高中数学:巧用函数方程思维解题
巧用函数思想妙解数学问题
好的 基 础
3
。
笔 者 从 自 身教学 实 践 出 发
就 如何 在 高 中 数 学 教学 中 引 导 学生 巧 例
’
已知 函 数 / U
_
=
)
s
t+ t anx o
,
项 数为
( )
27
的 等差 数列 U
&
)
}
用 函 数 思 想 妙 解 数学 问 题 略 谈 了 如 下 看 法
―
以供 参 考 满 足 0
,
到 集合
x
,
B
个 函数
d
记作 >
=
/
(
x
E
A
其中
;c
。
变量
,
的 取值 范 围
,
叫 做 函 数 的 定义 域
) f
与
; c
、
?
、
、
=
:
,
,
^
)
以 t
、
,
-
、
-
(
,
〉
。
y
-
z
、 )
=
丨
丨
,
/
-
、 )
_ _
_ x ^
_
,
(
。
?
}
(
i
。
=
-
=
-
=
,
,
27
,
2
i
,
,
运 用 函数 性 质
。
往往 可 以 达 到 化 繁 为 简
,
,
化难 为 易 的 目 的
从而 使 问
利用函数知识巧解函数问题
.
.
< <— — 0
2 5
4
4
当口 ∈( 1 , 3 ) 时, : 。 ( Ⅱ + 3 ) : 。 2 + 3 0 = ( 。 + ) 2 一 。
2
・
4
・ .
l < a < 3 . 当a = l 时, = 4 ; 当a = 3 时, = 1 8 。
— —
例6 点p ( , y ) 是圆x 2 + ( y 一 1 ) = 1 上的任意一点,
依 题意 有 { 0 解 得 ±
V\ ‘, ‘u, 3
<
_。 3
2
, , ) = 一 1 一 ( s i n + c o s ) = 一 1 一
s i n ( + — _) 丌 ≤
s i n ( + — 7 — 7 " ) ≤
4
一 1 , 所
例2 对 于任意D∈[ 一 1 , 1 ] , 函 ̄ X f ( x ) = z + ( a 一 4 ) + 4 — 2 。 的值 恒 大 于 零 ,那 么 的取 值 范 围 是
例7 函数 ) _ - X 2 — 4 a x + 2 a + 3 0 > 0 对一切实数 恒 成立 , 试确定方程 : I a 卜 . 1 I + 1 的根 的取值范围。
’ .
.
4< x<l 8。
综上 : 9 < 1 8
_ 三 _ : 1 b b 2 b
一
解方程组{ 一 y十 三= 1 。
f a
点评 : 由
: I n 一 1 I + 1 , 分离变量 : ( 0 + 3 ) l a - 1 l +
高中函数解题技巧
高中函数解题技巧高中函数解题技巧引言在高中数学中,函数是一个重要的内容,解题时需要运用合适的技巧来解决各种函数问题。
本文将详细说明高中函数解题的各种技巧,帮助学生更好地应对考试。
技巧一:函数定义的掌握1.理解函数的定义:函数是一个映射关系,将自变量映射到因变量。
2.弄清楚定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
3.利用定义域和值域求解问题:在解题过程中,需要根据函数的定义域和值域来确定自变量和因变量的取值范围,进而解决相关问题。
技巧二:函数的性质应用1.利用奇偶性判断函数的对称性:奇函数以原点对称,偶函数以y轴对称。
通过判断函数的奇偶性,可以简化一些计算和问题的分析。
2.利用导数判断函数的增减性:函数的导数代表其斜率,通过求导可以判断函数在某一区间内的增减情况,有助于解决最值和特殊点问题等。
3.利用周期性解决重复性问题:某些函数具有周期性特征,通过寻找周期性解决问题,可以简化计算和分析过程。
技巧三:函数图像的应用1.利用函数图像解读问题:观察函数的图像,可以帮助理解函数的性质和规律,进而解决相关问题。
2.利用函数图像求解交点和切点:通过观察函数图像的交点和切点,可以求解函数的零点、最大最小值和特殊点等问题。
技巧四:函数图像的变换1.利用平移变换函数图像:平移函数图像可以改变函数图像的位置,通过平移变换可以简化计算和分析过程。
2.利用伸缩变换函数图像:伸缩函数图像可以改变函数图像的尺寸,通过伸缩变换可以观察到函数的变化规律。
技巧五:函数组合和复合1.利用函数组合化简问题:将多个函数组合起来,可以简化计算和分析过程,有助于解决复杂的问题。
2.利用函数复合求解复合函数值:通过将自变量代入复合函数,可以求解复合函数的值,解决相关问题。
技巧六:方程和不等式的解法1.利用函数解方程:将方程转化为函数等式,通过解函数等式来求解方程,可以简化计算和分析过程。
2.利用函数解不等式:将不等式转化为函数不等式,通过解函数不等式来求解不等式,解决相关问题。
高中数学二次函数与一元二次方程解题方法
高中数学二次函数与一元二次方程解题方法在高中数学中,二次函数和一元二次方程是非常重要的内容,学好这两个知识点对于学生来说至关重要。
本文将以解题方法为主线,结合具体的题目,分析二次函数和一元二次方程的解题技巧,帮助高中学生和他们的父母更好地理解和掌握这两个知识点。
一、二次函数的解题方法二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数,a≠0。
解二次函数的关键在于找到函数的顶点、对称轴和零点,下面以具体题目为例进行说明。
例题1:已知二次函数y=x²-4x+3,求函数的顶点坐标、对称轴方程和零点。
解析:首先,我们可以通过求导数的方法确定函数的顶点。
对于二次函数y=ax²+bx+c,其导数为y' = 2ax + b。
令y' = 0,解方程得到x = -b/2a,即为函数的顶点横坐标。
代入原函数中,求得顶点纵坐标。
对于本题,a=1,b=-4,c=3。
根据上述方法,可得顶点横坐标x = -(-4)/2*1 = 2,代入原函数得到顶点纵坐标y = 2²-4*2+3 = -1。
因此,函数的顶点坐标为(2, -1)。
其次,对称轴方程为x = 顶点横坐标,即x = 2。
最后,求零点。
零点即为函数与x轴交点的横坐标,可以通过因式分解或求根公式得到。
对于本题,可以通过因式分解得到(x-1)(x-3) = 0,解得x = 1或x = 3。
因此,函数的零点为x = 1和x = 3。
通过以上步骤,我们得到了二次函数的顶点坐标为(2, -1),对称轴方程为x = 2,零点为x = 1和x = 3。
二、一元二次方程的解题方法一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为常数,a≠0。
解一元二次方程的关键在于找到方程的根,下面以具体题目为例进行说明。
例题2:已知方程x²-5x+6=0,求方程的根。
解析:对于一元二次方程ax²+bx+c=0,可以通过因式分解或求根公式来求解。
函数与方程思想在解题中的运用
函数与方程思想在解题中的运用作者:肖智胜来源:《广东教育·高中》2009年第10期函数与方程思想是中学数学最重要的基本思想,也是高考考查的重点.函数与方程思想既是两种思想本身的体现,也是两种思想综合运用的体现,二者密不可分.函数与方程思想也体现了动与静、常量与变量之间的辩证关系,是研究变量与函数、相等与不等过程中的基本数学思想.函数是高中数学的一条主线,函数与方程思想运用几乎在高中各章节知识中都有体现,本文就这种数学思想在解题中的作用作一个较为详细的介绍.一、运用函数与方程思想处理函数、方程与不等式问题函数与方程虽是两个不同的概念,但它们之间有着密切的联系.方程f (x)=0的解就是函数y=f (x)的图像与x轴的交点的横坐标,函数y=f (x)本身就是一个二元方程f (x)-y=0,于是,函数问题与方程问题可以相互转化来求解.函数与不等式也可以相互转化,对于函数y=f (x),当时y>0,就转化为不等式f (x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式.故它们三者之间关系紧密,解决此类问题的关键是深刻理解三者的意义,熟练掌握三者之间的转化关系.例1 已知函数f (x)=x2-x2+2x+1,且x1,x2是f(x)的两个极值点,0(1)求a的取值范围;(2)若x1-x2≥m2-2bm-2,对b∈-1,1,恒成立,求实数m的取值范围.解析(1)f′(x)=x2- ax+2,可知x1和x2是方程f′(x)=0的两个根,由二次方程根的分布可知:f ′(1)=1-a+203(2)x1-x2==,由根与系数的关系可知:x1+x2=a,x1x2=2,∴x1-x2=>1 ,由不等式恒成立问题可知:1≥m2-2bm-2对b∈-1,1恒成立.令g(b)=-2mb+m2-3,则当b∈-1,1时,g(b)≤0恒成立,∴g(-1)=m2+2m-3≤0,g(1)=m2-2m-3≤0-1点评对于问(1)要理解函数的零点即是对应方程的根,将函数问题转化为二次方程根的分布问题,利用数形结合作答.问(2)是不等式恒成立问题,一般可以转化为函数的最值问题,此题要注意主元与次元的相对性,要突破思维定势,变“次”为“主”,化难为易.整个问题围绕着函数、方程、不等式三者之间的互相转化,借助于函数图像与性质解决问题.例2 设M是由满足下列两个条件的函数f(x)构成的集合:①方程f(x)-x=0有实根;②函数f(x)的函数f′(x)满足0(1)判断函数f(x)=+ 是不是集合M的元素,并说明理由;(2)集合M中的元素f(x)具有下面的性质:“其f(x)的定义域D,则对于任意m,n的定义域D,则对于任意m,nD,都存在x0∈m,n,使得等式f(n)-f(m)=(n-m)f′(x0)成立”.试用这一性质证明:方程f(x)-x=0只有一个实数根;(3)设x1是方程f(x)-x=0的实根,求证:对函数f(x)定义域中任意x2,x3,当x2-x1解析(1)函数f(x)=+是集合M的元素.由方程f(x)-x=0,即-=0,sinx=2x,方程有实根0.又f′(x)=+,而-1≤cosx≤1,∴≤ f′(x)≤,满足0(2)用反证法.假设方程f(x)-x=0有两个不相等实根的、,则f()=,f()=.由函数性质,存在a∈[,],使得f()-f()=(-)f′().即有(-)(1-f′())=0,而0(3)不妨设x2f (x3)-x3,∴0点评在涉及函数与方程思想的数学问题中,最重要且最难处理的就是函数、方程、不等式的综合题,对考生的数学能力要求很高,往往出现在压轴题中.对于问(1)(2),要紧抓给出的定义,联系所要证明的结论,对函数、方程进行处理变形.解答过程简单,却有较高的思维难度,要求灵活掌握函数、方程、不等式三者之间的互相转化.问(3)要构造中间函数,把所研究的问题转化为讨论函数单调性的问题,结合绝对值不等式的放缩变形来证明.二、运用函数与方程思想处理三角函数问题在广东近几年高考中,三角函数问题都属于中档题.在此类问题中,函数与方程思想主要体现在对三角函数的性质、图像的运用上,要求灵活运用三角函数的概念和公式进行化简、求值,利用正、余弦定理解决三角函数中的问题或实际生活中的问题,考查运算求解能力.例3 在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y,(1)求函数y=f(x)的解析式和定义域;(2)求函数y=f(x)的最大值.解析 (1)∵A+B+C=且A=,∴0(2)∵y=4sinx+4sin(-x)+2=4sinx+4(cosx+sinx)+2=4(sinx+cosx)+=4sin(x+)+2(0点评对问(1),在三角形内的三角函数,要考虑正、余弦定理、面积公式及三角公式的综合运用,确定函数的解析式,注意角度的范围.问(2)中,要能熟练利用三角函数公式将一个较复杂的三角函数表达式化为y=Asin(wx+)+k的形式,然后利用函数的单调性,结合函数图像求最值等,这是三角函数中的一种基本题型.例4 如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC 的内接正方形PQRS为一水池,其余的地方种花,若BC=a,∠ABC=,设△ABC的面积为S1,正方形的面积为S2,(1)用a,表示S1,S2;(2)当a固定,变化时,求取最小值时的角.解析 (1)在Rt △ABC中,AC=asin,AB=acos,∴S1=a2sincos=sin2.设正方形连长为x,则BQ=xcos,RC=xtan,∵xcot+xtan+x=a,得x===,∴S2=()2(0(2)当a固定,变化时,有=(+sin2+4),令sin2=t,则=(+t+4),∵0令f(t)=+t,∵ f′(t)=1-点评函数与方程思想也体现一种解决数学问题的理念——建模意识,将实际问题转化为数学问题并加以解决.此题是一道三角函数的应用题,要求先建立函数关系,再求值.此题有两个难点:一是正方形的边长难求;二是求最值时易错用基本不等式.要求学生有较强的计算能力,是一道难题.三、运用函数与方程思想处理数列问题数列是一种特殊的函数,数列的通项公式和前n项和公式都可以看成n的函数.纵观近几年的高考题,在客观题中,突出“小、巧、活”的特点,解答题以中等以上难度的综合题目为主,涉及函数、方程、不等式的综合内容.在数列问题时,要切实注意运用函数观点来分析、解决有关数列的最值、单调性等问题,运用方程的思想来解决有关的计算问题.例5 设等差数列{an}的前n项和Sn,若a1>0,S4=S8,则当Sn取得最大值时,求n的值.解析 (法一)由S4=S8,得d=-a10,a7(法二)由Sn=n2+n知Sn是关于n的二次函数且开口向下,又S4=S8,知对称轴n=6,故当n=6时,Sn最大.点评等差数列的通项an是关于n的一次函数,前n项和Sn是关于n的二次函数,用函数的观点处理数列问题能开阔思路,简化运用,收到奇效.在遇到数列求值问题时,经常会用基本量法或数列的性质,列方程(组)来求解,也就是所谓的“知三求二”等.例6 已知数列{an}中,a1=1,且点P(an,an+1)在直线x-y+1=0上.(1)求数列{an}的通项公式;(2)若函数f(n)=++…+(n∈N*,且n≥2),求函数f(n)的最小值;(3)设bn=,Sn表示数列{bn}的前n项和,试问:是否存在关于n的整式g(n),使得S1+S2+…+Sn-1=(Sn-1)g(n)对一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,说明理由.解析 (1)∵点P(an,an+1)在直线x-y+1=0上,即an+1-an=1,可知数列{an}是等差数列,则an=1+(n-1)×1=n,(n∈N*)(2)由(1)可知f(n)=++…+,∴f(n+1)=++…+++,∴f(n+1)-f(n)=+->+-=0,所以f(n)是单调递增的数列,故f(n)的最小值为f(2)=.(3)∵b=,∴Sn=1+++…+,∴Sn-1=++…+,又S1+S2+…Sn-1=+++…+=(n+++…+)-(n-1)=(++…++).假设存在整式g(n),使得S1+S2+…+Sn-1=(Sn-1)g(n)成立,则g(n)==n,满足题目要求,故存在g(n)=n.点评数列其实就是关于正整数n的离散型函数,数列求最值的方法与函数最值的求法类似.此题问(2)先证数列是单调递增的,再利用单调性求数列最值,这是数列不等式证明中常用到的一种方法.问(3)是一个探究性问题,需要将左边和式朝着右边逐步变形,最终消除等式两边的差异,思维难度较大.四、运用函数与方程思想处理立体几何中的最值问题方程思想在立体几何中主要体现在,根据具体图形列方程(组)求角,求距离,求面积,求体积等.而当图形中涉及运动变化、不确定量时,往往要通过函数关系把这种数量关系表示出来,并加以研究,从而使问题获得解决,运用函数与方程思想在处理这类问题时非常有效.例7 已知在直三棱柱ABC-A1B1C1中,∠ABC=90°,B1B1=BC=2,AC=2,点P是线段B1C上任意一点,求线段AP+C1P的最小值.解析连接AB1,在Rt△ACB中,AB==2,Rt△ABB1中,AB1==,在△ACB1中,AC=2,B1C=4,∴AC2+B1C2=AB12∠ACB1=90°.设CP=x,∴在Rt △ACP中,AP=,在△CC1P 中,∠CC1P=45° ,由余弦定理有C1P==,∴AP+C1P=+=+.此式可以看作是点(x,y)到点(2,2)及(0,-2)的距离之和.由数形结合可知:当三点在一条直线上时距离之和最小,即(AP+C1P)min==2为所求.点评本题是较常见的距离和的最值问题,如直接利用几何知识难以求解,需要借助函数建模,而最终又需要数形结合来完成求解.此题可谓构思巧妙、环环相扣,综合运用了几何、三角和函数等知识,能力要求较高.五、运用函数与方程思想处理圆锥曲线问题圆锥曲线问题中,常见的是利用几何性质列方程(组)求圆锥曲线的方程、离心率等.而涉及直线和圆锥曲线的位置关系问题时,一般需要通过解二元方程组,将其转化为一元二次方程,然后用根的判别式或根与系数的关系解题.此类问题对运算求解能力、推理论证能力要求较高,但同时它有一定的规律可循,因为它与函数方程思想有着紧密的联系,考生可以往这方面思考.例8 已知椭圆+=1(a>b>0)与直线x+y-1=0相交于A、B两点,且OA⊥OB(O坐标原点).(1)求+的值; (2)若椭圆长轴长2a的取值范围是[,],求椭圆离心率e的取值范围.解析 (1)联立方程组:x+y-1=0,+=1(a2+b2)x2-2a2x-a2(1-b2)=0……(*)设A(x1,y1),B(x2,y2)则x1+x2=,x1x2=,而y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=.又∵OA⊥OB,∴x1x2+y1y2=0,∴+=0,∴a2+b2=2a2b2+=2……①经检验,方程(*)△=4a4(2b4-2b2+1)>0有解,故+=2.(2) 将b2=a2-c2,e=代入①,得2-e2=2a2(1-e2),∴e2==1-,而2a∈[,],由不等式的性质,得≤e2≤,而0点评问题(1)是直线与圆锥曲线中的垂直问题,利用垂直关系列等量关系,结合二次方程根与系数的关系代入得到的等量关系,转化即可,注意设而不求的数学思想.问题(2)的实质是要将离心率e表示为长半轴的函数关系,函数的值域即为所求,注意相交的条件——△>0.责任编校徐国坚。
函数思想在高中数学解题中的应用
函数思想在高中数学解题中的应用1. 引言1.1 了解函数思想的重要性了解函数思想的重要性是高中数学学习中的重要一环。
函数思想可以帮助我们更好地理解问题,提高问题解决的效率。
通过了解函数思想,我们可以更快地找到问题的核心,从而更快地解决问题。
函数思想也可以帮助我们建立起对数学知识体系的整体认识,提高数学思维的深度和广度。
在高中数学学习中,函数思想是贯穿始终的一个重要内容。
无论是在解代数方程还是解几何问题,函数思想都扮演着重要的角色。
了解函数思想可以让我们更好地理解数学概念,提高解题的速度和准确性。
所以,掌握函数思想对于高中数学学习来说是至关重要的。
1.2 高中数学解题的特点高中数学解题的特点主要包括题目形式简单、题目类型多样、涉及知识面广泛、考察思维能力强等特点。
在高中数学学习中,学生需要掌握各种数学概念和方法,能够灵活运用这些知识解决各类数学问题。
高中数学解题通常需要考虑多个因素,需要学生进行一定的逻辑推理和分析,以找到解题的有效方法。
另外,高中数学解题还常常涉及到多个知识点的综合运用,需要学生具有整合和综合能力,能够将所学知识有机地结合起来解决问题。
由于高中数学解题的特点,学生在解题时往往需要一定的思维方法和技巧,能够快速准确地分析问题并找到解决方法。
因此,深入理解和灵活运用函数思想在高中数学解题中具有重要的意义,可以帮助学生更好地应对各种数学问题,提高解题效率和准确性。
2. 正文2.1 函数思想在代数方程中的应用在高中数学中,代数方程是一个重要的内容,通常涉及到未知数的关系和等式的求解。
函数思想在代数方程中的应用可以帮助我们更加清晰地理解和解决这些问题。
我们可以将代数方程中的未知数看做自变量,而等式则可以看做一个函数关系。
通过建立数学模型,我们可以将复杂的代数方程简化成一个函数方程,从而更好地进行求解和分析。
函数思想可以帮助我们对代数方程的图像进行理解和分析。
通过绘制函数图像,我们可以直观地看到方程的解和特性,从而更好地理解方程的含义和求解方法。
高中数学基本数学思想:函数与方程思想在数列中的应用
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
高中数学“反客为主”巧解题学法指导
高中数学“反客为主”巧解题有一些数学题,题中涉及到若干个量,其中有常量、也有变量,同学们在解答时,由于思维定势,不太习惯把其中的常量暂视为变量、而把其中的变量暂视为常量的做法,结果求解过程异常复杂甚至难以解出。
其实,常量与变量是相对的,是辩证统一的关系,如果根据需要,将它们的地位调换,即“反客为主”,常常使许多难题巧妙获解,下面举例说明:一. “反客为主”解高次方程【例1】解方程012x 2x 22x 23=+-+-简析:这是一个关于x 的一元三次方程,若采取因式分解法求解,一时真不知道如何分解;若利用三次方程的求根公式来求解,显然十分繁琐,况且考纲也没有要求中学生掌握三次方程的求根公式。
怎么办?我们仔细观察原方程的系数,发现2与2累次出现,如果把2用a 表示,则原方程就是x 3-2ax 2+a 2x -a +1=0由于x 不为0,此方程可整理成关于a 的一元二次方程:xa 2-(2x 2+1)a +(x 3+1)=0。
利用二次方程求根公式不难解得a=x +1或a =x -1+x 1,于是有2=x +1或2=x -1+x1,从而可求出原方程的根为: 212212x ,12x 21-++=-=, 212212x 3--+=。
(解答略) 注:①将一个高次方程中累次出现的系数k 与k 分别用a 与a 2来表示,再转化为解关于a 的一元二次方程,这种“反客为主”的求解法,体现了化归的数学思想,也说明了常量与变量的辩证统一的关系,同学们要细心领会并掌握它。
②请同学们仿例,解方程055x 52x )51(x 223=+---+。
二. “反客为主”解方程组【例2】解关于x 、y 、z 、ω的方程组⎪⎪⎩⎪⎪⎨⎧=ω+++=ω+++=ω+++=ω+++432432432432dd z d dy x cc z c cy x b b z b by x a a z a ay x 简析:本题若采取常规消元法求解,无疑十分麻烦。
二次函数的应用巧妙运用二次函数解决算式问题
二次函数的应用巧妙运用二次函数解决算式问题二次函数的应用:巧妙运用二次函数解决算式问题二次函数是高中数学中的一个重要概念,它的应用广泛而深远。
在解决算式问题的过程中,我们可以巧妙地运用二次函数,提高解题效率。
本文将通过几个具体的例子,来展示如何巧妙地运用二次函数解决不同类型的算式问题。
例子一:求解最大值问题:对于函数y = 2x² - 3x + 1,求其在定义域内的最大值。
解法:为了求解最大值,我们可以利用二次函数的顶点坐标来找到答案。
二次函数的顶点坐标为(h,k),其中h为x的值,k为y的值。
根据二次函数的性质,当x = h 时,二次函数取得最大值k。
首先,我们需要找到二次函数的顶点坐标。
根据二次函数的标准式可知,顶点的横坐标为:h = -b / (2a)。
将函数y = 2x² - 3x + 1的系数代入得到:h = -(-3) / (2 * 2) = 3/4。
接下来,将h的值代入函数中,即可求得最大值k。
代入得:k = 2 * (3/4)² - 3 * (3/4) + 1 = 1/8。
因此,函数y = 2x² - 3x + 1在定义域内的最大值为1/8。
例子二:求解交点问题:已知函数y = 2x² - 3x + 1与直线y = x + 1相交于两个点,请求出这两个交点的坐标。
解法:为了求解交点的坐标,我们可以将二次函数和直线的方程联立,解得交点的横坐标,再代入其中一个方程求得纵坐标。
将函数y = 2x² - 3x + 1与直线y = x + 1联立得到方程:2x² - 3x + 1 = x + 1。
化简方程得到:2x² - 4x = 0。
因此,x * (2x - 4) = 0。
解得x₁ = 0 和 x₂ = 2。
将x₁ = 0代入y = x + 1,得到y₁ = 1。
将x₂ = 2代入y = x + 1,得到y₂ = 3。
函数与方程思想在高中数学解题中的应用
以减少参数的个数, 充分利用条件. 解 :⑴略. (2 ) 设'#=(#+1- ( , *„=^|~#2 +!-吾 "
(#2+(2-()#+ A =(2 #2 +2( 1-(+")#+( 1-(+")2, 移项得( ( - ( ) #2 + ((-2") #+! - (1-(+" )2 =0. 所以( -(2 =0, ( _2"=0 , A - (1-(+" )2 =0. 解之, 得 (=1, "= ! , A= 4 . .
I f 为等差数列, 这种方法运算量相对较大, 从函数与方
所以由题得"+厂"„=#+1, 由累加法可得"#=
2
数列的本质是函数, 与其他函数的最大差别:定义 域是离散的, 这就使得很多学生还是不太认可数列是一 种函数, 解决 数 列 问 题 时 , 也很难想到从函数的角度着 手, 因此对数列难题充满了畏惧.本文只着重研究了函 数与方程思想在解决等差数列含参问题中的应用, 其实 函数与方程思想在解决数列其他问题, 例如, 数列最值 问题、 数列通项公式等方面都非常有帮助, 值得进一步 挖掘. 2.在二次方程的实根分布中的运用 对于一元二次方程根的分布有以下几个类型: ( 1)方 程角度, 其关键是根的判别式及韦达定理 ;( 2)函数角度, 主要依据是函数图像, 对称轴、 最高点 与 最 低 点 ; ( 3)零 点角 度 , 主要是零点存在定理. 例3 关于3 的方程"32-2("+1 )3+"-1=0,求当"为何 值时, 分别有以下的结论: (1)方程有一个根; ( ) 方程有一正一负两个根; (3) 两个相异的根都大于1; (4) 一根大于1, 一根小于1 . 解析: ( 1)当"=0时 , 方程化为-23-1=0,得到3=-■ —, 2 符合题意; 当" + 0时 , 方程为二次方程, 因为方程有一根, 则# = 12"+4=0, 得到"=-~—. 综上可知, 当"=0或"=-■^■时, 关于3 的方程"32 -2("+ 1 )3+"-1=0 有一根.
解几最值求有妙法,构造函数多方出击-高考数学一题多解
解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。
高中数学解题方法与思路
高中数学解题方法与思路一、20种高中数学解题方法1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。
如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
7、求参数的取值范围,应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。
8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。
9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。
10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。
11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。
12、圆锥曲线的题目应优先选择他们的定义完成,而直线与圆锥曲线相交的问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法(使用韦达定理首先要考虑二次函数方程是否有根即:二次函数的判别式)。
13、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。
14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。
函数与方程思想在高中数学解题中的应用
函数与方程思想在高中数学解题中的应用在高中数学解题中,函数与方程思想是非常重要的。
函数思想是指将一组数据进行描述和表示的思想,是解决许多数学问题的基础。
方程思想是指通过建立方程来求解问题的思想。
函数与方程思想在高中数学解题中的应用主要体现在以下几个方面:
1、理解问题的本质:函数可以帮助我们理解问题的本质,更好地分析问题。
2、转化问题:方程可以帮助我们把问题转化为具体的数学模型,使问题变得更加可解。
3、解决问题:函数与方程的知识可以帮助我们使用数学工具解决问题。
4、描述实际问题:函数与方程可以帮助我们描述实际问题,并使用数学模型来分析问题。
总的来说,函数与方程思想在高中数学解题中起着重要的作用,帮助我们理解问题、转化问题、解决问题、描述实际问题。
高中数学中函数与方程思想的研究
高中数学中函数与方程思想的研究函数与方程思想是数学学科中的两个重要思想,也是解决实际问题的重要方法。
在高中数学教学中,函数与方程思想的应用对于提高学生的数学素养和解决问题的能力具有重要意义。
本文旨在探讨函数与方程思想在普通高中教学中的实践研究,以期为优化高中数学教学提供参考。
普通高中教学的主要目标是培养学生的创新精神和实践能力,为其未来的发展奠定基础。
在这个过程中,数学学科作为一门重要的基础课程,需要着重培养学生的逻辑思维和解决问题的能力。
函数与方程思想作为数学学科的基本思想,也是解决高中数学教学问题的关键。
在普通高中教学中,函数与方程思想的实践主要包括以下环节:教学准备:教师需要深入理解函数与方程思想的概念和特点,掌握其在解决问题中的应用方法。
同时,教师应结合具体的教学内容和教学目标,准备好相应的教案和学案。
教学目标制定:教师需要明确函数与方程思想的教学目标,包括知识目标、能力目标和情感目标。
同时,教师需要根据学生的实际情况和需求,制定相应的教学计划。
教学实施:教师在课堂上需要采用多种教学方法和手段,如案例教学、探究式教学等,引导学生理解和掌握函数与方程思想,并运用它们解决实际问题。
教学反思:教师需要及时反思自己的教学过程和效果,发现问题并及时改进,以便更好地提高教学质量和效果。
以高中数学中“函数”章节的教学为例,教师可以通过以下方式将函数与方程思想融入教学中:帮助学生理解函数的概念和性质,如定义域、值域、单调性等,为后续的应用奠定基础。
通过实例让学生了解函数在解决实际问题中的应用,如利用函数解析式解决行程问题、利润问题等。
引导学生通过方程或不等式的方式描述实际问题,然后利用函数的性质和相关算法求解。
例如,帮助学生理解以下题目:某公司为了营销一款产品,计划在三个方面进行投入(x1, x2, x3),已知产品总成本为C元。
试求C关于x1, x2, x3的函数关系式。
教师可以引导学生列出成本与投入之间的方程,然后通过调整方程的形式,使学生理解函数关系式的意义和应用。
函数思想在高中数学解题中的应用
函数思想在高中数学解题中的应用在高中数学教学中,函数是一个非常重要的概念。
函数的思想贯穿于数学的各个领域,不仅在数学理论中有着重要的地位,而且在解题中也有着广泛的应用。
函数思想在高中数学解题中的应用,可以帮助学生更好地理解和掌握数学知识,提高解题的效率和准确性。
本文将从函数的定义和特点、函数在高中数学解题中的应用以及相关解题技巧等方面展开探讨,希望能帮助学生更好地理解和应用函数思想。
一、函数的定义和特点在高中数学中,函数是一个非常基础的概念。
函数通常可以用一个数学表达式来表示,它包括自变量和因变量两部分。
自变量是函数中的输入值,而因变量是函数中的输出值。
函数的定义通常是这样的:如果对于每一个属于定义域的自变量x,函数f(x)都有唯一的对应值y,则称函数f是定义在定义域上的。
函数有着许多特点,其中包括单调性、奇偶性、周期性等。
这些特点在解题中都有着非常重要的应用。
通过函数的单调性可以确定函数的增减性,从而帮助我们分析函数的变化趋势;通过函数的奇偶性可以简化函数的运算,减少解题的复杂度;通过函数的周期性可以确定函数的周期,从而帮助我们分析函数的周期性变化规律。
函数思想在高中数学解题中有着广泛的应用,涉及到数学的各个分支,比如代数、几何、概率等。
下面我们就来具体看一下函数在高中数学解题中的应用。
1. 代数方程的解法函数思想在代数方程的解题中有着非常重要的应用。
通过定义函数并建立函数关系,可以将一个复杂的代数方程转化为一个简单的函数关系,从而简化问题的求解过程。
这种方法在解决线性方程组、二次方程、高次方程等代数方程时都有着广泛的应用。
对于一个二次方程ax²+bx+c=0,我们可以定义一个函数f(x)=ax²+bx+c,然后通过函数的性质和特点来确定方程的解的存在性、唯一性和具体的解法。
这种方法不仅可以简化问题的求解过程,而且可以帮助学生更好地理解代数方程的本质和求解方法。
2. 函数图像的分析在高中数学中,函数图像的分析是一个非常重要的内容。
高中数学函数解题思路及方法的总结分享
祖国2019.6.下|基础教育|摘要:函数是高中数学学习的重点内容,也是每年高考必考知识点。
由于函数知识点比较多,而且往往与圆锥曲线和一元二次方程结合在一起,综合性比较强,一定程度上增加了解题的难度,让很多我们无从下手,影响到数学考试分数。
通过分析高中数学函数解题思路,并采用科学的解题方法,可以降低函数解答难度,提高函数解答的速度和正确率。
本文主要分析高中数学函数定义,并根据高中函数定义,分析了高中数学函数解题思路,以及常见的变量替换法、最值法、数形结合等方法,有助于我们开拓思维,快速掌握函数的解题方法。
关键词:高中函数解题思路解题方法高中数学函数解题思路及方法的总结分享文/孙浩楠数学在高中阶段主要的学习科目之一,函数在高中数学占有重要地位。
高中函数是初中函数知识点的延伸和扩展,学习的知识内容更加深刻,函数变量关系更复杂,出现了多个变量,增加了学习难度,让我们产生学习压力。
受到传统思维的影响,我们在解答函数问题的时候,往往采取常用的解答方式,不仅增加了计算量,而且由于计算量增加,很热容易导致计算错误,最终导致整个答案的错误。
因此,在解答函数题目的时候,需要转变解题思路,采用一些简便的方式,才能提高解题效率和正确率。
一、高中数学函数定义高中数学函数包括一次函数、二次函数、指数函数、幂函数、反比例函数等众多类型的函数。
函数的定义:A 、B 是两个非空集数,如果按照某个确定的对应关系f ,让集合中的A 中任意一个x 在集合B 中都有唯一确认的数f (x)和它对应,则f 是A 集合到B 集合的函数,即为y=f (x),其中x ∈A ,x 是自变量,其取值范围A 是函数y=f (x)的定义域,与x 值相对应的y 值表示函数值。
函数根据函数定义,在学习的时候就要掌握两个变量的关系。
在解答函数的时候,我们对函数的定义和函数内涵理解不全面,从而导致解题思路错误,最终求得错误的答案。
因此在解答函数问题的基础是全面掌握函数的基本定义和内涵,这样才能避免出现基础错误。
高中数学函数不动点方程题解题技巧
高中数学函数不动点方程题解题技巧在高中数学中,函数不动点方程是一个常见的题型。
这类题目通常要求找出一个函数的不动点,即满足f(x) = x的解。
在解题过程中,我们可以运用一些技巧来简化计算,提高解题效率。
首先,我们来看一个简单的例子。
设函数f(x) = 2x + 1,要求解方程f(x) = x。
我们可以将方程改写为2x + 1 = x,然后将x移到方程的一边,得到x = -1。
这样,我们就找到了函数f(x)的不动点。
这个例子中,我们可以观察到一个规律:不动点即为函数图像与y = x的交点。
因此,我们可以通过作图来解决这类问题。
以函数f(x) = 2x + 1为例,我们可以绘制它的图像,并与直线y = x相交,交点即为不动点。
除了作图法,我们还可以利用代数方法解决不动点方程。
考虑函数f(x) = x^2 -3x + 2,要求解方程f(x) = x。
我们可以将方程改写为x^2 - 4x + 2 = 0,然后利用求根公式求解。
通过求根公式,我们可以得到x = 1和x = 2,这两个解分别对应函数f(x)的不动点。
在解决不动点方程时,我们还可以运用迭代法。
迭代法的基本思想是通过不断迭代逼近函数的不动点。
以函数f(x) = x^2 - 2为例,要求解方程f(x) = x。
我们可以先取一个初始值x0,然后通过迭代公式xn+1 = f(xn)来逐步逼近不动点。
通过计算,我们可以得到x1 = 2和x2 = 1.5,这两个值逐渐接近函数f(x)的不动点。
除了上述方法,我们还可以通过函数的图像特征来解决不动点方程。
以函数f(x) = sin(x)为例,要求解方程f(x) = x。
我们可以观察到函数f(x)的图像是一条连续的曲线,且在不动点附近呈现线性关系。
因此,我们可以通过观察图像的斜率来逼近不动点。
通过计算,我们可以得到x = 0和x = 1.895,这两个值分别对应函数f(x)的不动点。
综上所述,解决高中数学函数不动点方程题可以运用多种方法。
高中数学函数题的解题技巧
高中数学函数题的解题技能高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技能是什么?下面是作者为大家整理的关于高中数学函数题的解题技能,期望对您有所帮助!高中数学函数解题思路方法一视察法1.视察函数中的特别函数;2.利用这些特别函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.视察函数类型,型如;2.对函数变形成情势;3.求出函数在定义域范畴内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步视察函数解析式的情势,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技能1.函数值域常见求法和解题技能函数的值域与最值是两个不同的概念,一样说来,求出了一个函数的最值,未必能肯定该函数的值域,反之,一个函数的值域被肯定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:视察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在挑选方法时,要注意所给函数表达式的结构,不同的结构挑选不同的解法。
2.函数奇偶性的判定方法及解题策略肯定函数的奇偶性,一样先考核函数的定义域是否关于原点对称,然后判定与的关系,常用方法有:①利用奇偶性定义判定;②利用图象进行判定,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以免对自变量的繁琐的分类讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:巧用函数方程思维解题
函数方程思维就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思维。
1.函数思维:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思维;
2.应用函数思维解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思维:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思维;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思维
函数思维在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值,解(证)不等式,解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.函数与方程的思维是中学数学的基本思维,也是历年高考的重点.
1.函数的思维,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决.
2.方程的思维,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析,转化问题,使问题获得解决.方程思维是动中求静,研究运动中的等量关系;
3.函数方程思维的几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0.
(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;
(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;
(4)函数f(x)=(1+x)^n(n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;
(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;
(6)立体几何中有关线段,角,面积,体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决.。