数字信号处理英语词汇
电子信息专业英语之数字信号处理篇
In this case, an error message can be sent, and the message be retransmitted(转发). On the compact disc(光盘), 1 and 0 are represented by dimples(凹痕). The leading and trailing edges of a dimple represent a 1(凹痕的前端和后端表示1); no change represents a 0(无变化则为0). 在此情况下,可以发送错误信息,要求重传信号。 在光盘上用凹痕来表示0和1,凹痕的前端和后端表 示1,无变化则为0,
The precise voltage of each symbol is not important, but it is critical that its value lies within one of the two allowable ranges. If the value lies outside the two allowable ranges, the telegraph must make a choice of either 1 or 0, and an error may occur. 每个符号所表示的准确电压值并不重要,关键是它 要落在上述任意一个允许范围之内,否则就必须在 0,1之间作出选择而可能发生错误。
In quantization, if the amplitude(大小) of a discrete-time signal does not fall exactly on a quantization level, then the value must be approximated by a quantization level either by truncation or rounding, in either case, errors will occur. Such errors are called quantization errors. 量化时,如果离散时间信号的大小与量化电平不一 致,那么它就必须以截断或舍入的方式用相应的量 化电平来近似。两种情况下都会产生误差。这种误 差叫量化误差。
信号分析与处理英语单词
1.滤波器(filter)2.信号(signal)3.信息(information)4.函数(function)5.消息(message)6.知识(knowledge)7.频率(frequency)8.幅度(amplitude)9.相位(phase)10.模拟信号(analog signal)11.量化信号(quantized signal)12.抽样信号(sampling signal)13.数字信号(digital signal)14.确定性信号(determinate)15.随机信号(random)16.周期信号(periodic)17.非周期信号(nonperiodic)18.时限信号(time finite)19.频限信号(frequency finite)20.频谱分析(frequency spectrum)21.时域(Time domain)22.频域(Frequency domain)23.指数信号(exponential)24.复指数函数(complex exponential)25.欧拉公式(Euler's formula)26.阶跃(step)27.符号(signum)28.单位冲激(unit impulse)29.移位(shift)30.反褶(reverse)31.尺度倍乘(scaling)32.微分(differential)33.积分(integration)34.定积分(definite integration)35.奇与偶(odd & even)36.线形系统(Linear System)37.实部与虚部(real & imaginary)38.正交(orthogonal)39.谐波(harmonic)40.卷积(convolution)41.齐次性(homogeneity)42.叠加性(additivity)43.矢量(vector)44.三角函数(trigonometric function)45.完备(perfect)46.傅里叶级数(Fourier series)。
数字信号处理
数字信号处理数字信号处理(Digital Signal Processing)数字信号处理是指将连续时间的信号转换为离散时间信号,并对这些离散时间信号进行处理和分析的过程。
随着计算机技术的飞速发展,数字信号处理在各个领域得到了广泛应用,如通信、医学影像、声音处理等。
本文将介绍数字信号处理的基本概念和原理,以及其在不同领域的应用。
一、数字信号处理的基本概念数字信号处理是建立在模拟信号处理基础之上的一种新型信号处理技术。
在数字信号处理中,信号是用数字形式来表示和处理的,因此需要进行模数转换和数模转换。
数字信号处理的基本原理包括采样、量化和编码这三个步骤。
1. 采样:采样是将连续时间信号在时间上进行离散化的过程,通过一定的时间间隔对信号进行取样。
采样的频率称为采样频率,一般以赫兹(Hz)为单位表示。
采样频率越高,采样率越高,可以更准确地表示原始信号。
2. 量化:量化是指将连续的幅度值转换为离散的数字值的过程。
在量化过程中,需要确定一个量化间隔,将信号分成若干个离散的级别。
量化的级别越多,表示信号的精度越高。
3. 编码:编码是将量化后的数字信号转换为二进制形式的过程。
在数字信号处理中,常用的编码方式有PCM(脉冲编码调制)和DPCM (差分脉冲编码调制)等。
二、数字信号处理的应用1. 通信领域:数字信号处理在通信领域中具有重要的应用价值。
在数字通信系统中,信号需要经过调制、解调、滤波等处理,数字信号处理技术可以提高信号传输的质量和稳定性。
2. 医学影像:医学影像是数字信号处理的典型应用之一。
医学影像技术如CT、MRI等需要对采集到的信号进行处理和重建,以获取患者的影像信息,帮助医生进行诊断和治疗。
3. 声音处理:数字信号处理在音频处理和语音识别领域也有广泛的应用。
通过数字滤波、噪声消除、语音识别等技术,可以对声音信号进行有效处理和分析。
总结:数字信号处理作为一种新兴的信号处理技术,已经深入到各个领域中,并取得了显著的进展。
信号分析与处理英语单词
1.滤波器(filter)2.信号(signal)3.信息(information)4.函数(function)5.消息(message)6.知识(knowledge)7.频率(frequency)8.幅度(amplitude)9.相位(phase)10.模拟信号(analog signal)11.量化信号(quantized signal)12.抽样信号(sampling signal)13.数字信号(digital signal)14.确定性信号(determinate)15.随机信号(random)16.周期信号(periodic)17.非周期信号(nonperiodic)18.时限信号(time finite)19.频限信号(frequency finite)20.频谱分析(frequency spectrum)21.时域(Time domain)22.频域(Frequency domain)23.指数信号(exponential)24.复指数函数(complex exponential)25.欧拉公式(Euler's formula)26.阶跃(step)27.符号(signum)28.单位冲激(unit impulse)29.移位(shift)30.反褶(reverse)31.尺度倍乘(scaling)32.微分(differential)33.积分(integration)34.定积分(definite integration)35.奇与偶(odd & even)36.线形系统(Linear System)37.实部与虚部(real & imaginary)38.正交(orthogonal)39.谐波(harmonic)40.卷积(convolution)41.齐次性(homogeneity)42.叠加性(additivity)43.矢量(vector)44.三角函数(trigonometric function)45.完备(perfect)46.傅里叶级数(Fourier series)。
专业名词专业英语信号处理导论
专业名词总结部分1.A/D conversion [eɪ] [diː][kən'vɜːʃ(ə)n]模数转换指为把数字信号转换为信息基本相同的模拟信号而设计的处理过程。
2.adder ['ædə]加法器加法器是产生数的和的装置。
加数和被加数为输入,和数与进位为输出的装置为半加器。
若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。
3.additive gauss white noise ['ædɪtɪv][gaʊs] [waɪt] [nɒɪz]加性高斯白噪声加性高斯白噪声指的是一种各频谱分量服从均匀分布(即白噪声),且幅度服从高斯分布的噪声信号。
因其可加性、幅度服从高斯分布且为白噪声的一种而得名。
4.aliasing ['eliəsɪŋ] 混叠频混现象又称为频谱混叠效应,它是指由于采样信号频谱发生变化,而出现高、低频成分发生混淆的一种现象。
5.all-pass function ['ɔl,pæs] ['fʌŋ(k)ʃ(ə)n] 全通函数全通函数是凡极点位于左半开平面,零点位于右半开平面,并且所有零点与极点对于虚轴为一一镜像对称的系统函数。
6.amplifier ['æmplɪfaɪə] 放大器是指能够使用较小的能量来控制较大能量的任何器件。
7.amplitude ['æmplɪtjuːd] 振幅指振动物体离开平衡位置的最大距离。
8.analog signal ['ænəlɒɡ] ['sɪgn(ə)l]模拟信号指信息参数在给定范围内表现为连续的信号。
或在一段连续的时间间隔内,其代表信息的特征量可以在任意瞬间呈现为任意数值的信号。
9.antialiasing profiler [,ænti'eliəsɪŋ] ['prəufailə] 抗混叠预滤波器指一种用以在输出电平中把混叠频率分量降低到微不足道的程度的低通滤波器。
数字信号处理基础
数字信号处理基础数字信号处理(Digital Signal Processing,简称DSP)是一种将连续时间的模拟信号转换为离散时间的数字信号,并对其进行各种滤波、编码和解码等处理的技术。
一、简介数字信号处理是利用计算机和数字技术对信号进行处理的一种方法。
它在通信、音频、图像和其他领域都有广泛应用。
数字信号处理最早出现在20世纪60年代,利用计算机的高速运算能力和数字技术的精准性,取代了传统的模拟信号处理方式。
二、原理和过程数字信号处理可以分为以下几个基本步骤:1. 采样(Sampling):将连续时间的模拟信号转换为离散时间的数字信号。
采样频率要根据信号的频率特性来确定,通常需要满足奈奎斯特采样定理。
2. 量化(Quantization):将采样得到的连续振幅的数字信号转换为离散的幅度信息。
量化级别的选择会影响到信号的保真度,通常使用均匀量化进行处理。
3. 编码(Encoding):将量化后的数字信号进行编码,以便存储和传输。
常用的编码方式有脉冲编码调制(PCM)、差分编码调制(DM)等。
4. 数字滤波(Digital Filtering):对信号进行滤波处理,以去除噪声和干扰,增强信号的质量和可靠性。
常用的数字滤波器包括FIR滤波器和IIR滤波器。
5. 解码(Decoding):对编码后的信号进行解码,恢复成原始的采样信号。
6. 重构(Reconstruction):将解码后的信号进行重构,得到与原始信号相似的模拟信号。
三、应用领域数字信号处理在现代通信、音频、图像处理等众多领域都有广泛应用。
以下是几个常见的应用领域:1. 通信系统:数字信号处理在通信系统中用于信号解调、解调、信道估计等各个方面,提高了通信质量和传输速率。
2. 音频处理:数字信号处理技术广泛应用于音频处理,如音频编码、音频增强、音频故障检测和修复等。
3. 图像处理:数字信号处理技术在图像处理中有着广泛的应用,如图像滤波、图像压缩、图像识别等。
数字信号处理英文翻译
英文原文The simulation and the realization of the digital filterWith the information age and the advent of the digital world, digital signal processing has become one of today's most important disciplines and door technology. Digital signal processing in communications, voice, images, automatic control, radar, military, aerospace, medical and household appliances, and many other fields widely applied. In the digital signal processing applications, the digital filter is important and has been widely applied.1、figures Unit on :Analog and digital filtersIn signal processing, the function of a filter is to remove unwanted parts of the signal, such as random noise, or to extract useful parts of the signal, such as the components lying within a certain frequency range.The following block diagram illustrates the basic idea.There are two main kinds of filter, analog and digital. They are quite different in their physical makeup and in how they work. An analog filter uses analog electronic circuits made up from components such as resistors, capacitors and op amps to produce the required filtering effect. Such filter circuits are widely used in such applications as noise reduction, video signal enhancement, graphic equalisers in hi-fi systems, and many other areas. There are well-established standard techniques for designing an analog filter circuit for a given requirement. At all stages, the signal being filtered is an electrical voltage or current which is the direct analogue of the physical quantity (e.g. a sound or video signal or transducer output) involved. A digital filter uses a digital processor to perform numerical calculations on sampled values of the signal. The processor may be a general-purpose computer such as a PC, or a specialised DSP (Digital Signal Processor) chip. The analog input signal must first be sampled and digitised using an ADC (analog to digital converter). The resulting binary numbers, representing successive sampled values of the input signal, are transferred to the processor,which carries out numerical calculations on them. These calculations typically involve multiplying the input values by constants and adding the products together. If necessary, the results of these calculations, which now represent sampled values of the filtered signal, are output through a DAC (digital to analog converter) to convert the signal back to analog form.Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a voltage or current.The following diagram shows the basic setup of such a system.Unit refers to the input signals used to filter hardware or software. If the filter input, output signals are separated, they are bound to respond to the impact of the Unit is separated, such as digital filters filter definition. Digital filter function, which was to import sequences X transformation into export operations through a series Y.According to figures filter function 24-hour live response characteristics, digital filters can be divided into two, namely, unlimited long live long live the corresponding IIR filter and the limited response to FIR filters. IIR filters have the advantage of the digital filter design can use simulation results, and simulation filter design of a large number of tables may facilitate simple. It is the shortcomings of the nonlinear phase; Linear phase if required, will use the entire network phase-correction. Image processing and transmission of data collection is required with linear phase filters identity. And FIR linear phase digital filter to achieve, but an arbitrary margin characteristics. Impact from the digital filter response of the units can be divided into two broad categories : the impact of the limited response (FIR) filters, and unlimited number of shocks to (IIR) digital filters.FIR filters can be strictly linear phase, but because the system FIR filter function extremity fixed at the original point, it can only use the higher number of bands to achieve their high selectivity for the same filter design indicators FIR filter called band than a few high-IIR 5-10 times, the cost is higher, Signal delay is also larger. But if the same linear phase, IIR filters must be network-wide calibration phase, the same section also increase the number of filters and network complexity. FIR filters can be used to achieve non-Digui way, not in a limited precision of a shock, and into the homes and quantitative factors of uncertainty arising from the impact of errors than IIR filter small number, and FIR filter can be used FFT algorithms, the computational speed. But unlike IIR filter can filter through the simulation results, there is no ready-made formula FIR filter must use computer-aided design software (such as MATLAB) to calculate. So, a broader application of FIR filters, and IIR filters are not very strict requirements on occasions.Unit from sub-functions can be divided into the following four categories :(1) Low-filter (LPF);(2) high-filter (HPF);(3) belt-filter (BPF);(4) to prevent filter (BSF).The following chart dotted line for the ideals of the filter frequency characteristics :A1(f) A2(f)10 f2cf 0 f2cf(a) (b)A3(f) A4(f)0 f1c f2cf 0 f1cf2cf(c) (d)(a)LPF (b)HPF (c)BPF (d)BSF2、MATLAB introducedMATLAB is a matrix laboratory (Matrix Laboratory) is intended. In addition to an excellent value calculation capability, it also provides professional symbols terms, word processing, visualization modeling, simulation and real-time control functions. MATLAB as the world's top mathematical software applications, with a strong engineering computing, algorithms research, engineering drawings, applications development, data analysis and dynamic simulation, and other functions, in aerospace, mechanical manufacturing and construction fields playing an increasingly important role. And the C language function rich, the use of flexibility, high-efficiency goals procedures. High language both advantages as well as low level language features. Therefore, C language is the most widely used programming language. Although MATLAB is a complete, fully functional programming environment, but in some cases, data and procedures with the external environment of the world is very necessary and useful. Filter design using Matlab, could be adjusted with the design requirements and filter characteristics of the parameters, visual simple, greatly reducing the workload for the filter design optimization.In the electricity system protection and secondary computer control, many signal processing and analysis are based on are certain types Yeroskipou and the second harmonics of the system voltage and current signals (especially at D process), are mixed with a variety of complex components, the filter has been installed power system during the critical components. Current computer protection and the introduction of two digital signal processing software main filter. Digital filter design using traditional cumbersome formula, the need to change the parameters after recalculation, especially in high filters, filter design workload. Uses MATLAB signal processing boxes can achieve rapid and effective digital filter design and simulation.MATLAB is the basic unit of data matrix, with its directives Biaodashi mathematics, engineering, commonly used form is very similar, it is used to solve a problem than in MATLAB C, Fortran and other languages End precision much the same thing. The popular MATLAB 5.3/Simulink3.0 including hundreds of internal function with the main pack and 30types of tool kits (Toolbox). kits can be divided into functional tool kits and disciplines toolkit. MATLAB tool kit used to expand the functional symbols terms, visualization simulation modelling, word processing and real-time control functions. professional disciplines toolkit is a stronger tool kits, tool kits control, signal processing tool kit, tool kits, etc. belonging to such communicationsMATLAB users to open widely welcomed. In addition to the internal function, all the packages MATLAB tool kits are readable document and the document could be amended, modified or users through Yuanchengxu the construction of new procedures to prepare themselves for kits.3、Digital filter designDigital filter design of the basic requirementsDigital filter design must go through three steps :(1) Identification of indicators : In the design of a filter, there must be some indicators. These indicators should be determined on the basis of the application. In many practical applications, digital filters are often used to achieve the frequency operation. Therefore, indicators in the form of general jurisdiction given frequency range and phase response. Margins key indicators given in two ways. The first is absolute indicators. It provides a function to respond to the demands of the general application of FIR filter design. The second indicator is the relative indicators. Its value in the form of answers to decibels. In engineering practice, the most popular of such indicators. For phase response indicators forms, usually in the hope that the system with a linear phase frequency bands human. Using linear phase filter design with the following response to the indicators strengths:①it only contains a few algorithms, no plural operations;②there is delay distortion, only a fixed amount of delay; ③the filter length N (number of bands for N-1), the volume calculation for N/2 magnitude.(2) Model approach : Once identified indicators can use a previous study of the basic principles and relationships, a filter model to be closer to the target system.(3) Achieved : the results of the above two filters, usually by differential equations, system function or pulse response to describe. According to this description of hardware or software used to achieve it.4、Introduced FPGAProgrammable logic device is a generic logic can use a variety of chips, which is to achieve ASIC ASIC (Application Specific Integrated Circuit) semi-customized device, Its emergence and development of electronic systems designers use CAD tools to design their own laboratory in the ASIC device. Especially FPGA (Field Programmable Gate Array) generated and development, as a microprocessor, memory, the figures for electronic system design and set a new industry standard (that is based on standard product sales catalogue in the market to buy). Is a digital system for microprocessors, memories, FPGA or three standard building blocks constitute their integration direction.Digital circuit design using FPGA devices, can not only simplify the design process and can reduce the size and cost of the entire system, increasing system reliability. They do not need to spend the traditional sense a lot of time and effort required to create integrated circuits, to avoid the investment risk and become the fastest-growing industries of electronic devices group. Digital circuit design system FPGA devices using the following main advantages(1)Design flexibleUse FPGA devices may not in the standard series device logic functional limitations. And changes in system design and the use of logic in any one stage of the process, and only through the use of re-programming the FPGA device can be completed, the system design provides for great flexibility.(2) Increased functional densityFunctional density in a given space refers to the number of functional integration logic. Programmable logic chip components doors several high, a FPGA can replace several films, film scores or even hundreds of small-scale digital IC chip illustrated in the film. FPGA devices using the chip to use digital systems in small numbers, thus reducing the number of chips used to reduce the number of printed size and printed, and will ultimately lead to a reduction in the overall size of the system.(3) Improve reliabilityPrinting plates and reduce the number of chips, not only can reduce system size, but it greatly enhanced system reliability. A higher degree of integration than systems in many low-standard integration components for the design of the same system, with much higher reliability. FPGA device used to reduce the number of chips required to achieve the system in the number printed on the cord and joints are reduced, the reliability of the system can beimproved.(4) Shortening the design cycleAs FPGA devices and the programmable flexibility, use it to design a system for longer than traditional methods greatly shortened. FPGA device master degrees high, use printed circuit layout wiring simple. At the same time, success in the prototype design, the development of advanced tools, a high degree of automation, their logic is very simple changes quickly. Therefore, the use of FPGA devices can significantly shorten the design cycle system, and speed up the pace of product into the market, improving product competitiveness.(5) Work fastFPGA/CPLD devices work fast, generally can reach several original Hertz, far larger than the DSP device. At the same time, the use of FPGA devices, the system needed to achieve circuitclasses and small, and thus the pace of work of the entire system will be improved.(6) Increased system performance confidentialityMany FPGA devices have encryption functions in the system widely used FPGA devices can effectively prevent illegal copying products were others(7) To reduce costsFPGA device used to achieve digital system design, if only device itself into the price, sometimes you would not know it advantages, but there are many factors affecting the cost of the system, taken together, the cost advantages of using FPGA is obvious. First, the use of FPGA devices designed to facilitate change, shorten design cycles, reduce development costs for system development; Secondly, the size and FPGA devices allow automation needs plug-ins, reducing the manufacturing system to lower costs; Again, the use of FPGA devices can enhance system reliability, reduced maintenance workload, thereby lowering the cost of maintenance services for the system. In short, the use of FPGA devices for system design to save costs.FPGA design principles :FPGA design an important guiding principles : the balance and size and speed of exchange, the principles behind the design of the filter expression of a large number of certification.Here, "area" means a design exertion FPGA/CPLD logic resources of the FPGA can be used to the typical consumption (FF) and the search table (IUT) to measure more general measure can be used to design logic equivalence occupied by the door is measured. "pace"means stability operations in the chip design can achieve the highest frequency, the frequency of the time series design situation, and design to meet the clock cycle -- PADto pad, Clock Setup Time, Clock Hold Beijing, Clock-to-Output Delay, and other characteristics of many time series closely related. Area (area) and speed (speed) runs through the two targets FPGA design always is the ultimate design quality evaluation criteria. On the size and speed of the two basic concepts : balance of size and speed and size and speed of swap.One pair of size and speed is the unity of opposites contradictions body. Requirements for the design of a design while the smallest, highest frequency of operation is unrealistic. More scientific goal should be to meet the design requirements of the design time series (includes requirements for the design frequency) premise, the smallest chip area occupied. Or in the specified area, the design time series cushion greater frequency run higher. This fully embodies the goals of both size and speed balanced thinking. On the size and speed requirements should not be simply interpreted as raising the level and design engineers perfect sexual pursuit, and should recognize that they are products and the quality and cost of direct relevance. If time series cushion larger design, running relatively high frequency, that the design Jianzhuangxing stronger, more quality assurance system as a whole; On the other hand, the smaller size of consumption design is meant to achieve in chip unit more functional modules, the chip needs fewer, the entire system has been significantly reduced cost. As a contradiction of the two components, the size and speed is not the same status. In contrast, meet the timetables and work is more important for some frequency when both conflicts, the use of priority guidelines.Area and the exchange rate is an important FPGA design ideas. Theoretically, if a design time series cushion larger, can run much higher than the frequency design requirements, then we can through the use of functional modules to reduce the consumption of the entire chip design area, which is used for space savings advantages of speed; Conversely, if the design of a time series demanding, less than ordinary methods of design frequency then generally flow through the string and data conversion, parallel reproduction of operational module, designed to take on the whole "string and conversion" and operate in the export module to chip in the data "and string conversion" from the macro point of view the whole chip meets the requirements of processing speed, which is equivalent to the area of reproduction - rate increase.For example. Assuming that the digital signal processing system is 350Mb/s input data flow rate, and in FPGA design, data processing modules for maximum processing speed of150Mb/s, because the data throughput processing module failed to meet requirements, it is impossible to achieve directly in the FPGA. Such circumstances, they should use "area-velocity" thinking, at least three processing modules from the first data sets will be imported and converted, and then use these three modules parallel processing of data distribution, then the results "and string conversion," we have complete data rate requirements. We look at both ends of the processing modules, data rate is 350Mb/s, and in view of the internal FPGA, each sub-module handles the data rate is 150Mb/s, in fact, all the data throughput is dependent on three security modules parallel processing subsidiary completed, that is used by more chip area achieve high-speed processing through "the area of reproduction for processing speed enhancement" and achieved design.FPGA is the English abbreviation Field of Programmable Gate Array for the site programmable gate array, which is in Pal, Gal, Epld, programmable device basis to further develop the product. It is as ASIC (ASIC) in the field of a semi-customized circuit and the emergence of both a customized solution to the shortage circuit, but overcome the original programmable devices doors circuit few limited shortcomings.FPGA logic module array adopted home (Logic Cell Array), a new concept of internal logic modules may include CLB (Configurable Logic Block), export import module IOB (Input Output Block) and internal links (Interconnect) 3. FPGA basic features are :(1) Using FPGA ASIC design ASIC using FPGA circuits, the chip can be used,while users do not need to vote films production.(2) FPGA do other customized or semi-customized ASIC circuits throughout the Chinese specimen films.3) FPGA internal capability and rich I/O Yinjue.4) FPGA is the ASIC design cycle, the shortest circuit, the lowest development costs, risks among the smallest device5) FPGA using high-speed Chmos crafts, low consumption, with CMOS, TTL low-power compatibleIt can be said that the FPGA chip is for small-scale systems to improve system integration, reliability one of the bestCurrently FPGA many varieties, the Revenue software series, TI companies TPC series, the fiex ALTERA company seriesFPGA is stored in films from the internal RAM procedures for the establishment of the state of its work, therefore, need to programmed the internal Ram. Depending on the different configuration, users can use a different programming methodsPlus electricity, FPGA, EPROM chips will be read into the film, programming RAM中data, configuration is completed, FPGA into working order. Diaodian, FPGA resume into white films, the internal logic of relations disappear, FPGA to repeated use. FPGA's programming is dedicated FPGA programming tool, using generic EPROM, prom programming device can. When the need to modify functional FPGA, EPROM can only change is. Thus, with a FPGA, different programming data to produce different circuit functions. Therefore, the use of FPGA very flexible.There are a variety of FPGA model : the main model for a parallel FPGA plus a EPROM manner; From the model can support a number of films FPGA; serial prom programming model could be used serial prom FPGA programming FPGA; The external model can be engineered as microprocessors from its programming microprocessors.Verilog HDL is a hardware description language for the algorithm level, doors at the level of abstract level to switch-level digital system design modelling. Modelling of the target figure by the complexity of the system can be something simple doors and integrity of electronic digital systems. Digital system to the levels described, and in the same manner described in Hin-time series modelling.Verilog HDL language with the following description of capacity : design behaviour characteristics, design data flow characteristics, composition and structure designed to control and contain the transmission and waveform design a certification mechanism. All this with the use of a modelling language. In addition, Verilog HDL language programming language interface provided by the interface in simulation, design certification from the external design of the visit, including specific simulation control and operation.Verilog HDL language grammar is not only a definition, but the definition of each grammar structure are clear simulation, simulation exercises. Therefore, the use of such language to use Verilog simulation models prepared by a certification. From the C programming language, the language inherited multiple operating sites and structures. Verilog HDL provides modelling capacity expansion, many of the initial expansion would be difficult to understand. However, the core subsets of Verilog HDL language very easy to learn and use, which is sufficient formost modelling applications. Of course, the integrity of the hardware description language is the most complex chips from the integrity of the electronic systems described.historyVerilog HDL language initially in 1983 by Gateway Design Automation companies for product development simulator hardware modelling language. Then it is only a dedicated language. Since their simulation, simulation devices widely used products, Verilog HDL as a user-friendly and practical language for many designers gradually accepted. In an effort to increase the popularity of the language activities, Verilog HDL language in 1990 was a public area. Open Verilog International (OVI) is to promote the development of Verilog international organizations. 1992, decided to promote OVI OVI standards as IEEE Verilog standards. The effort will ultimately succeed, a IEEE1995 Verilog language standard, known as IEEE Std 1364-1995. Integrity standards in Verilog hardware description language reference manual contains a detailed description.Main capacity:Listed below are the main Verilog hardware description language ability*Basic logic gate, and, for example, or have embedded in the language and nand* Users of the original definition of the term (UDP), the flexibility. Users can be defined in the original language combinations logic original language, the original language of logic could also be time series* Switches class infrastructure models, such as the nmos and pmos also be embedded in the language* Hin-language structure designated for the cost of printing the design and trails Shi Shi and design time series checks.* Available three different ways to design or mixed mode modelling. These methods include : acts described ways - use process of structural modelling; Data flow approach - use of a modelling approach Fuzhi expression; Structured way - using examples of words to describe modular doors and modelling.* Verilog HDL has two types of data : data types and sequence data line network types. Line network types that the physical links between components and sequence types that abstract data storage components.* To describe the level design, the structure can be used to describe any level module example* Design size can be arbitrary; Language is design size (size) impose any restrictions* Verilog HDL is no longer the exclusive language of certain companies but IEEE standards.* And the machine can read Verilog language, it may as EDA tools and languages of the world between the designers* Verilog HDL language to describe capacity through the use of programming language interface (PLI) mechanism further expansion. PLI is to allow external functions of the visit Verilog module information, allowing designers and simulator world Licheng assembly* Design to be described at a number of levels, from the switch level, doors level, register transfer level (RTL) to the algorithm level, including the level of process and content* To use embedded switching level of the original language in class switch design integrity modelling* Same language can be used to generate simulated incentive and certification by the designated testing conditions, such as the value of imports of the designated*Verilog HDL simulation to monitor the implementation of certification, the certification process of implementing the simulation can be designed to monitor and demonstrate value. These values can be used to compare with the expectations that are not matched in the case of print news reports.* Acts described in the class, not only in the RTL level Verilog HDL design description, and to describe their level architecture design algorithm level behavioural description* Examples can use doors and modular structure of language in a class structure described* Verilog HDL mixed mode modelling capabilities in the design of a different design in each module can level modelling* Verilog HDL has built-in logic function, such as*Structure of high-level programming languages, such as conditions of expression, and the cycle of expression language, language can be used* To it and can display regular modelling* Provide a powerful document literacy* Language in the specific circumstances of non-certainty that in the simulator, different models can produce different results; For example, describing events in the standard sequence of events is not defined.5、In troduction of DSPToday, DSP is w idely used in the modern techno logy and it has been the key part of many p roducts and p layed more and mo re impo rtant ro le in our daily life.Recent ly, Northw estern Po lytechnica lUniversity Aviation Microelect ronic Center has comp leted the design of digital signal signal p rocesso r co re NDSP25, w h ich is aim ing at TM S320C25 digital signal p rocesso r of Texas Inst rument TM S320 series. By using top 2dow n design flow , NDSP25 is compat ible w ith inst ruct ion and interface t im ing of TM S320C25.Digital signal processors (DSP) is a fit for real-time digital signal processing for high-speed dedicated processors, the main variety used for real-time digital signal processing to achieve rapid algorithms. In today's digital age background, the DSP has become the communications, computer, and consumer electronics products, and other fields based device.Digital signal processors and digital signal processing is inseparably, we usually say "DSP" can also mean the digital signal processing (Digital Signal Processing), is that in this digital signal processors Lane. Digital signal processing is a cover many disciplines applied to many areas and disciplines, refers to the use of computers or specialized processing equipment, the signals in digital form for the collection, conversion, recovery, valuation, enhancement, compression, identification, processing, the signals are compliant form. Digital signal processors for digital signal processing devices, it is accompanied by a digital signal processing to produce. DSP development process is broadly divided into three phases : the 20th century to the 1970s theory that the 1980s and 1990s for the development of products. Before the emergence of the digital signal processing in the DSP can only rely on microprocessors (MPU) to complete. However, the advantage of lower high-speed real-time processing can not meet the requirements. Therefore, until the 1970s, a talent made based DSP theory and algorithms. With LSI technology development in 1982 was the first recipient of the world gave birth to the DSP chip. Years later, the second generation based on CMOS工艺DSP chips have emerged. The late 1980s, the advent of the third generation of DSP chips. DSP is the fastest-growing 1990s, there have been four successive five-generation and the generation DSP devices. After 20 years of development, the application of DSP products has been extended to people's learning, work and all aspects of life and gradually become electronics products determinants.。
DSP单词整理
Chapter 1 Signal Processing 信号处理classification 分类variable 变量vector 矢量scalar 标量multichannel 多通道multidimensional 多维的,多面的amplitude 幅度waveform 波形continuous-time 连续时间discrete-time 离散时间analog signal 模拟信号digital signal 数字信号normalize 使恢复正常deterministic signal 确定信号random signal 随机信号sample 抽样numerical 数字的quantized 量子化的(数字转化)time-domain 时域frequency-domain 频域elementary 基本的implement 实现amplification 放大scaling 加权delay 延时addition 相加gain 增益attenuation 衰减advance 超前product 乘积integration 积分differentiation 微分filter 滤波器lowpass filter 低通滤波器highpass filter 高通滤波器bandpass filter 带通滤波器bandstop filter 带阻滤波器block 屏蔽passband 通带stopband 阻带quantized boxcar signal 量化阶梯信号linear 线性time-invariant 时不变cutoff-frequency 截止频率Chapter 2algorithm 算法horizontal 水平面vertical 垂直面consecutive samples 相邻样本sampling interval 抽样间隔sampling period 抽样周期sampling frequency 抽样频率real/complex sequence 实数/虚数序列conjugate 共轭analog-to-digital converter 模数转换器sample-and-hold circuit 采样保持电路equivalent 等效的infinite/finite 无限的/有限的finite/infinite-length 有限/无限长finite-extent 有限范围finite-duration 有限时宽causal/anticausal sequence 因果序列/非因果序列reversal 反转even/odd sequence 偶/奇序列conjugate-symmetric/ conjugate-antisymmetric 共轭对称/共轭非对称periodic/aperiodic 周期性的/非周期性的energy signal 能量信号power signal 功率信号average power 平均功率appending with zeros 补零bounded 有界的bounded-input,bounded-output 有界输入有界输出(BIBO)left-sided/right-sided/two-sided sequence 左边/右边/双边序列time-shifting operation 时移delaying operation 延时运算advancing operation 超前运算unit delay 单位延时time-reversal operation 时间反转运算folding operation 折叠运算absolutely summable 绝对可和square-summable 平方可和N-periodic extension N倍周期延拓unit sample sequence 单位抽样序列unit step sequence 单位阶跃序列exponential sequence 指数序列complex exponential sequence 复指数序列discrete-time impulse 离散时间冲激in-phase component 同相分量quadrature component 正交分量real sinusoidal sequence 实正弦序列sinusoidal envelope 正弦包络angular frequency 角频率decomposition 分解phase 相位radian 弧度exponential sequence 指数序列fundamental period 基本周期arbitrary sequence 任意序列Shift-Invariant System 时不变系统Impulse Response 冲激响应Step Response 阶跃响应Linear system 线性系统Stable system 稳定系统commutative 交换律associative 结合律distributive 分配率Superposition 叠加accumulator 累加convolution 卷积property 性质cascade connection 级联parallel connection 并联constant 常数coefficient 系数precisely 精确地Chapter 3Discrete-Time-Fourier Transform 离散时间傅里叶变换Fourier integral 傅里叶积分Finite discontinuities 有限个不连续点spectrum 谱magnitude/phase spectrum 幅度/相位谱finite interval 有限区间absolutely integrable 绝对可积Energy Density Spectrum 能量密度谱Parseval’s relation 帕斯瓦尔定理Principal value 主值Frequency response 频率响应magnitude/phase response 幅度/相位响应gain/attenuation/loss function 增益/衰减/损耗函数band-limited 带限bandwidth 带宽integer 整数periodic impulse train 周期脉冲序列Frequency-Shifting 频移Modulation 调制eigenfunctions 特征值digital filer 数字滤波器Chapter 4Digital Processing of Continuous-Time Signals 连续时间信号的数字化处理aliasing 混叠anti-aliasing 反混叠reconstruction 重建sampling process 抽样过程Mathematical representation 数学表示ideal sampling model 理想抽样模型folding frequency 折叠频率recovery 恢复oversampling 过抽样undersampling 欠抽样critical sampling 临界抽样aliasing distortion 混叠失真passband 通带stopband 阻带passband edge frequency 通带截止频率stopband edge frequency 阻带截止频率Chapter 5Finite-Length Discrete Transforms 有限长离散变换Discrete Fourier transform 离散傅里叶变换Basis sequences 基本序列Inverse discrete Fourier transform 离散傅里叶逆变换frequency samples 频率样本circular Shift 圆周(循环)移位circular time-shifting operation 圆周时移运算circular frequency-shifting operation 圆周频移运算circular time-reversal operation 圆周时间反转运算modulo operation 模运算circular convolution 圆周(循环)卷积N-point circular convolution N点圆周(循环)卷积circulant matrix 圆周矩阵Chapter 6z-Transform Z变换unit circle 单位圆region of convergence(ROC)收敛域Rational z-transform 有理z变换Polynomial 多项式zero point 零点pole point 极点Inverse z-Transform z反变换Partial-Fraction Expansion 部分分式展开法residue 留数transfer function 传输函数system function 系统函数Chapter 8Digital Filter Structures 数字滤波器的结构IIR: Infinite Impulse Response 无限冲激响应FIR: Finite Impulse Response 有限冲激响应Block Diagram Representation 方框图表示Basic Building Blocks 基本结构单元Analysis of Block Diagrams 方框图的分析Delay-Free Loop 无延时回路Signal Flow-Graph 信号流图node 节点branch 支路addition 加法器multiplication 乘法器(增益)unit delay 单位延时Equivalent Structures 等效结构transpose operation 转置运算direct form 直接型cascade realizations 级联型parallel realizations 并联型linear-phase FIR structures 线性相位FIR滤波器结构allpass filter 全通滤波器Chapter 9IIR Digital Filter Design IIR数字滤波器设计Digital Filter Specifications 数字滤波器指标passband 通带stopband 阻带transition band 过渡带passband edge frequency 通带截止频率stopband edge frequency 阻带截止频率peak ripple values 峰波纹值peak passband ripple 峰值通带波纹minimum stopband attenuation 最小阻带衰减maximum passband attenuation 最大通带衰减selection of the Filter Type 滤波器类型的选择First-Order Butterworth lowpass filter 一阶巴特沃斯低通滤波器magnitude-squared response 幅度平方函数Scaling the Digital Transfer Function 缩放数字传输函数Bilinear Transformation method 双线性变换法Frequency warping 频率畸变Spectral Transformation 谱变换Chapter 10FIR Digital Filter Design FIR数字滤波器设计filter order 滤波器阶数window-based method 窗函数法lowpass filter 低通滤波器highpass filter 高通滤波器bandpass filter 带通滤波器bandstop filter 带阻滤波器differentiator 差分器Gibbs phenomenon 吉布斯效应rectangular window 矩形窗fixed window function 固定窗函数main lobe width 主瓣宽度relative sidelobe level 相对旁瓣级minimum-phase 最小相位Chapter 11DFT Algorithm Implementation DSP算法实现computation 计算fast Fourier transform(FFT) algorithms 快速傅里叶变换算法complex multiplications 复乘complex additions 复加Decimation-in-Time(DIT) FFT Algorithm 按时间抽取FFT算法butterfly computation 蝶形运算decomposition 分解in-place computation 同址计算(原位计算)twiddle factor 旋转因子bit-reversed order 倒位序Decimation-in-Frequency(DIF) FFT Algorithm 按频率抽取FFT算法Inverse DFT Computation 离散傅里叶逆变换计算。
数字信号处理词汇英文翻译
DFT (discrete Fourier transform)离散傅立叶变换
196
N-point DFT of a length L signal对L长信号做N点DFT
197
zero padding补零
198
biasing error偏移误差
199
rounding error舍入误差
200
matrix form矩阵形式
integrator积分器
88
DCgain直流增益
89
overlap-add-block convolution method重叠相加器
90
temporary临时的
91
adder加法器
92
multiplier相乘器
93
delay延迟器
94
tapped delay line抽头延迟器
95
differentiator微分器
78
difference equation差分卷积
79
recursive递归
80
even偶数
81
odd奇数
82
filter coefficient滤波器系数
83
diverge发散
84
antidiagonal反对角线
85
flip-and-slide翻转平移
86
input-off-state输出暂态
87
218
window method窗口法
219
linear phase线性相位
220
guaranteesability保证稳定性
221
lowpass低通
222
highpass高通
数字信号处理英语词汇
AAbsolutely integrable 绝对可积Absolutely integrable impulse response 绝对可积冲激响应Absolutely summable 绝对可和Absolutely summable impulse response 绝对可和冲激响应Accumulator 累加器Acoustic 声学Adder 加法器Additivity property 可加性Aliasing 混叠现象All-pass systems 全通系统AM (Amplitude modulation ) 幅度调制Amplifier 放大器Amplitude modulation (AM) 幅度调制Amplitude-scaling factor 幅度放大因子Analog-to-digital (A-to-D) converter 模数转换器Analysis equation 分析公式(方程)Angel (phase) of complex number 复数的角度(相位)Angle criterion 角判据Angle modulation 角度调制Anticausality 反因果Aperiodic 非周期Aperiodic convolution 非周期卷积Aperiodic signal 非周期信号Asynchronous 异步的Audio systems 音频(声音)系统Autocorrelation functions 自相关函数Automobile suspension system 汽车减震系统Averaging system 平滑系统BBand-limited 带(宽)限的Band-limited input signals 带限输入信号Band-limited interpolation 带限内插Bandpass filters 带通滤波器Bandpass signal 带通信号Bandpass-sampling techniques 带通采样技术Bandwidth 带宽Bartlett (triangular) window 巴特利特(三角形)窗Bilateral Laplace transform 双边拉普拉斯变换Bilinear 双线性的Bilinear transformation 双线性变换Bit (二进制)位,比特Block diagrams 方框图Bode plots 波特图Bounded 有界限的Break frequency 折转频率Butterworth filters 巴特沃斯滤波器C“Chirp” transform algorithm“鸟声”变换算法Capacitor 电容器Carrier 载波Carrier frequency 载波频率Carrier signal 载波信号Cartesian (rectangular) form 直角坐标形式Cascade (series) interconnection 串联,级联Cascade-form 串联形式Causal LTI system 因果的线性时不变系统Channel 信道,频道Channel equalization 信道均衡Chopper amplifier 斩波器放大器Closed-loop 闭环Closed-loop poles 闭环极点Closed-loop system 闭环系统Closed-loop system function 闭环系统函数Coefficient multiplier 系数乘法器Coefficients 系数Communications systems 通信系统Commutative property 交换性(交换律)Compensation for nonideal elements 非理想元件的补偿Complex conjugate 复数共轭Complex exponential carrier 复指数载波Complex exponential signals 复指数信号Complex exponential(s) 复指数Complex numbers 复数Conditionally stable systems 条件稳定系统Conjugate symmetry 共轭对称Conjugation property 共轭性质Continuous-time delay 连续时间延迟Continuous-time filter 连续时间滤波器Continuous-time Fourier series 连续时间傅立叶级数Continuous-time Fourier transform 连续时间傅立叶变换Continuous-time signals 连续时间信号Continuous-time systems 连续时间系统Continuous-to-discrete-time conversion 连续时间到离散时间转换Convergence 收敛Convolution 卷积Convolution integral 卷积积分Convolution property 卷积性质Convolution sum 卷积和Correlation function 相关函数Critically damped systems 临界阻尼系统Crosss-correlation functions 互相关函数Cutoff frequencies 截至频率DDamped sinusoids 阻尼正弦振荡Damping ratio 阻尼系数Dc offset 直流偏移Dc sequence 直流序列Deadbeat feedback systems 临界阻尼反馈系统Decibels (dB) 分贝Decimation 抽取Decimation and interpolation 抽取和内插Degenerative (negative) feedback 负反馈Delay 延迟Delay time 延迟时间Demodulation 解调Difference equations 差分方程Differencing property 差分性质Differential equations 微分方程Differentiating filters 微分滤波器Differentiation property 微分性质Differentiator 微分器Digital-to-analog (D-to-A) converter 数模转换器Direct Form I realization 直接I型实现Direct form II realization 直接II型实现Direct-form 直接型Dirichlet conditions 狄里赫利条件Dirichlet, P.L. 狄里赫利Discontinuities 间断点,不连续Discrete-time filters 离散时间滤波器Discrete-time Fourier series 离散时间傅立叶级数Discrete-time Fourier series pair 离散时间傅立叶级数对Discrete-time Fourier transform (DFT)离散时间傅立叶变换Discrete-time LTI filters 离散时间线性时不变滤波器Discrete-time modulation 离散时间调制Discrete-time nonrecursive filters 离散时间非递归滤波器Discrete-time signals 离散时间信号Discrete-time systems 离散时间系统Discrete-time to continuous-time离散时间到连续时间转换conversionDispersion 弥撒(现象)Distortion 扭曲,失真Distribution theory(property)分配律Dominant time constant 主时间常数Double-sideband modulation (DSB) 双边带调制Downsampling 减采样Duality 对偶性EEcho 回波Eigenfunctions 特征函数Eigenvalue 特征值Elliptic filters 椭圆滤波器Encirclement property 围线性质End points 终点Energy of signals 信号的能量Energy-density spectrum 能量密度谱Envelope detector 包络检波器Envelope function 包络函数Equalization 均衡化Equalizer circuits 均衡器电路Equation for closed-loop poles 闭环极点方程Euler, L. 欧拉Euler’s relation欧拉关系(公式)Even signals 偶信号Exponential signals 指数信号Exponentials 指数FFast Fourier transform (FFT) 快速傅立叶变换Feedback 反馈Feedback interconnection 反馈联结Feedback path 反馈路径Filter(s) 滤波器Final-value theorem 终值定理Finite impulse response (FIR) 有限长脉冲响应Finite impulse response (FIR) filters 有限长脉冲响应滤波器 Finite sum formula 有限项和公式 Finite-duration signals 有限长信号 First difference 一阶差分 First harmonic components 基波分量 (一次谐波分量) First-order continuous-time systems 一阶连续时间系统 First-order discrete-time systems 一阶离散时间系统 First-order recursive discrete-timefilters一阶递归离散时间滤波器First-order systems 一阶系统 Forced response 受迫响应 Forward path 正向通路 Fourier series 傅立叶级数 Fourier transform 傅立叶变换 Fourier transform pairs 傅立叶变换对 Fourier, Jean Baptiste Joseph 傅立叶(法国数学家,物理学家) Frequency response 频率响应 Frequency response of LTI systems 线性时不变系统的频率响应 Frequency scaling of continuous-time Fourier transform 连续时间傅立叶变化的频率尺度(变换性质) Frequency shift keying (FSK) 频移键控 Frequency shifting property 频移性质 Frequency-division multiplexing (FDM) 频分多路复用 Frequency-domain characterization 频域特征 Frequency-selective filter 频率选择滤波器 Frequency-shaping filters 频率成型滤波器 Fundamental components 基波分量 Fundamental frequency 基波频率 Fundamental period 基波周期GGain 增益 Gain and phase margin 增益和相位裕度 General complex exponentials 一般复指数信号 Generalized functions 广义函数 Gibbs phenomenon 吉伯斯现象 Group delay 群延迟HHalf-sample delay 半采样间隔时延 Hanning window 汉宁窗 Harmonic analyzer 谐波分析议 Harmonic components 谐波分量Harmonically related 谐波关系Heat propagation and diffusion 热传播和扩散现象Higher order holds 高阶保持Highpass filter 高通滤波器Highpass-to-lowpass transformations 高通到低通变换Hilbert transform 希尔波特滤波器Homogeneity (scaling) property 齐次性(比例性)IIdeal 理想的Ideal bandstop characteristic 理想带阻特征Ideal frequency-selective filter 理想频率选择滤波器Idealization 理想化Identity system 恒等系统Imaginary part 虚部Impulse response 冲激响应Impulse train 冲激串Incrementally linear systems 增量线性系统Independent variable 独立变量Infinite impulse response (IIR) 无限长脉冲响应Infinite impulse response (IIR) filters 无限长脉冲响应滤波器Infinite sum formula 无限项和公式Infinite taylor series 无限项泰勒级数Initial-value theorem 初值定理Inpulse-train sampling 冲激串采样Instantaneous 瞬时的Instantaneous frequency 瞬时频率Integration in time-domain 时域积分Integration property 积分性质Integrator 积分器Interconnection 互联Intermediate-frequency (IF) stage 中频级Intersymbol interference (ISI) 码间干扰Inverse Fourier transform 傅立叶反变换Inverse Laplace transform 拉普拉斯反变换Inverse LTI system 逆线性时不变系统Inverse system design 逆系统设计Inverse z-transform z反变换Inverted pendulum 倒立摆Invertibility of LTI systems 线性时不变系统的可逆性Invertible systems 逆系统LLag network 滞后网络Lagrange, J.L. 拉格朗日(法国数学家,力学家)Laplace transform 拉普拉斯变换Laplace, P.S. de 拉普拉斯(法国天文学家,数学家)lead network 超前网络left-half plane 左半平面left-sided signal 左边信号Linear 线性Linear constant-coefficient difference线性常系数差分方程equationsLinear constant-coefficient differential线性常系数微分方程equationsLinear feedback systems 线性反馈系统Linear interpolation 线性插值Linearity 线性性Log magnitude-phase diagram 对数幅-相图Log-magnitude plots 对数模图Lossless coding 无损失码Lowpass filters 低通滤波器Lowpass-to-highpass transformation 低通到高通的转换LTI system response 线性时不变系统响应LTI systems analysis 线性时不变系统分析MMagnitude and phase 幅度和相位Matched filter 匹配滤波器Measuring devices 测量仪器Memory 记忆Memoryless systems 无记忆系统Modulating signal 调制信号Modulation 调制Modulation index 调制指数Modulation property 调制性质Moving-average filters 移动平均滤波器Multiplexing 多路技术Multiplication property 相乘性质Multiplicities 多样性NNarrowband 窄带Narrowband frequency modulation 窄带频率调制Natural frequency 自然响应频率Natural response 自然响应Negative (degenerative) feedback 负反馈Nonanticipatibe system 不超前系统Noncausal averaging system 非因果平滑系统Nonideal 非理想的Nonideal filters 非理想滤波器Nonmalized functions 归一化函数Nonrecursive 非递归Nonrecursive filters 非递归滤波器Nonrecursive linear constant-coefficient非递归线性常系数差分方程difference equationsNyquist frequency 奈奎斯特频率Nyquist rate 奈奎斯特率Nyquist stability criterion 奈奎斯特稳定性判据OOdd harmonic 奇次谐波Odd signal 奇信号Open-loop 开环Open-loop frequency response 开环频率响应Open-loop system 开环系统Operational amplifier 运算放大器Orthogonal functions 正交函数Orthogonal signals 正交信号Oscilloscope 示波器Overdamped system 过阻尼系统Oversampling 过采样Overshoot 超量PParallel interconnection 并联Parallel-form block diagrams 并联型框图Parity check 奇偶校验检查Parseval’s relatio n 帕斯伐尔关系(定理)Partial-fraction expansion 部分分式展开Particular and homogeneous solution 特解和齐次解Passband 通频带Passband edge 通带边缘Passband frequency 通带频率Passband ripple 通带起伏(或波纹)Pendulum 钟摆Percent modulation 调制百分数Periodic 周期的Periodic complex exponentials 周期复指数Periodic convolution 周期卷积Periodic signals 周期信号Periodic square wave 周期方波Periodic square-wave modulating signal 周期方波调制信号Periodic train of impulses 周期冲激串Phase (angle) of complex number 复数相位(角度)Phase lag 相位滞后Phase lead 相位超前Phase margin 相位裕度Phase shift 相移Phase-reversal 相位倒置Phase modulation 相位调制Plant 工厂Polar form 极坐标形式Poles 极点Pole-zero plot(s) 零极点图Polynomials 多项式Positive (regenerative) feedback 正(再生)反馈Power of signals 信号功率Power-series expansion method 幂级数展开的方法Principal-phase function 主值相位函数Proportional (P) control 比例控制Proportional feedback system 比例反馈系统Proportional-plus-derivative 比例加积分Proportional-plus-derivative feedback 比例加积分反馈Proportional-plus-integral-plus-比例-积分-微分控制differential (PID) controlPulse-amplitude modulation 脉冲幅度调制Pulse-code modulation 脉冲编码调制Pulse-train carrier 冲激串载波QQuadrature distortion 正交失真Quadrature multiplexing 正交多路复用Quality of circuit 电路品质(因数)RRaised consine frequency response 升余弦频率响应Rational frequency responses 有理型频率响应Rational transform 有理变换RC highpass filter RC 高阶滤波器RC lowpass filter RC 低阶滤波器Real 实数Real exponential signals 实指数信号Real part 实部Rectangular (Cartesian) form 直角(卡笛儿)坐标形式Rectangular pulse 矩形脉冲Rectangular pulse signal 矩形脉冲信号Rectangular window 矩形窗口Recursive (infinite impulse response)递归(无时限脉冲响应)滤波器filtersRecursive linear constant-coefficient递归的线性常系数差分方程difference equationsRegenerative (positive) feedback 再生(正)反馈Region of comvergence 收敛域right-sided signal 右边信号Rise time 上升时间Root-locus analysis 根轨迹分析(方法)Running sum 动求和SS domain S域Sampled-data feedback systems 采样数据反馈系统Sampled-data systems 采样数据系统Sampling 采样Sampling frequency 采样频率Sampling function 采样函数Sampling oscilloscope 采样示波器Sampling period 采样周期Sampling theorem 采样定理Scaling (homogeneity) property 比例性(齐次性)性质Scaling in z domain z域尺度变换Scrambler 扰频器Second harmonic components 二次谐波分量Second-order 二阶Second-order continuous-time system 二阶连续时间系统Second-order discrete-time system 二阶离散时间系统Second-order systems 二阶系统sequence 序列Series (cascade) interconnection 级联(串联)Sifting property 筛选性质Sinc functions sinc函数Single-sideband 单边带Single-sideband sinusoidal amplitude单边带正弦幅度调制modulationSingularity functions 奇异函数Sinusoidal 正弦(信号)Sinusoidal amplitude modulation 正弦幅度调制Sinusoidal carrier 正弦载波Sinusoidal frequency modulation 正弦频率调制Sliding 滑动Spectral coefficient 频谱系数Spectrum 频谱Speech scrambler 语音加密器S-plane S平面Square wave 方波Stability 稳定性Stabilization of unstable systems 不稳定系统的稳定性(度)Step response 阶跃响应Step-invariant transformation 阶跃响应不定的变换Stopband 阻带Stopband edge 阻带边缘Stopband frequency 阻带频率Stopband ripple 阻带起伏(或波纹)Stroboscopic effect 频闪响应Summer 加法器Superposition integral 叠加积分Superposition property 叠加性质Superposition sum 叠加和Suspension system 减震系统Symmetric periodic 周期对称Symmetry 对称性Synchronous 同步的Synthesis equation 综合方程System function(s) 系统方程TTable of properties 性质列表Taylor series 泰勒级数Time 时间,时域Time advance property of unilateral z-单边z变换的时间超前性质transformTime constants 时间常数Time delay property of unilateral z-单边z变换的时间延迟性质transformTime expansion property 时间扩展性质Time invariance 时间变量Time reversal property 时间反转(反褶)性Time scaling property 时间尺度变换性Time shifting property 时移性质Time window 时间窗口Time-division multiplexing (TDM) 时分复用Time-domain 时域Time-domain properties 时域性质Tracking system (s) 跟踪系统Transfer function 转移函数transform pairs 变换对Transformation 变换(变形)Transition band 过渡带Transmodulation (transmultiplexing) 交叉调制Triangular (Barlett) window 三角型(巴特利特)窗口Trigonometric series 三角级数Two-sided signal 双边信号Type l feedback system l 型反馈系统UUint impulse response 单位冲激响应Uint ramp function 单位斜坡函数Undamped natural frequency 无阻尼自然相应Undamped system 无阻尼系统Underdamped systems 欠阻尼系统Undersampling 欠采样Unilateral 单边的Unilateral Laplace transform 单边拉普拉斯变换Unilateral z-transform 单边z变换Unit circle 单位圆Unit delay 单位延迟Unit doublets 单位冲激偶Unit impulse 单位冲激Unit step functions 单位阶跃函数Unit step response 单位阶跃响应Unstable systems 不稳定系统Unwrapped phase 展开的相位特性Upsampling 增采样VVariable 变量WWalsh functions 沃尔什函数Wave 波形Wavelengths 波长Weighted average 加权平均Wideband 宽带Wideband frequency modulation 宽带频率调制Windowing 加窗zZ domain z域Zero force equalizer 置零均衡器Zero-Input response 零输入响应Zero-Order hold 零阶保持Zeros of Laplace transform 拉普拉斯变换的零点Zero-state response 零状态响应z-transform z变换z-transform pairs z变换对。
数字信号处理词汇
数字信号处理词汇集1 章系统:system 信号:signal 模拟信号: analog signal 数字信号: digital signal 频谱: spectrum模/数转换: analog-to-digital conversion数字滤波: digital filtering 滤波器: filter采样: sample 保持: hold数字代码: digital code 量化电平: quantization level 时域: time domain 频域: frequency domain 低频: low frequency 高频: high frequency低通滤波器: low pass filter 高通滤波器: high pass filter 带通滤波器: band pass filter 带阻滤波器: band stop filter 零阶保持信号:zero order hold signal 平滑: smooth采样周期: sampling period 频率分量:frequency elements 图像处理: image processing 传感器: sensor 电压: voltage 电流: current 2 章anti-imaging filter 抗镜像滤波器 sampling interval 采样间隔anti-aliasing filter 抗混叠滤波器=sampling period 采样周期sampling frequency 采样频率=sampling rate 采样速率sampling theorem 采样定理 N yquistsam pling rate 奈奎斯特采样率 Nyquist frequency 奈奎斯特频率Nyquist range 奈奎斯特范围 oversampling 过采样undersampling 欠采样 quantization step 量化步长quantization noise 量化噪声 bit rate 比特率3 章数字函数: digital function 合成函数: composite function 二维数字信号: two-dimensional digital signal语音信号: speech signal 量化方案: quantization scheme 脉冲函数: impulse function 单位脉冲函数: unit impulse function 阶跃函数: step function 幂函数:power function 指数函数: exponential function 正弦函数: sine function 余弦函数: cosine function 复平面: complex plain 欧拉恒等式: Euler’s identity 模拟频率: analog frequency 数字频率:digital frequency 采样间隔: sampling interval 相移: phase shift 像素: pixel 灰度级: gray scale 4 章 roll-off 滚降 gain 增益 pass band 通带stop band 阻带 bandwidth 带宽linear system 线性系统 superposition 叠加原理time-invariant 时不变 causal system 因果系统difference equation 差分方程 filter coefficient 滤波器系数recursive filter 递归滤波器 nonrecursive filter 非递归滤波器finite word length effect 有限字长效应impulse response 脉冲响应infinite impulse response ( IIR)无限脉冲响应finite impulse response (FIR)有限脉冲响应m oving average filter 滑动平均滤波器 step response 阶跃响应5 章卷积: convolution 差分方程: difference equation 滑动平均滤波器: moving average filter脉冲响应: impulse response 镜像: mirror image边界效应: boundary effect输入序列: input sequence暂态效应: transient effect 稳态: steady state锐变: shape transition低通特征:low pass characteristic卷积表: convolution table6 章 z transform z 变换 region of convergence 收敛域inverse z transform 逆 z 变换 transfer function 传输函数partial fraction expansion 部分分式展开cover-up method 覆盖法 zero 零点 pole 极点marginally stable 临界稳定 unstable 不稳定7 章傅立叶变换: Fourier Transform 滤波器形状: filter shape 频率响应:frequency response频率特性: frequency characteristics离散时间傅立叶变换: Discrete Time Fourier Transform幅度响应: magnitude response 相位响应: phase response 传输函数: transfer function 相位差: phase difference 采样频率: sampling frequency8章 white noise 白噪声 magnitude spectrum 幅度频谱phase spectrum 相位频谱discrete Fourier series ( DFS)离散傅里叶级数9 章有限脉冲响应滤波器: finite impulse response filter无限脉冲响应滤波器: infinite impulse response filter相位失真: phase distortion 理想低通滤波器: idle low pass filter 窗函数: window function 稳定性: stability通带波纹: pass band ripple 阻带波纹: stop band ripple 通带边缘频率:pass band edge frequency过渡带宽度: transition width 矩形窗: Rectangular Window 汉宁窗: Hanning Window 哈明窗:Hamming Window布莱克曼窗:Blackman Window 凯塞窗:Kaiser Window项数:number of terms 衰减:attenuation 增益:gain采样频率:sampling frequency 10 章infinite impulse response filter(IIR) 无限脉冲响应滤波器bilinear transformation 双线性变换prewarping equation Butterworth filter 预扭曲方程巴特沃斯滤波器Chebyshev Type I filter 切比雪夫 I 型滤波器Chebyshev Type II filter 切比雪夫 II 型滤波器elliptic filter 椭圆滤波器Impulse invariance method 脉冲响应不变法。
安防英语
DSPDSP数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。
DSP微处理器DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器器,其主要应用是实时快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP芯片一般具有如下主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。
`AAuto Iris Mount 自动光圈接口Auto white balance 自动白平衡AGC (Automatic Gain Control )自动增益控制Aperture 孔径Ac 交流电AFC 自动频率控制ALC 自动亮度控制APC 自动相位控制A VC 自动音量控制AMPLICATION 放大BBaud Rate 波特率BNC(Bayonet Nut Connector)BNC接头,是一种用于同轴电缆的连接器Burglary Alarm Kit 防盗报警器Burglary Alarm Master Panel 防盗报警主机Backlight compensation 背光补偿Bullet-in lenses 直轴式镜头BYPASS 旁通/直通Bandwidth 带宽brightness 亮度C3C认证China Compulsory Certification,英文缩写CCC。
《数字信号处理(英文)》Maria Elena Angoletta
Bandwidth: indicates rate of change of a signal. High bandwidth signal changes fast.
Warning: formal description makes use
of “negative” frequencies !
0.3
Digital
Discrete function Vk of discrete sampling variable tk, with k = integer: Vk = V(tk).
0.3
0.1 0 -0.1 -0.2 0 2 4 6 time [ms] 8 10
Voltage [V]
Voltage [V]
• General purpose processors (GPP), -controllers.
Hardware
• Digital Signal Processors (DSP). • Programmable logic ( PLD, FPGA ).
Fang
• Reproducibility.
M. E. Angoletta - DISP2003 -
From analog to digital domain
4 / 30
DSPing: aim & tools
Applications
• Predicting a system‟s output. • Implementing a certain processing task. • Studying a certain signal.
M. E. Angoletta - DISP2003 -
From analog to digital domain
科技英语 5数字信号处理器原文与翻译
Words and Expressionsfollow v.遵循memory n.存储器register n.寄存器access v.访问overlap v. 重叠pipelining n. 流水线操作multiplier n. 乘法器accumulator n. 累加器shifter n.移位器reference n. 寻址mantissa n.尾数exponent n. 指数cycle n. 机器周期customize v.定制,用户化package v.封装digital signal processor 数字信号处理器von Neumann architecture 冯·诺伊曼结构shared single memory 单一共享存储器program instruction 程序指令harvard architecture 哈佛结构fetch from 从…获取circular buffer 循环缓冲区,环形缓冲区address generator 地址产生器fixed point 定点floating point 浮点binary point 二进制小数点available precision 可用精度dynamic range 动态范围scale range 量程smallest Resolvable Difference 最小分辨率scientific notation 科学计数法assembly language 汇编语言multi-function instructions 多功能指令parallel architecture 并行结构looping scheme 循环机制sampling frequency 采样频率on-chip memory 片内存储器well-matched 非常匹配software tools 软件开发工具low level programming language 低级编程语言high level programming language 高级编程语言third party software 第三方软件board level product 板级产品data register 数据寄存器ALU=Arithmetic Logical Unit 运算逻辑单元program sequencer 程序定序器peripheral sections 外设single integrated circuit 单片集成电路cellular telephone 蜂窝电话printed circuit board 印刷电路板licensing agreement 专利使用权转让协定custom devices 定制器件extra memory 附加存储器stand alone 单机third party developer 第三方开发商multimedia operations 多媒体操作merged into 融合calculation-intensive algorithm运算密集型算法Unit 5 Digital Signal ProcessorsDigital signal processing tasks can be performed by all processors. Specialized digital signal processors(DSPs), however, perform these tasks most efficiently and most quickly. While traditional processors follow the Von Neumann architecture[]1model, which assumes a shared single memory to be used for both program instructions and data, DSPs use the Harvard or modified Harvard architecture []2, which includes multiple program and data memories, along with multiple buses to access them. This arrangement means that much less waiting is required when instructions or numbers are fetched from memory. In fact at least one of each can be fetched simultaneously. Such overlapping of tasks is called pipelining. In addition to multiple memories and buses, all DSPs have fast multipliers, accumulators, and shifters, and many have hardware support for circular buffers. Address generators can speed up accesses to memory locations referenced by registers.DSPs are available in two major classes: fixed point and floating point. The fixed point class represents real numbers in a fixed number of bits. The position of the binary point (similar to the decimal point) can be controlled by the programmer, and determines the range of numbers that can be represented. As the range increases, though, the available precision goes down, since fewer bits lie to the right of the binary point. In 16 bits, the formats 16.0, 15.1, 14.2, 13.3, 12.4, 11.5, 10.6, 9.7, 8.8, 7.9, 6.10, 5.11, 4.12, 3.13, 2.14, and 1.15 are possible. The dynamic range, calculated as 20log (Full Scale Range/Smallest2= 96.3 dB.Resolvable Difference), remains the same for all 16-bit formats, 20log16Figure 6.3 Van Neumann architectureFigure 6.4 Harvard architectureFloating point DSPs represent real numbers using a mantissa and an exponent , similar to scientific notation : Many combine mantissa and exponent into a 32-bit number. The dynamic range for floating point devices is calculated from the largest and smallest multipliers E 2, where E is the exponent. Thus, for a representation that uses 24 bits for the mantissa and 8 bits for the signed exponent, the dynamic range is 20 log (1281272/2-) = 1535.3 dB. A large dynamic range means the system has great power to represent a wide range of input signals, from very small to very large.Assembly language is the command language for DSPs. DSPs often have specialized instructions that make programming for common DSP tasks more convenient and more efficient. For example, most DSPs offer multi-function instructions that exploit their parallel architecture . Other constructs that are frequently offered are efficient looping schemes , since so many DSP operations involve a great deal of repetition.Choosing a DSP for a particular application is not always easy. The first decision is on whether tochoose a fixed point or a floating point device []3. Generally, fixed point devices are cheaper and quicker,but floating point devices are more convenient to program and more suited to calculation-intensive algorithms . Second, the data width of the DSP determines how accurately it can represent numbers. Speed is another issue, not only how many cycles occur in each second, but also how many instructions execute in each cycle and how much work each of these instructions accomplishes. One way to assess the minimum requirements for the DSP is to estimate how many instructions must be executed for each received sample. When this number is multiplied by the sampling frequency , the minimum required number of instructions per second is obtained.The specific hardware and software features offered by a particular DSP can make one choice betterthan another, as can the amount of on-chip memory available []4. Sometimes DSPs are chosen becausewell-matched supporting hardware, particularly A/D and D/A converters, is obtainable. Frequently, the quality and convenience of the software tools, for both low level and high level programming languages, are also major factors, as is the availability of third party software. As always, cost is a factor. In fact, quite often, the DSP that is fastest and offers the most features, but also fits the budget, is the one selected.DSPs can be purchased in three forms, as a core, as a processor, and as a board level product. In DSP, the term "core" refers to the section of the processor where the key tasks are carried out, including the data registers, multiplier, ALU, address generator, and program sequencer. A complete processor requires combining the core with memory and interfaces to the outside world. While the core and these peripheral sections are designed separately, they will be fabricated on the same piece of silicon, making the processor a single integrated circuit.Suppose you build cellular telephones and want to include a DSP in the design. You will probably want to purchase the DSP as a processor, that is, an integrated circuit that contains the core, memory and other internal features. To incorporate this IC in your product, you have to design a printed circuit board where it will be soldered in next to your other electronics. This is the most common way that DSPs are used.Now, suppose the company you work for manufactures its own integrated circuits. In this case, you might not want the entire processor, just the design of the core. After completing the appropriate licensing agreement, you can start making chips that are highly customized to your particular application. This gives you the flexibility of selecting how much memory is included, how the chip receives and transmits data, how it is packaged, and so on.Custom devices of this type are an increasingly important segment of the DSP marketplace.There are several dozen companies that will sell you DSPs already mounted on a printed circuit board. These have such features as extra memory, A/D and D/A converters, EPROM sockets, multiple processors on the same board, and so on. While some of these boards are intended to be used as stand alone computers, most are configured to be plugged into a host, such as a personal computer. Companies that make these types of boards are called Third Party Developers. The best way to find them is to ask the manufacturer of the DSP you want to use. Look at the DSP manufacturer's website; if you don't find a list there, send them an e-mail. They will be more than happy to tell you who are using their products and how to contact them.Keep in mind that the distinction between DSPs and other microprocessors is not always a clear line. For instance, look at how Intel describes the MMX technology addition to its Pentium processor: "Intel engineers have added 57 powerful new instructions specifically designed to manipulate and process video, audio and graphical data efficiently. These instructions are oriented to the highly parallel, repetitivesequences often found in multimedia operations . "In the future, we will undoubtedly see more DSP-like functions merged into traditional microprocessors and microcontrollers. The Internet and other multimedia applications are a strong driving force for these changes. These applications are expanding so rapidly, in twenty years it is very possible that the Digital Signal Processor may be the "traditional" microprocessor.Notes1. “冯·诺伊曼结构”取名字美国杰出的数学家—约翰·冯·诺伊曼(John Von Neumann,1903~1957)。
数字信号处理词汇英文翻译
complex conjugate pairs复共轭对
151
quantization effects in digital filters数字滤波器中的量化效应
152
roundofferror舍入误差
153
sample-by-sample processing algorithm逐个样本处理算法
96
unit step单位阶跃信号
97
alternating step正负交替的阶跃信号
98
Z-transform Z变换
99
positive正的
100
negative负的
101
region of convergence收敛域
102
marginally stable临界稳定
103
polynomial多项式
208
Decimation-in-time radix-2 FFT algorithm按时间抽取的基二FFT算法
209
butterfly merging equations蝶形组合公式
210
shuffling重排
211
bit reversal码位倒置
212
fast convolution快速卷积
213
104
denominator分母
105
numerator分子
106
peak峰
107
dip谷
108
partial fraction expansion method部分分式展开法
109
unit circle单位圆
110
double sided complex sinusoid双边复正弦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AAbsolutely integrable 绝对可积Absolutely integrable impulse response 绝对可积冲激响应Absolutely summable 绝对可和Absolutely summable impulse response 绝对可和冲激响应Accumulator 累加器Acoustic 声学Adder 加法器Additivity property 可加性Aliasing 混叠现象All-pass systems 全通系统AM (Amplitude modulation ) 幅度调制Amplifier 放大器Amplitude modulation (AM) 幅度调制Amplitude-scaling factor 幅度放大因子Analog-to-digital (A-to-D) converter 模数转换器Analysis equation 分析公式(方程)Angel (phase) of complex number 复数的角度(相位)Angle criterion 角判据Angle modulation 角度调制Anticausality 反因果Aperiodic 非周期Aperiodic convolution 非周期卷积Aperiodic signal 非周期信号Asynchronous 异步的Audio systems 音频(声音)系统Autocorrelation functions 自相关函数Automobile suspension system 汽车减震系统Averaging system 平滑系统BBand-limited 带(宽)限的Band-limited input signals 带限输入信号Band-limited interpolation 带限内插Bandpass filters 带通滤波器Bandpass signal 带通信号Bandpass-sampling techniques 带通采样技术Bandwidth 带宽Bartlett (triangular) window 巴特利特(三角形)窗Bilateral Laplace transform 双边拉普拉斯变换Bilinear 双线性的Bilinear transformation 双线性变换Bit (二进制)位,比特Block diagrams 方框图Bode plots 波特图Bounded 有界限的Break frequency 折转频率Butterworth filters 巴特沃斯滤波器C“Chirp” transform algorithm“鸟声”变换算法Capacitor 电容器Carrier 载波Carrier frequency 载波频率Carrier signal 载波信号Cartesian (rectangular) form 直角坐标形式Cascade (series) interconnection 串联,级联Cascade-form 串联形式Causal LTI system 因果的线性时不变系统Channel 信道,频道Channel equalization 信道均衡Chopper amplifier 斩波器放大器Closed-loop 闭环Closed-loop poles 闭环极点Closed-loop system 闭环系统Closed-loop system function 闭环系统函数Coefficient multiplier 系数乘法器Coefficients 系数Communications systems 通信系统Commutative property 交换性(交换律)Compensation for nonideal elements 非理想元件的补偿Complex conjugate 复数共轭Complex exponential carrier 复指数载波Complex exponential signals 复指数信号Complex exponential(s) 复指数Complex numbers 复数Conditionally stable systems 条件稳定系统Conjugate symmetry 共轭对称Conjugation property 共轭性质Continuous-time delay 连续时间延迟Continuous-time filter 连续时间滤波器Continuous-time Fourier series 连续时间傅立叶级数Continuous-time Fourier transform 连续时间傅立叶变换Continuous-time signals 连续时间信号Continuous-time systems 连续时间系统Continuous-to-discrete-time conversion 连续时间到离散时间转换Convergence 收敛Convolution 卷积Convolution integral 卷积积分Convolution property 卷积性质Convolution sum 卷积和Correlation function 相关函数Critically damped systems 临界阻尼系统Crosss-correlation functions 互相关函数Cutoff frequencies 截至频率DDamped sinusoids 阻尼正弦振荡Damping ratio 阻尼系数Dc offset 直流偏移Dc sequence 直流序列Deadbeat feedback systems 临界阻尼反馈系统Decibels (dB) 分贝Decimation 抽取Decimation and interpolation 抽取和内插Degenerative (negative) feedback 负反馈Delay 延迟Delay time 延迟时间Demodulation 解调Difference equations 差分方程Differencing property 差分性质Differential equations 微分方程Differentiating filters 微分滤波器Differentiation property 微分性质Differentiator 微分器Digital-to-analog (D-to-A) converter 数模转换器Direct Form I realization 直接I型实现Direct form II realization 直接II型实现Direct-form 直接型Dirichlet conditions 狄里赫利条件Dirichlet, P.L. 狄里赫利Discontinuities 间断点,不连续Discrete-time filters 离散时间滤波器Discrete-time Fourier series 离散时间傅立叶级数Discrete-time Fourier series pair 离散时间傅立叶级数对Discrete-time Fourier transform (DFT)离散时间傅立叶变换Discrete-time LTI filters 离散时间线性时不变滤波器Discrete-time modulation 离散时间调制Discrete-time nonrecursive filters 离散时间非递归滤波器Discrete-time signals 离散时间信号Discrete-time systems 离散时间系统Discrete-time to continuous-time conversion 离散时间到连续时间转换Dispersion 弥撒(现象)Distortion 扭曲,失真Distribution theory(property)分配律Dominant time constant 主时间常数Double-sideband modulation (DSB) 双边带调制Downsampling 减采样Duality 对偶性EEcho 回波Eigenfunctions 特征函数Eigenvalue 特征值Elliptic filters 椭圆滤波器Encirclement property 围线性质End points 终点Energy of signals 信号的能量Energy-density spectrum 能量密度谱Envelope detector 包络检波器Envelope function 包络函数Equalization 均衡化Equalizer circuits 均衡器电路Equation for closed-loop poles 闭环极点方程Euler, L. 欧拉Euler’s relation欧拉关系(公式)Even signals 偶信号Exponential signals 指数信号Exponentials 指数FFast Fourier transform (FFT) 快速傅立叶变换Feedback 反馈Feedback interconnection 反馈联结Feedback path 反馈路径Filter(s) 滤波器Final-value theorem 终值定理Finite impulse response (FIR) 有限长脉冲响应Finite impulse response (FIR) filters 有限长脉冲响应滤波器Finite sum formula 有限项和公式Finite-duration signals 有限长信号First difference 一阶差分First harmonic components 基波分量(一次谐波分量)First-order continuous-time systems 一阶连续时间系统First-order discrete-time systems 一阶离散时间系统First-order recursive discrete-time filters 一阶递归离散时间滤波器First-order systems 一阶系统Forced response 受迫响应Forward path 正向通路Fourier series 傅立叶级数Fourier transform 傅立叶变换Fourier transform pairs 傅立叶变换对Fourier, Jean Baptiste Joseph 傅立叶(法国数学家,物理学家)Frequency response 频率响应Frequency response of LTI systems 线性时不变系统的频率响应Frequency scaling of continuous-time Fourier transform 连续时间傅立叶变化的频率尺度(变换性质)Frequency shift keying (FSK) 频移键控Frequency shifting property 频移性质Frequency-division multiplexing (FDM) 频分多路复用Frequency-domain characterization 频域特征Frequency-selective filter 频率选择滤波器Frequency-shaping filters 频率成型滤波器Fundamental components 基波分量Fundamental frequency 基波频率Fundamental period 基波周期GGain 增益Gain and phase margin 增益和相位裕度General complex exponentials 一般复指数信号Generalized functions 广义函数Gibbs phenomenon 吉伯斯现象Group delay 群延迟HHalf-sample delay 半采样间隔时延Hanning window 汉宁窗Harmonic analyzer 谐波分析议Harmonic components 谐波分量Harmonically related 谐波关系Heat propagation and diffusion 热传播和扩散现象Higher order holds 高阶保持Highpass filter 高通滤波器Highpass-to-lowpass transformations 高通到低通变换Hilbert transform 希尔波特滤波器Homogeneity (scaling) property 齐次性(比例性)IIdeal 理想的Ideal bandstop characteristic 理想带阻特征Ideal frequency-selective filter 理想频率选择滤波器Idealization 理想化Identity system 恒等系统Imaginary part 虚部Impulse response 冲激响应Impulse train 冲激串Incrementally linear systems 增量线性系统Independent variable 独立变量Infinite impulse response (IIR) 无限长脉冲响应Infinite impulse response (IIR) filters 无限长脉冲响应滤波器Infinite sum formula 无限项和公式Infinite taylor series 无限项泰勒级数Initial-value theorem 初值定理Inpulse-train sampling 冲激串采样Instantaneous 瞬时的Instantaneous frequency 瞬时频率Integration in time-domain 时域积分Integration property 积分性质Integrator 积分器Interconnection 互联Intermediate-frequency (IF) stage 中频级Intersymbol interference (ISI) 码间干扰Inverse Fourier transform 傅立叶反变换Inverse Laplace transform 拉普拉斯反变换Inverse LTI system 逆线性时不变系统Inverse system design 逆系统设计Inverse z-transform z反变换Inverted pendulum 倒立摆Invertibility of LTI systems 线性时不变系统的可逆性Invertible systems 逆系统LLag network 滞后网络Lagrange, J.L. 拉格朗日(法国数学家,力学家)Laplace transform 拉普拉斯变换Laplace, P.S. de 拉普拉斯(法国天文学家,数学家)lead network 超前网络left-half plane 左半平面left-sided signal 左边信号Linear 线性Linear constant-coefficient difference equations 线性常系数差分方程Linear constant-coefficient differential equations 线性常系数微分方程Linear feedback systems 线性反馈系统Linear interpolation 线性插值Linearity 线性性Log magnitude-phase diagram 对数幅-相图Log-magnitude plots 对数模图Lossless coding 无损失码Lowpass filters 低通滤波器Lowpass-to-highpass transformation 低通到高通的转换LTI system response 线性时不变系统响应LTI systems analysis 线性时不变系统分析MMagnitude and phase 幅度和相位Matched filter 匹配滤波器Measuring devices 测量仪器Memory 记忆Memoryless systems 无记忆系统Modulating signal 调制信号Modulation 调制Modulation index 调制指数Modulation property 调制性质Moving-average filters 移动平均滤波器Multiplexing 多路技术Multiplication property 相乘性质Multiplicities 多样性NNarrowband 窄带Narrowband frequency modulation 窄带频率调制Natural frequency 自然响应频率Natural response 自然响应Negative (degenerative) feedback 负反馈Nonanticipatibe system 不超前系统Noncausal averaging system 非因果平滑系统Nonideal 非理想的Nonideal filters 非理想滤波器Nonmalized functions 归一化函数Nonrecursive 非递归Nonrecursive filters 非递归滤波器Nonrecursive linear constant-coefficient difference非递归线性常系数差分方程equationsNyquist frequency 奈奎斯特频率Nyquist rate 奈奎斯特率Nyquist stability criterion 奈奎斯特稳定性判据OOdd harmonic 奇次谐波Odd signal 奇信号Open-loop 开环Open-loop frequency response 开环频率响应Open-loop system 开环系统Operational amplifier 运算放大器Orthogonal functions 正交函数Orthogonal signals 正交信号Oscilloscope 示波器Overdamped system 过阻尼系统Oversampling 过采样Overshoot 超量PParallel interconnection 并联Parallel-form block diagrams 并联型框图Parity check 奇偶校验检查Parseval’s relatio n 帕斯伐尔关系(定理)Partial-fraction expansion 部分分式展开Particular and homogeneous solution 特解和齐次解Passband 通频带Passband edge 通带边缘Passband frequency 通带频率Passband ripple 通带起伏(或波纹)Pendulum 钟摆Percent modulation 调制百分数Periodic 周期的Periodic complex exponentials 周期复指数Periodic convolution 周期卷积Periodic signals 周期信号Periodic square wave 周期方波Periodic square-wave modulating signal 周期方波调制信号Periodic train of impulses 周期冲激串Phase (angle) of complex number 复数相位(角度)Phase lag 相位滞后Phase lead 相位超前Phase margin 相位裕度Phase shift 相移Phase-reversal 相位倒置Phase modulation 相位调制Plant 工厂Polar form 极坐标形式Poles 极点Pole-zero plot(s) 零极点图Polynomials 多项式Positive (regenerative) feedback 正(再生)反馈Power of signals 信号功率Power-series expansion method 幂级数展开的方法Principal-phase function 主值相位函数Proportional (P) control 比例控制Proportional feedback system 比例反馈系统Proportional-plus-derivative 比例加积分Proportional-plus-derivative feedback 比例加积分反馈Proportional-plus-integral-plus-differential (PID) control 比例-积分-微分控制Pulse-amplitude modulation 脉冲幅度调制Pulse-code modulation 脉冲编码调制Pulse-train carrier 冲激串载波QQuadrature distortion 正交失真Quadrature multiplexing 正交多路复用Quality of circuit 电路品质(因数)RRaised consine frequency response 升余弦频率响应Rational frequency responses 有理型频率响应Rational transform 有理变换RC highpass filter RC 高阶滤波器RC lowpass filter RC 低阶滤波器Real 实数Real exponential signals 实指数信号Real part 实部Rectangular (Cartesian) form 直角(卡笛儿)坐标形式Rectangular pulse 矩形脉冲Rectangular pulse signal 矩形脉冲信号Rectangular window 矩形窗口Recursive (infinite impulse response) filters 递归(无时限脉冲响应)滤波器Recursive linear constant-coefficient difference equations 递归的线性常系数差分方程Regenerative (positive) feedback 再生(正)反馈Region of comvergence 收敛域right-sided signal 右边信号Rise time 上升时间Root-locus analysis 根轨迹分析(方法)Running sum 动求和SS domain S域Sampled-data feedback systems 采样数据反馈系统Sampled-data systems 采样数据系统Sampling 采样Sampling frequency 采样频率Sampling function 采样函数Sampling oscilloscope 采样示波器Sampling period 采样周期Sampling theorem 采样定理Scaling (homogeneity) property 比例性(齐次性)性质Scaling in z domain z域尺度变换Scrambler 扰频器Second harmonic components 二次谐波分量Second-order 二阶Second-order continuous-time system 二阶连续时间系统Second-order discrete-time system 二阶离散时间系统Second-order systems 二阶系统sequence 序列Series (cascade) interconnection 级联(串联)Sifting property 筛选性质Sinc functions sinc函数Single-sideband 单边带Single-sideband sinusoidal amplitude modulation 单边带正弦幅度调制Singularity functions 奇异函数Sinusoidal 正弦(信号)Sinusoidal amplitude modulation 正弦幅度调制Sinusoidal carrier 正弦载波Sinusoidal frequency modulation 正弦频率调制Sliding 滑动Spectral coefficient 频谱系数Spectrum 频谱Speech scrambler 语音加密器S-plane S平面Square wave 方波Stability 稳定性Stabilization of unstable systems 不稳定系统的稳定性(度)Step response 阶跃响应Step-invariant transformation 阶跃响应不定的变换Stopband 阻带Stopband edge 阻带边缘Stopband frequency 阻带频率Stopband ripple 阻带起伏(或波纹)Stroboscopic effect 频闪响应Summer 加法器Superposition integral 叠加积分Superposition property 叠加性质Superposition sum 叠加和Suspension system 减震系统Symmetric periodic 周期对称Symmetry 对称性Synchronous 同步的Synthesis equation 综合方程System function(s) 系统方程TTable of properties 性质列表Taylor series 泰勒级数Time 时间,时域Time advance property of unilateral z-transform 单边z变换的时间超前性质Time constants 时间常数Time delay property of unilateral z-transform 单边z变换的时间延迟性质Time expansion property 时间扩展性质Time invariance 时间变量Time reversal property 时间反转(反褶)性Time scaling property 时间尺度变换性Time shifting property 时移性质Time window 时间窗口Time-division multiplexing (TDM) 时分复用Time-domain 时域Time-domain properties 时域性质Tracking system (s) 跟踪系统Transfer function 转移函数transform pairs 变换对Transformation 变换(变形)Transition band 过渡带Transmodulation (transmultiplexing) 交叉调制Triangular (Barlett) window 三角型(巴特利特)窗口Trigonometric series 三角级数Two-sided signal 双边信号Type l feedback system l 型反馈系统UUint impulse response 单位冲激响应Uint ramp function 单位斜坡函数Undamped natural frequency 无阻尼自然相应Undamped system 无阻尼系统Underdamped systems 欠阻尼系统Undersampling 欠采样Unilateral 单边的Unilateral Laplace transform 单边拉普拉斯变换Unilateral z-transform 单边z变换Unit circle 单位圆Unit delay 单位延迟Unit doublets 单位冲激偶Unit impulse 单位冲激Unit step functions 单位阶跃函数Unit step response 单位阶跃响应Unstable systems 不稳定系统Unwrapped phase 展开的相位特性Upsampling 增采样VVariable 变量WWalsh functions 沃尔什函数Wave 波形Wavelengths 波长Weighted average 加权平均Wideband 宽带Wideband frequency modulation 宽带频率调制Windowing 加窗zZ domain z域Zero force equalizer 置零均衡器Zero-Input response 零输入响应Zero-Order hold 零阶保持Zeros of Laplace transform 拉普拉斯变换的零点Zero-state response 零状态响应z-transform z变换z-transform pairs z变换对。