两通项相乘得:C r6x r3C k10x-k4=C r6C k10xr3-k4,令r3-k4=0,得4r=3k,这样一来,(r,k)只有三组:(0,0),(3,4),(6,8)满足要求.故常数项为:1+C36C410+C66C810=4 246.点评:对于乘积的式子或者三项的式子的展开问题,我们可以通过化归思想,将其转化成二项展开式问题.要注意此题中,常数项的位置有三处.[巩固练习](1+x+x2)(x+1x3)n的展开式中没有..常数项,n∈N*,且2≤n≤8,那么n=______.解析:依题意(x+1x3)n,对n∈N*,且2≤n≤8中,只有n=5时,其展开式既不出现常数项,也不会出现与x、x2乘积为常数的项.故填5.答案:5[变练演编](1)对于9100你能编出什么样的整除问题?如9100被________整除的余数是________.(2)(2x2-1x)6的展开式中的常数项是第____________项,整数项是第______________项,x的最高次项是第______________项,二项式系数之和是______________,系数之和是______________.将你能得到的所有正确的答案一一列举出来.答案:(1)这是一个开放性的问题,学生可以有多种答案,比如说9100被8整除的余数是1,9100被80整除的余数是1等等.(2)T r +1=C r6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r .依题意12-3r =0,解得r =4,所以常数项是第5项;整数项是第1,2,3,4,5项;x 的最高次项是第1项;二项式系数之和为64;系数之和为1.设计意图:变练演编——这种开放性的设计,能够有效地提高学生学习的积极性,使得编题不仅仅是老师的专利,学生在编题解题的过程中,领悟知识,提高能力,增长兴趣,增强信心,不仅有助于训练同学们的常规思维,还能培养同学们的逆向思维,最终提高学生的数学成绩.[达标检测] 1.(x -13x)12展开式中的常数项为( )A .-1 320B .1 320C .-220D .220 2.(1-x)6(1+x)4的展开式中x 的系数是( ) A .-4 B .-3 C .3 D .4 3.假设(1-2x)2 005=a 0+a 1x +a 2x 2+…+a 2 005x2 005(x∈R ),那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2 005)=________(用数字作答).答案:1.C 2.B 3.2 003反考老师:即由学生出题,教师现场解答(约8分钟).(活动设计:请学生到黑板板书题目,要求别太烦琐,且与本节习题课内容相符.一般不多于3道题,教师尽可能全部解答,具体解答数目视题目难度和时间而定.教师要边做边讲,以向学生现场展示解题思路的发现过程和解题能力.做完后,请学生给“阅卷〞)课堂小结活动设计:先给学生1~2分钟的时间默写本节的主要基础知识、方法,例题、题目类型、解题规律等;然后用精练的、精确的语言概括本节的知识脉络,思想方法,解题规律等.活动成果:(板书)1.知识收获:二项式定理、二项展开式、二项式系数的性质.2.方法收获:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题. 3.思维收获:合作意识,创新精神,增加了学习数学的积极性,提升学习数学的兴趣. 设计意图:通过学生自己总结所学、所识、所想,不但能充分表达新课程的理念,还能充分发挥学生在课堂上的“主人翁〞精神,真正表达了学生的主体地位.不仅可以使学生更好地掌握本节所学,而且还能提高学生学习的主动性,提高学生学习数学的兴趣,久而久之,学生的数学水平与数学素养必定会得到长足的提高!补充练习[基础练习]1.计算1-3C 1n +9C 2n -27C 3n +…+(-1)n 3n C nn . 2.(x +1x -2)3的展开式中,常数项是________.3.(3x -13x2)n ,n∈N *的展开式中各项系数和为128,那么展开式中1x3的系数是( )A .7B .-7C .21D .-21 4.求(x -13x)10的展开式中有理项共有________项.1.解:原式=C 0n +C 1n (-3)1+C 2n (-3)2+C 3n (-3)3+…+C 3n (-3)n=(1-3)n=(-2)n. 2.解析:(x +1x -2)3=[(x -1)2x ]3=(x -1)6x 3. 上述式子展开后常数项只有一项C 36x3-13x3,即-20.3.解析:由条件可得:(3-1)n=128,n =7. ∵T r +1=(-1)r C r7(3x)7-r(13x2)r =(-1)r C r 737-rx7-53r.令7-5r3=-3,那么有:r =6.所以二项展开式中1x 3的系数是:T 7=(-1)6C 6737-6=21,应选C.4.解析:∵T r +1=C r10(x)10-r(-13x)r =C r 10(-1)rx5-56r.∴当r =0,6时,所对应的项是有理项.故展开式中有理项有2项. [拓展练习]5.(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,那么k =____________. 6.设n∈N ,那么C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=____________.5.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r6(kx 2)r=C r 6k r x 2r,我们知道x 8的系数为C 46k 4=15k 4,即15k 4<120,也即k 4<8,而k 是正整数,故k 只能取1.6.解:C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=16C 0n +C 1n +C 2n 6+…+C n n 6n -1-16C 0n =16(C 0n +C 1n 6+C 2n 62+…+C n n 6n -1)=16[(1+6)n-1]=16(7n -1).设计说明二项式定理的内容,是各地高考中经常要考查的内容之一,其形式主要是选择题和填空题,题型往往相对稳定,思路方法常常是利用二项展开式的通项公式、二项式系数的有关性质等.常见的二项式问题有:求二项展开式中某一项或某一项的系数,求所有项系数的和或奇(偶)数项系数和,求展开式的项数,求常数项,求近似值,证明不等式等.实际教学的过程中,要努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生发挥其创造意识,以使他们能在创造的氛围中学习.二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘方的展开式.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习、深化作用,又可以为进一步学习概率统计做好必要的知识储备.所以有必要掌握好二项式定理的相关内容.备课资料 二项式定理 同步练习选择题1.C 7n +1-C 7n =C 8n ,那么n 等于( )word11 / 11 A .14 B .12 C .13 D .152.C 0n +3C 1n +9C 2n …+3n C nn 的值等于( )A .4nB .3·4n C.4n 3-1 D.4n-133.C 111+C 311+…+C 911的值为( )A .2 048B .1 024C .1 023D .5124.(x +1)(2x +1)(3x +1)……(nx+1)展开式中x 的一次项系数为( )A .C n -1nB .C 2nC .C 2n +1D .不能用组合数表示5.设(1+x +x 2)n =a 0+a 1x +a 2x 2+…a 2n x 2n,那么a 0+a 1+a 2+…+a 2n 等于 …() A .22n B .3n C.3n -12 D.3n+126.假设n 是正奇数,那么7n +C 1n 7n -1+C 2n 7n -2+…C n -1n 7被9除的余数为( )A .2B .5C .7D .87.(1+x)2+(1+x)3+…+(1+x)10展开式中x 4的系数为( )A .C 511 B .C 411 C .C 510D .C 410填空题8.(a +b)n 展开式中第r 项为__________.9.11100-1的末位连续零的个数为__________.参考答案1.A 2.A 3.C 4.C 5.B 6.C 7.A5.提示:令x =1即可.8.T r =C r -1n a n +1-rb r -19.3。
高中数学人教A版选修2-3检测:第一章1.3-1.3.1二项式定理 Word版含解析
第一章计数原理1.3 二项式定理1.3.1 二项式定理A级基础巩固一、选择题1.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是()A.(2x+2)5B.2x5C.(2x-1)5D.32x5解析:原式=[(2x+1)-1]5=(2x)5=32x5.答案:D2.在⎝⎛⎭⎪⎪⎫x+13x24的展开式中,x的幂指数是整数的项共有() A.3项B.4项C.5项D.6项解析:T r+1=C r24x24-r2·x-r3=Cr24·x12-56r,则r分别取0,6,12,18,24时,x的幂指数为整数,所以x的幂指数有5项是整数项.答案:C3.若⎝⎛⎭⎪⎪⎫x-123xn的展开式中第四项为常数项,则n=() A.4 B.5C .6D .7解析:由二项展开式可得T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =(-1)r 2-r C rn x n -r 2·x -r 3,从而T 4=T 3+1=(-1)32-3C 3n x n -52,由题意可知n -52=0,n =5.答案:B4.在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A .-297 B .-252 C .297D .207解析:(1-x 3)(1+x )10=(1+x )10-x 3(x +1)10展开式中含x 5的项的系数为:C 510-C 210=207.答案:D5.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =5,n =5 B .x =5,n =4 C .x =4,n =4D .x =4,n =3解析:C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,检验得B 正确.答案:B 二、填空题6.(2016·北京卷)在(1-2x )6的展开式中,x 2的系数为________(用数字作答).解析:T r +1=C r 6·16-r ·(-2x )r =(-2)r C r 6·x r ,令r =2, 得T 3=(-2)2C 26x 2=60x 2.故x 2的系数为60.答案:607.⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝ ⎛⎭⎪⎪⎫-13x 3=-160x . 答案:-160x8.如果⎝⎛⎭⎪⎫3x 2+1x n 的展开式中,x 2项为第三项,则自然数n =________.解析:T r +1=C rn (3x 2)n -r⎝ ⎛⎭⎪⎫1x r =C r n x2n -5r3,由题意知r =2时,2n -5r3=2,所以n =8. 答案:8 三、解答题9.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项及项数.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24C 26x ,所以第3项的系数为24C 26=240.(2)T k +1=C k n (2x )6-k ⎝⎛⎭⎪⎫-1x k=(-1)k 26-k C r 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2.10.在二项式⎝ ⎛⎭⎪⎫3x -123x n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项. 解:T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =⎝ ⎛⎭⎪⎫-12r C r n x 13n -23r . 由前三项系数的绝对值成等差数列, 得C 0n +⎝⎛⎭⎪⎫-122C 2n =2×12C 1n , 解得n =8或n =1(舍去). (1)展开式的第四项为:T 4=⎝ ⎛⎭⎪⎫-123C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为⎝ ⎛⎭⎪⎫-124C 48=358.B 级 能力提升1.如果⎝ ⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,则正整数n 的最小值为( )A .3B .5C .6D .10解析:⎝ ⎛⎭⎪⎫3x 2-2x 3n展开式的通项表达式为C r n (3x 2)n -r ·⎝ ⎛⎭⎪⎫-2x 3r=C r n 3n -r(-2)r x 2n -5r ,若C r n 3n -r(-2)r x 2n -5r 为非零常数项,必有2n -5r =0,得n =52r ,所以正整数n 的最小值为5.答案:B2.设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中,x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4,由B =4A 知,C 26(-a )2=C 46(-a )4,解得a =2(舍去a =-2). 答案:23.如果f (x )=(1+x )m +(1+x )n (m ,n ∈N *)中,x 项的系数为19,求f (x )中x 2项系数的最小值.解:x 项的系数为C 1m +C 1n =19,即m +n =19,当m ,n 都不为1时,x 2项的系数为C 2m +C 2n =m (m -1)2+(19-m )(18-m )2=m 2-19m +171=⎝ ⎛⎭⎪⎫m -1922+171-1924,因为m ∈N *,所以当m =9或10时,x 2项的系数最小,为81.当m 为1或n 为1时,x 2项的系数为C 218=153>81,所以f (x )中x 2项系数的最小值为81.。
高中数学 1.3.1二项式定理课件 新人教A版选修23[1]
二项式定理(dìnglǐ) 思维导航 1.我们已知(a+b)2=a2+2ab+b2,展开式中有3项;运 用多项式乘法可以求得(a+b)3、(a+b)4的展开式,并且它们分 别(fēnbié)有4项、5项,你能用类比归纳的方法得出(a+b)n(n≥2) 的展开式吗?
第八页,共38页。
新知导学 1.二项展开式的推导:(a+b)n(n∈N*)是 n 个因式(a+b) 的积,按多项式乘以多项式的法则,可知确定乘积展开式中的 每一项,需要看有多少个因式(a+b)中取 a,多少个因式(a+b) 中取 b,如果从 k 个因式中选取 b,则就有__n_-__k____个因式中 选 a.∴积式为 an-kbk(k=0、1、2、…、n)的形式的项共有__C_nk___ 个.合并同类项后为 _____C_nk_a_n-_k_b_k__________.因此(a +b)n= _C_0n_a_n+__C__1na_n_-_1b_+__…__+__C__rna_n_-_rb_r_+__…__+__C_nn_-_1a_b_n_-_1_+__C_nn_b_n__这个公式 叫做二项式定理.
D.-40
[解析] Tr+1=Cr5(x2)5-r(-x23)r=Cr5x10-2r·(-2)r·x-3r =C5r (-2)r·x10-5r. 令 10-5r=0,∴r=2,常数项为 C25×4=40.
第二十页,共38页。
若
x+ 1 4
2
n x
展开式中前三项系数依次成等差
数列.求:
(1)展开式中含 x 的一次幂的项;
第三十一页,共38页。
[方法规律总结] 二项式系数与项的系数是两个不同的概 念,前者仅与二项式的指数及项数有关(yǒuguān),与二项式的 构成无关,后者与二项式的构成、二项式的指数及项数均有关 (yǒuguān).
高中数学 第一章 计数原理 1.3.1 二项式定理教案 新人教A版选修2-3(2021年最新整理)
高中数学第一章计数原理1.3.1 二项式定理教案新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章计数原理1.3.1 二项式定理教案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章计数原理1.3.1 二项式定理教案新人教A版选修2-3的全部内容。
1.3。
1二项式定理一、教学目标1.知识与技能:(1) 能利用计数原理证明二项式定理;(2)会用二项式定理解决与二项展开式有关的简单问题.2. 过程与方法:通过学生参与和探究二项式定理的形成过程,体会从特殊到一般的思维方式,并形成从特殊到一般的归纳,然后证明,最后再应用的思想意识。
3。
情感、态度与价值观:通过本节课的学习,可以培养学生观察、分析、归纳、总结的能力。
二、教学重点、难点重点:二项式定理;难点:二项式定理的应。
三、教具:白板四、课型:新课五、教学过程一)新课提问引入课题1、分类计数加法原理与分布乘法计数原理;2、组合与组合数3、今天是星期五,再过7天、15天、810天的那一天分别是星期几?二)讲授新课1、探究发现二项式定理研究的是n)(3=a?+ba(+的展开式,如:?ba))(2=+b?)(4=+b a ?)(100=+b a 那么n b a )(+的展开式是什么?探究一:))(()(2b a b a b a ++=+b b a b b a a a ⨯+⨯+⨯+⨯=222b ab a ++=从上述过程可以看出2)(b a +是2个))((b a b a ++相乘,根据多项式的乘法法则,每个)(b a +在相乘是由两种选择,选a 或b 选,而且每个)(b a +中的a 或b 选定后,才能得到2)(b a +展开式的一项。
高中数学 第1章《计数原理》课件 新人教A版选修23
r n
(r=0,1,2,…,n)称为二项
式系数,第r+1项Crnan-rbr称为通项.
• [说明] ①二项式系数与项的系数是不同的概念,前者只与 项数有关,而后者还与a,b的取值有关.
• ②运用通项求展开式的特定值(或特定项的系数),通常先由 题意列方程求出r,再求所需的项(或项的系数).
(2)二项式系数的性质: ①对称性:与首末两端“等距离”的两个二项式系数相 等,体现了组合数性质Cnm=Cnn-m; ②增减性与最大值: 当k<n+2 1时,二项式系数Ckn逐渐增大; 当k>n+2 1时,二项式系数Ckn逐渐减小;
•
有3封信,4个信简.
• (1)把3封信都寄出,有多少种寄信方法?
• (2)把3封信都寄出,且每个信简中最多一封信,有多少种寄 信方法?
• [思维点击] 本题关键是要搞清楚以“谁”为主研究问 题.解决这类问题,切忌死记公式,应清楚哪类元素必须应 该用完,就以它为主进行分析,再用分步计数原理求解.
(1)分3步完成寄出3封信的任务:第一步,寄 出1封信,有4种方法;第二步,再寄出1封信,有4种方法;第 三步,寄出最后1封信,有4种方法,完成任务.根据分步计数 原理,共有4×4×4=43=64种寄信方法.
(2)典型的排列问题,共有A34=24种寄信方法.
• 1.有7名女同学和9名男同学,组成班级乒乓球混合双打代 表队,共可组成( )
• A.7队 B.8队 • C.15队 D.63队 • 解析: 由分步乘法计数原理,知共可组成7×9=63队. • 答案: D
• 2.如图,用6种不同的颜色把图中A,B,C,D四块区域分开, 若相邻区域不能涂同一种颜色,则不同的涂法共有( )
[说明] 公式①主要用于具体的计算,公式②主要用于 化简.
2013-2014学年高中数学选修2-3 第1章 计数原理第一章1.3.1
(k∈{0,1,2,…,n})叫做二项式系数. 3.(a+b)n 展开式的第 k+1 项叫做二项展开式的通项,记 k n-k k C 作 Tk+1= na b .
研一研·问题探究、课堂更高效
探究点一
二项式定理
2 3 4 问题 1 如何利用计数原理得到 ( a + b ) , ( a + b ) , ( a + b ) 的展 本 课 开式? 时
研一研·问题探究、课堂更高效
问题 2 答
本 课 时 栏 目 开 关
根据问题 猜想(a+b)n 的展开式, 并简要说明每一项
n 1 n-1 k n-k k n n (a + b)n = C 0 a + C a b + … + C a b + … + C n n n nb
的形成过程. (n∈N*). 因为(a+b)n 由 n 个(a+b)相乘,每个(a+b)中的 a 或 b 都选定 后,才能得到展开式的一项,所以展开式共有 2n 项,并且每 一项都是 an-kbk (k=0,1,…,n)的形式. an-kbk 出现的次数相当于从 n 个(a+b)中取 k 个 b 的组合数 Ck n, 即 an-kbk 的系数为 Ck n.
3 =C7 ×23×x3=35×8x3=280x3.
所以展开式的第 4 项的二项式系数是 35,系数是 280.
1 9 (2)x-x 的展开式的通项是
栏 目 开 关
12 1 =81x +108x+54+ + 2. x x 4 1 3 x + 1 4 3 x + 方法二 = x2 x 1 = 2(81x4+108x3+54x2+12x+1) x 12 1 2 =81x +108x+54+ + 2. x x
2
研一研·问题探究、课堂更高效
高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)
2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3的全部内容。
第一章计数原理章末检测时间:120分钟满分: 150分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种解析:因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种进行排列,共有C2,3A错误!=18种.故选B。
答案:B2.若A3,n=12C错误!,则n等于()A.8 B.5或6C.3或4 D.4解析:A3n=n(n-1)(n-2),C错误!=错误!n(n-1),∴n(n-1)(n-2)=6n(n-1),又n∈N*,且n≥3,解得n=8.答案:A3.关于(a-b)10的说法,错误的是( )A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.答案:C4.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8 B.122017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3C.16 D.24解析:∵A错误!=n(n-1)=132,∴n=12(n=-11舍去).故选B。
人教版高中数学选修2-3教案:1.3.1二项式定理
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
2017-2018学年高中数学第一章计数原理1.3二项式定理1.3.2课件新人教A版选修2-3
= ( C 2 2 + C 1 2 + C 1 3 + … + C 1 9 - C 2 2 ) + ( C 3 3 + C 3 2 + … + C 9 2 ) = C120+ C130- 1= 164.
(2)由题可设第n行的第14个与第15个数的比为2∶3,即
二项展开式的第14项和第15项的系数比为
C.0
D.2
(2)已知(1-2x)n=a0+a1x+a2x2+…+anxn,(n∈N*),且a2=60. ①求n的值;
②求
的值.
a21a 22 2a 23 3 1na 2n n
【解题指南】(1)对x赋值1,即可求得.
(2)①由a2=60,求出n的值.
②令x=0,求出a0,再令x=-1 即可求得. 2
这C 正0 n 1 好C 是1 n第C nn 2 +1 2C 条3 n 细2 斜C 4 n 线 3 上… 各数之和.
类型二 求展开式中的系数和
【典例2】(1)(2017·济宁高二检测)如果(1-2x)7=a0+
a1x+a2x2+…+a7x7,那么a0+a1+…+a7的值等于 ( )
A.-1
B.-2
【解题指南】(1)该数列从第3项开始每隔一项等于前 两项的和,解答本题可观察数列的各项在杨辉三角中的 位置,把各项还原为各二项展开式的二项式系数,然后利 用组合数的性质求和. (2)可联系对应二项式系数的位置求解.
【解析】(1)选C.由图知,数列中的首项是
C
,第2 2项
2
是 ,第3项是
项是C 12 ,
答案:7
C
6 13
6.已知(2x-1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5. (1)求a0+a1+a2+…+a5. (2)求|a0|+|a1|+|a2|+…+|a5|. (3)求a1+a3+a5.
数学 第一章 计数原理 1.2 排列与组合课堂练习(无答案)新人教A版选修2 3 试题
1.2 排列与组合§1.2 排列与组合-排列(一)【典型例题】例1.从a, b, c, d 这四个字母中取出两个进行排列,(1)用计数原理计算总共有多少个排列?(2)写出所有排列,数出个数;(3)两种方法所得排列数一样吗?例2.12名选手参加民歌大赛,比赛设一等奖,二等奖,三等奖各一名,每人最多获得一种奖项,一共有多少种不同的获奖情况?【课堂练习】1.计算①4A 24+5A 35; ②A 14+A 24+A 34+A 44; ③2A 712A 35A 1212.2.(1)一天有六节课,安排6门学科,这一天的课程表有几种排法?(2)上午有4节课,一个教师要上三个班级的课,每个班一节课,这个教师的课有几种排法?§1.2 排列与组合-排列(二)【典型例题】用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位数?(2)能组成多少个四位数?(3)能组成多少个无重复数字的四位偶数?(4)能组成多少个无重复数字且为5的倍数的五位数?(5)能组成多少个比1325大的四位数?【课堂检测】7个人排成一排.(1)一共有多少种不同的排列方法?(2)其中甲必须排在中间的排法有多少种?(3)其中甲不能排在最后一个位置的排法有多少种?(4)其中甲不能排在第一个位置,也不能排在最后一个位置的排法有多少种?§1.2 排列与组合-排列(三)【典型例题】例1.三个女生和三个男生排成一排,(1)男生甲不能排在首位,可有多少种不同的排法?(2)男生甲不能排在首位,男生乙不能排在末位,可有多少种不同的排法?(3)如果女生必须全排在一起,可有多少种不同的排法?(4)如果女生必须全分开,可有多少种不同的排法?(5)如果女生必须全分开,男生必须全分开,可有多少种不同的排法?(6)其中甲、乙两同学之间必须恰有3人,有多少种不同的站法?(7)甲、乙两人相邻,但都不与丙相邻,有多少种不同的站法?(8)如果三名女生排列顺序固定,但位置不定,可有多少种不同的排法?【课堂检测】某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中有3名男生3名女生,且男生不能相邻,有多少种不同的排法?§1.2 排列与组合-组合(一)【典型例题】判断下列各事件是排列问题,还是组合问题,并求出相应的排列数或组合数.(1)10个人相互各写一封信,共写多少封信?(2)10个人规定相互通一次,共通了多少次?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(4)10支球队以单循环进行比赛(每两队比赛一次),这次比赛所有冠亚军的可能情况?(5)从10个人里选3个代表去开会,有多少种选法?(6)从10个人里选出3个不同学科的科代表,有多少种选法?【课堂检测】1.有下列等式:① C m n =n!m!(n -m)!; ②C m n =n m C m-1n-1; ③ m!(m -1)! C m n= n! 其中一定成立的是(填序号).2.设集合A={a,b,c,d,e}, B ⊆A, 如果a ∈B. 且B 中有3个元素,那么满足条件的集合B 有多少个?3.已知甲乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员组成有多少种可能?§1.2 排列与组合-组合(二)【典型例题】例1.在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,问:(1)一共有多少种不同的抽法?(2)抽出的三件中恰好有一件是不合格品的抽法有多少种?(3)抽出的三件中至少有一件是不合格品的抽法有多少种?例2.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?【课堂检测】1. 房间里有5盏电灯,分别由5个开关控制,至少开一盏灯用以照明,有多少种不同的方法?2.学校开设了6门选修课,问:(1)某学生从中选3门,共有多少种不同的选法?(2)某学生从中至少选2门,共有多少种不同的选法?(3)某学生从中至多选4门,共有多少种不同的选法?§1.2 排列与组合-组合(三)【典型例题】例1.从4台甲型和5台乙型电视机中任意取出3台,其中甲型与乙型电视机至少各有1台,则不同的取法共有( )例2.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次活动, 要求有女生但人数必须少于男生,有____种选派方法;(3)分成三组,每组3人,有种不同分法例3.如图,从一个3×4的方格中的一个顶点A 到对顶点B 的最短路线有几条?【课堂检测】1.从7人中选派5人到10个不同的交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A AB .5557105AC A C .55107C CD .55710C A2.8级台阶,一步允许走1级或2级,7步走完,则一共有多少种不同走法.。
人教版高中数学选修23课后习题参考答案
新课程标准数学选修2—3第一章课后习题解答第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6)1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9; (2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6.2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12; (2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12)1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种).2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条).3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个).对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个).4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A中选横坐标,有6个选择;第二步,从A中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个).(2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条).习题1.1 B组(P13)1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个).2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25)1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁; (2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯; (3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=.6、()1111(1)!!11(1)![(1)(1)]!!!m mn n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27)1、(1)325454*********A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=. 2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=; (4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n n n A A n A A nA n A +-+--=+-==;(2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种).8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n .9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个). 10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3)2n n n C n --=(条).说明:本题采用间接法更方便. 11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234444415C C C C +++=(种). 12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C =;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C =. 13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C =. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A =;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A 中取,有m 种取法;第二步,从集合B 中取,有n 种取法. 所以共有取法mn 种. 说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C ⋅⋅=. 15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C ⋅=; (2)其余2人可以从剩下的7人中任意选择,所以共有2721C =(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C -=; 如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C ++=;(4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C --=. 也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231545454120C C C C C C ++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词. 习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个). 4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=. 5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=. 3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nn C ;当n 是奇数时,最大值12n nC-.(2)1311111111111210242C C C +++=⋅=. (3)12.2、∵0122knn nn n n n C C C C C ++++++=,2、∵0122knn nn n n n C C C C C ++++++=,0213nn n n C C C C ++=++∴012knnn n n n C C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n nnnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn nn n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nn n n n n C C C C ++++.2、(1)9965432(9368412612684a a a a a b a a a b =+++23369a b ab b(2)27311357752222222172135(7016822412821283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x ++=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+. 4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =; (4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x 的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n rn n T C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!n n nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C , 由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法.(2)3276525C C ⋅=; (3)1545480A A ⋅=,或2454480A A ⋅=; 说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置. (4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答. (6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=. (7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=;说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =. 说明:只有首位数是6和5的六位数才符合要求.3、(1)3856C =; (2)1234555530C C C C +++=. 4、468898C C +=.说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同. 6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=. 7、34533453103680A A A A ⋅⋅⋅=. 说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列. 8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--. (2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和.444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =--3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=. 9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+ 551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=; 说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B 中能够找到唯一对应的元素,(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共 面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -=(6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=. 解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅; 首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅; 根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=. 3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8mn l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法. 根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种).5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=,上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n CC +++-=,就是所求展开式中含2x 项的系数.解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C CCC +++++++=-=修2—3第二章课后习题解答第二章 随机变量及其分布 2.1离散型随机变量及其分布列 练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12. (2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值. 2、可以举的例子很多,这里给出几个例子: 例1 某公共汽车站一分钟内等车的人数; 例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数;例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量. 练习(P49)1、设该运动员一次罚球得分为X ,X 是一个离散型随机变量,其分布列为说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便.2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正1(2)({})0.25P X P ====正正因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为5448552()i iC C P X i C -==,i =0,1,2,3,4. 因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X,它可能的取值为0,1,2,3,4,5.事件{X=0}表示5个路口遇到的都不是红灯;事件{X=1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X=2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X=3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X=4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X=5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义12345X⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X=1}表示该同学取得的成绩为不及格;事件{X=2}表示该同学取得的成绩为及格;事件{X=3}表示该同学取得的成绩为中;事件{X=4}表示该同学取得的成绩为良;事件{X=5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km所用时间X不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4min Y >⎧=⎨≤⎩,跑所用的时间,跑所用的时间它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}. 4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =;(2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率. 6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯.说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型. 习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的 取值为0,1,2,3,且X 服从超几何分布,分布列 为即(2)该同学能及格表示他能背出2或3篇,故他能及格的概率为112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000. 2.2二项分布及其应用 练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯.说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义.练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯=(2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为()()()0.80.70.56P AB P A P B ==⨯=(3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,利用概率的性质得到()()()P A P AB P AB =+所以()()()P AB P A P AB =-.。
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高中数学(人教选修2-3)配套课件第一章 1.3.1 二项式定理与二项展开式
栏 目 链
接
(2)S=C40(x-1)4+C41(x-1)3×21+C42(x-1)2×22+C34(x-
1)×23+C4424=[(x-1)+2]4=(x+1)4.故选 D.
答案:(1)1+4x+x62+x43+x14 (2)D
点评:解决这一问题的关键是弄清二项式展开式左右两边的结 构特征,这样我们就能够将一个二项式展开,若一个多项式符合二项 展开式右边的结构特征,我们也能够将它表示成左边的形式.
(1)展开式的第四项的二项式系数为 =120.
(2)展开式的第四项的系数为 ·37-323=-77 760. 点评:根据二项展开式的通项公式,即可求展开式中的特定项.
变式 训练
2.(2013·揭阳一模)若二项式x+21xn 的展开式中,第 4 项与第
7 项的二项式系数相等,则展开式中 x6 的系数为________(用数字作
基础 梳理
(3)其中各项的系数_____C__rn_(r=0,1,2,…,n)叫做
_________二__项_式__系__数____.
(4)式中的______________叫做二项展开式的通项,用Tr+1
表示.
Crnan-rbr
栏
(5)通项是展开式的第________项.
目
链
2.二项式定理的应用.
10-(2)2 40 .
答案: C
栏 目 链 接
题型一 二项式定理的正用、逆用
例 1 (1)用二项式定理展开1+1x4=________;
(2)设 S=(x-1)4+4×2(x-1)3+6×4(x-1)2+4×8(x-1)+16,
根据二项式定理得 S=( )
接
r+1 例如:(1)(x+1)4的展开式中常数项是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 二项式定理(2)
【学习目标】
(1)会证明二项式定理
(2)掌握二项式定理,并能简单应用
(3)能够区分二项式系数与二项展开式中项的系数
【能力目标】
能利用观察,联想采取适当的方法进行求解。
【重点难点】
展开式的特征,通项公式,赋值法。
【学法指导】
采取适当的方法,寻求目标,关键是通项公式及怎样用通项公式。
【学习过程】
一.【课前复习】
1.()n a b +的二项展开式是011222n n n r n r r n n
n n n n n C a C a b C a b C a b C b ---++++++ 。
2.通项公式是 1r n r r
r n T C a b -+= 。
3.012r n n n n n n C C C C C ++++++= 2n。
4.(1)n x +=1221r r n n
n n n n C x C x C x C x ++++++
5.在10
展开式中的常数项是210 。
二.【课堂学习与研讨】
例1计算
(1)5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-
解:原式0514
233245
555555(1)(1)(1)(1)(1)1C x C x C x C x C x C =-+-+-+-+-+-
5[(1)1]1x =-+-51x =-
(2)121242n n
n n n C C C ++++
解:原式0122222n
n n n n n C C C C =+⋅+⋅++⋅ (12)3n n =+=
例2.求64(1)(1)x x -+的展开式中的3x 系数
解:原式442(1)(1)(1)x x x =-+-242(1)(12)x x x =--+
因为24(1)x -的通项公式是22144()(1)k k k k k
k T C x C x +=-=-(0,1,2,3,4k =)
所以64(1)(1)x x -+的展开式中的3x 系数是1
4(1)(2)C -⋅-,即是8.
例3.已知727
0127(12)x a a x a x a x -=++++ ,则求
①1237a a a a +++ 的值;
②1357a a a a +++的值;
③0246a a a a +++的值.
解:在727
0127(12)x a a x a x a x -=++++ 中,
令0x =,得01a =;再令1x =,得01271a a a a ++++=- ,………………… (1*) 所以, 12372a a a a +++=- .
令1x =-,得7012345673a a a a a a a a -+-+-+-=……………………………(2*) 由(1*)(2*)等式得:
702462()31a a a a +++=-,702461
(31)2a a a a ⇒+++=-
713572()13a a a a +++=--713571
(13)2a a a a ⇒+++=-+
试一试:若2002
200012200(12)(1)(1)(1)x a a x a x a x +=+-+-++- ,
求1357199a a a a a +++++ 的值。
解:令2x =,得20001232005a a a a a +++++= (1)
)
令0x =,得01232001a a a a a -+-++= (2)
)
由(1*)式减(2*)式得:20013571992()51a a a a a +++++=-
所以,20013571991(51)2a a a a a +++++=
-
三.【课堂检测】
1.已知9(a
x 的展开式中3x 的系数为94,则常数a 的值是 。
解:919()(k
k k k a T C x -+=99229(1)2k k k k k k C a x x ---=⋅⋅⋅-⋅⋅ 399229(1)2k
k k k k a C x
---=-⋅⋅⋅⋅,由已知得3932k -=,解得8k =,所以有8
8988299(1)2
4a C ---⋅⋅⋅=,即49924a -⋅⋅=,4a = 2.已知2
(1)n x +展开式中含2x -的项的系数为12,则n 的值是。
解:由12k k k k n T C x -+=知,2k =,即222212n T C x -+=, 22212n C =,得3n =
3.在310(1)(1)x x -+的展开式中5x 的系数是(
) A.297-
B.252-
C.297
D.207 解:由10(1)x +的通项110k k k T C x +=,得555110T C x +=,222110T C x +=,所以,310(1)(1)
x x -+的展开式中5
x 的系数是521010C C -,即207.选D 4.9()x y z ++中含423x y z 的项的系数是
解:99()[()]x y z x y z ++=++,919()k k k k T C x y z -+=+,要求含423x y z 的项,则3k =,
所以363319()T C x y z +=+,又6()x y +的展开式通项为616r r r r T C x y -+'=,要求含423x y z 的项,
则2r =,因此242216T C x y +'=,故9()x y z ++中含423x y z 的项的系数是3296C C ,
即252.
四.【课堂小结】
1.注意区分项的二项式系数与系数的概念.
2.要牢记k n k k n C a b -是展开式的第k +1项,不要误认为是第k 项.
3.求解特定项时必须合并通项公式中同一字母的指数,根据具体要求,令其为特定值.
4.会通过观察,用赋值法求解。
【课外作业】
1.求6
的展开式中, (1)第3项的二项式系数及系数;
(2)含2
x 的项及项的系数.
解:(1)第3项的二项式系数为2615C =,
又24242
366(2T C C x ==, 所以第3项的系数为4262240C =.
(2)663
16((1)2k k k k k r k k n T C C x ---+==-, 令32k -=,得1k =.
所以含2x 的项为第2项,且22192T x =-,系数为192-。
2.已知m ,*N n ∈,()(1)(1)m n f x x x =+++的展开式中x 的系数为19,求2x 的系数的最小值及此时展开式中7x 的系数.
解:由题设知19m n +=,又m ,*N n ∈,
所以118m ≤≤.
2x 的系数为2222211()()1917122
m n C C m m n n m m +=-+-=-+. 所以当9m =或10时,2x 的系数的最小值的81,此时7x 的系数为77910156C C +=.
3.已知
n 的展开式中,前三项系数的绝对值依次成等差数列.
(1)证明展开式中没有常数项;
(2)求展开式中所有有理项.
解:依题意,前三项系数的绝对值分别是1,112n C ⋅,221()2
n C ⋅, 依题意11212n C =+⋅221()2
n C ⋅,即2980n n -+=, 解之,得8n =(舍去1n =).
故16384
1881(()2r r r r
r r
k T C C x -
-+==-.
(1)证明:若+1r T 为常数项,当且仅当16
304r
-=,
即316r =,因为*r ∈N ,所以316r =不可能成立. 故展开式中没有常数项.
(2)若+1r T 为有理项,当且仅当1634r
-为整数,
因为08r ≤≤,*r ∈N ,所以0r =,4,8. 此时展开式中的有理项共有三项,它们是
41T x =,535
8T x =,921
256T x =.。