第六章 水蒸气
工程热力学第六章 热力学微分关系式及实际气体性质
第一节 主要数学关系式
简单可压缩系统,所有状态是二个独立参数 的函数。状态参数都是点函数,微分是全微 分,设;z=f(x,y),则:
dz
z x
y
dx
z y
x
dy
dz
Mdx
Ndy; M
z x
y
,N
z y
x
M
y
x
y2zx;N xy
x2zyM y x
M y x
完成一个循环则: dzxzy
V
G p
T
三、麦克斯韦关系式
T V
s
p S
v
T
p
s
V S
p
S V
T
p T
v
S p
T
V T
p
四、热系数
系统的三个基本状态参数p、v、T之间应用
函数关系式:
v p
T
p T
v
T v
p
1
v p
或
v
dv
p 常 数 时 q p cpdTp
c pdT p
cvdT p
T
p T
v
d
v
p
得
:
cp
cv
T
p T
v v T
p
理想气体:
cp
cv
T
R v
R=R p
第五节 克拉贝龙方程
纯物质在定压相变过程中温度保持不变,说 明相变时压力和温度存在函数关系:
简化:
dp dT
h(β) h(α) T(v(β) v(α)
的比值,即z=v/vid=pv/RT或pv=zRT
对理想气体z=1,对实际气体z是状态函数, 可能大于1或小于1。z的大小表示实际气体性 质对理想气体的偏离程度
工程热力学课程内容
824:《工程热力学》课程考试大纲1、本考试科目简介工程热力学是能源工程、机械工程、航空航天工程、材料工程、化学工程、生物工程等领域专业的重要技术基础课,在许多工程领域中有广泛应用。
本课程研究能源转换、利用,特别是热能转换成机械能的原理、途径、规律及提高转换效率的方法。
主要内容有:热力学能、功和热;热力学第一定律;能量的可用性、熵和热力学第二定律;理想气体和水蒸气的性质;热力过程和热力循环的分析。
2、考试内容要求第一章基本概念基本概念,如系统、外界、开口系统、闭口系统、绝热系统、孤立系统、平衡状态、状态参数、可逆过程、循环、功和热等等。
熟练掌握基本概念。
第二章热力学第一定律热力学第一定律:热力学第一定律的实质—能量守衡与转换定律在热现象中的应用、总能、热力学能、焓、膨胀功、技术功、热力学第一定律的第一解析式和稳定流动能量方程式及其应用。
熟练掌握本章基本概念、基本理论及基本计算。
第三章理想气体的性质理想气体的性质:理想气体和实际气体的概念、理想气体状态方程、理想气体的比热容和热力学能、焓、熵的定义、计算;理想气体混合气体的性质:理想气体混合物、理想气体的各种成分表示法、理想气体的分压力定律、分体积定律、折合气体常数和折合摩尔质量、混合气体的热力学能和焓、混合气体的熵。
熟练掌握本章基本概念、基本理论及基本计算。
第四章理想气体基本的热力过程理想气体的基本热力过程:定温过程、定压过程、定容过程、可逆绝热(定熵)过程和多变过程的过程方程、参数变化和过程中功及热量的计算及过程的p-v图和T-s图。
熟练掌握本章基本概念、基本理论及基本计算。
第五章热力学第二定律热过程的方向性、热力学第二定律的表述;卡诺循环和卡诺定理、克劳修斯积分不等式、熵流和熵产、熵方程、孤立系统的熵增原理;作功能力、作功能力损失与熵产和用平衡方程。
熟练掌握本章基本概念、基本理论及基本计算。
第六章水蒸气饱和状态、饱和温度、饱和压力、饱和湿蒸汽、干度、三相点、水蒸气状态的确定、水的定压加热汽化过程及其在p-v图和T-s上的表示、水蒸气定压过程的热量、水蒸气绝热过程的功;熟练掌握本章基本概念、基本理论。
工程热力学第六章水蒸气
第六章 小 结
1、熟悉pT相图 2、熟悉1点2线3区5态 3、会查图表 4、基本热力过程在p-v、T-s、h-s图上的表
示,会计算 q、wt
" '
y xy" (1 x ) y '
y y x " y y'
'
已知p或T (h’,v’,s’,h’’,v’’,s’’)+ 干度 x
h ,v ,s
6-4
两相比例由干度x确定
定义
干饱和蒸汽质量 mv x = 湿饱和蒸汽质量 mv mf
对干度x的说明:
干饱和蒸汽
饱和水
x = 0 饱和水 0≤x ≤1
干饱和蒸汽质量 mv x = 湿饱和蒸汽质量 mv mf
对干度x的说明:
干饱和蒸汽
饱和水
x = 0 饱和水 0≤x ≤1
x=1
汽
干饱和蒸
在过冷水和过热蒸汽区域,x无意义
第六章普通微生物学课后习题及答案2
一、名词解释灭菌:指采用某种强烈的理化因素杀死物体中所有微生物的措施,包括病原微生物和非病原微生物。
消毒:只利用某种较温和的方法以杀死、消除或降低材料或物体上的病原微生物,使之不能引起疾病的方法;它可以起到防止感染或传播的作用。
防腐:指在某些化学物质或物理因子作用下,能防止或抑制微生物生长繁殖但又未完全致死微生物的一种措施,它能防止食物腐败或防止其他物质霉变,这是一种抑菌作用。
共生关系:两种微生物紧密结合在一起形成一种特殊的共生体,在组织和形态上产生了新的结构,在生理上有一定的分工。
互生关系:两种可以单独生活的生物,当它们生活在一起时,通过各自的代谢活动而有利于对方,或偏利于一方的生活方式。
寄生关系:指一种生物生活在另一种生物的体内或体表,从中取得营养和进行生长繁殖,同时使后者蒙受损害甚至被杀死的现象。
前者称为寄生物,后者称为寄主或宿主。
拮抗关系:由某种生物所产生的某种代谢产物可抑制他种生物的生长发育甚至杀死它们的关系。
分批培养:将微生物置于一定容积的培养基中,经过培养生长,最后一次收获的培养方式。
连续培养:又称开放培养在一个恒定的容积的流动系统中培养微生物,一方面以一定速率不断加入新的培养基,另一方面有以相同的速率流出培养物,以使培养系统中的细胞数量和营养状态保持恒定。
纯培养:在适宜条件下培养纯种得到的培养物。
微生物纯种分离:将多种混杂微生物经某种技术或方法分离成纯种的过程。
混菌培养:两种或两种以上的微生物加以调节控制,不会互相干扰,生长不受抑制,生长在一起的培养方法。
二元培养:由两种具有特定关系的微生物组成的混合培养物。
同步培养:使培养物中所有的微生物细胞都处于相同的生长阶段的培养方法连续培养:又称开放培养在一个恒定的容积的流动系统中培养微生物,一方面以一定速率不断加入新的培养基,另一方面有以相同的速率流出培养物,以使培养系统中的细胞数量和营养状态保持恒定。
恒浊连续培养:根据培养器内微生物的生长密度,并借光电控制系统来控制培养液流速,以取得菌体密度高、生长速度恒定的微生物细胞的连续培养方法。
第六章-凝结和沸腾换热-2
d.过渡沸腾 过渡沸腾 >50℃) 从C点继续提高沸腾温差 ⊿ t(>50℃) ,则热流密度 q不仅没 点继续提高沸腾温差 有增加,反而迅速降低至一极小值 极小值q 图中D点)。这是由于 有增加,反而迅速降低至一极小值qmin (图中 点)。这是由于 产生的汽泡过多且连在一起形成了汽膜, 产生的汽泡过多且连在一起形成了汽膜,覆盖在加热面上不易 脱离,使换热条件恶化所致。 脱离,使换热条件恶化所致。这时的汽膜不断破裂成大汽泡脱 离壁面,其换热状态是不稳定的。 这一阶段称为 离壁面,其换热状态是不稳定的。从C到D这一阶段称为过渡沸 到 这一阶段称为过渡沸 腾。
米海耶夫公式 其中 按 上式可转换为
h = C1 ∆ t 2 .33 p 0 .5
C1 = 0.122 W (m ⋅ N 0.5 ⋅ K 3.33 )
q = h∆t
h = C 2 q 0 .7 p 0 .15 C2 = 0.533W 0.3 (m0.3 ⋅ N 0.15 ⋅ K)
上式中: 上式中:
h = f ( ∆t , g ( ρ l − ρ v ), r , σ , C p , λ , µ , C w ,........)
其中C 为沸腾液体与接触表面材料有关的系数。 其中 w为沸腾液体与接触表面材料有关的系数。 常用的关于核态沸腾换热的经验计算公式有两个 (1)对于水的大容器饱和核态沸腾,推荐采用米海 对于水的大容器饱和核态沸腾,推荐采用米海 水的大容器饱和核态沸腾 耶夫公式,适用压力范围: 耶夫公式,适用压力范围:105~4×106 Pa 公式
12
3
可见, 因此, 可见,q ~ ∆t 3 ,因此,尽管有时上述计算公式得到的 q与实验值的偏差高达±100%,但已知 计算 与实验值的偏差高达± %,但已知 与实验值的偏差高达 %,但已知q计算∆t 时,则 可以将偏差缩小到±33%。这一点在辐射换热中更为明显。 %。这一点在辐射换热中更为明显 可以将偏差缩小到±33%。这一点在辐射换热中更为明显。 计算时必须谨慎处理热流密度。 计算时必须谨慎处理热流密度。 (3) 适用于制冷工质沸腾换热的 ) 适用于制冷工质沸腾换热的Cooper关联式 关联式
水蒸气裂解
3.2 裂解炉-裂解炉裂解管
裂解炉的结构:
合金材料可耐1300 K高温 可从1960S的0.5-0.8s缩短到1980s末的
0.1-0.15s Q:开车时,反应管会膨胀伸长10-20
cm,需要采取何措施?
7
3.3 急冷器-Transfer-lineexchanger(TLE)
石脑油的组成
5
3.1 原料的影响-操作条件
3.1 原料的影响-操作条件
Q:为什么乙烷的各项操作参数指标均比石脑油 进料高?
操作条件对收率影响很大,所以常用模拟程序 (程序包包含几百个可能反应)来优化条件
3.1 原料的影响-操作条件
乙烷进料:乙烯X高,S在70 wt%以上,甲烷 和氢气第二,生成少量裂解汽油,丙烯及以 上烃类产量很低
3
2.2 SC反应机理-自由基与碳正离 子稳定性
2.2 SC反应机理
Q1:乙基自由基比甲基自由基稳定,为 何自链引发时不直接生成乙基自由基?
Q2:以石脑油为原料时,SC为什么不采 用一个催化过程?与FCC比较说明。
2.2 SC反应机理
正构烷烃中碳键愈长,愈易断裂
C C> C C C > C C C C > C C C C C C
主要内容
1. 前言 2. 裂解反应(热力学、机理与动力学) 3. 生产工艺(原料、裂解炉、热交换
器与结焦) 4. 生产流程 5. 现状与发展
Steam Cracking 与Pyrolysis 与石油加工关系密切(原料和产品) 与Visbreaking,Delaycoking和
Flexicoking区别
2.2 SC反应机理4来自2.3 SC反应动力学
物理化学第六章课后答案完整版
第六章 相平衡指出下列平衡系统中的组分数C ,相数P 及自由度F 。
(1) I 2(s)与其蒸气成平衡;(2) CaCO 3(s)与其分解产物CaO(s)和CO 2(g)成平衡;(3) NH 4HS(s)放入一抽空的容器中,并与其分解产物NH 3(g)和H 2S(g)成平衡; (4) 取任意量的NH 3(g)和H 2S(g)与NH 4HS(s)成平衡。
(5) I 2作为溶质在两不互溶液体H 2O 和CCl 4中达到分配平衡(凝聚系统)。
解: (1)C = 1, P = 2, F = C – P + 2 = 1–2 + 2 = 1. (2)C = 3–1 = 2, P = 3, F = C –P + 2 = 2–3 + 2 = 1. (3)C = 3–1–1 = 1, P = 2, F = C –P + 2 = 1–2 + 2 = 1. (4)C = 3–1 = 2, P = 2, F = C –P + 2 = 2–2 + 2 = 2. (5)C = 3, P = 2, F = C –P + 1 = 3–2 + 1 = 2.已知液体甲苯(A )和液体苯(B )在90℃时的饱和蒸气压分别为=和。
两者可形成理想液态混合物。
今有系统组成为的甲苯-苯混合物5mol ,在90 ℃下成气-液两相平衡,若气相组成为求:(1) 平衡时液相组成及系统的压力p 。
(2) 平衡时气、液两相的物质的量解:(1)对于理想液态混合物,每个组分服从拉乌尔定律,因此(2)系统代表点,根据杠杆原理mol.n mol .n n )..(n )..(.n n n )x x (n )x y (l g l g g l l l ,B o ,B g o ,B g ,B 7843216125030304556050==-=-=+-=-单组分系统的相图示意如右图。
试用相律分析图中各点、线、面的相平衡关系及自由度。
已知甲苯、苯在90℃下纯液体的饱和蒸气压分别为kPa和kPa。
工程热力学-06 水蒸气的热力性质
(t
−
ts
)
=
c
p
t ts
D
6-2 水蒸气的产生过程
• 水蒸气在定压过热过程中吸收的热量也等
于焓的增加:
(64;
• 式中,h一定压力为p、温度为t时过热水蒸气的 焓。过热水蒸气的焓为
h = h"+ q" = h0 + q '+ r + q"
(6-15)
6-2 水蒸气的产生过 程
蒸发热(液体温度越低,蒸发热越高)
蒸发制冷
1
2、饱和状态
逸出的分子数 = 被液面俘获的分子数
饱和状态:汽化与凝结的动态平衡
饱和状态:汽化和液化达到动态平 衡共存的状态
饱和水、饱和水蒸气 饱和液体、饱和蒸气
饱和温度Ts 饱和压力ps
饱和状态
饱和状态:汽化与凝结的动态平衡
饱和温度Ts 饱和压力ps
一一对应
§6-2 水蒸气的定压发生过程
t < ts
t = ts t = ts
t = ts
t > ts
未饱和水 饱和水 饱和湿蒸汽 饱和干蒸汽 过热蒸汽
v < v’ v = v’ v ’< v <v’’ v = v’’ v > v’’ h < h’ h = h’ h ’< h <h’’ h = h’’ h > h’’
(3) 理想气体 h = f (T )
实际气体汽化时,T=Ts不变,但h增加 h ''− h ' = γ 汽化潜热
(4) 未饱和水 过冷度 Δt过冷 = ts − t 过冷水
过热蒸汽 过热度 Δt过热 = t − ts
第六章 气体与蒸汽的流动(绝热节流过程)
h2 h1
.
p2h2c2 2
一、绝热节流前后参数的变化
(1) 对理想气体
1 p1h1c1 p2h2c2 2
p h c
焓不变 温度不变
压力下降 比容增加
熵增加
h2 h1 T2 T1
p2p1 v2v1 s2 s1
.
(2) 对实际气体
节流前后焓不变,温度不一定不变
绝热节流后气体的温度变化称为节流的温度效应 绝热节流温度效应
pb pc p2pc
mf2 2k p1[(p2)k 2(p2)K K 1](kg /s) k1v1 p1 p1
.
m c m max
0
b
pc / p1
pc (
2
k
)k1
p1 k1
a
mmaxf2
2
k
(
2
2
)k1
p1(kg/s)
k1k1 v1
1.0 pb / p1
(2)渐缩渐扩喷管的流量计算
正常工作时 M= mmaxfmin2kk1(k21)k21vp11(kg/s)
0
1
p2 p0
k
c2 44 .72 cp (T0 T2 )
.
三、临界压力比及临界流速
(1)临界压力比
临界压力
pc
p1
代入出口流速方程 进口压力
cc 2kk1p1v1[1(pp1c)kk1]
cc ac kpcvc
定熵过程 方程式:
pcvc
(
pc
)
k1 k
p1v1 p1
.
临界流速表达式
证明:理想气体微分节流系数μJ =0.
pv RT
v RT p
工程热力学名词解释专题
工程热力学名词解释专题注:参考哈工大的工程热力学和西交大的工程热力学第一章——基本概念1、闭口系统:热力系与外界无物质交换的系统。
2、开口系统:热力系与外界有物质交换的系统。
3、绝热系统:热力系与外界无热量交换的系统。
4、孤立系统:热力系与外界有热量交换的系统。
5、热力平衡状态:热力系在没有外界作用的情况下其宏观性质不随时间变化的状态。
6、准静态过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程7、热力循环:热力系从某一状态开始,经历一系列中间状态后,又回复到原来状态。
8、系统储存能:是指热力学能、宏观动能、和重力位能的总和。
9、热力系统:根据所研究问题的需要,把用某种表面包围的特定物质和空间作为具体指定的热力学的研究对象,称之为热力系统。
第二章——热力学第一定律1、热力学第一定律:当热能与其他形式的能量相互转换时,能的总量保持不变。
或者,第一类永动机是不可能制成的。
2、焓:可以理解为由于工质流动而携带的、并取决于热力状态参数的能量,即热力学能与推动功的总和。
3、技术功:技术上可资利用的功,是稳定流动系统中系统动能、位能的增量与轴功三项之和4、稳态稳流:稳定流动时指流道中任何位置上的流体的流速及其他状态参数都不随时间而变化流动。
第三章——热力学第二定律1、可逆过程:系统经过一个过程后,如果使热力系沿原过程的路线反向进行并恢复到原状态,将不会给外界留下任何影响。
2、热力学第二定律:克劳修斯表述:不可能把热从低温物体转移到高温物体而不引起其他变化。
开尔文普朗克表述:不可能从单一热源吸热而使之全部转变为功。
3、可用能与不可用能:可以转变为机械功的那部分热能称为可用能,不能转变为机械功的那部分热能称为不可用能。
4、熵流:热力系和外界交换热量而导致的熵的流动量5、熵产:由热力系内部的热产引起的熵的产生。
6、卡诺定理:工作再两个恒温热源(1T和2T)之间的循环,不管采用什么工质,如果是可逆的,其热效率均为121TT-,如果不是可逆的,其热效率恒小于121TT-。
第六章 水蒸气的热力学性质及过程
水蒸气的p 图和T 三、水蒸气的p-v图和T-s图
p
未 饱 和 水 区
C
过热蒸汽区
T x=1
未 饱 和 水 区
C
过热蒸汽区
x=0
湿蒸汽区
0 v
0
x=0
湿蒸汽区
x=1 s
1、一点二线三区五态。 2、当压力升高时,饱和温度随之升高,汽化过程缩短,比汽化 潜热减少,预热过程变长,比液体热增加。 3、 饱和水的比体积随压力的升高略有增加,而饱和蒸汽的比 体积则随压力的升高明显的减小。 4、临界点上的比汽化潜热为零,即汽化在一瞬间完成。
第六章 水蒸气的热力性质和过程
第一节 概述 第二节 水的定压汽化过程和 水蒸气的p 图及T 水蒸气的p-v图及T-s图 第三节 水蒸气表 第四节 水蒸气的h-s图 水蒸气的h 第五节 水蒸气的基本热力过程
基本要求: 基本要求:
1。熟练掌握水蒸汽的有关基本概念: 。熟练掌握水蒸汽的有关基本概念: (1)饱和水(饱和温度、饱和压力) )饱和水(饱和温度、饱和压力) )、过热度 (2)过冷度(过冷水)、过热度(过热蒸汽) )过冷度(过冷水)、过热度(过热蒸汽) (3)液体热、过热热、汽化潜热、干度、临界点 )液体热、过热热、汽化潜热、干度、 (4) 一点、两线、三区、五态 ) 一点、两线、三区、 2。熟练掌握水蒸汽的热力性质、水定压汽化过程和水蒸汽的 。熟练掌握水蒸汽的热力性质、 P-V图、T-S图 图 图 3。掌握水蒸汽表和利用水蒸汽表进行五态的相关基本计算 。 4。掌握水蒸汽的h-S图和基本热力过程计算 。掌握水蒸汽的 图和基本热力过程计算
例 P=0.5Mpa,v=0.36m3/kg,确定状态,并求出温度、 ,确定状态,并求出温度、 比焓、比热力学能和比熵。 解: 查饱和水与饱和蒸汽表 ts=151.85°C,v’=0.0010928m3/kg,v”=0.37481m3/kg 湿蒸汽
水蒸气
Boil (气体和液体均处在饱和状态下)
饱和状态Saturation state
饱和状态:汽化与凝结的动态平衡
饱和温度Ts 饱和压力ps
一一对应
放掉一些水,Ts不变, ps?
Ts
ps
ps=1.01325bar
青藏ps=0.6bar 高压锅ps=1.6bar
第六章 水和水蒸气的性质
水和水蒸气是实际气体的代表
水蒸气 在空气中含量极小,当作理想气体
一般情况下,为实际气体,使用图表
18世纪,蒸气机的发明,是唯一工质 直到内燃机发明,才有燃气工质 目前仍是火力发电、核电、供暖、化工的工质 优点: 便宜,易得,无毒,
膨胀性能好,传热性能好 是其它实际气体的代表
不可逆过程:
p2 22’ s
wt h1 h2'
水蒸气的绝热过程
汽轮机、水泵 q = 0
h
h1
1
p1
h2’
h2
p2 22’
s
可逆过程: s
wt h1 h2
不可逆过程
wt h1 h2'
透平内效率
oi
h1 h2' h1 h2
水蒸气的定温过程
实际设备中很少见
p
C
T
Tc T
远离饱和 线,接近 于理想气 体
v
水蒸气的定温过程
可逆过程:
理想气体 12’
q Tds Ts
测量干度原理
T wt q h
绝热节流 h
1
2
2
1
2’
s
s
水蒸气的定容过程
实际设备中不常见
《轮机热工基础》复习题
《轮机热工基础》复习题提醒大家:该题库由轮机工程学院葛景华老师创建,供集美大学轮机工程学院本科生教学过程中使用。
请大家珍惜老师的劳动成果,未经老师允许,不得向其他学校传播。
第一章基本概念1. 与外界只发生能量交换而无物质交换的热力系统称为 B 。
A、开口系统B、闭口系统C、绝热系统D、孤立系统2. 与外界既无能量交换又无物质交换的热力系统称为 D 。
A、开口系统B、闭口系统C、绝热系统D、孤立系统3. 开口系统与外界可以有 D 。
A、质量交换B、热量交换C、功量交换D、A+B+C4. 与外界没有质量交换的系统是闭口系统,同时它也可能是__D__系统。
A.开口 B.绝热 C.孤立 D.B+C5. 下列 B 与外界肯定没有质量交换但可能有热量交换。
A、绝热系统B、闭口系统C、开口系统D、孤立系统6. 实现热功转换的媒介物质称为 C 。
A、系统B、气体C、工质D、蒸气7. 工质应具有良好的和。
AA、流动性/膨胀性B、耐高温性/导热性C、耐高压性/纯净D、耐腐蚀性/不易变形8. 下列各项为工质热力状态参数的是:。
CA、热量、压力、熵B、功、比容、焓C、内能、压力、温度D、内能、比热、焓9. 在工质的热力状态参数中,属于基本状态参数的是。
AA.温度 B.内能 C.焓 D.熵10. 500℃等于_______C____。
,则绝对压力为 D 。
A、160KPaB、100KPaC、60KPaD、40KPa11.若大气压力为100KPa,表压力为60KPa,则绝对压力为 A 。
A、160KPaB、100KPaC、60KPaD、40Kpa12.在没有相变和化学反应时,处于_C___是系统实现平衡的充分和必要条件。
A.热平衡 B.力平衡 C.热和力同时平衡 D.都不是14. 在下列各项中,__A__都不是状态参数,是过程量。
A.功和热量 B.功和压力 . C.热量和温度 D.压力和比体积15. 下列热力学过程中视为可逆过程的是 C 。
热力学第六章
s3 s 0.4763kJ/(kg.K)
4点对应的是未饱和水,
p4 p1 5MPa h4 h3 137.72 kJ kg
s4 s3 0.4763kJ/(kg.K)
3.增加了过热器,蒸汽在过热器 中的吸热过程(6→1)也是定压 过程,提高了平均吸热温度, 从而提高了乏气的干度x,提高 了循环效率,也改善了汽轮机 的工作条件。
p 4 5 6 3
1
2 v
郎肯循环热效率的计算
1. 锅炉中的定压吸热过程(4→5→6→1)吸入的热量:
q1 h1 h4
2. 定熵膨胀过程(1→2)中工质(或汽轮机)做功:
制热
动力
T2 环境温度
T0
制冷
T2
s
热力循环其它分类
气体动力循环:空气为主的燃气 1. 按工质 如燃气轮机等,按理想气体处理 蒸汽动力循环:以水蒸气为主 如蒸汽轮机等,按实际气体处理 2. 按燃料燃 烧方式分 内燃式:燃料在内部燃烧,燃气即工质,
如内燃机、燃气轮机等。
外燃式:燃料在外部燃烧,燃烧放出的热
为克服蒸汽卡诺 循环的缺陷,工 程实际中学常用 朗肯循环
朗肯循环
朗肯循环(Rankine Cycle)
朗肯循环系统工作原理
蒸汽过 热器 锅 炉 汽轮机 四个主要装置: 锅炉 汽轮机 发电机 凝汽器 给水泵 凝汽器
给水泵
蒸汽电厂示意图
朗肯循环(Rankine Cycle)
二、蒸汽动力循环系统的简化(理想化)
h2 h x h h 137 kJ kg
例1:朗肯循环,蒸汽进入汽轮机初压 p1=5MPa,初温 t1=500℃, 乏汽压力 p2=5kPa,不计水泵功耗。要求:将朗肯循环表示在Ts图上,并求循环净功、加热量、循环热效率及汽耗率。
第06章 水蒸气性质
1
主要内容
水蒸气热力性质 水蒸气产生过程 水蒸气热力性质图表 水蒸气热力过程
2
6-1 水蒸气的饱和状态
汽化 – 液体转变为汽体的过程 液化 – 蒸汽或气体转变为液体的过程 蒸发 – 液体表面在任何温度进行的缓慢汽过程
饱和状态是汽化和液化达到动态平衡共存的状态 液化的微观机制 汽化的微观机制(动画) 动画)
19
6-2 水蒸气的产生过程
水的汽化潜热可由实验测定。 水的汽化潜热可由实验测定。压力愈 高,汽化潜热愈小,而当压力达到临界 压力时,汽化潜热变为零(见图6 压力时,汽化潜热变为零(见图6-4) 表6-2不同压力下水的汽化潜热
压力 p/MPa
0.01 0.1 1 5 10 20 585.9 22.064=pc 0
18
6-2 水蒸气的产生过程
2、饱和水变为饱和水蒸汽的定压汽化过程 使1kg饱和水在一定压力下完全变为相同 kg饱和水在一定压力下完全变为相同 温度的饱和水蒸气所需加入的热量称为水 的汽化潜热,用符号r表示。 的汽化潜热,用符号r表示。在温熵图上汽 化 潜热则相应于水平线段下的矩形面积:
(6-6)
33
6-3 水蒸气图表
水蒸气热力性质图结构特征口诀
- “一点连双线三区五态含”: 一点连双线三区五态含” 一点 – 临界点 双线 – 饱和水线、饱和水蒸气线 三区 – 未饱和水区、饱和蒸汽(湿蒸汽、两相)区、
过热水蒸气区
五态 – 未饱和水态、饱和水态、湿蒸汽态、饱和水蒸
汽态、过热水蒸气态
34
6-3 水蒸气图表
2、水蒸气热力性质表 “饱和水与饱和水蒸气性质表” 饱和水与饱和水蒸气性质表” “未饱和水与过热水蒸气性质表” 未饱和水与过热水蒸气性质表”
水蒸气蒸馏法提取天然香料
三、天然香料生产中常用的水汽蒸馏方法
•根据产生蒸汽的热源不同分为: 根据产生蒸汽的热源不同分为: 根据产生蒸汽的热源不同分为 间接蒸汽 直接蒸汽 锅底直接热源
•根据香料原料与水蒸气接触的方式,分为: 根据香料原料与水蒸气接触的方式,分为: 根据香料原料与水蒸气接触的方式 水中蒸馏 水上蒸馏 直接水汽蒸馏
因此尽管各组分本身的沸点高于混合液的沸点,但当分 因此尽管各组分本身的沸点高于混合液的沸点, 各组分本身的沸点高于混合液的沸点 压总和等于大气压时, 压总和等于大气压时,液体混合物即开始沸腾并被蒸馏 出来。 出来。
水蒸汽蒸馏中冷凝液的组成由所蒸馏的化合物的分子 量以及在此蒸馏温度时它们的相应蒸气压决定。 量以及在此蒸馏温度时它们的相应蒸气压决定。水蒸 气蒸馏效果要优于一般蒸馏和重结晶: 气蒸馏效果要优于一般蒸馏和重结晶:
接收精油与水的接收器兼油水分离器
采用直火加热发生蒸汽的加热方式 生产设备较小, 生产设备较小,生产能力有限
2、土法蒸馏锅: 土法蒸馏锅:
P75 图6-2 土法水汽蒸馏设备示意图 与古式蒸馏锅相比,生产效益提高了。 与古式蒸馏锅相比,生产效益提高了。 生产能力相对还是比较小。 生产能力相对还是比较小。
压力对水蒸气蒸馏香茅醛水油比的影响
优点:高温高压,可以降低水、油比, 优点:高温高压,可以降低水、油比,可以提高水汽 蒸馏的效率。 蒸馏的效率。 缺点:高温高压有可能损坏精油的成分,成本较高。 缺点:高温高压有可能损坏精油的成分,成本较高。
二、植物原料水汽蒸馏时的水散作用及影响水 汽蒸馏效率的因素
第六章 水蒸气蒸馏法提取天然香料
1、基本原理 、
水汽蒸馏法 萃取法(浸提法) 萃取法(浸提法) 压榨法 2、常用水汽蒸馏方法 、 吸附法 超临界萃取 3、水汽蒸馏设备 、 分子蒸馏技术
第六章 水和水蒸气的性质
饱和状态:汽化与凝结的动态平衡
At the equilibrium state, the pressure corresponding to only one temperature. That is, . Saturation temperature 饱和温度Ts 饱和压力ps Saturation pressure
6.3.1 P=constant (压力 p 是定值)
§6-3 水蒸气的定压发生过程
t < ts
未饱和水
t = ts
t = ts
t = ts
t > ts
v > v’’ h > h’’ s > s’’
过热
饱和水 饱和湿蒸汽 饱和干蒸汽 过热蒸汽
v < v’ h < h’ s < s’
v = v’ v ’< v <v’’ v = v’’ h = h’ h ’< h <h’’ h = h’’ s = s’ s ’< s <s’’ s = s’’
(气体和液体均处在饱和状态下)
Evaporation occurs at any temperature and pressure. (蒸发可在任何温度和压力下发生.) Evaporation rate depends on the free surface area, the temperature, the flow rate above, etc. (蒸发的速度与自由液面表面积,液体温度,液面风速等有关.
t ts
t
v
t过热 t ts
注意:水蒸气定压发生过程说明
(1) (2)
Q U W U pdV 只有熵加热时永远增加 U pV U ( pV ) H S Sf Sg 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力不高时:
热能工程教研室
h1 u1 p1v1 0
三、温度为t、压力为p的饱和水
设想一个等压过程从 t = 0.01 oC 加热到 t
h h
' t, p
' 0.01o C , p
Ts
273.16 K
c p dT
s
' t, p
s
'
0.01o C , p
dT cp 273 .16 K T
热能工程教研室
例如:
处于平衡状态的汽 液混合物
沸腾中的液体
1、汽液相变的若干概念 5.饱和蒸汽压
饱和状态下的蒸汽压力,亦即液体沸腾时所
产生的气泡中的蒸汽压力称为饱和蒸汽压。
对应一定的温度应有一定的饱和蒸汽压; 反之: 一定的压力对应一定的饱和温度(ts);
饱和蒸汽压随温度的升高而增大
热能工程教研室
w pdv
wt vdp
可逆过程
q Tds
热能工程教研室
水蒸气的基本过程
1、分析步骤: ①根据初态的两个参数{(p,t), (p,x)或(t,x)}从表或图中查得 其它参数 ②根据过程特征和一个终态参数 确定终态,再从表或图上查得其 它参数
③根据求得的初、终态参数计算q, w等
热能工程教研室
五、压力为p的湿饱和蒸气
因为是两相混合物,需用干度x确定其状态
mv x ml mv
任一比参数y(如u、h、s、v等)可由下式计算:
yx xy 1 xy
"
热能工程教研室
'
六、压力为p的过热蒸气
在饱和蒸气的基础上继续加热,即得过热蒸气。
参数满足以下基本关系:
t , v, h, s, u ts , v , h , s , u
热能工程教研室
4、三相点(triple point)
纯物质的汽液固三相平衡共存时的状态称为三相点。 ATtp——升化曲线
BTtp——溶解曲线
CTtp——汽化曲线
p
固
B
液
临界点
C
A:三相点
ptp = 611.659 Pa Ttp = 273.16 K
热能工程教研室
三相点
A
Ttp
气
0
T
5、临界点
当温度超过一定值tc时,汽相与液相间无 差别。 tc称为临界温度,与临界温度相对 应的饱和压力pc称为临界压力。
热能工程教研室
水蒸气的基本过程
2、基本过程:
①定容过程(v = const) w=0 ②定压过程(p = const) w = p(v2 – v1) wt = 0;
③定温过程(T = const) q = T(s2 - s1) ④定熵过程(s = const)
最重要
q=0
热能工程教研室
水蒸气的基本过程
汽 化
沸腾过程只在沸点下才会发生。
热能工程教研室
1、汽液相变的若干概念
2.凝结(condensation) 物质由汽态转变为液态的过程称为凝结 。 又称液化现象,是汽化的反过程 3.汽化潜热(latent heat of vaporation) 汽化过程中1kg液态物质(饱和液)完全 转变为汽态时所需的热量称为汽化潜热。
" " "
"
过热度:
过热热量:
热能工程教研室
t t ts
qsur h h
"
§7-4 水蒸气表和图
水蒸汽表:饱和水和干饱和蒸汽表、未饱和 水和过热蒸汽表 饱和水和干饱和蒸汽表:‘代表饱和水和干 饱和蒸汽。按压力或温度排列。
未饱和水和过热蒸汽表:粗黑线以上为未 饱和水,黑线以下为过热蒸汽。
1―-2‖-C:饱和蒸气线
T
三区: I:过冷水区
II:湿蒸气区 III:过热蒸气区
Tcr C I 2‘ II 2“ III
1‘
1“
p = pcr
s
五态: 过冷水;饱和水;湿饱和蒸
气;干饱和蒸气;过热蒸气
热能工程教研室
1)
未饱和水的定压饱和阶段 压缩水
压力高于水 温对应的饱 和压力 温度低于水压 对应的饱和温 度;过冷度 上述两种未达到饱 和状态的水的统称
水的 状态
过冷水
未饱和水
热能工程教研室
2)
饱和水的定压汽化阶段
定压汽化过程 所需的热量
汽化潜热γ
mv x ml mv
干度x
mv:饱和蒸气质量
ml:饱和水质量
热能工程教研室
3)
干饱和蒸汽的定压过热阶段
温度高于所处压力下的
过热蒸汽 及过热度
饱和温度的蒸汽。这两
个温度之差为过热度。
热能工程教研室
热能工程教研室
3、安德鲁试验结果
五态
过热蒸汽:一定压力下,温度高于对应饱和温度的蒸汽。 或者说:一定温度下,压力低于饱和蒸汽压的蒸汽。 饱和蒸汽:一定压力下,温度等于对应饱和温度的蒸汽。 或者说:一定温度下,压力等于饱和蒸汽压的蒸汽。 湿蒸汽:饱和蒸汽与饱和液体的机械混合物。 饱和液体:一定压力下,温度等于对应饱和温度的液体。 或者说:一定温度下,压力等于饱和蒸汽压的液体。 未饱和液体:一定压力下,温度低于对应饱和温度的液体。 或者说:一定温度下,压力高于饱和蒸汽压的液体。
优点:用线段的长度表示热量和功;
定压过程热量=焓差;绝热过程技术功=焓差
锅炉蒸气产生
水蒸气在汽轮机中膨胀
分为:过热蒸汽区和湿蒸汽区;定压 线、定干度线、定温线。 湿蒸汽区:定压线=定温线
热能工程教研室
§7-4 水蒸气的基本过程
目标: ①初态和终态的参数 ②过程功和热量 依据: q u w q h wt
§7-3 水和水蒸汽的状态参数
1、图表法求状态参数: p, v, t, h, s,
从水蒸汽图表中查得
u
按u=h-pv 计算
2、物性软件
ASME property code UofO property code ~25种流体的全范围物性计算
热能工程教研室
一、零点的规定
按1963年的第六届国际水蒸汽会议的规定, 选定水的三相点,即273.16k的液相水作 为基准点。 基准点上的液态水的热力学能和熵为零
u’0 =0,s’0 = 0
容易证明:
h‘0≈0
热能工程教研室
二、温度为0.01oC,压力为p的过冷水
水可以近似看成不可压缩介质:
w
pdv 0
因为温度 t1 = t0,又有v1 = v0,
u1 f t1 , v1 f t0 , v0 u '0 0 q ' ' q u1 u0 w 0 s1 s0 0 Ttr
水:tc=373.99 ℃,Pc=22.064 MPa
热能工程教研室
§7-2 水的定压加热汽化过程
热能工程教研室
1、水的定压汽化三阶段
未饱和水的定压预热阶段ab,发 生在液相区
饱和水的定压汽化阶段bd,发生 在液 — 汽两相区 饱和蒸汽的定压过热阶段de,发生 在汽相区
热能工程教研室
2、定压汽化过程的P-v图
1)定压过程
水锅炉中加热;乏汽在冷凝器中的凝结, …
热能工程教研室
水蒸气的基本过程
2)绝热过程
蒸气在汽轮机中的膨胀
热能工程教研室
2、安德鲁试验
对水在不同的
压力下进行定
压加热
热能工程教研室
3、安德鲁试验结果
一点 一点 两线 三区 五态来自物质的临界点两线
饱和蒸汽状态连线(上界限线)
饱和液体状态连线(下界限线)
三区 汽态区:上界限线与临界等温线上段右侧区域
液态区:下界限线与临界等温线上段左侧区域
湿蒸汽区:上、下界限线之间的锺罩形区域
临界点C 一点:
二线:1‗-2‘-C: 饱和水线 三区:I:过冷水区
II:湿蒸气区 III:过热蒸气区
p C pcr
T=Tcr
1―-2‖-C:饱和蒸气线
I
2‘ 1‘
II
III
2“
1“
v
五态:过冷水;饱和水;湿饱和蒸
气;干饱和蒸气;过热蒸气
热能工程教研室
3、定压汽化过程的T-s图
一点:临界点C 二线: 1‗-2‘-C: 饱和水线
典型单元系举例:1atm,0℃下,冰、水混合物 1atm,100℃,水,蒸汽混合物
热能工程教研室
1、汽液相变的若干概念
1.汽化(vaporization) 物质由液态变为汽态的过程称为汽化。
蒸发(evaporation):特指发生在液体表面的 汽化过程,可在任何温度下发生。 沸腾(boiling):汽化在液体内部和表面发 生的强烈的气化过程,并产生大量气泡产生。
根据已知条件确定工质的状态, 然后查相应的表格。
热能工程教研室
T-S图
优点:便于循环分析
缺点:热量和功以面积表示 T
C
分为:湿区和过热区; 定干度线、定压线等。
s
热能工程教研室
H-S图
过热蒸汽区 二区: 湿蒸汽区
粗黑线为界 定压线 三线: 定干度线
定温线
湿蒸汽区:定压 线=定温线
热能工程教研室
H-S图
热能工程教研室
1、汽液相变的若干概念
4.饱和(saturation)现象
一定条件下,当液化和汽化过 程达到动态的平衡,物质汽液 两相的质量各自保持不变时, 称这时的系统为饱和状态。 饱和状态下的液体称为饱和液体 (saturated liquid), 蒸汽则称为饱和蒸汽(saturated steam or vapor).