微积分学广义积分敛散性判别

合集下载

微积分学广义积分敛散性判别说课讲解

微积分学广义积分敛散性判别说课讲解

(5) 无穷积分也可 分按 的照 换定 元积 法.进行计算
( 6 ) 若 [ a , ) 上 在 f ( x ) g ( x ) ,则 f ( x ) d x g ( x ) d x .
a
a
3. 无穷积分敛散性的判别法
实际, 我 上们可以将定 无义 穷式 积写 分成 的下 : 面
a
a
则(1 由 )立即可: 得 f(x 出 )dx收 矛.敛 盾 a
与级数的情 , 比 形较 类判 似别法也 穷是 积判 分别 敛散性的重 . P要 积方分法是重要的 之比 一 . 较标
定理 (比较判别法的极限形式法)
设 f(x ),g (x )为定 [a , 义 )上在 的, 非 A [a ,负 ), 函
a f( x ) d x F ( x )0 x l iF ( m x ) F ( a ) . b f( x ) d x F ( x )b F ( b ) x l iF m ( x ). f( x ) d x F ( x ) x l i F ( m x ) x l i F ( m x ) .
x
G (x) g(t)dt
在 [a, )上有 . 上界
a
由 a x 时 , 0 f( x ) g ( x )得
x
x
0af(t)dtag(t)dt,
从而, 积分上限函数
x
F(x) f(t)dt
在 [a, )上有, 上界
a
故积 f分 (x)dx收.敛 a
(2) 运用反证.法
如 f果 ( x ) d x 发 ,积 散 g 分 ( x 时 ) d x 收 , 敛
这样就将无穷积分的计算与定积分的计算联系起来了.
例5
讨P 论 -积a 分 d xp x (a0)的敛散性,

广义积分敛散性的判别

广义积分敛散性的判别

比较判别法
比较判别法是一种通过比较被积函数与已知收敛或发散的函数来判定广义积分敛散性的方法。如果被 积函数小于已知收敛的函数,则该广义积分收敛;如果被积函数大于已知发散的函数,则该广义积分 发散。
应用比较判别法时,需要选择合适的已知函数作为比较对象,以便准确判断被积函数的敛散性。
拉贝判别法
拉贝判别法是一种通过判断被积函数 的单调性和无界性来判定广义积分敛 散性的方法。如果被积函数在积分区 间上单调递减且无界,则该广义积分 收敛;如果被积函数在积分区间上单 调递增或无界,则该广义积分发散。
VS
应用拉贝判别法时,需要准确判断被 积函数的单调性和无界性,以便准确 判断该广义积分的敛散性。
06
广义积分的计算方法
分部积分法
总结词
分部积分法是一种通过将积分拆分为两个或 更多部分来简化积分的方法。
详细描述
分部积分法是将一个积分转换为两个或更多 个积分的和或差,以便更容易地计算每个积 分。这种方法通常用于处理难以直接积分的 函数。
柯西准则
如果存在某个正数$T$,使得在区间$(-infty, T]$和$[T, +infty)$上,函数$f(x)$均收敛,则函数$f(x)$的广义积 分收敛。
04
广义积分的应用
在物理中的应用
描述连续介质性质
01
广义积分可以用来描述连续介质在时间和空间上的性质,例如
温度分布、电荷密度等。
解决物理问题
换元积分法
总结词
换元积分法是一种通过引入新的变量来简化积分的方法。
详细描述
换元积分法是通过引入新的变量来简化积分的计算。这种方法通常用于处理具有复杂或 难以处理的边界条件的积分。通过引入新的变量,可以将原始积分转换为更易于处理的

广义积分敛散性判别法的应用

广义积分敛散性判别法的应用

广义积分敛散性判别法的应用主要的广义积分敛散性证明方法如下:套定义验证比较判别法、等价无穷小Cauchy准则Dirichlet判别法Abel判别法另外本文还有用Cauchy准则来处理广义积分有关的证明题的例题总结.1 广义积分的定义定义1.1[无穷积分]如果 f(x) 在任意有限区间 [a,A] 都是Riemann可积, 且极限 limA→+∞∫aAf(x)dx 存在, 则把无穷积分定义为∫a+∞f(x)dx=limA→+∞∫aAf(x)dx.否则称无穷积分是发散的.此外,∫−∞+∞f(x)dx=∫a+∞f(x)dx+∫−∞af(x)dx.这与Cauchy主值积分不同:(V.P.)∫−∞+∞f(x)dx=limA→+∞∫−AAf(x)dx.广义积分与Riemann积分有类似性质, 运算法则(分部积分、变量替换等)可以推广过来.定义1.2 [瑕积分]如果 f(x) 在任意有限区间 [a′,b],(a<a′<b) 都是Riemann可积, 且极限 lima′→a+∫a′bf(x)dx 存在, 则把瑕积分定义为∫abf(x)dx=lima′→a+∫a′bf(x)dx.否则称无穷积分发散.例1.1 无穷积分∫1+∞1xpdx 当 p>1 时, 该无穷积分收敛;当 p≤1 时, 该无穷积分发散.例1.2 瑕积分∫011xpdx. 当 p<1 时, 该瑕积分收敛; 当 p≥1 时, 该瑕积分发散.例1.3 ∫−∞+∞11+x2dx=arctan⁡x|−∞0+arctan⁡x|0+∞=π例1.4 ∫−1111−x2dx=arcsin⁡x|−10+arcsin⁡x|01=π.如果被积函数 f(x) 恒大于0, 我们有如下结论.定理1.5 设 f≥0, 则无穷积分∫a+∞f(x)dx 收敛当且仅当 F(A)=∫aAf(x)dx 是 A∈[a,+∞) 的有界函数.2 比较判别法与等价无穷小定理2.1 设 0≤f≤Mg,M>0 为常数,(这个不等式对充分大的x都成立就行了). 则当无穷积分∫a+∞g(x)dx 收敛时, 无穷积分∫a+∞fdx 也收敛. 当无穷积分∫a+∞fdx 发散时, 无穷积分∫a+∞g(x)dx 发散. 瑕积分的结果类似.在比较判别法中, M的寻找可以用极限去找. 如果极限 l=limx→∞f(x)g(x) 存在, 则(1) 当 0<l<∞时, 积分∫a+∞f(x)dx 与∫a+∞g(x)dx 同敛散.(2) 当 l=0 时, 如果∫a+∞g(x)dx 收敛, 则∫a+∞f(x)dx 也收敛.(3) 当 l=+∞时, 如果∫a+∞g(x)dx 发散, 则∫a+∞f(x)dx 也发散.注:对瑕积分有类似结论..例2.2 判断积分∫0+∞dxexx 的敛散性.提示:无. \QED例2.3 积分∫01dxln⁡x 是发散的.证明:注意到 limx→0+1ln⁡x=0, 于是0不是瑕点, 1是瑕点. 我们只需要考虑∫1/21dxln⁡x. 由于∫1/21dxln⁡x=∫01/2dtln⁡(1−t),且 ln⁡(1−t)∼−t(t→0), 则积分∫1/21dxln⁡x 与−∫01/2dtt 同敛散. 则原积分是发散的. \QED例2.4 积分∫01ln⁡x1−xdx 是收敛的.证明: 0,1 都是瑕点. 把积分区间拆成 (0,1/2) 与 (1/2,1). (在 (0,1/2) 区间内, 出现瑕点的地方是 ln⁡x, 而在 (1/2,1) 区间内, 出现瑕点的地方是 11−x, 没出现瑕点的地方可以视作有限数)注意0>∫01/2ln⁡x1−xdx>2∫01/2ln⁡xdx,而∫01/2ln⁡xdx=xln⁡x|01/2−∫01/2dx=12(ln⁡12−1),则∫01/2ln⁡x1−xdx 收敛. 另一方面,∫1/21ln⁡x1−xdx=∫01/2ln⁡(1−t)tdt,并注意到 limt→0+ln⁡(1−t)t=−1, 则∫1/21ln⁡x1−xdx 收敛. \QED3 用Cauchy准则验证收敛性定理3.1 [Cauchy准则] f(x) 在 [a,+∞) 上的积分收敛的充分必要条件是: ∀ε>0,∃M=M(ε),当 B>A>M 时, |∫abf(x)dx|<ε.例3.2 积分∫0+∞cos⁡x2dx 是收敛的.证明:我们只需要看被积函数在 [1,+∞) 的积分即可. 作变量代换 x=t, 则∫1+∞cos⁡x2dx=12∫1+∞cos⁡ttdt.则|∫ABcos⁡ttdt|=|sin⁡tt|AB+12sin⁡tt3/2dt|≤1A+1B+12∫ABt −3/2dt=2A→0(B>A→+∞).因此积分是收敛的. \QED注:f在 [a,+∞) 积分存在不能推出 f(x)→0(x→+∞). 需要添加条件. 详见第6小节.例3.3 积分∫0+∞|cos⁡x2|dx 是发散的.证明:【方法一】只需要考虑 cos⁡t 的一个周期. 由于∫(mπ)2(mπ+π)2|cos⁡x2|dx=12∫mπ(m+1)π|cos⁡t|tdt>12(m+1)π∫mπ(m+1)π|cos⁡t|dt=22(m+1)π>2π1m+1+m+2=2π(m+2−m+1).固定m, 取 n>m, 则∫(mπ)2(nπ)2|cos⁡x2|dx>2π(n+1−m+1)→∞(n→∞).因此原积分是发散的. \QED【方法二】(比较判别法). 由于 |cos⁡x2|≥cos2⁡x2=12(1+cos⁡2x2), 由例3.2, 积分∫1+∞cos⁡(2x2)dx 是收敛的, 但是积分 \int_1^{+\infty}1dx 发散, 则原积分发散. \QED注:方法二的技巧在例4.3、例6.5也用到了. 也就是说当 |x|≤1 时, 根据幂函数 y=xα的性质, 必有 x2≤|x|≤1. 利用这个技巧可以去掉绝对值.。

高等数学教学资料微积分学广义积分敛散性判别

高等数学教学资料微积分学广义积分敛散性判别


a
g ( x) d x 收敛 ,
则由 (1) 立即可得出矛盾 :

a
f ( x) d x 收敛 .
定理
(比较判别法的极限形式法)
设 f ( x) , g ( x) 为定义在 [a, ) 上的非负函数 , A [a, ) ,
f ( x) , g ( x) R( [a, A] ) . 若有极限 lim
0 f (t ) d t g (t ) d t ,
a a
x
x
从而, 积分上限函数
F ( x) f (t ) d t 在 [a, ) 上有上界 ,
a x
故积分

a
f ( x) d x 收敛 .
(2) 运用反证法.
如果

a
f ( x) d x 发散时 , 积分
(3) 当 时 , 无穷积分
a
g ( x) d x 发散 , 则
a
例1 解
判别无穷积分

1
arctan x d x 的敛散性. x
因为
arctan x lim x lim arctan x , x x x 2
故无穷积分



b
f ( x) d x lim
b x
x
这样可以利用积分上限 函数来进行有关的讨论 .
定理
设函数 f ( x) C( [a, ) ) , 且 f ( x) 0 .
若积分上限函数 F ( x) f (t ) d t 在 [a, )
a x
上有上界 , 则无穷积分
f ( x), g ( x) R( [a, A] ) , 且满足

论广义积分敛散性的判别方法

论广义积分敛散性的判别方法
l n
f( ) , 。 x k f()
, 12 :,
..,
1 , 所 以 有 :
厂 出 ∑ r x 因 k 1f (a存 有 ( ≤ (“ 厂). 为l<, x x 在 限 功 n膏 ) a又 f )
且正 而 r厂)< 为 , 有 (x 从 d
n ,
() 2 进行证 明 : 证明 ( ) 1 设 a> 且 f x > (Vx a + ) . 0, ( ) 0, ∈[ , ) 由于 fx 恒 为 正 , 只须 () 故
厂) 敛 一 q时 穷分 。( x散 ( ; 。 , 积r厂) 发。 收 当 。 c 无 l x d
1 _ l 】 一
l i m
x I nx
=g 或 者 ±∞) 则 当 <q +∞ 时 , 穷 积 分 ( , 无
安 1 有 厂)收 (; ≤ , : ( 敛1 则 )
如 ≥ , : 厂)发 (.下 别 (及 果等 ÷则 ( 散 ) 分 对1 有 2如 )
已知条件可知 :
。k ), f'd 由 (%x -
) 舭较别可 判法知 扣 故
I x ^。 ( 收 。 f + 。 敛
当 q=+∞时 , 由正无 穷 大 的定 义 , VT=1+a>1 a>0) M> ( , ma ( ' x al x一 啪 :n- - i
厂) . )+ xx 端一积是 ( = 。 f ( 第个分常 厂 4 ), ( , d右 f

l ( ) ,则 i f m  ̄ 厂 )


当 ÷ , 厂 ) 敛3 l 时 (出收 (; )
当 时 厂 ) 4 于34,文 再 l , (出发 (。 ( ( 本 不 证 ÷ ) ))
明。
1利用 被 积 函数 的 性 态 , 有 两 种 判 别 方 法 判 别 正 函 可 数 广 义 积分 的 敛 散 性

广义积分敛散性的判别法PPT课件

广义积分敛散性的判别法PPT课件
1.正项级数比较审敛原理(收敛,发散,值)
广义积分比较审敛原理:设 f (x), g(x) 在 区间 [a, );(a 0) 上连续,, 1)如果:
0 f (x) g(x),(a x ) 且 g(x)dx
收敛,则
f (x)dx
a
收敛;2)如果:
a
0 g(x) f (x), (a x ) 且 g(x)dx
c a)
p
,
(c
0)
Cor3设 f (x) 在区间 (a,b] 上连续,且
f (x) 0, lim f (x) 1)如果存在常数M>0,及
q 1
xa0
,使得:
f
(x)
(x
M a)q
, (a
x
b)
b
则 f (x)dx
a
收敛;
2)如果存在常数N>0,及q≥1,使得
f (x) N ,(a x b) (x a)q
1
1
lim(x 1) lim 1,
x1
ln x 1 x1
x
故根据推论4知,题设广义积分发散.
第17页/共21页
1
例10
判别广义积分01
sin x x
dx
解 因为
而 sin 1 x
1
,
xx
1 dx
0x
的收敛性.
收敛,根据比较审敛原理知,
广义积分
1
sin
1 x
dx
0x
收敛,从而题设广义积分也收敛.
dx
1
x
的敛散性.
解 因为 lim x arctan x lim arctan x ,
x
x
x
2

广义积分敛散性对数判别法的两点注记

广义积分敛散性对数判别法的两点注记

广义积分敛散性对数判别法的两点注记
1. 广义积分敛散性对数判别法:
广义积分敛散性对数判别是一种基于信息理论的机器学习方法,是一种用于判断给定数据是否从已知分布中取样的方法,其中包括克鲁格曼和霍夫曼熵。

它是一种基于最大似然估计法来比较观察到的数据分布和假设分布之间的相对对比度的有效方法。

它可以在无参数选择空间中根据当前数据的特性来构建最优参数,以使估计的参数接近真实的分布参数。

2. 注记:
(1)广义积分敛散性对数判别法是一种数据分析方法,能够比较不同分布间的对比度,用于判断给定数据是否从已知分布中取样。

(2)广义积分敛散性对数判别法是基于最大似然估计法和参数选择空间的方法,以便于使估计参数接近真实的分布参数。

微积分学广义积分敛散性判别

微积分学广义积分敛散性判别

其中P 为任意常数.
解 当 P 1 时:
d x ln | x |
ax
a
lim ln | x | ln a , x
故 p 1 时,P 积分发散.
当 P 1 时:
d x x1 p
a x 1 p
,
a


a 1 p
若式中的极限存在,则称此无穷积分收敛,极限值
即为无穷积分值;若式中的极限不存在,则称该无穷积
分发散 .
类似地可定义:
b
b
(1) f (x) d x lim f (x) d x (B b) .

B B

c

(2) f (x) d x f (x) d x f (x) d x
f (x), g(x) R( [a, A] ) , 且满足 g(x) f (x) 0,
则 (1) 当 g(x) d x 收敛时,积分 f (x) d x 也收敛.
a
a
(2) 当 f (x) d x 发散时,积分 g(x) d x 也发散.
a
a



c
c
A
lim f (x) d x lim f (x) d x .
B B
A c

c
f (x)d x 与
f (x) d x 同时收敛,则称

f
(x)d x
收敛 .

c

若 c f (x) d x 与 f (x) d x 至少有一个发散, 则 f (x) d x 发散 .
实际上, 我们可以将无穷积分的定义式写成下面的形式:

广义积分敛散性判别方法探讨

广义积分敛散性判别方法探讨

广义积分敛散性判别方法探讨引言在数学初学者学习积分的过程中,会接触到定积分及广义积分的概念。

定积分的计算可以通过积分公式和分部积分法等一系列方法进行求解,但广义积分的计算相对困难,必须先判断其敛散性,然后才能定量计算。

因此,本文将探讨广义积分敛散性判别方法,让读者更好地理解和掌握这一知识点。

广义积分概述广义积分是指被积函数在积分区间上具有无限变化或在有限变化之外的点具有间断、奇异等性质的积分。

它与定积分相比,可以扩展进行积分的范围。

常用的广义积分可以分为以下两类:第一类广义积分第一类广义积分的被积函数在积分区间的某一端点或两个端点附近有无穷大的极限值或具有无限间断点。

例如,$\\displaystyle\\int_{0}^{+\\infty}\\frac{1}{x^2}dx$和$\\displaystyle\\int_{1}^{2}\\frac{1}{(x-1)^{1/2}}dx$都属于第一类广义积分。

第二类广义积分第二类广义积分的积分区间是无限的,在无穷远处或在某一点处可能有无限大的变化。

例如,$\\displaystyle\\int_{0}^{+\\infty}e^{-x}dx$和$\\displaystyle\\int_{0}^{1}\\frac{1}{x^{1/2}}dx$都属于第二类广义积分。

敛散性判别方法广义积分在计算时必须先判断其敛散性,只有在敛的情况下才能对其进行求解。

下面是判别广义积分敛散性的常用方法。

第一类广义积分的敛散性判别方法一、比较判别法如果存在两个广义积分:$\\displaystyle\\int_{a}^{+\\infty}f(x)dx$和$\\displaystyle\\int_{a}^{+\\infty}g(x)dx$且满足:$\\forall x>a,\\ f(x)\\ge g(x)\\ge 0$则有:1.若$\\displaystyle\\int_{a}^{+\\infty}g(x)dx$收敛,则$\\displaystyle\\int_{a}^{+\\infty}f(x)dx$收敛;2.若$\\displaystyle\\int_{a}^{+\\infty}f(x)dx$发散,则$\\displaystyle\\int_{a}^{+\\infty}g(x)dx$发散。

高等数学(微积分)课件§广义积分敛散性的判别

高等数学(微积分)课件§广义积分敛散性的判别

'
x (1 x)2
,
x (1,1)
23
幂函数性质ቤተ መጻሕፍቲ ባይዱ运用(求和函数)
例 求 级 数 ( 1 )n 1xn的 和 函 数 .
解 s(xn ) 1 (1n )n1xn, 显s然 (0)0,
n1
n
s (x ) 1 x x 2 1 , 1 x
(1x1)
两边积分得
x
s(t)d tln1 (x)
n0
(anxn) nanxn1.
n0
n1
(收敛半径不变)
22
幂函数性质的运用(求和函数)
例:求幂 级n数 xn的和函数。
n1
解:由 1
1-x
n0
xn,
x (1,1)
1-1x
'
n0
xn
'
(xn )'
n0
n1
nxn1,
x (1,1)
上式两边乘以x,可得:
nxn
n1
x 1-1 x
解:由于该幂级数的系 数a 2n1 0(n 0,1,2,...), 故不能直接用前面的定 理。
而直接利用比值判别法 。
lim un1 n un
lim
n
x 2(n1) 2 n 1
2n x2n
1 x2 2
由比值判别法:1 x2 1, 即当 x
2时,
1 x2n绝对收敛;
2
n1 2n
当 x
2时,
n0
(R,R)内可积 ,且对x(R,R)可逐项积分 .
即0xs(x)dx 0x(anxn)dx
x 0
anxndx
n0
n0an xn1. n0 n1

广义积分判别法

广义积分判别法

广义积分判别法广义积分判别法是微积分中一个重要的概念和方法,用于判断广义积分的收敛性和发散性。

本文将介绍广义积分判别法的基本原理和应用,并通过实例详细说明其具体操作方法。

一、广义积分的定义在微积分中,广义积分是对某些函数进行积分运算的一种扩展形式。

对于连续函数,我们可以直接使用定积分进行求解,但对于一些特殊的函数情况,定积分无法直接求解。

此时,我们需要引入广义积分的概念。

对于函数f(x)在区间[a,b]上的广义积分,可以表示为:∫f(x)dx = lim┬(t→b⁺) ⁡∫┬(a)⁢f(x)dx其中,a为积分下限,b为积分上限,t为一个逼近b的数列。

如果该极限存在且有限,则称广义积分收敛;如果该极限不存在或为无穷大,则称广义积分发散。

二、收敛性的判别方法1. 基本性质判别法若函数f(x)在区间[a,b]上连续,且0≤f(x)≤g(x),其中g(x)在[a,b]上连续,且∫g(x)dx收敛,则∫f(x)dx收敛;若∫g(x)dx发散,则∫f(x)dx发散。

2. 比较判别法设函数f(x)和g(x)在区间[a,b]上连续,且0≤f(x)≤g(x),若∫g(x)dx收敛,则∫f(x)dx收敛;若∫f(x)dx发散,则∫g(x)dx 发散。

3. 极限判别法设函数f(x)在区间[a,b)上连续,若存在正数M>0和正数p>1,使得当x→b-时,|f(x)|≤M/(|x-b|ᵖ),则∫f(x)dx收敛;若对于任意正数M>0和正数p>1,当x→b-时,|f(x)|>M/(|x-b|ᵖ),则∫f(x)dx发散。

4. 绝对收敛和条件收敛若∫|f(x)|dx收敛,则称广义积分∫f(x)dx绝对收敛;若∫|f(x)|dx发散,但∫f(x)dx收敛,则称广义积分∫f(x)d x条件收敛。

三、实例分析下面通过几个实例来说明广义积分判别法的具体应用。

实例1:判断广义积分的收敛性考虑广义积分∫┬(1)⁢(x⁻²-1)dx,我们可以使用比较判别法来判断其收敛性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在[a, ) 上有上界,
a
故积分 f (x) d x 收敛 . a
(2) 运用反证法.
如果
f (x) d x 发散时, 积分
g(x)d x
收敛 ,
a
a
则由(1) 立即可得出矛盾: f (x) d x 收敛 . a
与级数的情形类似, 比较判别法也是判别无穷积分 敛散性的重要方法. P 积分是重要的比较标准之一.
B B
A c

c
f (x)d x 与
f (x) d x 同时收敛,则称
f
(x)d x
收敛 .
c
若 c f (x) d x 与 f (x) d x 至少有一个发散, 则 f (x) d x 发散 .
c
对 f (x) d x 而言,由定积分对区间的可加性,
显然其收敛性与 c 值无关. 为方便起见,通常取 c 0.
f (x), g(x) R( [a, A] ) , 且满足 g(x) f (x) 0,
则 (1) 当 g(x) d x 收敛时,积分 f (x) d x 也收敛.
a
a
(2) 当 f (x) d x 发散时,积分 g(x) d x 也发散.
a
a

(1) 若积分
g(x)d x
收敛,则下列极限存在
例1 解
计算 x ex2 d x . 0
x ex2 d x lim A x ex2 d x
0
A 0
令 u x2
lim 1 A2 eu d u 2 A 0
lim 1 (eu ) A 2
A2 0
lim ( 1 eA2 1 )
A 2
2
1. 2
能否将这里的书 写式简化?
为书写方便起见,若F(x) 是 f (x) 的一个原函数,则约定
一、无穷积分 —— 无穷区间上的广义积分
1. 无穷积分的概念
设函数 f (x) 在[a, ) 上有定义.
A R , A a , 且 f (x) R([a, A] ) . 记
A
f (x) d x lim f (x) d x ,
a
A a
称之为 f (x) 在[a, ) 上的无穷积分.
若式中的极限存在,则称此无穷积分收敛,极限值
又已知函数F(x) 在[a, ) 上有上界, 从而
x
F (x) a f (t) d t
在[a, ) 上单调增加且有上界. 由极限存在准则
可知极限 lim F(x) lim
x
f (t) d t
存在.
x
x a
即无穷积分 f (x) d x 收敛 . a
定理 ( 比较判别法 )
设函数 f (x) , g(x) 在[a, ) 上有界, A R , A a ,
a
a
收敛, 或同时发散.
(2) 当 0 时 , 无穷积分 g(x) d x 收敛 , 则 f (x) d x 收敛 .
即为无穷积分值;若式中的极限不存在,则称该无穷积
分发散 .
类似地可定义:
b
b
(1) f (x) d x lim f (x) d x (B b) .
B B
c
(2) f (x) d x f (x) d x f (x) d x
c
c
A
lim f (x) d x lim f (x) d x .
d x a xp
(a 0)
P 积分当 p 1 时收敛;当 p 1 时发散.
2. 无穷积分的基本运算性质
设以下所有出现的积分均存在,则
a
(1) f (x) d x f (x) d x .
a
其它类型的无穷 积分的情形类似 于此.
c
(2) a f (x) d x a f (x) d x c f (x) d x c R .
a
x
lim f (t) d t I .
x a
由于有极限的量在该极限过程中必有界, 故可知
G(x)
x
g(t) d t
在[a, ) 上有上界.
a
由 a x 时, 0 f (x) g(x) 得
x
x
0 a f (t) d t a g(t) d t ,
从而, 积分上限函数
F(x)
x
f (t) d t
f (x)d x F(x)
a
0
lim
x
F ( x)
F
(a)
.
b
f (x)d x F(x)
b
F (b)
lim
x
F
(x)
.
f (x)d x F(x)
lim
x
F ( x)
lim
x
F
(x)
.
这样就将无穷积分的计算与定积分的计算联系起来了.
例5
讨论 P-积分
d x a xp
(a 0) 的敛散性,
定理 (比较判别法的极限形式法)
设 f (x) , g(x) 为定义在[a, ) 上的非负函数, A[a, ) ,
f (x) , g(x) R( [a, A] ) . 若有极限 lim f (x) , 那么, x (x)
(1) 当 0 时 , 无穷积分 f (x) d x 与 g(x) d x 同时
设函数 f (x) C( [a, ) ) , 且 f (x) 0 .
若积分上限函数 F(x)
x
f (t) d t
在[a, )
a
上有上界, 则无穷积分 f (x) d x 收敛 . a
证 因为 f (x) C( [a, ) ) , 且 f (x) 0 , 所以,
积分上限函数F(x) 在[a, ) 上单调增加.
f (x)d x
g(x)d x .
a
a
3. 无穷积分敛散性的判别法
实际上, 我们可以将无穷积分的定义式写成下面的形式:
x
f (x) d x lim f (t) d t ;
a
x a
b
b
f (x) d x lim f (t) d t .
x x
这样可以利用积分上限函数来进行有关的讨论.
定理
(3) a [ f (x) g(x)]d x a f (x) d x a g(x) d x .
(4)
u(x)v(x) d x
a
u(x)v(x)
a
u(x)v(x) d x .
a
(5) 无穷积分也可按照定积分的换元法进行计算.
(6) 若在[a, ) 上 f (x) g(x) , 则
其中P 为任意常数.
解 当 P 1 时:
d x ln | x |
ax
a
lim ln | x | ln a , x
故 p 1 时,P 积分发散.
当 P 1 时:
d x x1 p
a x 1 p
,
a
a 1 p , p 1
p 1, 发散 p 1. 收敛
综上所述,
P-积分
相关文档
最新文档