人教版九年级上数学期中试卷2013版
2013年人教版九年级第一学期期中考试数学试题及答案
第一学期期中考试 九年级数学试题选择题答题栏一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 ) 1.在△ABC 中,∠C =90°,AC =BC ,则tanA 等于A .21B .1C .22D .22.如图,在平面直角坐标系中,点P(5,12)在射线 OA 上,射线OA 与x 轴的正半轴的夹角为α,则 sinα等于A .135B .125C .1312D .12133.已知点A(-1,0)在抛物线y =ax2+2上,则此抛物线的解析式为A .y =x2+2B .y =x2-2C .y =-x2+2D .y =-2x2+2 4.抛物线y =x2-4x +5的顶点坐标是A .(2,5)B .(-2,5)C .(2,1)D .(-2,1)5.在△ABC 中,∠C =90°,AB =6cm ,cosB =31,则BC 等于A .1cmB .2cmC .3cmD .6cm九年级数学试题(四年制)第1页(共8页)6.已知抛物线y =x2+2x 上三点A(-5,y1),B(1,y2),C(12,y3),则y1,y2,y3满足的关系式为A .y1<y2<y3B .y3<y2<y1C .y2<y1<y3D .y3<y1<y2(第2题7.如图,△ABC 为格点三角形(顶点皆在边长相等的 正方形网格的交叉点处),则cosB 等于A . 54B .53C . 43D .348.如果抛物线y =-x2+bx +c 经过A(0,-2),B(-1,1)两点,那么此抛物线经过A .第一、二、三、四象限B .第一、二、三象限C .第一、二、四象限D .第二、三、四象限9.若抛物线C :y =ax2+bx +c 与抛物线y =x2-2关于x 轴对称,则抛物线C 的解析式为 A .y =x2-2 B .y =-x2-2 C .y =-x2+2 D .y =x2+210.如图,在△ABC 中,∠ACB =90°,AC =5,高CD =3,则sinA +sinB 等于A .53B .54C .1D .57二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上) 11.计算:4sin30°-2cos30°+tan60°= .12.将二次函数y =x2-2的图象向左平移2个单位,再向上平移1个单位,所得抛物线的解析式为 .13.已知抛物线y =-x2+2x +3的顶点为P ,与x 轴的两个交点为A ,B ,那么△ABP 的面积等于 .九年级数学试题(四年制)第2页(共8页)14.如图,在一边靠墙(墙足够长)用120 m 篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是 m 、 m .(第7题图)AB C(第15题D (第10题AC DB(第14题15.如图,海中有一个小岛A , 它的周围15海里内有暗礁,今有货船由西向东航行, 开始在A 岛南偏西60° 的B 处,往东航行20海里后到达该岛南偏西30° 的C 处后,货船继续向东航行,你认为货船航行途中 触礁的危险.(填写:“有”或“没有”) 参考数据:sin60°=cos30°≈0.866 .三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤) 16.(本题满分4分) 在△ABC 中,若1cos 2 A +(1-tanB)2=0,求∠C 的度数.17.(本题满分4分)已知关于x 的二次函数y =mx2-(2m -6)x +m -2.(1)若该函数的图象与y 轴的交点坐标是(0,3),求m 的值; (2)若该函数图象的对称轴是直线x =2,求m 的值.九年级数学试题(四年制)第3页(共8页) 18.(本题满分4分)在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a =2, b =23,求c 及∠B . 19.(本题满分4分)已知关于x 的二次函数y =x2-2kx +k2+3k -6,若该函数图象的顶点在第四象限,求k 的取值范围. 20.(本题满分6分)已知抛物线 y =x2-4x +c 与直线y =x +k 都经过原点O ,它们的另一个交点为A . (1)直接写出抛物线与直线的函数解析式; (2)求出点A 的坐标及线段OA 的长度.九年级数学试题(四年制)第4页(共8页) 21.(本题满分6分)五月石榴红,枝头鸟儿歌. 一只小鸟从石榴树上的A 处沿直线飞到对面一房屋的顶部C 处. 从A 处看房屋顶部C 处的仰角为30°,看房屋底部D 处的俯角为45°,石榴树与该房屋之间的水平距离为33米,求出小鸟飞行的距离AC 和房屋的高度CD.(第21题22.(本题满分6分)在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向,且相距10海里,灯塔C 与观察站A 相距102海里,请你测算灯塔C 处在观察站A 的什么方向?九年级数学试题(四年制)第5页(共8页) 23.(本题满分6分)如图,直线y =43x -3分别与y 轴、x 轴交于点A ,B ,抛物线y =-21x2+2x +2与y轴交于点C ,此抛物线的对称轴分别与BC ,x 轴交于点P ,Q . (1)求证:AB =AC ;(2)求证:AP 垂直平分线段BC .(第23题(第22题北B九年级数学试题(四年制)第6页(共8页)24.(本题满分7分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润.应将销售单价定为多少元?九年级数学试题(四年制)第7页(共8页)25.(本题满分8分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P 垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.(友情提示:自画图形)九年级数学试题(四年制)第8页(共8页) 2011—2012学年度第一学期期中考试九年级数学试题(四年制)评分标准与参考答案 一、选择题1.B 2.C 3.D 4.C 5.B 6.C 7.A 8.D 9.C 10.D 二、填空题11.2 12.y =x2+4x +3 13.8 14.30 20 15.没有三、解答题16.解:由题设,得 cosA =21,tanB =1.……………………………………… 1分∴ ∠A =60°,∠B =45°.……………………………………………………… 3分 ∴ ∠C =180°―∠A ―∠B =180°―60°―45°=75°. …………………… 4分 17.解:(1)将x =0,y =3代入二次函数的表达式,得 m -2=3. ……… 1分 解得 m =5. ………………………………………………………………… 2分(2)依题意,得 -m m 2)62(--=2. 解得 m =-3. …………………… 3分经检验,m =-3是上分式方程的根.故 m =-3. ……………………… 4分18.解:在Rt △ABC 中,由勾股定理,得c2=a2+b2=22+2)32(=42.(第25题备用∴ c =4. ………………………………………………………………… 2分∵ sin B =c b =432=23, ∴ ∠B =60°.…………………… 4分19.解:将二次函数的表达式配方,得 y =(x -k)2+3k -6.∴ 二次函数图象的顶点坐标是(k ,3k -6).……………………………… 2分∴ ⎩⎨⎧<->.063,0k k …………………………………………………………… 3分 解得 0<k <2. 故所求k 的取值范围是0<k <2.……………………… 4分 20.解:(1)抛物线的函数解析式为y =x2-4x. ……………………………… 1分 直线的函数解析式为y =x. ……………………………………………… 2分 (2)解方程 x2-4x =x ,得x1=0,x2=5. …………………………… 3分 由题意知,x =5是点A 的横坐标.∴ 点A 的纵坐标y =x =5. …………………………………………………… 4分 ∴ 点A 的坐标是(5,5). …………………………………………………… 5分 ∴ OA =2255+=52. ………………………………………………… 6分 21.解:作AE ⊥CD 于点E.由题意可知:∠CAE =30°,∠EAD =45°,AE =33米. ………………… 1分九年级数学试题答案在Rt △ACE 中,tan ∠CAE =AE CE,即tan30°=33CE .∴ CE =33tan30°=33×33=3(米) .………………………………… 2分∴ AC =2CE =2×3=6(米). ………………………………………………… 3分 在Rt △AED 中,∠ADE =90°-∠EAD =90°-45°= 45°, ∴ DE =AE =33(米). ……………………………………………………… 4分 ∴ DC =CE +DE =(3+33)米. ………………………………………… 5分 答:AC =6米,DC =(3+33)米. ……………………………………… 6分 22.解:过点C 作CD ⊥AB ,垂足为D .…………………………………… 1分 ∵ 灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向, ∴ ∠B =45°.在Rt △BCD 中,∵ sinB =BC CD ,B∴ CD =BC·sin45°=10×22=52(海里).…… 3分在Rt △ACD 中, ∵ AC =102,1sin 2CD CAD AC ∠===∴.即1sin 2CAD ∠=.∴ ∠CAD =30°.……………………………… 5分∠CAF =∠BAF -∠CAD =45°-30°=15°. 答:灯塔C 处在观察站A 北偏西15°的方向. …………………… 6分 23.证明:(1)可求得A (0,-3),B (4,0),C (0,2). ∴ OA =3, OB =4, OC =2. ∴ AC =OA +OC =5.AB =22OB OA +=2243+=5.∴ AB =AC .…………………………………………………………………… 3分(2)∵ 抛物线y =-21x2+2x +2的对称轴是直线x =2,∴ 点Q 的坐标为(2,0).∴ OQ =BQ =2. ∵ PQ ∥y 轴, ∴△BPQ ∽△BCO .∴ BC BP =BO BQ =42=21.∴ BP =PC .…………………………………………………………………… 5分 又∵ AB =AC , ∴ AP ⊥BC .九年级数学试题答案(四年制)第2页(共3页)∴ AP 垂直平分线段BC .……………………………………………………… 6分说明:要证BP =PC ,也可利用勾股定理先求出BC 的值,再利用三角函数求出BP 的值. 24.解:(1)y =(x -20)(-2x +80) =-2x2+120x -1600.故所求y 与x 之间的函数关系式为y =-2x2+120x -1600.…………………… 2分 (2)∵ y =-2x2+120x -1600=-2(x -30)2+200. 当x =30时,y 最大=200.∴ 当销售单价定为30元时,每天的利润最大,最大利润为200元.………… 4分 (3)由题意,当y =150时,即-2(x -30)2+200=150. 解得x1=25,x2=35.又销售量w =-2x +80,-2<0,销售量w 随单价x 的增大而减小,故当x =25时,既能保证销售量大,又可以每天获得150元的利润.………… 7分 25.解:(1)∵ 点A ,B 是二次函数y =mx2+(m -3)x -3(m >0)的图象与x 轴的交点, ∴ 令y =0,即mx2+(m -3)x -3=0,解得x1=-1,x2=m 3,又∵ 点A 在点B 左侧且m >0,∴ 点A 的坐标为(-1,0). ……………………… 3分(2)由(1)可知点B 的坐标为(m 3,0).∵ 二次函数的图象与y 轴交于点C ,∴ 点C 的坐标为(0 ,-3).∵ ∠ABC =45︒, ∴ m 3=3. ∴ m =1. …… 5分(3)由(2)得,二次函数解析式为y =x2-2x -3. 依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为 -2和2.由此可得交点坐标为(-2,5)和(2, -3).将交点坐标分别代入一次函数解析式y =kx +b 中,得 -2k +b =5,且2k +b =-3.解得k =-2,b =1.∴ 一次函数的解析式为 y =-2x +1. ………………… 8分说明:解答题若有其他解法,应按步计分!。
2013-2014学年人教版九年级上期中测试数学试题(含答案)
湖北省宜城市2013-2014学年第一学期期中测试一、选择题 (本大题有12个小题,每小题3分,共36分.)1.下列二次根式中,的取值范围是3x≥的是()B. C.2. 下列二次根式中,是最简二次根式的是()A. C.3. 下列各式计算正确的是()A.63238=- B. 5102535=+C. 222224=÷ D. 682234=⨯4. 下列方程中,一元二次方程共有().①432=-xx②04322=+-xyx③412=-xx④42=x⑤0332=+-xxA. 2个 B.3个 C.4个 D. 5个5. 关于关于x的一元二次方程1352+=-xxx的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6. 某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.19% B.10% C.9.5% D.20%7.下列命题中是真命题的是( )A.经过两点不一定能作一个圆B.经过三点不一定能作一个圆C.经过四点一定不能作一个圆D.一个三角形有无数个外接圆8.四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形()A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形 9.如图所示,在正方形ABCD 中,AB=4,点O 在AB 上,且OB=1,点P 是BC 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转90°得到线段OQ.要使点Q 恰好落在AD 上,则BP 的长是( )A .3B .2C .1D .无法确定10. 如图所示,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是( )A.CE=DEB.弧BC=弧BDC.∠BAC=∠BADD.AC ﹥AD11.下列四个命题:①顶点在圆心的角是圆心角;②两个圆心角相等, 它们所对的弦也相等;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等.其中正确的有( ) A.0个 B.1个 C.2个 D.3个12. 已知⊙O 的半径为5cm ,点P 到⊙O 的最近距离是2,那么点P 到⊙O 的最远距离是( ) A.7cm B.8cm C. 7cm 或12cm D.8cm 或12cm二、填空题 (本大题有5个小题,每小题3分,共15分.)13.计算(236)(236)+-=14. 已知方程x 2-x -1=0有一根为m ,则m 2-m +2013的值为____.15.如图,已知正方形ABCD 的边长为3,E 为CD 边上一点,DE=1.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABF ,连接EF ,则EF 的长等于 .16. 如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为弧BC 上一点,若∠CEA=28o,则∠ABD=°.ABCDE O · 第10题图A第16题图 17.已知等腰△的三个顶点都在半径为5cm 的⊙上,如果底边的长为8cm ,则边上的高为 .三、解答题(本大题共9个小题,计69分.)18.(本题满分5分)计算:4832426-÷+⨯.19.(本题满分7分)先化简,再求值:(a -1+12+a )÷(212+a ),其中a =2-1.20.(本题满分6分)已知方程2(1)140x m x m +-+-=的一个根是3,求m 的值及方程的另一个根.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。
2013届人教版九年级上学期期中考试数学试题及答案
广安中学2012—2013学年九年级第一学期数学学科期中试卷1.本试卷共 8 页, 五 道大题, 29 道小题。
满分120分。
时间 120 分钟。
2.在试卷密封线内认真填写班级、姓名。
3.必须用黑色或蓝色钢笔、圆珠笔按要求将答案写在答题纸上。
一、选择题:(每题3分,共30分)1、下列函数中是二次函数的是( )A.142+=x yB.14+=x yC.x y 4=D.142+=x y2、在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( ). A. 21B. 23C. 1D. 223、把二次函数122--=x x y 配方成顶点式为( ) A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y4、已知扇形的圆心角为120°,半径为6cm ,则扇形的面积为( )A. 12cm 2B. 36cm 2C. 12πcm 2D.36πcm 25、如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D,已知AC=4,AB=5,则tan ∠BCD 等于( ). A. 43 B. 34 C. 53 D. 546、已知二次函数y=ax 2+bx+c 的图象如图,则a 、b 、c 满足 ( ) A. a <0,b <0,c >0;B. a <0,b <0,c <0; C. a <0,b >0,c >0;D. a >0,b <0,c >0。
Oxy学校 : 班级: 姓名:DC BA7、将抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为( )A .y=2(x +1)2+3B .y=2(x -1)2-3C .y=2(x +1)2-3D .y=2(x -1)2+38、已知二次函数772--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( )A. k >47-B. k ≥47-C. k ≥47-且k ≠0D. k >47-且k ≠09、如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ’B ’,则tanB ’的值为 A .12B .13C .14D .2410、函数y=ax 2+bx+c 的图像如图所示,那么关于x 的方程ax 2+bx+c-4=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根二、填空题:(每题3分,共18分)11、二次函数=2(x-5)2 +1图象的顶点是 。
2013-2014学年人教版九年级上期中考试数学试卷(含答案)
云南省大理州拥翠乡中学2013—2014学年第一学期期中考试九年级数学试卷考生注意:本试卷共三大题,23小题,总分100分,考试时间120分钟。
一、选择题(本题包括8小题,每小题3分,共24分,每小题只有一个正确答案)1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2-3xy+4=0,③x2-1x=4,④x2=0,⑤x2-3x+3=0A.①②B.①②④⑤C.①③④D.①④⑤2、下图中是中心对称图形的是()A B. C. D.3、方程x2 = 3x的根是()A.x=3 B.x= -3 C.0或3 D.无解4、方程3x2-4x+1=0 ()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根 D.没有实数根5、下列计算正确的是()A.20=210B.2·3= 6C.4-2= 2D.(-3)2=-36、下列二次根式中,与3是同类二次根式的是()A.18B.27C.23 D.327、一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于()A.5 B.6 C.-5 D.-68、已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()二、填空题(共7个小题,每小题3分,共21分) 9、二次根式 3-x 有意义的条件是10、当x 为 时,代数式3x 2的值与4x 的值相等。
11、21= , (10)2= , 2)1(-= 12、已知A (a-1,3),B(-2012,b+2)两点关于原点对称,则a= ,b= . 13、若︳x+2 ︳+ y -3=0,则x y的值为14、在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中,既是轴对称又是中心对称的图形是 。
15.已知方程x 2-7x+12=0的两根恰好是Rt △ABC 的两条边的长,则Rt △ABC•的第三边长为________.三、解答题(本题共8小题,共55分)16、计算: (5分) 4+(3.14-π)0-|-2|+108-236⨯17.(5分)先化简,再求值.a 2a 2+2a -a 2-2a +1a +2÷a 2-1a +1,其中a =2-2.18、(8分)解方程:(每小题4分) (1) 9(x-3)2- 49=0(2)若a 、b 为实数,且a 、b 是方程x 2+5x+6=0的两根,则p(a,b)关于原点对称点Q 的坐标是什么?19、(6分 )三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,求该三角形的面积。
2013~2014学年度人教版九年级第一学期期中数学试卷
12013-2014学年度第一学期期中考试九年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分) 1.根式2)2(-的值是( )A. -2B. 2C. 4±D. 4 2.函数2-=x y 中自变量x 的取值范围是( )A.x >2B.x≥2 C .x <2 D. x≤2 3.用配方法解方程0122=--x x 时,配方后所得的方程为( )A .012=+)(xB .012=-)(xC .212=+)(xD .212=-)(x4.已知x=-1是关于x 的一元二次方程x 2-2x+a=0的一个解,则此方程的另一个解是( ).A. x=3B. x=-2C. x=2D. x=-35.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴称图形又是中心对称图形的是( )6.如图,将ABC ∆绕顶点C 逆时针旋转得到'''C B A ∆,且点B 刚好落在''B A 上,若∠A=25°,∠BCA ′=45°,则∠A ′BA 等于( )A .30°B .35°C .40°D .45°A'CB AB'(第6题)2B AOC(第14题)7.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( )A.30°B.45° C .60° D .90°8.如图,点D 为线段AB 与线段BC 的垂直平分线的交点,∠A=35°,则∠D 等于( ) A .50° B . 65° C .55° D .70°9.已知关于x 的方程2()10x a b x ab -++-=,1x 、2x 是此方程的两个实数根,现给出三个结论:①12x x ≠;②12x x ab <;③222212x x a b +<+.其中正确结论个数是( )A. 0B. 1C.2D. 310.已知AB 是⊙O 的直径,C 是⊙O 上一点,︒=∠15CAB ,ACB ∠的平分线与⊙O 交于点D.若CD=3,则AB=( )A. 2B.6C. 22D. 3 二、填空题(每题3分,共18分)11.若点)1,(-a A 与点),2(b B 是关于原点O 的对称点,则b a += .12. 20032004(32)(32)-+=g20032004(32)(32)-+=g . 13.实数a 在数轴上的位置如图所示,则化简2)1(|2|-+-a a 的结果为 .14.如图,在等腰ABO Rt ∆中,OA=OB=23,︒=∠90O ,点C 是AB 上一动点,⊙O 的半径为1,过点C 作⊙O 的切线CD ,D 为切点,则切线长的最小值为 . 15. 如图,直线y = -2x +1与与双曲线y =x k在第一象限交于不同的B 、C 两点,则k 的取值范围 .16.如图,在等边三角形ABC 内有一点P ,PA=10,PB=8,PC=6.则∠BPC= 度.(第7题)A B CD(第8题)y A BCxO(第15题)(第16题)·(3三、解答题(共9小题,共72分)17.(本题满分6分) 计算:3681)2(122-⨯-+ 18.(本题满分6分)(1)当51x =时,求2+2x 4x -的值。
2013届九年级(上)期中检测数学试题
2012年秋中期检测九年级数 学 试 卷第一卷一、选择题 (每题3分,共36分)1.下列图案中,既是轴对称图形,又是中心对称图形的是……………( )2.点P (3,5)关于原点对称的点的坐标是………………………………( ). A . (-3,5) B . (3,-5) C . (5, 3) D . (-3,-5)3. 已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a - 4..下列二次根式中,最简二次根式的是………………………………( ) A .12+a B .21C .12D .b a 2 5. .下列计算正确的是……………………………………………… ( ) A .532=+ B . 2333=-C . 23222=+D .224=-6.下列方程为一元二次方程的是 ………………………………… ( ) A .0233122=--x x B . 0522=+-y x C . 02=++c bx ax D .07142=+-xx 7.一个直角三角形的面积为24,两条直角边的和为14,则斜边长为……( ) A . 372 B . 10 C . 382 D . 148.一个小组有若干人,新年互送贺年卡,已知全组共送出72张,则这个小组有 ( )学校: 班级: 姓名: 座号:密封线内不要答题A B D CA 12人B 18人C 9人D 10人9 .同圆中,两条弦长分别为a 和b ,它们的弦心距分别为c 和d ,若c >d ,则有( )A .a >bB .a <bC .a =bD .不能确定10. 已知两圆的半径是方程018112=+-x x 两实数根,圆心距为11,那么这两个圆的位置关系是( )A .内切B .相交C .外离D .外切 11. 下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A .3个 B .2个C .1个D .以上都不对12. 在半径为R 的圆中,一条弧长为l 的弧所对的圆心角为( )A . lR180π度 B .R l π180度 C . 180Rl π度 D . Rlπ180度柏树中学2011年秋中期检测九年级数 学 试 卷第一卷答题卡第二卷:非选择题二、填空题(每小题3分,共24分) 13.8×2= .14.将方程1242-=x x 化成一般形式为 , 其二次项系数是 ,一次项是 . 15. P A 、PB 是的⊙O 切线,切点分别是A 、B 。
2013-2014学年人教版九年级上期中考试数学试题(含答案)
海淀区九年级第一学期期中测评数学试卷(分数:120分时间:120分钟) 2013.11班级姓名学号 成绩试题答案一律填涂或书写在答题卡上,在试卷上做答无效. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是A. 1,2,3--B. 1,-2,3C. 1,2,3D. 1,2,3- 2.在角、等边三角形、平行四边形、圆中,既是中心对称图形又是轴对称图形的是 A .角B .等边三角形 C .平行四边形 D .圆 3.函数2y x =-中,自变量x 的取值范围是A .2≠xB .2≤xC .2>xD .2≥x4.如图,点A 、B 、C 在O ⊙上,若110AOB ∠=o ,则ACB ∠的大小是 A .35o B .ο45 C .55o D .110o5.用配方法解方程09102=++x x ,配方正确的是 A .16)5(2=+x B .34)5(2=+x C .16)5(2=-x D .25)5(2=+x6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是 A .ο60B .ο72 C .90oD .120o7.若230a b ++-=,则a b +的值为A .-1B .1C .5D .6OCBA8.如图,⊙O 的半径为5,点P 到圆心O 的距离为10,如果过点P 作弦,那么长度为整数值的弦的条数为 A .3 B .4C .5D .6二、填空题(本题共16分,每小题4分)9.如图,将ABC △绕点C 顺时针旋转至''A B C △的位置,若 15ACB ∠=o ,120B ∠=o ,则'A ∠的大小为________.10.已知一元二次方程有一个根是0,那么这个方程可以是(填上你认为正确的一个方程即可).11.如图,AB 是⊙O 的直径,点C 、D 为⊙O 上的两点,若 ο40=∠ABD ,则BCD ∠的大小为.12.下面是一个按某种规律排列的数阵:1第1行 2 3 2第2行 5 6 7 22 3第3行 1011 2313 1415 4第4行 L L L L根据数阵排列的规律,则第5行从左向右数第5个数为,第n (3≥n ,且n 是整数)行从左向右数第5个数是(用含n 的代数式表示). 三、解答题(本题共30分,每小题5分) 13.计算:36324⨯+÷.14.用公式法解一元二次方程:241x x +=.15.如图,ABC △与AED △均是等边三角形,连接BE 、CD .请在图中找出一条与CD 长度相等的线段,并证明你的结论.结论:CD =. 证明:ODCBAPO ED CBA16.当15-=x 时,求代数式522-+x x 的值.17.如图,两个圆都以点O 为圆心,大圆的弦AB 交小圆于C 、D 两点.求证:AC =BD . 证明:18.列方程(组)解应用题:如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的34,求小路的宽度.解:四、解答题(每小题5分,共20分)19.已知关于x 的一元二次方程210x mx m -++=的一个根为2. (1) 求m 的值及另一根;(2)若该方程的两个根分别是等腰三角形的两条边的长,求此等腰三角形的周长.20.如图,DE 为半圆的直径,O 为圆心,DE =10,延长DE 到A ,使得EA =1,直线AC 与半圆交于B 、C 两点,且ο30=∠DAC .(1)求弦BC 的长; (2)求AOC △的面积.21.已知关于x 的方程0)1(222=++-k x k x 有两个不相等的实数根. (1)求k 的取值范围;(2)求证:1-=x 不可能是此方程的实数根.DCBA O ECADBO22.阅读下面的材料:小明在研究中心对称问题时发现:如图1,当点1A 为旋转中心时,点P 绕着点1A 旋转180°得到1P 点,点1P 再绕着点1A 旋转180°得到2P 点,这时点P 与点2P 重合.如图2,当点1A 、2A 为旋转中心时,点P 绕着点1A 旋转180°得到1P 点,点1P 绕着点2A 旋转180°得到2P 点,点2P 绕着点1A 旋转180°得到3P 点,点3P 绕着点2A 旋转180°得到4P 点,小明发现P 、4P 两点关于点2P 中心对称.(1)请在图2中画出点3P 、4P , 小明在证明P 、4P 两点关于点2P 中心对称时,除了说明P 、2P 、4P 三点共线之外,还需证明;(2)如图3,在平面直角坐标系xOy 中,当)3,0(1A 、)0,2(2 A 、)0,2(3A 为旋转中心时,点)4,0(P 绕着点1A 旋转180°得到1P 点;点1P 绕着点2A 旋转180°得到2P 点;点2P 绕着点3A 旋转180°得到3P 点;点3P 绕着点1A 旋转180°得到点4P L 点. 继续如此操作若干次得到点56P P L 、、,则点2P 的坐标为,点2017P 的坐为.图3图2图1五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于x 的一元二次方程02)12(2=++-x m mx . (1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m 的整数值; (3)若此方程的两个实数根分别为1x 、2x ,求代数式5)(2))(12()(2122213231+++++-+x x x x m x x m 的值.24.已知在ABC △中,ο90=∠ACB ,26==CB CA ,AB CD ⊥于D ,点E 在直线CD 上,CD DE 21=,点F 在线段AB 上,M 是DB 的中点,直线AE 与直线CF 交于N 点. (1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________,___________;(2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证:ο45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得ο45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由.DCBANM FED CBA 图1备用图25.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上,且10=AB ,点M 为线段AB 的中点.(1)如图1,线段OM 的长度为________________;(2)如图2,以AB 为斜边作等腰直角三角形ACB ,当点C 在第一象限时,求直线OC 所对应的函数的解析式; (3)如图3,设点D 、E 分别在x 轴、y 轴的负半轴上,且10=DE ,以DE 为边在第三象限内作正方形DGFE ,请求出线段MG 长度的最大值,并直接写出此时直线MG 所对应的函数的解析式.GFEDxy O ABM图1图2CxyOABM BAOyx图3海淀区九年级第一学期期中练习2013.11数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分) 题号 12345 6 7 8 答案A D D CABBC二、填空题(本题共16分,每小题4分)9.45°;10.20x x -=(二次项系数不为0,且常数项为0均正确);11.50°;12.21,622+-n n (每空2分).三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:36324⨯+÷818=+………………………………………………………………………2分2322+=…………………………………………………………………4分 25=.……………………………………………………………………………5分14.(本小题满分5分)解:原方程可化为2+410x x -=,……………………………………………………1分141a ,b ,c ===-,2441(1)=20>0,∆=-⨯⨯-…………………………………………………………2分方程有两个不相等的实数根,244202522b b ac x a -±--±===-±,……………………………………4分即122525x ,x =-+=--.……………………………………………………5分15.(本小题满分5分)结论:CD BE =.……………………………………………………………………1分 证明:Θ△ABC 与△AED 是等边三角形,∴AE AD =,AB AC =,60CAB DAE ∠=∠=o.…2分 ∴CAB DAB DAE DAB ∠-∠=∠-∠,即CAD BAE ∠=∠.………………………………3分 在△CAD 和△BAE 中,EDCBAAC AB,CAD BAE,AD AE,=⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BAE .…………………………………………………………4分 ∴CD =BE .…………………………………………………………………5分16.(本小题满分5分)解:Θ15-=x ,∴15x +=.∴5)1(2=+x .………………………………………………………………1分∴2215x x ++=.………………………………………………………………2分∴224x x +=.…………………………………………………………………3分 ∴225451x x +-=-=-.……………………………………………………5分17.(本小题满分5分)证明:过点O 作AB OM ⊥于M ,…………………………1分由垂径定理可得DM CM BM AM ==,.……………3分∴DM BM CM AM -=-.…………………………4分 即BD AC =.…………………………………………5分18.(本小题满分5分)解:设小路的宽度是x 米.………………………………………………………1分由题意可列方程,3(20)(12)20124x x --=⨯⨯.……………………………2分化简得, 232600x x -+=.解得, 12302x ,x ==.………………………………………………………3分由题意可知3020x =>不合题意舍去,2x =符合题意.…………………4分 答:小路的宽度是2米.……………………………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)∵关于x 的一元二次方程210x mx m -++=的一个根为2,∴22210m m -++=.……………………………………………………1分 ∴5m =.……………………………………………………………………2分∴一元二次方程为2560x x -+=.解得1223x ,x ==.…………………………………………………………3分∴5m =,方程另一根为3.(2)当长度为2的线段为等腰三角形底边时,则腰长为3,此时三角形的周长为2+3+3=8;………………………………………………………………4分当长度为3的线段为等腰三角形底边时,则腰长为2,此时三角形的周长为2+2+3=7. ………………………………………………………………5分MODCBA20.(本小题满分5分)解:(1)过点O 作OM ⊥BC 于M .由垂径定理可得:BM=CM .…1分∵30DAC ∠=o , ∴12OM OA =.∵直径DE =10, EA =1,∴=5OD OC OE ==.∴516OA OE EA =+=+=. ∴3OM =.…………………2分在R t △COM 中,222225316CM OC OM =-=-=. ∴4CM =. ∴4BM =.∴+8BC BM CM ==.……………………………………………………3分 (2)在R t △AOM 中,222226327AM OA OM =-=-=.∴33AM =.……………………………………………………………………4分 ∴+334AC AM CM ==+. ∵OM ⊥AC , ∴119(334)336222AOC S AC OM =⋅=⨯+⨯=+V .……………………………5分21.(本小题满分5分)解:(1)∵关于x 的方程0)1(222=++-k x k x 有两个不相等的实数根,∴224(1)4=8+4>0k k k ∆=+-.………………………………………………2分 ∴1>2k -.…………………………………………………………………3分 (2)∵当1-=x 时,左边=222(1)x k x k -++22(1)2(1)(1)k k =--+⨯-+223k k =++…………………………………………4分 2(+1)20k =+>.而右边=0,∴左边≠右边.∴1-=x 不可能是此方程的实数根.……………………………………5分22.(本小题满分5分)(1)正确画出34P P 、点(图略).………………………………………………1分224=P P P P .……………………………………………………………………2分(2)(-4,-2).…………………………………………………………………3分(0,2).……………………………………………………………………5分MECA DB O五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分)解:(1)由题意可知0m ≠.2(21)42m m ∆=+-⨯⨯22=441(21)0m m m -+=-≥.……………………………………………2分∴此方程总有两个实数根.(2)方程的两个实数根为2(21)(21)2m m x m+±-=,∴1212x ,x m==.…………………………………………………………4分 ∵方程的两个实数根都是整数,且m 为整数,∴1m =±.…………………………………………………………………5分(3)∵原方程的两个实数根分别为1x 、2x ,∴211(21)20mx m x -++= 222(21)20mx m x -++=.……………………………………………………6分∴5)(2))(12()(2122213231+++++-+x x x x m x x m=1323211222[(21)2]+[(21)2]+5mx m x x mx m x x -++-++=12211222[(21)2]+[(21)2]+5x mx m x x mx m x -++-++=12005x x ⨯+⨯+=5.…………………………………………………………………………7分24.(本小题满分8分)(1)AE ⊥CM ,AE =CM .……………………………………………………2分(2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H .∵ο90=∠ACB ,26==CB CA ,∴∠CAB =∠CBA =45°,AB=2212CA CB +=. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥,∴CD=AD=BD =162AB =. ∵M 是DB 的中点, ∴3BM DM ==. ∴3AG =. ∵2AF FD =,∴4 2.AF DF ==,∴+2+3=5.FM FD DM == ∵AG ⊥AF , ∴2222+3+4=5.FG AG AF ==FHNGM EDCBA∴.FG FM =……………………………………………………………………3分 在△CAG 和△CBM 中, CA CB CAG CBM AG BM =⎧⎪∠=∠⎨⎪=⎩,,, ∴△CAG ≌△CBM .∴CG =CM ,ACG BCM ∠=∠.∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠=o .………………………4分 在△FCG 和△FCM 中, CG CM FG FM CF CF =⎧⎪=⎨⎪=⎩,,, ∴△FCG ≌△FCM .∴FCG FCM ∠=∠.………………………………………………………5分 ∴45FCH ∠=o .由(1)知AE ⊥CM , ∴90CHN ∠=o∴ο45=∠CNE .………………………………………………………………6分 (3)存在.AF =8.…………………………………………………………………………8分25.(本小题满分7分)(1)5;…………………………………………………………………………………1分 (2)如图1, 过点C 分别作CP ⊥x 轴于P ,CQ ⊥y 轴于Q .∴∠CQB =∠CPA =90°,∵∠QOP =90°,∴∠QCP =90°. ∵∠BCA =90°,∴∠BCQ =∠ACP . ∵BC=AC ,∴△BCQ ≌△ACP .∴CQ=CP .………………………………3分 ∵点C 在第一象限,∴不妨设C 点的坐标为(a ,a )(其中0a ≠).设直线OC 所对应的函数解析式为kx y =,∴a ka =,解得k =1,∴直线OC 所对应的函数解析式为x y =.…………………………………4分 (3)取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM =152AB =.同理ON =5.Fy OBDGNEAMx图2Q C xy O A BP 图1∵正方形DGFE ,N 为DE 中点,DE=10, ∴NG =2222=+10555DN DG =+=.在点M 与G 之间总有MG ≤MO +ON +NG (如图2),由于∠DNG 的大小为定值,只要12DON DNG ∠=∠,且M 、N 关于点O 中心对称时,M 、O 、N 、G 四点共线,此时等号成立(如图3).………………………5分∴线段MG 取最大值10+55.………………6分此时直线MG 的解析式x y 251+-=.……………………………………7分NM BAOyxDEG图3。
2013新人教上学期期中试题-九年级数学
彭原初中期中考试试题 第 1 页 共 2 页学校班级 姓名 考号 ---------------------------------------------装---------------------------------------定----------------------------------线------------------------------------------------------2013-2014学年度第一学期期中考试题(卷) 九年级 数学 (满分 150分) 一、选择题。
(每小题3分,共30分) 1.下列根式中,是最简二次根式的是( ) A.a a 3 B.35a C.b a a b D.522b b a + 2.) A、 BCD3.方程26x =5x-4化为一般形式为( ) A.26x -5x+4=0 B. 26x -5x-4=0 C. 26x +5x-4=0 D. 26x +5x-44.若分式1232-+-x x x 的值为0,则x=( )A.1 B.1或2 C.2 D.0 .5. 用配方法解下列方程时,配方有错误的是( ) A 、x 2-2x-99=0化为(x-1)2=100 B 、x 2+8x+9=0化为(x+4)2=25 C 、2t 2-7t-4=0化为1681)47(2=-t D 、3y 2-4y-2=0化为910)32(2=-y6.下列英语单词中,是中心对称的是( ) A.SOS B.CEO C.MBA D.SAR7.如图,AB 是⊙O 的直径,弦CD 垂直平分OB ,则∠BDC 为( ) A.15° B.20° C.30° D.45° 8.如果圆锥的底面半径是3,高为4,那么他的侧面积是( ) A.12πcm 2 B.15πcm 2 C.15 cm 2 D.24πcm 2 9. 已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )B.3C.6D.9 10.已知扇形的半径是12cm ,圆心角的度数是60°,则扇形的弧长是( ) A.24πcm, B.12πcm, C.4πcm, D.2πcm 二.填空题。
人教版2013-2014学年九年级上期中测试数学试题及答案
河北省邯郸市2013——2014学年上学期期中测试九年级数学试题一、填空题(每题3分,共30分) 1=____ ____. 2=x 的取值范围是 . 32==,且ab <0,则a b -=___ ____.4.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是 .5.如图,△ABC 、△ACD 、△ADE 是三个全等的等边三角形,那么△ABC 绕着顶点A 沿着逆时针方向至少旋转度,才能与△ADE 完全重合.6.一个正边形绕它的中心至少要旋转 度,才能和原来五边形重合.7.已知方程x 2-7x +12=0的两根恰好是Rt△ABC 的两条边的长,则Rt△ABC •的第三边长为________.8.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.小明设四周垂下的边宽为x cm ,则应列方程为 . 9.如图,矩形ABCD 的边长1,AB AD ==ABCD 以B 为中心,按顺时针方向旋转到''''A B C D 的位置(点'A 落在对角线BD 上),则△'BDD 的形状为 . 10.某超市从我国西部某城市运进两种糖果,甲种a 千克,每千克x元,乙种b 千克,每千克y 元,如果把这两种糖果混合后销售,保本价是_________元/千克. 二、选择题(每题3分,共18分)11.若=-2)2(a 2-a ,则a 的取值范围是( )A .a =2B .a >2C .a ≥2D .a ≤2 12.在下面4个图案中,中心对称图形为( )ABC DE(第5题) ABCDD'C'(第9题)13.下列二次根式中,最简二次根式是( ) A .12 B .32+x C .23D .b a 2 14.如图,下列图形经过旋转后,与图(1)相同的是( )(第14题)图(1) A . B . C . D . 15.如果代数式4y 2-2y+5的值为7,那么代数式221y y -+的值等于( )A .2B .3C .-2D .-316.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a 为( )A .1B .-2C .1或-2D .2 三、解答题(共72分)17.(8分)计算(1)(3248)(1843);(2)2(13)(3131++-.18.(8分)解方程(1)2220x x --=; (2)22(38)(23)0x x +--=.19.(4分)先化简,再求值33(6)(436)y xxxy x xy x y y-,其中3,272x y ==.20.(4分)已知方程2(1)100x m x m +-+-=的一个根是3,求m 的值及方程的另一个根.21.(4分)如图,若将△ABC 的绕点C 顺时针旋转90°后得到△DEC ,则A 点的对应点D 的坐标是 ,B 点的对应点E 的坐标是 ,请画出旋转后的△DEC .(不要求写画法)22.(4分)如果关于x 的一元二次方程2(1)210m x x ---=有两个不相等的实数根,当m在它的取值范围内取最大整数时,求1014m m-的值.23.(6分)已知x 1,x 2是一元二次方程2x 2-2x +m +1=0的两个实数根. (1)求实数m 的取值范围;(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.24.(6分)如图,正方形ABCD 的对角线相交于点O ,点O 是正方形'''A B C O 的一个顶点.如果两个正方形的边长都等于2,那么正方形'''A B C O 绕O 点无论怎样转动,两个正方形重叠的部分的面积是一个定值,请你写出这定值,并证明你的结论.25.(6分)观察下列分母有理化的计算:, (454)51,34341,23231,12121-=+-=--=+-=+在计算结果中找出规律,用含字母n (n 表示大于0的自然数)表示; 再利用这一规律计算下列式子的值:1)++L 1)的值.ODBFEAA‘B’C‘26.(7分)有100•米长的篱笆材料,•想围成一个矩形露天仓库,•要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,•现请你设计矩形仓库的长和宽,使它符合要求.27.(7分)南通百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.元旦将至,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?28.(8分)等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积.(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.参考答案一、填空题1.23- 2.x ≥5 3.7- 4.轴对称 5.120 6.72 7.5或78.(1602)(1002)1601002x x ++=⨯⨯ 9.等边三角形 10.ax bya b++ 二、选择题11.D 12.B 13.B 14.D 15.A 16.C 三、解答题17.(1)30-;(2)633- 18.(1)1213,13x x ==(2)121,11x x =-=- 19.92,2xy 20.1,m =另一根为3- 21.(3,0),(2,2)D E 22.3 23.(1)m ≤12-;(2) 2-或1 24.14 25.2013 26. 27.减少库存,降价20元 28.(1)等边三角形;(23;(3)4.。
2013年九年级(上)数学期中测试试卷.doc
九年级(上)数学期中测试试卷(满分:120分 时量:120分钟)一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1、下列方程是一元二次方程的是 ( )A 、-8x 2+3x=4x(3+2x)B 、3-x 2=x+x1C 、x 2-3xy -5=0D 、2x=1-4y2.关于x 的方程3x 2-2x+m=0的一个根是x=1,则m 的值为 ( )A 、-1B 、2C 、1D 、-23.某商品原价289元,经连续两次降价后,售价为256元,设平均每次降价的百分比为x ,下列方程正确的是 ( )A 、289(1-x)2=256B 、256(1-x)2=289C 、289(1-2x)=256D 、256(1-2x)=2894.下列命题中,真命题是 ( )A 、等角的补角相等B 、相等的角是对顶角C 、一个锐角与一个钝角的和一定是个平角D 、命题都是定理5.方程(x -2)2=9的解是 ( )A 、x 1=5 ,x 2=-1B 、x 1=-5, x 2=-1C 、x 1=11,x 2=-7D 、x 1=-11,x 2=7 6.把方程x 2-6x+8=0化成(x -a)2=b 的形式应为 ( )A 、(x -3)2=1B 、(x -6)2=8C 、(x -3)2=17D 、(x -3)2=87.已知△ABC ∽△DEF ,AB ∶DE=1∶2,则△ABC 与 △DEF 的面积之比等于 ( ) A 、1∶4 B 、1∶2 C 、.2∶1 D 、.4∶18.下列各组线段中,能成比例线段的是 ( ) A 、12cm 8cm 9cm 6cm B 、30cm 12cm 0.8cm 0.2cm C 、1cm 2cm 3cm 4cm D 、1cm 3cm 4cm 6cm二、填空题(每小题3分,共30分)9、一元二次方程2x 2+4x -1=0的二次项系数为 ,一次项系数为 ,常数项为10、把方程4x(x+2)-6x=6化为一元二次方程的一般形式为11、若方程2x 1-m -1=0是关于x 的一元二次方程,则m=12、已知a,b,c,d 为成比例线段,即b a =dc ,其中a=3cm,b=5cm,d=10cm,则线段c= cm 13、命题“如果梯形的上底长是3厘米,下底长是5厘米,那么它的中位线长是4厘米”是 命题。
2013届九年级上学期期中考试人教版数学试题及答案
弥城镇2012—2013学年上学期期中测试卷九年级数学(满分100分,考试用时120分钟)一、选择题(每题3分,共21分)1、下列运算正确的是( )A .532=+B .2323=+C .()3-3-2=D . 228=÷2、方程()1-x 1-x 2=的根是( )A.0x =或1x =B. 1x =C. 2x =D. 1x =或2x =3、用配方法解方程2250x x --=时,原方程应变形为( )A 、2(1)6x +=B 、2(1)6x -=C 、2(2)9x +=D 、2(2)9x -= 4`、下列图形中,既是轴对称图形,又是中心对称图形的个数是( )A.1个 B.2个 C.3个 D.4个5、二次根式中,最简二次根式有( )个A 、1B 、2C 、3D 、46、若,x y 为实数,且|2|0x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A 、1B 、2009C 、1-D 、2009-7.方程29180x x -+=的两根是等腰三角形的底和腰,则这个等腰三角形的周长是( )A .12B .12或15C .15D .不能确定二、填空题(每题3分,共24分)8、当x 时,x 2-11有意义。
9、如图,将Rt △ABC(其中∠B =300,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得 点C 、A 、B 1在同一条直线上,那么旋转角最小等于 。
10、关于x 的一元二次方程()01-m x x 1-m 22=++有一根为0,则m = 。
11a = 。
12、若点p (m ,2)与点Q(3,n )关于x 轴对称,则p 点关于原点对称的点M 的坐标为 。
13、若一元二次方程的两个实数根分别为3、b,则a + b = 。
14、若23x ≤≤3x - 可化简为 。
15、某中学摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x 名学生,则根据题意列出的方程是 。
2013学年人教版九年级上期中质量检测试卷(含答案)
1CO 第14题yxDC BA Oxy第15题B A-4-3Oxy第9题CBAO江山市城南中学2013学年第一学期期中质量检测卷(2013.11)九年级数学卷首语:亲爱的同学,发挥你的聪明才智,成功一定属于你!温馨提醒:1、试卷分三大题,共24小题,满分120分,时间为120分。
2、请将答案写在答题纸上,解答题务必写出解答过程。
一、选择题:(本题共10题,每小题3分,共30分)1、已知反比例函数图象经过点)2,3(-,则反比例函数解析式是…………………( )A .x y 6-= B.x y 6= C.xy 3= D.x y 5-=2、 如图,⊙O 中弦AB 经过圆心O ,点C 是圆上一点,∠BAC =520,则∠ABC 的度数是…………………………………………………………………………………( ) A .26° B.38° C.30° D.32°3、如图,过⊙O 内一点M 的最长弦长为12cm ,最短弦长为8cm ,那么OM 长为……………………………………………………………………………………( ) A .6cm B .52cm C . 54 cm D .9cm4、如图,圆锥的侧面积为8πcm 2,母线与底面夹角为60°,则此圆锥的高为……………………………………………………………………………………( )A . 4 cm B. 8cm C.23cm D.6cm5、若将一函数的图象向右平行移动2个单位,再向上平移2个单位,可得到的抛物线y= 2x 2,则原函数解析式是…………………………………………………( )A .y=2(x+2)2-2B .y=2(x+2)2+2C .y=2(x-2)2-2D .y=2(x-2)2+2 6、下列命题正确的个数是………………………………………………………( ) ①平分弧的直径垂直平分弧所对的弦; ②平分弦的直径平分弦所对的弧; ③垂直于弦的直线必过圆心; ④垂直于弦的直径平分弦所对的弧。
2013年九年级上学期期中检测数学试题(人教版)及答案
第一学期期中检测初三数学试卷审题要仔细 书写要工整 答题要规范 态度要认真一、选择题:(A ,B ,C ,D 四个答案中有且只有一个是正确的,请将题中唯一正确答案的序号填入后面的表格内,不填、填错或多填均不得分,本题每小题2分,共22分) 1.在下列实数中,无理数是( ) A .13 B .π C.2272.已知:EFG ABC ∆≅∆,有∠B=70°,∠E=60°,则=∠C ( )。
A . 60°B . 70°C . 50°D . 65°3.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A . 两角和一边B . 两边及夹角C . 三个角D . 三条边 4.下列图案中,有且只有三条对称轴的是( )5.如图5,△ABC 中,∠C =90°,∠A =30°,CD ⊥AB 于D ,则AD 是BD 的( )倍。
A .2B .1C .3D .46.在△ABC 中,∠B=∠C ,与△ABC 全等的三角形有一个角是1000,那么△ABC 中与这个角对应的角是( ) A .∠A B . ∠B C .∠C D . ∠D 7.已知点P (-2,1),那么点P 关于x 轴对称的点P '的坐标是( )A .(-2,1)B .(-2,-1)C .(-1,2)D .(2,1) 8.当的值为最小值时,a 的取值为( )A 、-1B 、0C 、14-D 、1 9.在下列各数:3.1415926、0.2、1π、13111中无理数的个数是 ( )A 、2B 、3C 、4D 、510.下列说法中正确的是( )A.实数2a -是负数 B. a a =2C. a -一定是正数D.实数a -的绝对值是a11.下列各组数中互为相反数的是( ) A 、2-、2-、(22与 D 、二、多项选择题:(共3个小题,每小题3分,共9分,每小题至少有两个答案是正确的,请将题中正确答案的序号填入后面的表格内,全部选对得4分,对而不全的酌情给分,有对有错或不选均得0分)12.下列命题错误的是( )A .有一个角是100°,腰长相等的两个等腰三角形全等;B .有两条边和一个角对应相等的两个三角形全等;AB CD 图5C .两全等三角形的周长和面积都相等;D .两全等三角形的边都相等。
2013-2014学年度九年级数学第一学期期中模拟监测试卷-新人教版
2013—2014学年度第一学期期中模拟监测九年级数学试卷(考试时间120分钟 满分120分)学校 班级 姓名 考号一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的. 1.下列图形中,是中心对称图形的是A B C D2.点(2,-1)关于原点对称的点的坐标为A .(2,1)B .(-2,1)C .(1,-2)D .(-2,-1) 3.如图,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为点E ,若OE =3,则AB 的长是 A .4 B .6C .8D .10(第3题图) 4. 方程x x22=的解是A. 2=xB. 2=x C. 0x = D. 2=x 或0x =5. 如图,⊙O 的半径OC 垂直于弦AB , D 是优弧AB 上的一点 (不与点A 、B 重合),若∠AOC =50°,则∠CDB 等于 A .25° B .30° C .40° D .50°(第5题图)6. 若关于x 的一元二次方程013)1(22=-++-m x x m 有一根为0,则m 的值为 A .1 B .-1 C .1或-1 D .21 7.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°, 则∠BDC 的度数是A.110°B.70°C.55°D.125°(第7题图)OE C BA8.如图,将边长为3cm 的正方形ABCD 绕点C 逆时针旋转30º 后得到正方形A ′B ′C D ′,那么图中阴影部分面积为2B.2C.92cm 2D. cm 2(第8题图)二、填空题(共4个小题,每小题4分,共16分)9.已知关于x 的一元二次方程有一个根为0.请你写出一个符合条件的一元二次方程是 .10. 如图,A 、B 、C 是⊙O 上的三点,∠BAC=30°,则∠BOC 的 大小是 .(第10题)11.如图,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为 .(第11题图) 12.如图,在平面直角坐标系中,已知点A(-4,0),B(0,3),对△AOB 连续作旋转变换,依次得到三角形(1)、(2)、(3)、(4)、…,则第(7)个三角形的直角顶点....的坐标是 ;第(2011)个三角形的直角顶点....的坐标是__________. 三、解答题(共13个小题,共72 分) 13. (本小题满分5分)解方程:3x 2+10x+5=014. (本小题满分5分)已知2514x x -=,求()()()212111x x x ---++的值.O C A B (第12题)15. (本小题满分5分)已知:如图,AB 为半圆的直径,O 为圆心,C 为半圆上一点, OE ⊥弦AC 于点D ,交⊙O 于点E. 若AC=8cm ,DE=2cm. 求OD 的长.16. (本小题满分5分)已知:如图5,在⊙O 中,弦AB CD 、交于点E ,AD CB =. 求证:AE CE =.17.(本小题满分5分)在平面直角坐标系xoy 中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴ 画出ABC △;⑵ 画出ABC △绕点A 顺时针旋转90 后得到的AB C △,并求出CC 的长.18. (本小题满分5分)经过18个月的精心酝酿和290多万首都市民投票参与,2011年11月1日,“北京精神”表述语“爱国、创新、包容、厚德”正式向社会发布. 为了更好地宣传“北京精神”,小明同学参加了由街道组织的百姓宣讲小分队,利用周末时间到周边社区发放宣传材料. 第一周发放宣传材料300份,第三周发放宣传材料363份. 求发放宣传材料份数的周平均增长率.E D CB A O D19. (本小题满分5分)已知关于x 的方程(k -2)x 2+2(k -2)x +k +1=0有两个实数根. (1)求正整数k 的值;.(2)当k 取正整数时,求方程的根.20. (本小题满分5分)如图,AB 是⊙O 的直径,C 、D 两点在⊙O 上,若∠C =45°, (1)求∠ABD 的度数.(2)若∠CDB=30°,BC=3,求⊙O 的半径.21.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,将直线AB 绕点O 逆时针旋转90°得到直线A 1B 1.(1)在图中画出直线A 1B 1. (2)求出直线A 1B 1函数解析式.22. 如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB 与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB ,点E 为AC 中点,F 为BC 上一点且BF ≠FC (F 不与B 、C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的△ABC 重新进行分割,画出分割线及拼接后的图形. (1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形; (2在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;(3在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为锐角三角形.23.已知关于x 的方程2(32)220mx m x m -+++= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的方程2(32)220mx m x m -+++=的两个不等实数根均为正整数,且m 为整数,求m 的值.图1FE DBA图2ABCDE F图3ABCDEF24.已知△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,点F 为BE 中点,连结DF 、 CF .(1)如图1, 当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD =1,AC=,求此时线段CF 的长(直接写出结果).25.如图:点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.将线段OC 绕点C 按顺时针方向旋转60°得到线段CD ,连接OD 、AD. (1) 求证:AD=BO(2) 当α=150°时,试判断△AOD 的形状,并说明理由;(3) 探究:当α为多少度时(直接写出答案),△AOD 是等腰三角形?DACBO2013~2014学年九年级第一学期期中考试 数学试卷参考答案及评分标准一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)9. x 2=0(…本题多种情况) ;10. 60° ;11.;12. (24,0);(8040,0)三、解答题(共13个小题,共72 分)13.(若用配方法,可按具体过程酌情给分)14.15. 解:∵OE ⊥弦AC , ∴AD=21AC=4. …………………………1分 ∴OA 2=OD 2+AD 2……………………………..2分∴OA 2=(OA-2)2+16解得,OA=5. ………………………………4分 ∴OD=3 ………………………………5分 16. 解:由题意得{220,[2(2)]4(2)(1)0.k k k k -≠∆=---+≥ …………………1分由①得 2k ≠. ………………………………………………………2分 由②得 2k ≤. ………………………………………………………4分 ∴2k <. ∵k 为正整数,∴1k =. (5)322123,10, 5......1=440 (2)105263105263a b c b ac b x a b x a ===-=-+-+-+===----===解:△2222=231(21) 1......25 1......3514=141=15 (5)x x x x x x x x -+-+++=-+-=+解:原式∵∴原式17.解:⑴如图所示,ABC △即为所求.…1分⑵如图所示,11AB C △即为所求. …3分18. (本小题满分5分)解:设发放宣传材料份数的周平均增长率为x ,由题意,有.363)1(3002=+x …………………………………………………………………3分 解得 1.01=x ,1.22-=x . …………………………………………………………4分 ∵1.2-=x <0,不符合题意,舍去,∴%101.0==x . ……………………………………………………………………5分 答:这两次发放材料数的平均增长率为10%.19. 解:(1)由题意得:k-2≠0①,△=[2(k-2)]2-4(k-2)(k+1)≥0②. ……1 由①得 k ≠2.由②得 k ≤2. ……2 ∴k <2.∵k 为正整数, ∴k=1. (3)(2)方程为-x 2-2x+2=01211x x =-+=-解得, (5)20. 解:(1)∵弧BD ,∠C=45° ∴∠A=∠C=45° ……1 ∵AB 是⊙O 的直径 ∴∠ADB=90°∴∠ABD=45°……2 (2)连接AC∵AB 是⊙O 的直径 ∴∠ACB=90° ∵弧BC∴∠CAB=∠CDB=30°……3 ∵BC=3∴AB=6 ......4 ∴半径为3 (5)21.(1)2分(2)由题意可知,A 1(0,-1) B 1(-2,0) (1)5 (101)=cc设直线A 1 B 1的解析式为 y = kx - 1 (k ≠0)12k =- (4)∴ 112y x =-- (5)22. (1)………………………………………………1分(2)………………………………………………3分(3)………………………………………………5分23. (1)证明:①当m =0时,方程为 -2x + 2 = 0 ,x = 1,此一元一次方程有实根…1 ②当m ≠0时,方程为一元二次方程(2)1211232(2)2222232(2)1 (4)21,1,2,24,0,3,1,1=2 (7)m m m x m m m m m x mx m m x x x x m m ++++===++-+===--==∵为整数,为整数,∴∴∵≠且为正整数∴或24. 解:(1)线段DF 、CF 之间的数量和位置关系分别是相等和垂直.…………1分(2)(1)中的结论仍然成立 ………2分13321ABCA 1B 12222(32)22444(2)...2(2)0a m b m c m b ac m m m m ==-+=+∆=-=++=++∵≥∴此方程有实数根综上,无论m 为任何实数时,方程恒有实数根 (3)证明: 如图,此时点D 落在AC 上,延长DF 交B C 于点G .∵ 90ADE ACB ∠=∠=︒,∴ DE ∥BC .∴ ,DEF GBF EDF BGF ∠=∠∠=∠.又∵ F 为BE 中点, ∴ EF=BF .∴ △DEF ≌△GBF . ………3分∴ DE =GB ,DF =GF .又∵ AD =DE ,AC =BC ,∴ DC =GC .∵ 90ACB ∠=︒,∴ DF = CF , DF ⊥CF . …………5分(3) 线段C F…………7分 25. (1)∵等边ΔABC∴BC=AC,∠ACB=60°∵OC 绕点C 按顺时针方向旋转60°∴OC=CD,∠OCB=∠DCA∴ΔBOC ≌ΔADC ………………………………………………2分∴AD=BO(2) ∵OC 绕点C 按顺时针方向旋转60°∴ΔOCD 是等边三角形……………………………………………3分∴∠ODC=60°∵ΔBOC ≌ΔADC∴∠BOC=∠ADC=150°……………………………………………4分∴∠ADC=90°…………………………………………………… 5分(3)α=110°,α=140°,α=125°……………………8分(一个答案1分)ABCD E F G。
2013年九年级上学期人教版期中测试题(数学试题)及答案
九年级上学期期中测试题数学一、选择题、 1、使11-x 有意义的x 的取值范围是( ) A .x >1 B .x ≥1 C .x ≠1 D .x ≥0且x ≠12、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B 。
1k >-且0k ≠ C.。
1k < D 。
1k <且0k ≠3、直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针 旋转90°后得到△AO B '',则点B '的坐标是( )A . (3,4)B .(4,5)C .(7,4)D .(7,3)4、ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( ) A .2 B .4C .8D .165、下列事件是随机事件的是( )A .在一个标准大气压下,加热到100℃,水沸腾B .购买一张福利彩票,中奖C .有一名运动员奔跑的速度是30米/秒D .在一个仅装着白球和黑球的袋中摸球,摸出红球 6、AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( )A .70°B .60°C .50°D .40°7、方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12B .12或15C .15或12D .不能确定8、从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.下列事件的概率:抽取2名,恰好是1名男生和1名女生( )。
A .1/5B .2/5C .3/5D .4/59、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米, 则拱桥的半径为( )A .6.5米B .9米C .13米D .15米10.某商场根据市场销售变化,将A 商品连续两次提价20%,同时将B 商品连续两次降价20%,结果都以每件23.04元出售,此时商场若同时售出A 、B 两商品各一件的盈亏情况为( ).A .不亏不盈B .盈6.12元C .亏6.02元D .亏5.92元二、填空题11、随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
第18题 C
B A
九年级上数学期中考试(2013版)
一、填空题.(每题2分,共20分) 1、下列说法正确的是( )
A .长度相等的弧是等弧
B .平分弦的直径垂直于弦
C .任意三个点确定一个圆
D .在同圆或等圆中,相等的圆周角所对的弦相等
2、⊙O 的半径为13cm ,弦AB ∥CD ,AB=24 cm ,CD=10 cm ,则AB 和CD 的距离为( ) A .7 cm B .17 cm C .10 cm D .7 cm 或17 cm
3、如图,A 、B 、C 是⊙O 上三点,∠AOB=500,∠OBC=400
,∠OAC 为( )
A .100
B .150
C .200
D .350
4、下列图形中,是中心对称图形的是( )
A .等边三角形
B .等腰梯形
C .正五边形
D .线段
5、⊙O 1和⊙O 2的半径分别是3 cm 和4 cm ,若两圆相切,则O 1O 2为( ) A .5 cm B .7 cm C .10 cm D .1 cm 或7 cm
6、如果代数式
3
4-x 有意义,则得取值范围是( )
A .3≠x
B .3<x
C .3>x
D .3≥x 7、下列计算正确的是(
)
A
1
= B
1
C
2
= D 2=±
8、如果(
)
2
22+
=a +b 2(a ,b 为有理数),那么a +b 等于( )
A .2
B .3
C .8
D .10
9、关于x 的方程(a -5)x 2
-4x -1=0有实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5
10、如下所示的4组图形中,左边图形与右边图形成中心对称的有( )
A .1组
B .2组
C .3组
D .4组
二、选择题.(每题2分,共30分) 11、点)3,(a M 与点),1(b N -关于原点对称,则b a += .
12、计算5
1
20⋅
的结果是 . 13、Rt △ABC 中,∠C=900
,AC=3 cm ,BC=4 cm ,以C 为圆心,3 cm 长为半径画圆,则此圆与AB
边的位置关系是 . 14、计算
2
22+的结果是 .
15、将点A (0)绕着原点顺时针方向旋转45°角得到点B ,则点B 的坐标是 . 16、如图,一条公路的转弯处是一段圆弧AB ,点O 是这段圆弧的圆心,AB=160m ,C 是弧AB 上一
点,且OC ⊥AB ,垂足为D ,CD=40m ,则这段弯路的半径r = . 17、如图,△ABC 的内切圆⊙O 与AB 、CA 、BC 分别相切于点D 、E 、F ,且AB=9 cm ,BC=14 cm ,CA=13
cm ,,则AE= ,BD= ,CE= .
18、P 是正三角形ABC 内的一点,且PA=3 cm ,PB=4 cm ,PC=5 cm .若将△PAC 绕点A 逆时针旋转
后得到△P 1AB ,其中AC 边与AB 边重合,则点P 与点P 1之间的距离为 , ∠APB= . 19、已知1x =-是关于x 的方程2
2
20x ax a +-=的一个根,则a =_______.
20、已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转
90 得1OA ,则点1A 的坐标为 .
21、如图,数轴上
A 、
B 两点对应的实数分别是1A 关于B 点的对称点为点
C ,则点
C 所对应的实数为 .
22、方程2
30x -=的根是 .23、某商品经过连续两次降价,销售单价由原来的125元降到80元,如果设平均每次降价的百分率为x ,则可列方程为 .
24、如图,已知O ⊙是以坐标原点为圆心,1为半径的圆,45AOB ∠=°,点P 在x 轴上运动,
若过点P 且与OA 平行的直线与O ⊙有公共点,设(0)P x ,
,则x 的取值范围是________. 25、平面直角坐标系中,M ⊙的圆心坐标为(0,2),半径为1,点N 在x 轴的正半轴上,如果以点N 为圆心,半径为4的N ⊙与M ⊙相切,则圆心N 的坐标为 .
第16题
第17题
x
x
三、解答题. (每小题10分,共120分) 26、①)681(2124+--
② y
y
x y x x 1
241+-+
27、按要求解一元二次方程.
①用配方法解方程:02632
=+-x x ②用公式法解方程:02432
=--x x
28、某专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?
29、如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交⊙O 于D ,
求BC 、AD 、BD 、CD 的长.
30、“4·20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷,该商家备有2辆大货车、8
辆小货车运送,计划大货车每辆每次运帐篷1000顶,小货车每辆每次运帐篷800顶,货车每天均运送一次,两天恰好运完.但因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m 顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 2
1
次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值.
31、如图,在正方形网格中,ABC △的三个顶点都在格点上,点A B C 、、的坐标分别为(24)-,、(20)-,、(41)-,(1)画出ABC △关于原点O 对称的111A B C △; (2)平移ABC △,使点A 移到点2(02)A ,,
画出平移后的222A B C △并写出点2B 、2C (3)在ABC △、111A B C △、222A B C △中,
222A B C △与_______成中心对称,
其对称中心的坐标为________.
32、在正方形网格中建立如图所示的平面直角坐标系xoy ,ABC △的三个顶点都在格点上,点A 的坐标是(4,4),请解答下列问题:
(1)将ABC △向下平移5个单位长度,
画出平移后111A B C △,
并写出点A 的对应点1A 的坐标 ;(2)画出111A B C △关于y 轴对称的222A B C △; (3)将ABC △绕点C 逆时针旋转90°,
画出旋转后的C B A 33∆.
并写出点A 的对应点3A 的坐标 .
33、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?
34、某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保
留3 m 宽的空地,其它三侧内墙各保留1
m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植
区域的面积是288 m 2
?
35、已知:如图,在ABC △中,AB AC =,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE AC ⊥于点E .
求证:DE 是⊙O 的切线.
36、如图,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.
37、如图,在Rt △ABC 中,∠C=90°,以BC 为直径作⊙O 交AB 于点D ,取AC 的中点E , 连结DE 、OE .
(1)求证:DE 是⊙O 的切线;
(2)如果⊙O 的半径是2
3cm ,ED=2cm ,求AB 的长.
B A D O
C
E。