35KV及以下避雷器类型选择

合集下载

避雷器参数及选型原则

避雷器参数及选型原则

金属氧化物避雷器的选择避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。

1、无间隙金属氧化物避雷器的选择选择的一般要求如下:(1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。

(2)、按照被保护的对象确定避雷器的类型。

(3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。

(4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。

(5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。

(6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。

(7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。

(8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。

(9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。

(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机械强度。

(11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。

2、主要特性参数选择(1)、持续运行电压Uc中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。

在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障二;「三2h及以上切除故障3〜10kV 1.0〜1.1U L, 35〜66kV Uc》U L至于10s〜2h之间,可按2h以上选取,也可参照避雷器的工频电压耐受特性曲线选取。

35kV输电线路防雷保护措施探究

35kV输电线路防雷保护措施探究

35kV输电线路防雷保护措施探究摘要:现在电网发生雷击的现象很多,有的雷击现象不仅对电网造成影响,甚至危害了人的生命,因雷击电线出现意外事故的事情每年都有发生。

所以相关部门对于输电线路的防雷设施更加重视,现在多数的线路电压都是35kv,这样低的电压更容易遭到雷击,所以必须对35kv的输电线路做好防雷措施,以免因雷电的击打发生不必要的影响,造成不必要的伤害。

关键词:35kV;输电线路;防雷保护;措施探究引言根据作用方式的不同,雷电可以分为感应雷和直击雷。

对于感应雷的防范已经较为成熟,直击雷是目前防雷技术的主要研究对象。

广东省清远市为丘陵地形,气候湿润,春夏季节常出现雷雨天气,极易发生雷击,为了能够有效地降低雷击造成的输电线跳闸率,减少雷击造成的停电现象,必须对输电线及杆塔进行防雷改造。

防雷改造需要选择合适的防雷技术,并且要制定合理的防雷方案。

1. 由雷击引起跳闸的主要因素一般而言,由于绝缘水平较低,35kV输电线路因雷击造成短路是无法避免的。

雷击线路而造成的跳闸现象必须具有两个条件:一是单相接地短路形成,即由于脉络的原因形成的稳定工频电弧引发的线路跳闸;第二是线路的绝缘水平低于雷击的闪电过电压,造成休克线绝缘闪络,时间非常短暂,只有几十微秒而不足以有时间进行跳闸。

1.1线路杆塔的接地电阻值雷击档距中避雷线时,一般情况下空气间隙不会发生闪络,而雷电流在向两边杆塔传播时,由于强烈的电晕,当传播到杆塔时,幅值已大为降低,如果杆塔的接地电阻不高,杆塔的电位的升高不足以引起绝缘子串发生闪络。

雷击杆塔引起反击过电压时,绝缘子串能否闪络,与杆塔冲击接地电阻值有直接关系,接地电阻越大,塔顶电位越高,绝缘子串上的电位差越高,容易造成绝缘子串的闪络,甚至造成多串绝缘子串的同时闪络,导致相间短路,引起跳闸。

1.2消弧线圈的整定情况消弧线圈的设置如果不准确,输电线路因为雷击容易引起导线当单相对地短路,此时的消弧线圈补偿是不够的,如果35千伏线路单相接地短路电流对电容电流,当消弧线圈补偿过大,单相接地短路电流感应电流。

线路避雷器的介绍(35kv线路避雷器安装设计)-精品

线路避雷器的介绍(35kv线路避雷器安装设计)-精品

线路避雷器的介绍关键词:输电线路;线路避雷器;雷击跳闸率据原国家电力公司安运部的统计资料表明,雷击各级输电线路而引发的跳闸事故占总事故的60%左右,尤其在地形复杂、土壤电阻率高和多雷的山区,雷击输电线路而引发的事故率更高,由此而造成的经济损失是巨大的。

为了减少输电线路的雷击故障,传统的措施有:降低杆塔接地电阻、加装负角保护、加装耦合地线、增加绝缘子片数(提高线路绝缘水平等等)。

但是,由于各种原因,即使采用了以上措施,有不少地区仍不能有效降低雷击跳闸事故率。

鉴于以上情况,从1997年起,四川电力试验研究院与西安电瓷研究所、西安交通大学等共同研制和开发了110 kV线路避雷器,继而独立开发了10 kV、35 kV、220kV电压等级的线路避雷器,以及变压器中性点避雷器和站用避雷器。

目前已成功地应用在四川省电力公司和地方电网的十几个电业局、发电厂,有效地降低了雷击跳闸事故,取得了明显的经济效益和社会效益,深受使用单位的好评,相继获得四川省科技进步奖和四川电力科技进步奖。

1线路型复合外套金属氧化物避雷器的特点随着制造水平的提高,中国从20世纪80年代起开始采用复合外套金属氧化物避雷器,与传统的瓷套避雷器相比,这种避雷器由于体积小,重量轻,从90年代起逐步试用到输电线路防雷。

这种避雷器具有以下特点:(1) 采用一次模压成型(即真空浇注工艺),排除了内部气隙,局部放电量小(国家标准要求小于50 PC,该产品小于5 PC),内部不易受潮,提高了避雷器使用的可靠性。

(2) 重量轻,体积小,既可悬挂在变电站进线门型构架上,节省占地;也可悬挂在线路杆塔上,安装方便、简单,安装成本较低。

(3) 避雷器本体上设计有防爆孔,即使避雷器因内部故障发生爆炸,由于避雷器裙套材料是硅橡胶,爆炸后只是裙套裂开,不会出现瓷套避雷器爆炸后,瓷片飞出打坏绝缘子串和导线等周围设备的情况。

(4) 110 kV、220 kV等级的线路避雷器由于外串联了空气间隙,避雷器本体平时不带电(仅在雷电过电压时动作),这就在很大程度上延长了阀片和硅橡胶外套的使用寿命,抗老化能力大幅提高;而10 kV、35 kV线路避雷器则采用了串联热爆式脱离器的方式,即使避雷器本体故障,脱离器会立即炸开,保证了系统的安全正常运行。

避雷器35 -330kV说明书

避雷器35 -330kV说明书
5.6.4持续电流测量
用阻性电流测量仪,测量避雷器在持续运行电压下的阻性电流,以便对避雷器进行监视和分析比较。
5.6.5用直流1mA测量装置(直流电压脉动部分应不超过+1.5%),测量避雷器或元件在直流1mA下的直流参考电压和0.75直流1mA电压下的微安值。
对于污秽地区,除上述检测项目外,还要定期进行清洗。特别是瓷套表面。
177.8
280
290
296
314
331
600
600
600
600
600
560
582
594
630
665
500
520
532
562
593
426
442
452
478
502
0.25
0.25
0.25
0.25
0.25
表2 10kA避雷器技术参数
避 雷 器
型 号
避雷
器额
定电

kV
(有效值)
系统
电压等级
避雷器持
续运
行电

直流
参考
电压
kV≥
2ms
方波
电流
A

陡波
冲击
电流
下残

雷电
冲击
电流
下残

操作
冲击
电流
下残

持续
电流
阻性
分量
mA

线路放电等级


kV(峰值)≤
Y10W5-51/134
Y10W5-51/130
Y10W5-51/125
51
51

35kV线路上线路型避雷器的应用

35kV线路上线路型避雷器的应用

35kV线路上线路型避雷器的应用一、前言随着我国经济的巨大发展,对电力的需求有增无减,但是近年来高速的工业发展也带来了环境条件的改变,有些地方的环境变得恶化,由雷击引起的输电线路跳闸故障也日益增多,这不但对工农业生产以及老百姓的日常生活造成了比较大的影响,而且对设备也容易造成损伤。

为了减少这种情况的发生,一定要重视线路型避雷器在35kV线路上的应用。

二、35KV线路型避雷器概述35KV线路型避雷器金属氧化避雷器是国际上90年代的高科技产品。

其采用了非线性伏-安特性十分优异的氧气锌电阻片,故而避雷器的徒坡,雷电波,操作波下的保护特性均比传统的碳化硅避雷器有了极大的改善。

特别是氧化锌电阻片具有良好的徒坡响应特性,对陡坡电压无迟延,操作残压低,没有放电分散性等优点。

从而克服了碳化硅避雷器所固有的因陡坡放电迟延而引起的陡坡放电电压高,操作波放电分散性大而导致操作波放电电压高等缺点,使得坡,操作波下的保护裕度大大地提高,而且在绝缘配合方面,能够作到陡坡,雷电波,操作波的保护裕度接近一致,从而对电力设备提供最佳的保护,进而提高了保护的可靠性。

氧化锌避雷器同时具有吸收雷电过电压,操作过电压和工频暂态过电压的能力。

复合外套金属氧化锌避雷器是国际90年代的高科技产品。

采用整体硅橡胶模压成型,密封性能好,防爆性能优异,耐污秽免清洗,并能减少雾天湿闪发生,耐电蚀抗老化,体积小重量轻,耐碰撞,便于安装和维护。

是瓷套避雷器的更新换代产品。

0KV输配电线路系电力系统中最常用的电压等级线路,由于10KV线路的绝缘水平普遍较低,难以承受直击雷或感应雷的作用,不仅在雷直击导线和塔顶时会闪络起跳闸,而且在雷电击中周边的树木或建筑时,因感应电压过高也会导致闪络,绝缘层被击穿,接续的工频电弧在此处燃烧,在极短的时间内导线就会被烧断。

目前我国各大、中城市10KV配电线路采用绝缘导线做为架空配电线路的愈來愈多,有效地解决了裸导线难以解决的走廊和安全问题,与地下电缆相比具有投资省,建设快的优点,但也带来了一些新的技术问题,其中之一就是绝缘导线运行中的雷击断线,雷击断线已成为电力系统面临的一个安全难题。

35kV系统电站用避雷器配置浅析

35kV系统电站用避雷器配置浅析

35kV系统电站用避雷器配置浅析发布时间:2023-02-07T02:55:55.936Z 来源:《中国电业与能源》2022年9月17期作者:高乐[导读] 避雷器已被广泛的应用于35kV系统中用于电气设备的过电压保护高乐鲁西集团有限公司252000摘要:避雷器已被广泛的应用于35kV系统中用于电气设备的过电压保护,避雷器参数的合理选择对于设备的过电压保护有着重要的作用。

本文通过对35kV系统氧化锌避雷器主要参数选择的分析和计算,指出其在与设备绝缘配合方面存在的问题,并提出了电站用避雷器参数选择的优化建议,具有一定的实践意义。

关键词:35kV系统;电站用避雷器;配置目前,避雷器通常包括两大类:①碳化硅阀式避雷器:普通阀式避雷器和磁吹阀式避雷器的特点是都有间隙,使避雷器在正常电压下处于绝缘状态。

②交流金属氧化物避雷器。

传统的碳化硅避雷器有陡波放电电压高、操作波放电分散性大等缺点,而氧化锌避雷器由性能优越的氧化锌非线性电阻片组装而成,与碳化硅阀型避雷器相比,具有响应迅速、残压低、陡波特性好、通流容量大、可耐受连续多重过电压冲击、无工频续流、阀片寿命长、结构简单、重量轻、耐污能力强等优点,氧化锌避雷器是较为理想的过电压保护电器。

从雷电防护和绝缘配合方面指出了当前常用电站用避雷器参数选择时存在的问题,并对避雷器选型中所涉及的几个主要参数进行分析,提出35kV系统电站用避雷器参数选择的建议,具有一定的实践指导意义。

1避雷器主要参数选择目前35kV系统电站用避雷器均参照文献[7]附录D推荐的典型35kV避雷器参数进行配置,即选用复合外套氧化锌避雷器YH5WZ-51/134,此避雷器标准雷电冲击残压为134kV,与上述规范要求存在出入,故宜进一步降低避雷器的标准雷电冲击残压水平至132kV及以下以满足绝缘配合的要求。

1.4避雷器压比分析金属氧化物避雷器的核心部件为氧化锌电阻片,是一种以氧化锌为主要材料的非线性电阻,1968年,松下的松岗道雄首次发现了氧化锌电阻片。

避雷器参数选择

避雷器参数选择

复合外套氧化物避雷器参数选择1. 避雷器选型总体原则避雷器选型的一般原则如下。

(1) 根据被保护对象选择避雷器类型。

(2) 按系统中长期作用在避雷器上的最高电压确定避雷器的持续运行电压。

(3) 估算通过避雷器的雷电放电电流幅值,选择避雷器的标称放电电流。

(4) 根据被保护设备的额定雷电冲击耐受电压和操作冲击耐受电压,按照绝缘配合系数的要求,留够绝缘裕度,确定避雷器雷电冲击保护水平和操作冲击保护水平。

2、避雷器额定电压:施加避雷器端子间的最大允许工频电压有效值,按照此电压所设计的避雷器,能在所规定的动作负载试验中确定的暂时过电压下正确地工作。

(1)按IEC标准规定,避雷器在注入标准规定的能量后,必须能耐受相当于额定电压数值的暂时过电压至少10s。

(2)避雷器额定电压选择。

避雷器额定电压可按(下)式选择Ur > kUt (1)式中:Ur——避雷器额定电压,kV;k――切除短路故障时间系数,10s及以内切除故障k=1.0, 10s以上切除故障k=1.3;Ut——暂时过电压,kV在选择避雷器额定电压时,仅考虑单相接地、甩负荷和长线电容效应引起的暂时过电压,可按表3选取注* 4167即:10kV避雷器额定电压选17kV; 35kV避雷器额定电压选54KV3、避雷器的标称放电电流的选取避雷器的标称放电电流分IkA、1. 5kA、2. 5kA、5kA、10kA和20kA 共6个等级。

确定避雷器的额定电压后,对照《交流电力系统金属氧化物避雷器使用导则》中避雷器分类表,可查出相应的避雷器标称放电电流等级。

一般保护110kV一220kV设备的避雷器选10kA;保护35kV以下设备的避雷器选5kA;变压器中性点避雷器选1.5kA。

即:油田配电线路选取标称电流为5kA.在确定避雷器的标称放电电流时,按照《交流无间隙金属氧化物避雷器》GBII032--2000附录K给出的各标称放电电流等级的避雷器每单位额定电压下典型的最大残压范围,用各设备额定雷电冲击电流的耐受电压值除以1. 4得到允许的最大残压值,再除以相应电压等级下选定的避雷器的额定电压值得到一个比值(这个比值为允许的最大值),在附录K中,查出相应的额定电压和雷电冲击保护水平栏中对应的最相近的放电电流等级,也可得到选定的避雷器标称放电电流等级。

采用线路型避雷器提高35kV输电线路的耐雷水平

采用线路型避雷器提高35kV输电线路的耐雷水平

摘要:随着我国社会水平的提高,人们对于用电稳定性的需求也在逐渐的增强。

但是在供电线路的实际运行过程中,经常会由于各种因素对电力线路造成影响,从而对居民企业的用电稳定性带来隐患,其中,雷雨天气中的雷电对于线路的影响是非常大的,也是很多用电事故发生的主要原因。

在本文中,将就采用线路型避雷器提高35kV 输电线路的耐雷水平进行一定的分析与探讨。

关键词:线路型避雷器输电线路耐雷水平1概述根据相关统计,在近年来所发生的电力事故中,由于雷电对线路造成的事故占据很大的比例,尤其是在一些雷电出现频繁、地形复杂、土壤电阻率高的地点则更为如此,更容易发生输电线路遭受雷击的情况出现。

输电线路被雷击中之后,会对直接导致变电站中的电气设备发生损坏、开关出现跳闸、以至于出现供电中断甚至系统崩溃等灾难性事故。

在我国输电网络中,35kV线路是其中的重要基础,负担着向广大居民进行供电工作的重要任务,尤其在一些大型企业的供电网络中,其输电的主干线路也是以35kV为主。

这就使我们对于35kV电路保护起到足够的重视。

同时,由于在我国中35kV的输电线路有着绝缘能力低的特点,加上很多电杆塔结构之中没有对避雷线进行设计,这就使得输电线路中雷电防护能力较为薄弱,再加上部分线路已经运行多年,其接地装置发生了严重的锈蚀现象,这种情况就导致了对线路耐雷能力造成了进一步的减小。

根据相关经验表明,对于部分特殊地区的输电线路而言,仅仅依靠采取降低杆塔接地电阻、加强线路绝缘、架设避雷线等防雷措施已经不能够对当前线路的防雷要求进行满足,所以就应当在部分35kV线路中容易被雷击中的段路中架设避雷器,并且通过仿真软件ATP-EMTP 对于避雷器对输电线路防雷能力的效果进行研究与分析。

2雷电作用下35kV 输电线路电磁暂态仿真计算模型ATP-EMTP 是一项专门用于对输电线路电磁暂态进行仿真分析的工具,在进行仿真计算时,输电线路中对于参数的选取以及对模型的建立都会对最终的计算结果产生很大的影响,而作为线路避雷器来说,其又非常依赖仿真计算结果,所以,在雷电作用对输电线路电气模型的建立是非常关键的问题。

探讨35kV输电线路防雷措施

探讨35kV输电线路防雷措施

探讨35kV输电线路防雷措施35kV输电线路是输送高压电能的主要方式之一,但在日常的使用过程中,雷击是35kV 输电线路最为严重的威胁之一。

雷击经常造成设备的损坏和维修,甚至事故。

因此,必须采取一系列的防雷措施来确保35kV输电线路的稳定、可靠和安全的运行。

此外,由于35kV输电线路的特殊性质,防雷措施应该优先考虑线路参数、线缆布置方式等因素,同时也需要对各种防雷设备和材料进行严格的选型,保证防雷措施的实用性和经济性。

下面将从防雷设备选型、地线的设置、避雷针选型等方面,介绍35kV输电线路防雷措施的实现方法。

一、防雷设备选型防雷设备是35kV输电线路防雷的基础,通过防雷设备的选择和配置,可以有效降低雷击风险,提高输电线路的可靠性和安全性。

① 避雷器:35kV输电线路避雷器的选型应根据线路电压等级、雷电密度、安装环境等因素而定。

避雷器要具有较高的耐受能力,可在雷击时及时起到隔离、放电的作用,防止电力设备受到击穿和损坏。

② 接地装置:35kV输电线路接地装置是防雷的重要组成部分。

地下的根据土壤电阻率、用电设备规模等因素选取的地网应符合地面的形状、材料和安装形式等方面的要求。

地网的形状和安装方式应符合地形、气候和土壤类型的特点,以确保地电位的稳定和可靠性。

③避雷针:35kV输电线路避雷针的选型应优先考虑避雷针的输出电流和爬升时间。

因此,需要选择质量较高、适用性强、防雷效果显著且使用寿命长的避雷针,以确保防雷措施的有效性。

二、地线的设置地线是35kV输电线路防雷的关键组成部分。

对于地线的设置,应遵循以下几个原则:① 避免严重扭曲地线、地线过长等问题,以避免地电位的不稳定性。

② 地线应设置在地下,不要设置在空中,以避免影响可靠性和稳定性。

③ 地线的形状和构造应优先考虑操作性和安全性,以确保维修和调试的方便和安全性。

④ 应选择质量可靠、材料优良的地线,以确保地电位的稳定和连续性。

三、避雷针选型避雷针是35kV输电线路的一种主要防雷设备。

35kV支柱式避雷器 LT(51、134)

35kV支柱式避雷器  LT(51、134)

武汉雷泰电力新技术有限公司WUHAN LEITAI ELECTRICAL TECHNOLOGY CO., LTD.35kV支柱式复合外套无间隙金属氧化物避雷器产品说明书鉴于目前35kV配电系统使用的复合外套金属氧化物避雷器由于其绝缘结构设计和力学结构设计的局限性,只能竖直安装或吊装,产品功能单一、安装引线较多、占用空间较大。

特别是在线路、电缆终端或避雷器运行维护和检修作业时,存在较大的人身和设备安全隐患。

武汉雷泰电力新技术有限公司基于10kV支柱式复合外套无间隙金属氧化物避雷器的成功经验,优化35kV避雷器的绝缘结构设计和力学结构设计:(1)选用高强度合成树脂绝缘材料作为承力结构,优化金属连接件机械设计和迷宫式防潮设计;(2)选用硅橡胶作为全密封外绝缘材料,并采取整体一次注橡成型技术和界面偶联技术,有效保证硅橡胶与承力结构、金属连接件的良好粘结;(3)选用通流容量大、保护特性好的非线性氧化锌电阻片,保证 2000μs方波电流400A(优于标准规定值:150A)和4/10μs大电流冲击耐受100kA(优于标准规定值:65 kA),研制开发一种保护特性好、机械强度高,可以选择横置、竖置或吊装等承力或不承力安装方式,不仅可以作为避雷器使用,同时还可以兼作支柱绝缘子使用的35kV支柱式复合外套无间隙金属氧化物避雷器。

1产品特点·产品通过了电力工业电气设备质量检测中心型式试验和技术论证,各项技术指标均符合国家标准和行业标准;·采用高强度合成树脂绝缘材料作为承力结构,优化金属连接件机械设计和迷宫式防潮设计,提供足够的机械强度,保证该产品可兼作承力支柱绝缘子使用,安装方向不受任何限制,可以选择水平安装;·采用硅橡胶作为全密封外绝缘材料,并采取整体一次注橡成型技术和界面偶联技术,有效保证硅橡胶与承力结构、金属连接件的良好粘结,确保产品能够承受较大的机械应力,可靠密封防爆性能;·优异的保护特性,有效限制雷电过电压、操作过电压和谐振过电压;·工频耐受能力强、陡波特性好、通流容量大、保护曲线平坦;·硅橡胶外套耐气候老化、耐电蚀损、耐污秽;·最大限制地减少电杆上的元件和引线,简化登杆装置,提供较大安全操作空间,降低线路成本。

避雷器参数选择参考

避雷器参数选择参考

避雷器参数选择参考
1.避雷器选型总体原则
避雷器选型的一般参照如下:
1.1.根据被保护对象来选择避雷器类型。

1.2.估算流过避雷器的雷电放电电流的幅值,依此选择避雷器的标
称放电电流。

1.3.按系统中长期作用于避雷器上的最高电压来确定避雷器的持
续运行电压。

1.4.按照被保护设备额定雷电冲击耐受电压值和操作冲击耐受电
压值,依据绝缘配合系数的要求,考虑绝缘裕度,从而确定避雷器的雷电冲击保护水平及操作冲击保护水平。

2.避雷器的额定电压:施加在避雷器端子间最大允许工频电压的有
效值,按照此电压所设计的避雷器,能够在所规定的动作负载试验中确定的暂时过电压下正常地工作。

2.1IEC标准规定,避雷器在注入标准规定的能量后,必须能耐
受相当于额定电压数值的暂时过电压至少10s。

2.2避雷器额定电压选择:
避雷器额定电压可按(下)式选择U r≥kU t (1)
式中:Ur:避雷器额定电压,kV;
K:切除短路故障时间系数,10s 及以内切除故障k=1.0,10s
以上切除故障k=1.3;
Ut:暂时过电压,kV。

3.避雷器的标称放电电流的选取
避雷器的标称放电电流分lkA、1.5kA、2.5kA、5kA、10kA和20kA 共6个等级。

在确定避雷器的额定电压之后,参照《交流电力系统金属氧化物避雷器使用导则》中的避雷器分类表,可查出相对应的避雷器标称放电电流等级。

一般保护110kV一220kV设备用避雷器选10kA;保护35kV 以下设备用避雷器选5kA;变压器中性点用避雷器选1.5kA。

避雷器35 -330kV说明书

避雷器35 -330kV说明书
4.1避雷器的外形尺寸和安装尺寸见附图,顶部高压引线和放电计数器或运行监测器的安装尺寸也在附图及表4中示出。
在安装前需用槽钢或角铁制作1个牢固的钢架固定在混凝土基础上,架上预先按安装孔距开出光孔。安装避雷器的地脚螺栓要求垂直,混凝土基础钢架要求水平。
4.2首先将绝缘底座固定在基础钢架上,然后按顺序安装连接板、主体元件(多节元件避雷器的安装顺序应严格按元件编号依次由大到小进行安装,各节之间严禁互换。例如:220kV系统用避雷器元件为2节,其安装顺序为先装元件2、再装元件1),接线盖板、均压环等。
5.6.4持续电流测量
用阻性电流测量仪,测量避雷器在持续运行电压下的阻性电流,以便对避雷器进行监视和分析比较。
5.6.5用直流1mA测量装置(直流电压脉动部分应不超过+1.5%),测量避雷器或元件在直流1mA下的直流参考电压和0.75直流1mA电压下的微安值。
对于污秽地区,除上述检测项目外,还要定期进行清洗。特别是瓷套表面。
35~330kV系列避雷器采用常压和微正压两种结构,内部充高纯度干燥N2或SF6气体。微正压结构避雷器内部气体压力略大于大气压力,外部潮湿气体很难进入其内部,这使避雷器的抗潮能力大为提高。微正压结构避雷器在每个元件上装有一个自封阀,以便用户对产品的密封状态进行测试。自封阀也可作为现场补压的充气口。
4.安装与调整
177.8
280
290
296
314
331
600
600
600
600
600
560
582
594
630
665
500
520
532
562
593
426
442
452
478

常见氧化锌避雷器型号及参数

常见氧化锌避雷器型号及参数
65
20kV配电型/电站型(带脱离装置)
配电
(H)Y5WS-26/68L
26
20
20.8
34.0
78.2
68.0
57.8
75
40
(H)Y5WS-26/72L
26
20
20.8
36.0
82.8
72.0
61.2
75
40
电站
(H)Y5WZ-30/80L
30
20
24.0
43.0
92.0
80.0
68.0
200
65
25.0
57.5
50.0
42.5
75
40
(H)Y5WS-16.5/50L
16.5
10
13.2
25.0
57.5
50.0
42.5
75
40
(H)Y5WS-17/50L
17
10
13.6
25.0
57.5
50.0
42.5
75
40
电站
(H)Y5WZ-12/32.4L(1)
12
10
9.6
17.4
37.2
32.4
27.6
2.4
3.15
1.9
3.4
----
6.0
5.0
200
65
同10kV
电容器型
(H)Y1.5WD-4.8/12
4.8
6.3
3.8
6.8
----
12.0
10.0
200
65
(H)Y1.5WD-8/19
8
10.5
6.4
11.4

常用避雷器型号

常用避雷器型号

常用避雷器型号ZB-HY5W系列避雷器HY5W系列避雷器说明书.doc一、用途特点本公司生产的HY系列避雷器主要用于35KV及以下电压系统,用于保护交流电力系统的电气设备免遭大气过电压和操作过电压损坏。

外壳采用硅橡胶浇铸而成,运输过程中不易损坏,增大了放电距离,使用寿命大大加长。

二、型号说明三、工作原理氧化锌避雷器是目前国际最先进的过电压保护器。

由于其核心元件采用氧化锌电阻片,与传统碳化硅避雷器相比,改善了避雷器的伏安特性,提高了过电压通流能力,从而带来避雷器特性的根本变化。

当避雷器在正常工作电压下,流过避雷器的电流仅有微安级,当遭受过电压时,由于氧化锌电阻的非线性,流过避雷器的电流瞬间达数千安培,避雷器处于导通状态,释放过电压能量,从而有效地限制了过电压对输变电设备的侵害。

四、使用条件1. 环境温度:不低于,40?,不高于,60?。

2. 海拔高度不超过3000m,超出3000m可根据实际情况特制。

3. 电网频率: 48,52Hz(50Hz系统)、58,62Hz(60Hz系统)。

4. 长期加在避雷器上的电压不能超过其额定电压。

5. 安装场所的空气中不应含化学腐蚀气体、蒸汽、爆炸性尘埃,如有,在定货时要注明。

五、常用型号:5KA无间隙避雷器:残压(KV) 最大持续额定方波冲击大电流陡坡冲击标准雷电操作冲击型号运行电压电压耐受电流耐受电流电流冲击 (KV) (KV)HY5W-3 3 2.55 9.5 7.7 9 100 65 HY5W-6 15.4 6 5.1 19.0 18 100 65HY5W-9 9 7.65 28.5 23.1 27 100 654 HY5W-12 12 10.2 38.0 30.8 36 100 65 HY5W-15 15 12.7 47.5 38.5 45 100 65 HY5W-18 18 15.3 57.0 46.2 54 100 65 HY5W-21 21 17.0 66.5 53.9 63 100 65 HY5W-24 24 19.2 76.0 61.6 72 100 65 HY5W-27 27 21.9 85.5 69.3 81 100 65 HY5W-30 30 24.4 95.0 76.5 90 100 65 HY5W-33 33 26.8 104.5 84.7 99 100 65 HY5W-36 36 29 114.0 92.4 108 100 65 HY5W-42 42 34.1 132.3 100.1 126 100 65 10KA无间隙避雷器:残压(KV) 最大持续额定电大电流线路放电陡坡冲击操作冲击标准雷电型号压等级运行电压耐受电流电流冲击 (KV) (KV)HY10W-3 3 2.55 9.5 7.7 9 , 100 HY10W-6 6 5.1 19.0 15.4 18 , 100HY10W-9 9 7.65 28.5 23.1 27 , 100 HY10W-12 12 10.2 38.0 30.8 36 , 100HY10W-15 15 12.7 47.5 38.5 45 , 100 HY10W-18 18 15.3 57.0 46.2 54 , 100 HY10W-21 21 17.0 66.5 53.9 63 , 100 HY10W-24 24 19.2 76.0 61.6 72 , 100 HY10W-27 27 21.9 85.5 69.3 81 , 100 HY10W-30 30 24.4 95.0 76.5 90 , 100 HY10W-33 33 26.8 104.5 84.7 99 , 100 HY10W-36 36 29 114.0 92.4 108 , 100 HY10W-42 42 34.1 132.0 100.1 126 , 100 HY10W-48 48 39 152.0 126.0 150 , 100 HY10W-54 54 43 171.0 139.0 162 , 100 HY10W-60 60 48 208.0 160.0 180 , 100 HY10W-66 66 52.8 230.0 172.0 198 , 100 主要产品选型表2Ma避雷直流器系统持续 1mA 陡波操作使用场型号所标称放额定标称运行参考冲击通流电流下电压电压电压电压残压残压容量KV KV KV KV KV KV KV HY1.5W-0.28/17 0.28 0.22 0.24 0.6 1.3 - 75HY1.5W-0.5/2.6 0.5 0.38 0.42 1.2 2.6 - 75 低压 HY5WS-3.8/1.7 3.8 3 2 7.5 17 19.6 100HY5WS-7.6/30 7.6 6 4 15 30 34.5 100HY5WS-10/30 10 6 8 15 30 34.5 1006.6<,HY5WS-12.4/50 12.7 10 o:p> 25 50 57.5 100 配电HY5WS-17/50 17 10 13.6 25 50 57.5 100 (S) HY5WZ-3.8/13.5 3.8 3 2 7.2 13.5 14.5 200HY5WZ-7.6/27 7.6 6 4 14.4 27 31 200HY5WZ-10/27 10 6 8 14.4 27 31 200 HY5WZ-12.7/45 12.7 10 6.6 24 45 51.8 200HY5WZ-17/45 17 10 13.6 24 45 51.8 200HY5WZ-42/134 42 35 23.4 73 134 154 400HY5WZ-51/134 51 35 40.8 73 134 154 400 HY5WZ-100/260 100 110 78 145 260 291, 400,600 电站HY10WE-100/260 100 110 78 145 260 291 400,800 (Z) HY2.5WD-3.8/9.5 3.8 3 2 5.7 9.5 10.7 400 旋转电HY2.5WD-7.6/19 7.6 6 4 11.2 19 21.9 400 机(D) HY2.5WD-12.7/31 12.7 10 6.6 18.6 31 35.7 400HY5WR-3.8/13.5 3.8 3 2 7.2 13.5 14.8 400 电容(R) HY5WR-7.6/27 7.6 6 4 14.4 27 30.8 400HY5WR-10/27 10 6 8 14.4 27 31 400HY5WR-12.7/45 12.7 10 6.6 24 45 51 400HY5WR-17/45 17 10 13.6 24 45 51 400HY5WR-51/134 51 35 40.5 73 134 154 400HY1.5W-2.4/6 2.4 3.2 1.9 3.4 6 - 5 电机中HY1.5W-4.8/12 4.8 6.3 3.8 6.8 12 - 10 性点(D) HY1.5W-8/19 8 10.5 6.4 11.4ZB-HY5W系列避雷器HY5W系列避雷器说明书.doc一、用途特点本公司生产的HY系列避雷器主要用于35KV及以下电压系统,用于保护交流电力系统的电气设备免遭大气过电压和操作过电压损坏。

35kV输电线路防雷措施

35kV输电线路防雷措施

35kV输电线路防雷措施发布时间:2022-12-06T03:18:28.784Z 来源:《福光技术》2022年23期作者:何璇[导读] 如今,随着我国气候的不断变化,输电线路遭受雷电灾害时有发生,严重威胁着我国电网运行的安全性和可靠性。

雷击是导致线路跳闸并引起灾害的主要原因,甚至严重的时候会顺着电线传播而破坏变电所。

因此,我们应该采取有效的措施,避免输电线路遭受雷击。

遵义供电局贵州省遵义市 563000摘要:如今,随着我国气候的不断变化,输电线路遭受雷电灾害时有发生,严重威胁着我国电网运行的安全性和可靠性。

雷击是导致线路跳闸并引起灾害的主要原因,甚至严重的时候会顺着电线传播而破坏变电所。

因此,我们应该采取有效的措施,避免输电线路遭受雷击。

为了避免上述的现象发生,我们通常采用的主要防雷措施有:有效的降低杆塔接地电阻;在输电线路上增设避雷线;加装一定数量的耦合地线;进一步提高输电线路的绝缘水平等。

但是有些问题还是未能找到有效的解决办法,例如遇到土壤电阻率较高时或绕击雷对输电线路的影响等。

为此,这就需要我们采取更加有效的方法来提高输电线路的耐雷水平,减少可能出现的雷击跳闸率。

如今,在输电系统中应用范围最广的是在输电线路的两端或易雷击段安装避雷器,这种防雷技术在我国已经开始日趋完善。

关键词:输电线路;防雷;措施1输电线路遭受雷击的原因及所造成的损坏 1.1输电线路遭受雷击的原因输电线路遭受雷击是由于大气的过电压通过输电线路的杆塔形成一定的放电通道,最终导致输电线路的绝缘层被雷电击穿,该过电压又称大气过电压,可以分为两类,即感应过电压和直接过电压。

感应过电压是由于雷击能量较大,当大气中的雷电击到输电线路附近的地面上,线路中的三根导线因感应而产生较高的电压,该类过电压的电压幅值通常为300~400kA,可以有效的击穿空气间隙大概60~80cm,容易使一些线杆出现闪络事故。

直接过电压是由于输电线路直接遭受雷击,并且危害到设备绝缘的电压,该类过电压会引起很大的雷电流,有时可以达到几十甚至几百千安,对输电设备产生较大的破坏。

35kV电站型氧化锌避雷器技术规范

35kV电站型氧化锌避雷器技术规范

35kV电站型氧化锌避雷器技术规范
1.设备名称及型式、及使用地点
1.1设备名称:复合绝缘外套氧化锌避雷器
1.2设备型号: HY
5WZ
2
-51/134
1.3使用地点:户外直立
2.使用环境条件
2.1海拔高度: ≤ 2500m
2.2环境温度: -40℃~ +40℃
2.3日温度:25Κ
2.4相对湿度:≤90%(25℃)
2.5最大风速:35m/s
2.6覆冰厚度:10mm
2.7日照强度: 0.1w/c㎡(0.5m/s风速下)
2.8地震烈度:不低于8度水平加速度0.3g 垂直加速度0.15g
安全系数为1.67
3.使用技术条件:
3.1额定值
3.1.1系统额定电压: 35kV 3.1.2系统最高工作电压: 42.5kV 3.1.3避雷器额定电压: 51kV 3.1.4避雷器持续运行电压: 40.8kV 3.1.5标称放电电流(峰值) 5kA 3.1.6直流1mA参考电压:≥73kV
3.2残压值:
3.2.1 雷电冲击电流下残压: (峰值) ≤134kV
3.2.2 陡波冲击电流下残压:(峰值) ≤154kV
3.2.3 操作冲击电流下残压:(峰值) ≤114kV
3.3耐受能力:
3.3.1方波通流(2ms.20次): 400A
3.3.2大电流(4/10μs) 65kA
3.4爬电比距: 28mm /kV
3.5局放量: ≤10pC
3.6无线电干扰电压:≤250μV
其它条件符合GB11032-2000《交流无间隙金属氧化物避雷器》国家标准4.资料
4.1设备安装使用说明书
4.2产品出厂试验报告
大连法伏安电器有限公司。

35kv避雷器直流参考电压标准

35kv避雷器直流参考电压标准

35kv避雷器直流参考电压标准
一、设备类型
本标准适用于额定电压为35kv的避雷器,主要包括无间隙和串联间隙避雷器。

二、测试条件
1.测试环境温度:20±5℃;
2.测试湿度:≤80%;
3.测试电源:直流电源,电压范围为0-60kV;
4.测试设备应符合国家相关标准,并经国家法定计量部门检定合格。

三、测试设备
1.直流高压发生器:用于产生直流高压测试电压;
2.微安表:用于测量避雷器的泄漏电流;
3.绝缘电阻表:用于测量避雷器的绝缘电阻;
4.计时器:用于测量避雷器的动作时间和能量吸收能力。

四、测试方法
1.将避雷器安装在试验台上,确保其安装牢固,并保持干燥;
2.将直流高压发生器的输出端连接到避雷器的输入端,确保连接良好;
3.将微安表和绝缘电阻表分别连接到避雷器的泄漏电流输出端和绝缘电阻输
出端;
4.将计时器启动,记录避雷器的动作时间和能量吸收能力;
5.逐渐增加直流高压发生器的输出电压,观察避雷器的泄漏电流变化,并记
录相应的电压值;
6.继续增加输出电压,观察避雷器的动作情况,记录避雷器的最大动作时间
和能量吸收能力;
7.根据需要,可多次重复以上步骤进行测试。

五、判定标准
1.避雷器的泄漏电流应不大于其额定值的50%;
2.避雷器的动作时间应不大于其额定值的10%;
3.避雷器的能量吸收能力应不小于其额定值的80%;
4.避雷器的绝缘电阻应不小于其额定值的50%。

35KV避雷器

35KV避雷器

35KV避雷器氧化锌避雷器是七十年代发展起来的一种新型避雷器,它主要由氧化锌压敏电阻构成。

每一块敏电阻从制成时就有它的一定开关电压(叫压敏电阻),在正常的工作电压下(即小于压敏电压压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值击穿,相当于短路状态。

然而压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后它又恢复了高阻状态。

因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压控制在安全范围内,从而保了电器设备的安全。

分类1.按电压等级分氧化锌避雷器按额定电压值来分类,可分为三类;高压类;其指66KV以上等级的氧化锌避雷器系列产品,大致可划分为500kV、220kV、110k 66kV四个等级等级。

中压类;其指3kV~66kV(不包括66kV系列的产品)范围内的氧化锌避雷器系列产品,大致可划分为3kV、6kV、10kV、35KV四个电压等级。

低压类;其指3KV以下(不包括3kV系列的产品)的氧化锌避雷器系列产品,大致可划分1kV、0.5kV、0.38kV、0.22kV四个电压等级。

2.按标称放电电流分氧化锌避雷器按标称放电电流可划分为20、10、5、2.5、1.5kA五类。

3.按用途分氧化锌避雷器按用途可划分为系统用线路型、系统用电站型、系统用配电型、并联补偿电器组保护型、电气化铁道型、电动机及电动机中性点型、变压器中性点型七类。

4.按结构分氧化锌避雷器按结构可划分为两大类;瓷外套;瓷外套氧化锌避雷器按耐污秽性能分为四个等级,Ⅰ级为普通型、Ⅱ级为用于中污秽地区(爬电比距20mm/KV)、Ⅲ级为用于重污秽地区(爬电比距25mm/kV)、Ⅳ级为用于重污秽地区(爬电比距31mm/kV)。

复合外套;复合外套氧化锌避雷器是用复合硅橡胶材料做外套,并选用高性能的氧化锌电片,内部采用特殊结构,用先进工艺方法装配而成,具有硅橡胶材料和氧化锌电阻片的双重优点该系列产品除具有瓷外套氧化锌避雷器的一切优点外,另具有绝缘性能、高的耐污秽性能、良的防爆性能以及体积小、重量轻、平时不需维护、不易破损、密封可靠、耐老化性能优良等优点5.按结构性能分氧化锌避雷器按结构性能可分为;无间隙(W)、带串联间隙(C)、带并联间隙(B)三类氧化锌避雷器介绍YBL-III氧化锌避雷器是我公司系列汉化产品之一、是全面检测氧化锌避雷器在电力系统行中的各项电气特性的专用仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档