Enhanced Enzymatic Transesterification of Palm Oil to Biodiesel
酶促酯交换反应制备亚麻籽油、文冠果油和牛油重构脂质
酶促酯交换反应制备亚麻籽油、文冠果油和牛油重构脂质殷振雄(甘肃金宏源生物科技有限公司,甘肃白银730900)摘 要:用冷榨亚麻籽油、文冠果油、牛油为原料,以脂肪酶Novozym 435为催化剂,研究酯交换产物的制备工艺,并测定评价重构脂质的理化性质、脂肪酸组成和流变特性。
研究发现酯交换产物为牛顿流体,其理化性质符合食用油脂的相关规定,且脂肪酸不饱和程度增加。
关键词:亚麻籽油;文冠果油;牛油;酯交换产物;流变特性Preparation of Reconstituted Lipids of Flaxseed Oil, Shiny-Leaved Yellowhorn Oil and Beef Tallow Based on EnzymaticTransesterification ReactionYIN Zhenxiong(Gansu Jinhongyuan Biotechnology Co., Ltd., Baiyin 730900, China)Abstract: Lipase Novozym 435, which has good catalytic performance, was selected as catalyst by flaxseed oil, shiny-leaved yellowhorn oil and beef tallow as raw materials. The preparation of transesterification products was studied, the physicochemical properties, fatty acid composition and rheological properties of reconstructed lipids were determined and evaluated. It was found that the transesterification products were Newtonian fluids, whose physical and chemical properties met the relevant regulations of edible oils and fats, and the degree of unsaturation of fatty acids increased.Keywords: flaxseed oil; shiny-leaved yellowhorn oil; beef tallow; esterexchangeproducts; rheologicalproperties亚麻籽油中富含不饱和脂肪酸,其中α-亚麻酸含量可达50%~65%。
蔗糖、葡萄糖和乳糖脂肪酸酯的合成及性质研究
摘要糖脂肪酸酯(简称糖酯)是一种性能优良的表面活性剂,具有良好的乳化、起泡、润湿、分散、粘度调节、防止老化等性能,被广泛应用于食品、药品、化妆品、医药等行业。
目前商品化的糖酯以蔗糖酯为主,而对新型糖酯如葡萄糖酯、乳糖酯的研究较少。
国内糖酯工业还处于起步阶段,在国际糖酯市场上缺乏有竞争力的产品,因此,实现高质量蔗糖酯产品的国产化同时开发新型糖酯乳化剂具重大的现实意义。
本文的主要对蔗糖酯、葡萄糖酯和乳糖酯的合成及性能进行研究,主要研究内容和结果如下:(1)首先建立了蔗糖棕榈酸单酯、硬脂酸单酯的标准曲线的HPLC-ELSD 定量方法,以水-甲醇为流动相,出峰时间分别为7分钟和17 分钟,并且应用传统化学方法选择性合成含高纯度单酯的蔗糖酯产物,并进行单因素优化,最后得到:在N,N-二甲基甲酰胺溶剂中,100°C、10 kPa条件下用5 wt% K2CO3催化蔗糖与硬脂酸甲酯反应3小时,经过有机溶剂萃取纯化后,得到最高单酯含量为74.1%蔗糖酯产品,与目前国际市场上最高75%纯度的日本三菱蔗糖酯S-1670质量相当。
进一步地,通过优化反应条件,添加2 wt%的硬脂酸钾、蔗糖酯等乳化剂,所制备的蔗糖酯单酯含量最高达91.3%,新方法具有巨大的工业化潜力。
(2)应用Novozym 435脂肪酶催化葡萄糖与七种饱和脂肪酸乙烯酯(碳链长度从6-18碳)合成系列6-O-酰基葡萄糖单酯,并测定、比较了其亲水亲油平衡值、起泡性及泡沫稳定性、乳化稳定指数及细胞安全性。
结果表明,该系列葡萄糖单酯的性能主要由其疏水性烷基侧链长度决定,当长度增加时,其HLB值降低,稳定乳液能力增强;而起泡性能呈金字塔趋势,葡萄糖癸酸单酯及月桂酸单酯具有良好的发泡性能;大部分葡萄糖单酯对HepG2、MCF-7、LNacp、SW549和LO-2五种细胞系无毒性作用,揭示其可用作安全、绿色的食品添加剂。
(3)以Lipozyme TL IM脂肪酶催化乳糖与七种不同长度侧链乙烯酯从而得到6'-O-酰基乳糖单酯,并评价了其表面活性参数、乳化性能、体外抗菌性和细胞毒性,系列归纳了其构效关系。
恩曲替尼化学式-概述说明以及解释
恩曲替尼化学式-概述说明以及解释1.引言1.1 概述概述恩曲替尼(英文名称:Entrectinib)是一种靶向抗癌药物,属于酪氨酸激酶抑制剂。
它通过抑制肿瘤细胞中的激酶信号通路,发挥抗肿瘤的作用。
恩曲替尼被广泛应用于非小细胞肺癌、神经母细胞瘤和其他肿瘤的治疗。
该药物的化学性质使其具备出色的抗肿瘤效果。
恩曲替尼的分子式为C31H34Cl2N5O3,分子量为602.54克/摩尔。
其分子结构复杂,由多个不同原子组成的编织网状结构构成。
这种特殊的结构赋予了恩曲替尼优异的特性,包括其强大的抑制肿瘤生长能力和独特的靶向治疗机制。
除了化学性质外,恩曲替尼还具有一系列独特的物理性质。
该药物为白色或类白色结晶粉末,具有极高的纯度要求。
其熔点为210-215,在这个温度范围内可以保持稳定。
此外,恩曲替尼在常温下可溶于一些有机溶剂,如二氯甲烷和二甲基亚砜,但不溶于水。
在药理作用方面,恩曲替尼主要表现出针对肿瘤细胞的抗增殖和抗转移能力。
它通过干扰肿瘤细胞的激酶信号通路,阻止肿瘤细胞的分裂和生长。
此外,恩曲替尼还具有特异性靶向治疗作用,能够选择性地抑制特定的激酶,从而实现精确的治疗效果。
然而,恩曲替尼也存在一些副作用,如恶心、呕吐、疲劳和食欲不振等,这些副作用需在使用时留意并及时处理。
综上所述,恩曲替尼作为一种靶向抗肿瘤药物,具有复杂的化学性质、独特的物理性质以及较广泛的药理作用。
进一步的研究和应用将有助于更好地发掘恩曲替尼的潜力,为肿瘤治疗提供新的突破和可能性。
1.2 文章结构文章结构部分的内容如下:文章结构部分主要介绍了整篇文章的组织结构和内容安排。
本文的目录分为引言、正文和结论三个部分。
引言部分主要是对整篇文章的背景和目的进行概述,并对恩曲替尼的化学式进行引入。
接着,文章结构部分将详细介绍恩曲替尼的化学性质、物理性质和药理作用。
最后,结论部分将对恩曲替尼的化学性质、物理性质和药理作用进行总结。
在正文部分,恩曲替尼的化学性质将包括分子式、分子量和结构式的介绍。
钆特酸葡胺磁共振动态增强扫描鉴别肝脏局灶性病变性质的价值
2019,35(6):510-513.[8] LI R J,ZHANG F Q.Three-dimensional DSA guidance reduces complications and enhances the safety during interventional treatment for patients with hepatocellular carcinoma[J].Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology,2021,26(4):1373-1378.[9]刘新志,赵恒,罗谊,等.DSA 诊断及介入治疗缺血性脑卒中患者颈部血管狭窄的疗效及生存质量[J].昆明医科大学学报,2018,39(10):121-125.[10]李静伟,支兴龙,叶明,等.血管内介入栓塞治疗婴幼儿软脑膜动静脉瘘的效果分析[J].中国脑血管病杂志,2021,18(7):465-471.[11]彭方强,檀书斌,刘旻谛,等.西门子双大平板DSA 机在神经介入治疗中的应用[J].介入放射学杂志,2019,28(12):1215-1218.[12]周桂桃,龚昭惠,谈惠群,等.脑血管侧支循环评估在脑血管介入术后再狭窄及缺血性脑血管事件中的应用[J].海南医学,2018,29(18):2534-2537.[13]方锋.脑血管侧支循环建立程度与介入治疗脑动脉硬化狭窄患者预后的关系分析[J].实用医院临床杂志,2018,15(2):113-117.[14] JIAO S,GONG L,WU ZH B,et al.Assessment of the value of3D-DSA combined with neurointerventional thrombolysis in thetreatment of senile cerebrovascular occlusion.[J].Experimental and Therapeutic Medicine,2020,19(2):891-896.[15]林成,张强,朱安林,等.头颈部3D-CTA 与DSA 影像融合技术在神经介入手术中的初步应用[J].立体定向和功能性神经外科杂志,2018,31(2):97-102.[16]王相阁.数字减影血管造影在缺血性脑血管病患者介入治疗中的作用[J].中国实用神经疾病杂志,2018,21(21):2394-2398.[17]张宪,李彭,赵晖,等.数字减影血管造影对脑梗死患者颈部血管的诊断价值研究[J].中国医学装备,2020,17(2):75-77.[18] ZHANG F F,RAN Y C,ZHU M,et al.The use of pointwiseencoding time reduction with radial acquisition MRA to assess middle cerebral artery stenosis pre-and post-stent angioplasty: comparison with 3D time-of-flight MRA and DSA[J].Frontiers in Cardiovascular Medicine,2021,8:739332.[19]付华文,李光建.数字减影血管造影联合神经介入溶栓术治疗缺血性脑血管疾病临床效果观察[J].实用医院临床杂志,2019,16(6):178-182.[20]谢成仁.旋转数字减影血管造影三维重建在脑血管疾病诊断及鉴别中的应用价值[J].神经疾病与精神卫生,2019,19(10):960-963.(收稿日期:2023-02-08) (本文编辑:马娇)①厦门市第五医院 福建 厦门 361101钆特酸葡胺磁共振动态增强扫描鉴别肝脏局灶性病变性质的价值张锦松①【摘要】 目的:探讨钆特酸葡胺(Gd-DOTA)磁共振动态增强扫描(DCE-MRI)鉴别肝脏局灶性病变性质的价值。
治疗或预防纤维变性疾病的药物[发明专利]
专利名称:治疗或预防纤维变性疾病的药物
专利类型:发明专利
发明人:约翰·E·帕克,杰拉尔德·J·罗思,阿明·赫克尔,维德·乔达里,特丽克西·布兰德尔,乔治·达曼,马赛厄斯·格劳尔
特
申请号:CN200580044703.3
申请日:20051221
公开号:CN101087605A
公开日:
20071212
专利内容由知识产权出版社提供
摘要:本发明涉及6-位取代的通式(I)的吲哚满酮及其异构体和盐,特别是其药学上可接受的盐,作为预防或治疗特定的纤维变性疾病的药物的用途,式中R~R和X如权利要求1中所定义的。
申请人:贝林格尔·英格海姆国际有限公司
地址:德国英格海姆
国籍:DE
代理机构:北京市柳沈律师事务所
更多信息请下载全文后查看。
脂肪酶在生物化工中的应用
脂肪酶在生物化工中的应用摘要:脂肪酶是一种具有广泛应用潜力的生物催化剂,本文详细地介绍了脂肪酶在生物化工各个领域中的应用情况。
关键词:脂肪酶;生物化工;应用引言1999年,在5 Current Opinion inMicrobiology6上发表了一篇论文,其中指出,继制药和农业后,工业生物催化将会成为第三波生物技术的新一轮0;同年年末,美国加里福尼亚举行了一次国际研讨会,会议结束后,一本名为《新生物科技:21世纪化工基础工具6》的书被发表。
以上种种迹象均显示,生物催化技术作为其主要内容,其在支持新世纪社会发展和经济发展的技术体系中起着前所未有的重要作用。
另外,由于其具有环保、环保的特点,其在化工领域的发展必将具有巨大的发展潜力。
在生物催化剂的开发和应用中,脂肪酶起着举足轻重的作用。
一、脂肪酶简介自从1834年发现了脂肪酶(Lipase,E311113),至今已经有一百多年的历史了。
在不同的相态体系(油、水界面)或有机相中,具有特定的定位特异性,近年来,其中,主要有:奶类的增香,鱼片的脱脂,食用油的加工,洗涤剂的添加,皮革的脱脂,皮革的脱脂,制药,化学合成,污水处理,工具酶等。
在有机相中,脂肪酶也可以催化酯合成、酯交换反应、酯聚合反应肽、酰胺合成等。
另外,由于脂肪酶具有广泛的来源、多的催化作用和多种催化底物(酯类、酸类、醇类、酐类(酰胺类等)的优势,因此,它被广泛地用于生物技术和有机合成。
二、脂肪酶在生物化工中的应用2.1生物可降解在生物化工中的合成目前应用于各行各业的各类聚合物材料,大部分是不可降解的或未完全生物降解的,它们已成为人们日常生活中不可缺少的物质。
然而,他们在为人类服务的同时,也对人们的日常生活和社会造成了许多的不便与危险,例如:拆线、塑料的白色污染;根据不完全统计,全球每年有两千五百万吨这种物质被废弃,对自然环境造成了严重的污染。
为此,国内外尤其是工业发达国家对可降解聚合物的研究和开发成为21世纪人类生命安全的重要课题。
生物柴油生产的化学反应法流程
生物柴油生产的化学反应法流程英文回答:Chemical Reaction Pathways in Biodiesel Production.Biodiesel production involves a chemical reaction process that converts triglycerides from plant oils or animal fats into fatty acid methyl esters (FAMEs), which are the main components of biodiesel. The most common chemical reaction pathway for biodiesel production is transesterification, which involves the reaction of triglycerides with an alcohol, typically methanol or ethanol, in the presence of a catalyst.The transesterification reaction proceeds through a nucleophilic attack by the alcohol on the carbonyl carbon of the triglyceride, resulting in the formation of a fatty acid methyl ester (FAME) and glycerol. The reaction is typically catalyzed by a base catalyst, such as sodium hydroxide or potassium hydroxide, which helps to facilitatethe nucleophilic attack.Here is a simplified chemical equation for the transesterification reaction:Triglyceride + 3 Methanol → 3 Fatty Acid Methyl Esters + Glycerol.In addition to transesterification, there are other chemical reaction pathways that can be used for biodiesel production, including:Acid-catalyzed esterification: This process involves the reaction of triglycerides with an acid catalyst, such as sulfuric acid or hydrochloric acid, to form fatty acid esters.Enzymatic transesterification: This process uses enzymes as catalysts for the transesterification reaction. Enzymes are typically more expensive than chemical catalysts, but they can be more selective and environmentally friendly.中文回答:生物柴油生产的化学反应法流程。
抗衰老功效评价 标准 国外 膳食补充剂
抗衰老功效评价标准国外膳食补充剂下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!国外膳食补充剂的抗衰老功效评价标准探析随着科技的发展和人们对健康的日益关注,抗衰老膳食补充剂在国际市场中日益占据一席之地。
《现代分子生物学》第五章 3 真核生物的转录后加工
真核细胞中rRNA的加工途径 真核细胞中rRNA的加工途径
(1) 切除5′端的前导序列; (2) 从41S的中间产物中先切下18S的片段。 (3) 部分退火,形成发夹结构; (4) 最后修正。
真核细胞中rRNA的加工 真核细胞中rRNA的加工
目前还不清楚45S前体在剪切位点断裂后是否 就产生成熟的末端,还是要经进一步的加工。 整个加工过程需要蛋白质的参与,可能形成核 蛋白体的形式。 rRNA的加工过程还需要snoRNA (small nucleolar RNAs )的参与。 真核生物的5S rRNA是和tRNA转录在一起的, 经加工处理后成为成熟的5S rRNA。
真核细胞核mRNA的加帽反应 真核细胞核 的加帽反应
不同真核生物的mRNA可有不同的帽子结构, 同一种真核生物的mRNA也常有不同的帽子 结构。 帽子结构的作用: 1.为核糖体识别RNA提供信号 2.增加mRNA的稳定性 3.为mRNA向胞质的运输提供信号 4 与某些RNA病毒的正链RNA的合成有关。
各种参与剪接的成分形成一个剪接体系, 称为剪接体(spliceosome)。该体系由 几种snRNP和大量的其他的蛋白质分子 组成,这些蛋白质分子称为剪接因子, 估计有40多种。 剪接点和分支点序列由剪接体识别, snRNA和蛋白质都参与了识别,特别是 snRNA之间以及与mRNA间的碱基配对 起重要作用。
1. rRNA的转录后加工 rRNA的转录后加工
真核生物有4种rRNA,即5.8S rRNA、18S rRNA、28S rRNA和5S rRNA。其中前三者 的基因组成一个转录单位,产生47S的前 体,并很快转变成45S前体。 45S前体上有许多甲基化的位点,在转录 过程中或转录后被甲基化。甲基基团主要 是加在核糖上。甲基化是45S前体最终成 为成熟rRNA区域的标志。
世界卫生组织儿童标准处方集
WHO Model Formulary for ChildrenBased on the Second Model List of Essential Medicines for Children 2009世界卫生组织儿童标准处方集基于2009年儿童基本用药的第二个标准目录WHO Library Cataloguing-in-Publication Data:WHO model formulary for children 2010.Based on the second model list of essential medicines for children 2009.1.Essential drugs.2.Formularies.3.Pharmaceutical preparations.4.Child.5.Drug utilization. I.World Health Organization.ISBN 978 92 4 159932 0 (NLM classification: QV 55)世界卫生组织实验室出版数据目录:世界卫生组织儿童标准处方集基于2009年儿童基本用药的第二个标准处方集1.基本药物 2.处方一览表 3.药品制备 4儿童 5.药物ISBN 978 92 4 159932 0 (美国国立医学图书馆分类:QV55)World Health Organization 2010All rights reserved. Publications of the World Health Organization can be obtained fromWHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: ******************). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the aboveaddress(fax:+41227914806;e-mail:*******************).世界卫生组织2010版权所有。
EZH2作为抗肿瘤免疫治疗靶点研究进展
EZH2作为抗肿瘤免疫治疗靶点研究进展李倩;王艳林【期刊名称】《生物技术通报》【年(卷),期】2015(000)001【摘要】多梳蛋白复合体(PcG)的核心亚基zeste基因增强子同源物2(Enhancer of zeste homolog2,EZH2)是一种组蛋白甲基转移酶,参与维持细胞密度、干细胞多能性、细胞周期调节等重要的生理作用。
研究发现,EZH2在多种肿瘤组织中高表达,是促进肿瘤发生和发展的致癌因子。
由于EZH2在正常组织中低表达或者不表达,使其新近被鉴定为一种肿瘤相关抗原。
已经在EZH2蛋白分子中鉴定出多条特异性抗原肽,这些抗原肽能激发机体免疫细胞对EZH2表达异常增高肿瘤细胞的杀伤活性。
上述研究提示,EZH2可能是一种新的抗肿瘤治疗分子靶点,并在肿瘤免疫治疗中具有潜在的应用价值。
就该领域的最新研究进展作一简要综述。
%EZH2(enhancer of Zeste homolog2), the core subunit of polycomb group protein complex(PcG), is a histone methyltransferase which involves in cell density maintenance, stem cell pluripotent, cell cycle regulation and other important physiological roles. The study has found that EZH2 is over-expressed in many tumor tissues and can be used as a carcinogen to promote tumorigenesis. Since EZH2 has been proved to be non- or low-expressed in normal tissues, it has recently been identified as a tumor-associated antigen. Multiple antigen peptides derived from the EZH2 protein have been identified and their ability in stimulating the killing activity of immune cells against the tumor cells with over-expressedEZH2 has been proved. These studies indicate that EZH2 could be a new molecular target for anti-tumor therapy and has potential value in tumor immunotherapy. This paper gives a brief review on the research progress in these study fields.【总页数】4页(P29-32)【作者】李倩;王艳林【作者单位】三峡大学医学院三峡大学分子生物学研究所,宜昌 443002;三峡大学医学院三峡大学分子生物学研究所,宜昌 443002【正文语种】中文【相关文献】1.胰腺癌干细胞作为胰腺癌治疗靶点的研究进展 [J], 刘旭;董勤2.以β淀粉样蛋白作为阿尔茨海默症治疗靶点的研究进展 [J], 郭一博;石镜明;刘航;李岩松;孙正启3.环状RNAs作为宫颈癌潜在生物标志物及治疗靶点的研究进展 [J], 李贺同;王伟;郝敏4.DNA损伤应答缺陷作为乳腺癌治疗靶点的研究进展 [J], 金奕滋;林明曦;张剑5.白血病免疫治疗靶点研究进展 [J], 唐瑀彤;朱小瑛;游泳因版权原因,仅展示原文概要,查看原文内容请购买。
顶空气相色谱-质谱法测定土壤中5种乙酸酯类化合物
顶空气相色谱-质谱法测定土壤中5种乙酸酯类化合物郭佳惠;汪凌佳;曾珍;唐占谱;陈峰【摘要】建立顶空气相色谱-质谱法测定土壤中5种乙酸酯类化合物的方法.对仪器工作条件进行优化,平衡温度为70℃,平衡时间为20 min,氯化钠用量为2.0 g.选用DB-624毛细管柱(30 m×0.32 mm,1.8μm),在柱流量1.5 mL/min条件下采用电子轰击电离源,全扫描定性,选择离子外标法定量.当土壤取样量为2.0 g时,5种乙酸酯类化合物的含量在1.0~20.0 mg/kg范围内与其色谱峰面积呈良好的线性,线性相关系数大于0.999,方法检出限为0.22~0.32 mg/kg.在3个不同加标水平下,土壤样品加标回收率为88.5%~107.0%,测定结果的相对标准偏差为3.0%~11.0%(n=6).该方法检测快速,灵敏度高,满足土壤样品中5种乙酸酯类化合物快速测定要求.【期刊名称】《化学分析计量》【年(卷),期】2019(028)004【总页数】4页(P26-29)【关键词】乙酸酯类化合物;气相色谱-质谱法;顶空;土壤【作者】郭佳惠;汪凌佳;曾珍;唐占谱;陈峰【作者单位】杭州市环境监测中心站,杭州 310007;杭州市环境监测中心站,杭州310007;杭州市环境监测中心站,杭州 310007;杭州市环境监测中心站,杭州310007;杭州市环境监测中心站,杭州 310007【正文语种】中文【中图分类】O657.7乙酸酯类化合物是一类用途广泛的精细化工产品,具有优异的溶解性、速干性,是重要的有机化工原料和工业溶剂,广泛应用于催化剂、萃取剂、涂料香料、化妆品、表面活性剂、木材粘结剂、人造皮革加工、纺织加工、胶卷和火药制造等领域[1-8]。
乙酸酯类化合物属于易挥发低毒类物质,对眼、鼻、咽喉有刺激作用[9-10],我国对空气中乙酸酯类有限值要求。
我国土壤标准体系中尚无乙酸酯类的排放标准和检测方法,国内外学者也很少对土壤中乙酸酯类的检测方法进行报道,多数研究主要针对水和空气中的乙酸酯类[11-15]。
艾美捷 ELISA Systems增强提取溶液浓缩物方案
艾美捷ELISA Systems增强提取溶液浓缩物方案
增强型萃取解决方案
多酚是存在于某些植物的树皮、叶子和果实中的化合物。
它们存在于许多食物中,赋予它们独特的颜色和味道。
然而,这确实给食品测试实验室带来了挑战,因为多酚也会干扰各种食物过敏原的提取和检测。
艾美捷ELISA Systems增强提取溶液浓缩物:
中文名称:增强提取溶液浓缩物
英文名字:Enhanced Extraction Solution Concentrate
cat#:ESADDSOL
规格:25ml
保存:增强提取溶液浓缩物Enhanced Extraction Solution Concentrate 存储方法建议在2-8℃保存
ELISA Systems增强提取溶液浓缩物预期用途:
ELISA系统开发了一种增强提取解决方案(ESADDSOL),以提高从含有多酚的食物中回收过敏原。
这包括黑巧克力、葡萄酒、果汁、香草和香料等产品。
ELISA 系统增强型提取溶液不含过敏原,因此消除了牛奶或大豆残留物污染实验室的风险。
ELISA Systems增强提取溶液浓缩物相关研究:
自动分析仪清洗解决方案
ESAUTOWASH
拭子套件
ESSWB-10
ELISA Systems的研发涵盖各种常见食品过敏原的检测. 其中过敏原检测适合检测食品、设备及环境等样品,被广泛使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Accepted ManuscriptTitle:Enhanced Enzymatic Transesterification of Palm Oil toBiodieselAuthors:Md.Mahabubur Rahman Talukder,Probir Das,TanShu Fang,Jin Chuan WuPII:S1369-703X(11)00083-0DOI:doi:10.1016/j.bej.2011.03.013Reference:BEJ5307To appear in:Biochemical Engineering JournalReceived date:29-10-2010Revised date:26-2-2011Accepted date:28-3-2011Please cite this article as:Md.M.R.Talukder,P.Das,T.S.Fang,J.C.Wu,Enhanced Enzymatic Transesterification of Palm Oil to Biodiesel,Biochemical Engineering Journal(2010),doi:10.1016/j.bej.2011.03.013This is a PDFfile of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting,typesetting,and review of the resulting proof before it is published in itsfinal form.Please note that during the production process errors may be discovered which could affect the content,and all legal disclaimers that apply to the journal pertain.A cc ep te dMa nu sc ri p t1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Enhanced Enzymatic Transesterification of Palm Oil to BiodieselMd. Mahabubur Rahman Talukder*, Probir Das, Tan Shu Fang, Jin Chuan Wu,Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore* Corresponding author. Tel.: +65 67963826; Fax: +65 63166182. E-mail address: talukder@.sg*revised manuscriptA cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ABSTRACTInefficient reaction is one of the drawbacks for the enzymatic production of biodiesel (BD). A method for enhanced Novozym 435-catalyzed transesterification ofpalm oil (PO) to BD using a mixture of methanol and methyl acetate (MA) as acylacceptors has been developed. BD yield using methanol-MA mixture reached 95-96% after8 h at a methanol to PO molar ratio of 1:1, a MA to palm oil molar ratio of 12:1, 2 g of PO,temperature of 50 ˚C and Novozym 435 loading of 0.6 g. In contrast with methanol-MA mixture, BD yield using MA alone after 24 h was 88-89 % under the same reactionconditions. Novozym 435 was repeatedly used at 40 and 50 ˚C for 10 cycles. There was noconsiderable loss in the enzyme activity at 40 ˚C using either methanol-MA mixture orMA alone, while the remaining activity of the enzyme at 50 ˚C in both cases after 10cycles was 82-85 %. The developed method has a potential to be used for efficient enzymatic production of BD.Keywords : biodiesel, Novozym 435, methanol-methyl acetate mixture, palm oil, transesterificationA cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1. IntroductionNovozym 435-catalyzed transesterification of vegetable oil with methanol has been extensively reported for the production of BD, although this technology has not receivedmuch commercial attention except in China, where the first industrial scale for BDproduction in the world (with lipase as the catalyst at a capacity of 20,000 tons year -1) is inoperation [1]. The major limitations of using lipase (e.g. Novozym 435) in biodieselproduction include: (1) longer reaction time, (2) methanol deactivation of lipase due to low solubility of methanol in vegetable oil (3) glycerol inhibition due to its adsorption onlipase. Different techniques have been reported to minimize such limitations. Organicsolvents with large molar excess of methanol have been used [2-4]. A very lowconcentration of methanol during the reaction was maintained by stepwise addition ofmethanol [5, 6]. Salts saturated solutions [7] and silica-gel [8] based controlled release system for methanol have also been applied. However, these techniques have some inherent problems. The removal of organic solvents as well as excess methanol is not economically favorable. Maintaining methanol concentration at a very low level bystepwise addition cannot be an appropriate approach for the large scale production of BD.The presence of salt saturated solution or silica-gel causes difficulties in downstream separation. Recently, MA instead of methanol has been used as an acyl acceptor [9, 10]. However, the reaction with MA still needs longer time.In this study, enhancement in Novozym 435-catalyzed transesterification of PO to BD using a mixture of methanol and MA as acyl acceptors was attempted. The results obtained using methanol-MA mixture and MA alone were compared. The presence of MA minimized the methanol deactivation of lipase, and the combined effect of methanol andA cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 MA leads to enhance transesterification of PO to BD as methanol is more active than MA [10].2. Materials and methods2.1 MaterialsNovozym 435 (Candida antarctica lipase B immobilized on acrylic resin), PO, MAand standard methyl esters (98-99%) were from Sigma. The saponification value of POwas 200 mg KOH/g, which was determined by a method reported previously [11]. The average molecular weight of palm oil is 840. The major fatty acids component of palm oilare palmitic acid (35-48%), oleic acid (35-50%), linoleic (6-13%), stearic (3-7%) andmyristic acid (0.5-6%). HPLC grade methanol, isopropanol and hexane were from J.T.Baker, USA. All chemicals unless mentioned otherwise were of analytical grade and usedas received.2.2. Transesterification of palm oil with MA alone and MA-methanol mixture2 g of palm oil and methanol-MA mixture or MA alone were mixed in a 25 ml screw caped glass bottle for 10 min at 250 rpm and 50 ˚C by shaker incubator. Thereaction was initiated by adding Novozym 435. Novozym 435 amount, molar ratio of MAto PO and methanol to PO were varied as mentioned in the respective Figures. 2.3 HPLC analysis of BDAfter the specified reaction time, the sample (0.5 ml) was mixed with hexane (4.5ml), and centrifuged at 4000 rpm and 25˚C for 10 min . The BD concentration in upper layer was determined by HPLC [12, 13]. HPLC (Waters 2695, USA) was equipped with a UV detector (Waters 2487, USA) and a prevail-C18 5u column (4.6 mm 250 mm, Altech Inc., USA). The UV wavelength and the column temperature were set at 210 nm and 40˚C ,A cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 respectively. The mobile phase consisted of three different components: hexane, isopropanol and methanol. Reservoir A contained methanol and reservoir B contained a mixture of isopropanol and hexane (5:4, v/v). The gradient went from 100% A to 50% A +50% B linearly over 30 min. The flow rate of the mobile phase was 1 ml/min and thesample injection volume was 10 l. BD was quantified according to the externalcalibration curves. Methyl oleate, methyl palmitate, methyl stearate, methyl linoleate andmethyl myristate were used as standards for BD because oleic, palmitic, stearic, linoleicand myristic acids are major fatty acids in PO. BD yield was defined as the amount of BDproduced per gram of PO. A typical (e.g. at biodiesel yield of 95%), the compositions ofpalmitic, oleic, linoleic, stearic and myristic esters in biodiesel are 42, 43, 7, 5 and 4%,respectively. The range of palmitic, oleic, linoleic, stearic and myristic acid esters in biodieselvaried in the range of 42-44%, 43-45%, 4-7%, 4-5% and 2-4%, respectively.3. Results and discussion3.1 Comparison of MA and methanol as acyl acceptorBD yield after 24 h with different MA to PO molar ratio was shown in Figure 1.BD yield increased with the increase in MA concentration up to MA to PO ratio of 8:1,after which it remained almost the same even at a ratio of 12:1. This result indicates thatthe reaction is saturated with MA at a ratio of ≥ 8:1. Hence, further increase in MAconcentration cannot improve the reaction. The similar result also reported by Du et al 10. In contrast with MA, the presence of more than 1/3 stoichiometric amount of methanol deactivates Novozym 435 and the transesterification of PO is completely ceased at methanol to PO molar ratio of 3:1 [14]. Three successive additions of 1/3 stoichiometric amount of methanol was, therefore, adopted and BD yield of 95% was obtained after 30 h (Figure 2). While BD yield with MA reached only about 70% after 30 h regardless of MAA cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 to PO ratio of 8:1 or 12:1. These results indicate that reaction between triglycerides and methanol (i.e. transesterification) progressed faster than that between triglycerides and MA (i.e. ester exchange). This could be due to the higher reactivity of methanol compared toMA. MA is a bifunctional group-donor, and can be used as a source of both methanol fortransesterification and acetic acid for acetylation. Because of this bifunctional characteristic of MA,the equilibrium BD yield with MA could be lower than that with methanol. In order to improve theyield and reaction efficiency, the combined use of methanol and MA was attempted. Since thelimited miscibility of methanol with PO causes the inactivation of Novozym 435 and MAhelps the miscibility, an excess amount of MA (i.e. MA to PO ratio of 12:1) was used inthe subsequent studies.3.2 Transesterification of PO with methanol-MA mixtureThe transesterification of palm oil with methanol-MA mixture at different methanolto PO molar ratios but at a fixed MA to PO ratio of 12:1 was shown in Figure 3. Thereaction with methanol-MA mixture progressed much faster than that with MA alone. The increase in methanol to PO molar ratio fastened the reaction although a slight inhibitionwas noticed at a ratio of 3:1. This inhibition might be attributed to the formation ofbyproduct glycerol, which adsorbs onto Novozym 435, and reduce the substrate diffusion.The higher BD yield with methanol-MA mixture even at methanol to PO molar ratio of 3:1suggests that the presence of MA minimized the methanol deactivation of Novozym 435. Since higher methanol concentration may lead to the formation of glycerol, methanol to PO ratio of 1:1 was chosen for the subsequent studies. At low methanol to palm oil molar ratioof ≤1:1, byproduct could be a mixture of diacetylglycerol and triacetylglycerol. The possibility of formation of monoacetylglycerol is very low due to the presence of excess MA (12:1). Furthermore, monoacetylglycerol and diacetylglycerol can be converted into triacetylglycerol byA cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 reacting with MA. Triacetylglycerol can be used as biodiesel additive, and is not necessary to remove from biodiesel.3.3 Effect of Novozym 435 loadingThe time course of the transesterification of palm oil with methanol-MA mixtureand MA alone at different Novozym 435 loading were shown in Figure 4a and 4b,respectively. The rate of reaction increased with the increase in Novozym 435 loading andreached a maximum level at 20 and 30 wt% of substrate (PO) for methanol-MA mixture and MA alone, respectively. Du et al. [10] have found that the rate of reaction with MA islower than that with methanol, consequently the more lipase used. Hence, the use ofmethanol-MA mixture reduced the amount of Novozym 435 required (20 wt%) for themaximum reaction rate. The maximum BD yield with methanol-MA mixture and MAalone was 95-96% after 8 hr (Figure 4a) and 88-89% after 24 h (Figure 4b), respectively.The transesterification of PO to BD with methanol-MA mixture is, therefore, at least 3-foldefficient than that with MA alone. 3.4 Novozym 435 recyclingThe Novozym 435 recycling with methanol-MA mixture and MA alone wasperformed at 40 and 50 ˚C . Each cycle was set at 7 and 24 h for methanol-MA mixture andMA alone, respectively. After each cycle, Novozym 435 was recovered by filtration(Whatman 125), washed with 5-10 ml of MA and subsequently reused. The remaining activity of the enzyme was defined as percentage of BD yield at a given cycle compared to the yield at 1st cycle.Figure 5 shows that Novozym 435 could be repeatedly used at 40 ˚C over 10 cycles without considerable loss of its activity regardless of using methanol-MA mixture (Figure 5a) or MA alone (Figure 5b). However, the enzyme activity slightly dropped during theA cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 repeated use at 50 ˚C although the maximum rate of reaction was found at 50-60 ˚C in this study and elsewhere [7]. The remaining activity of Novozym 435 after 10 cycles at 50 ˚C was 82-85% for both methanol-MA mixture (Figure 5a) and MA alone (Figure 5b). Thisresult suggests that the operating temperature for prolong use of Novozym 435 should bekept at around 40˚C to avoid heat induced deactivation. Du et al. [10] have reported thatNovozym 435 can be repeatedly used at 40 ˚C over 100 cycles when MA is used as acylacceptor. 4. ConclusionsAn improved and novel approach for Novozym 435-catalyzed transesterification ofPO with methanol-MA mixture as acyl acceptor was investigated. Methanol is more activethan MA but it deactivates Novozym 435 at methanol to PO molar ratio of >1:1. Methanoldeactivation of Novozym 435 was minimized by the presence of MA in the reaction mixture, and methanol to PO molar ratio of 1:1 was found to be the most effective for enhanced transesterification of PO to BD when MA to PO molar ratio was 12:1. The reaction with methanol-MA mixture progressed 3-fold faster than that with MA alone.Novozym 435 can satisfactorily be recycled either using methanol-MA mixture or MAalone. This novel approach of using methanol-MA mixture as acyl acceptor provides an improved method for enzymatic production of BD from vegetable oils.AcknowledgementFinancial support from the Agency for Science Technology and Research (A*STAR) of Singapore is gratefully acknowledged.A cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Figure CaptionsFig. 1 Effect of MA to PO molar ratio on BD yield after 24 h of reaction. Reaction conditions: 2 g of PO, 0.1 g of Novozym 435 (5 wt% of PO), temperature of 50 °C andshaking speed of 250 rpm.Fig. 2 Comparison of methanol and MA as acyl acceptor for transesterification of PO toBD. Reaction conditions: 2 g of PO, 0.1 g of Novozym 435, temperature of 50 °C andshaking speed of 250 rpm. Methanol (1/3 stoichiometric amount) was added three times at 0, 4 and 16 h of reaction.Fig. 3 Transesterification of PO to BD with methanol-MA mixture at different methanol toPO molar ratios. Reaction conditions: 2 g of PO, 0.1 g of Novozym 435, MA to PO molarratio of 12:1, temperature of 50 °C and shaking speed of 250 rpm.Fig. 4 Effect of Novozym 435 loading on transesterification of PO to BD using methanol-MA mixture (a) and MA alone (b). Reaction conditions: 2 g of PO, temperature of 50 °C, MA to PO molar ratio of 12:1, methanol to PO molar ratio of 1:1 and shaking speed of 250 rpm.Fig. 5 Novozym 435 recycling at reaction temperature of 40 and 50 °C. Each cycle was setfor 7 and 24 h for methanol-MA mixture (a) and MA alone (b), respectively. Reaction conditions: 2 g of PO, MA to PO molar ratio of 12:1, methanol to PO molar ratio of 1:1, 0.4 g of Novozym 435 for methanol-MA mixture, 0.6 g for MA alone and shaking speed 250 rpm. The method of recycling was described in the text (section 3.4).A cc e p t ed Ma nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 601020304050607034681012MA to PO molar ratioB D y i e l d (%)Fig.1A cc e p t ed Ma nu sc ri p t5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 0102030405060708090100061218243036Time (h)B D y i e l d (%)3-step addition of methanolMA to PO ratio 8:1MA to PO ratio 12:1Fig. 2A cc ep te d5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 0204060801000481216202428Time (h)B D y i e l d (%)Fig. 3A cc ep te dM a nu sc ri p t5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 02040608010024681012Time (h)B D y i e l d (%)5 wt%of palm oil10 wt% of palm oil20 wt% of palm oil 30 wt% of palm oil20406080100061218243036Time (h)B D y i e l d (%)5 wt% of palm oil 10 wt% of palm oil 20 wt% of palm oil 30 wt% of palm oil 40 wt% of palm oilFig. 4(a)(b)A cc ep te dMa nu sc ri p t5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 02040608010012345678910Cycle No.R e m a i n i n g A c t i v i t y (%)40 °C50 °C2040608010012345678910Cycle No.R e m a i n i n g A c t i v i t y (%)40 °C 50 °CFig. 5(a)(b)A cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 References[1] W. Du, W. Li, T. Sun, X. Chen, D. Liu, Perspectives for biotechnological production ofbiodiesel and impact, App. Microbiol. Biotechnol, 79 (2008) 331-337.[2] L. Li, W. Du, D. Liu, L. Wang, Z. Li, Lipase-catalyzed transesterification of rapeseedoils for biodiesel production with a novel organic solvent as the reaction medium, J.Mol. Catal. B: Enzymatic 43 (2006) 58-62.[3] M.M.R. Talukder, S.M. Puah, J.C. Wu, W.J.Choi, Y. Chow, Lipase-catalyzedmethanolysis of palm oil in presence and absence of organic solvent, Biocatal.Biotrans. 24 (2006) 257-262.[4] L.A. Nelson, T.A. Foglia, W.N. Marmer, Lipase-catalyzed production of biodiesel,J.Am.O.C.S. 73 (1996) 1191-1195.[5] W. Du, Y. Xu, D. Liu, J. Zeng, Comparative study on lipase-catalyzedtransesterification of soybean oil for biodiesel production, J. Mol. Catal. B: Enzymatic 30 (2004) 125-129.[6] Y. Shimada, Y. Watanabe, A. Sugihara, Y. Tominaga, Enzymatic alcoholysis forbiodiesel fuel production and application of the reaction to oil processing, J. Mol.Catal. B: Enzymatic 76 (2002) 133-142.[7] M.M.R. Talukder, K.L.M. Beatrice, O.P. Song, S. Puah. Improved method for efficientproduction of biodiesel from palm oil, Energy & Fuels, 22 (2008) 141-144.[8] Y. Luo, G. Wang, Y. Ma, D. Wei. Application of silica gel prolonged release systemfor methanol in the production of biodiesel, J. Chem. Technol. Biotechnol. 81 (2006) 1846-1848.J.H. Lee, One-stage process for feed and Biodiesel and Lubricant oil, U.S. Pat. No 0022929 A1.A cc ep te dMa nu sc ri p t4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 [9] Y. Xu, W. Du, D. Liu, J. Zeng. A novel enzymatic route for biodiesel production fromrenewable oils in a solvent-free medium. Biotechnol. Lett. 25 (2003) 1239-1241 [10] W. Du, Y. Xu, D. Liu, J. Zeng, Comparative study on lipase-catalyzed transformationof soybean oil for biodiesel production with different acyl acceptors, J. Mol. Catal. B:Enzymatic 30 (2004) 125–129.[11] J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, Vogel’s Textbook ofQuantitative Chemical Analysis, Pearson Education Press, 2000, pp. 364.[12] M. Holcapek, P. Jandera, J. Fischer, B. Prokes, Analytical monitoring of theproduction of biodiesel by high-performance liquid chromatograph with variousdetection method, J. Chromatogr. A. 858 (1999) 13-31.[13] J.W. Chen, W.T. Wu, Regeneration of immobilized Candida antarctica lipase fortransesterification, J. Biosci. Bioeng. 95 (2003) 466-469.[14] M.M.R. Talukder, J.C. Wu, T. B. V. Nguyen, N. M. Fen, Y. L. S. Melissa, Novozym435 for production of biodiesel from unrefined palm oil: Comparison of methanolysis methods, J. Mol. Catal. B: Enzymatic 60 (2009) 106–112。