高考数学模拟复习试卷试题模拟卷2324 29
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高考数学模拟试题及答案(人教版)23
高考模拟试卷数学卷本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟. 考生注意:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上. 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件A B ,互斥,那么 球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B = 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是p 台体的体积公式:那么n 次独立重复试验中恰好发生 )(312211S S S S h V ++=k 次的概率:()(1)k k n kn n P k C p p -=-第Ⅰ卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x≥2},B={x|x<m+1},若B ⊆∁R A,则m 的取值范围为 ( )A.(-∞,1]B.(-∞,1)C.[1,+∞)D.[-1,2] 2.已知0<a <2,复数z 的实部为1,虚部为a ,则 ||z 的取值范围是 ( )A.(1,5)B.(1,3)3.若a,b 是两个非零的平面向量,则 “|a |=|b |”是“(a+b )·(a-b )=0”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.若函数2()x f x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )5.对于函数2()cos[3()]6f x x x π=+,下列说法正确的是 ( )A. (x)f 是奇函数且在(,)66ππ-内递减 B. (x)f 是奇函数且在(,)66ππ-内递增 C. (x)f 是偶函数且在(0,)6π内递减 D. (x)f 是偶函数且在(0,)6π内递增6.若x, y满足4240,y0kx yy xx+≤⎧⎪-≤⎨⎪≥≥⎩且z=5y-x的最小值为-8,则k的值为()A.12- B.12C.-2D.27.设随机变量ξ的分布列为下表所示且E(ξ)=1.6,则a-b= ()8.存在一点P,使线的离心率为A B C D9.如图,正方形BCDE的边长为a,已知AB=3BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,关于翻折后的几何体有如下描述:①AB与DE所成角的正切值是2;②AB∥CE;③V B-ACE=16a3;④平面ABC⊥平面ACD.其中正确的有( )D.①②④10.若2()f x x px q=++的图象经过两点(,0),(,0)αβ,() AC注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11.若双曲线221x ky-=的一个焦点是(3,0),则实数k =_______,该双曲线的焦点到其中一条渐近线的距离是________。
高三数学模拟试题含答案
高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
2024年高考第二次模拟考试数学(新高考专用01)含答案
2024年高考第二次模拟考试高三数学(答案在最后)全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .B . C.1x x ≤-,或3x >D .【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可,【详解】由题意得{}3A x x =>,{}1B x x =≤-,又{}1B x x =>-R ð则(){}1A B x x ⋃=>-R ð,故选:B.【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=-+,又因为2z 为纯虚数,所以22020a b ab ⎧-=⎨≠⎩,即0a b =≠(舍)或0a b =-≠,所以i z a a =-,所以i z a a =+,所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z ---====-+++-.故选:D3.已知向量()2,4a =- ,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为()A.jB.j -C.2jD.2j- 【答案】C 【解析】【分析】根据a 与b 共线,可得240t --=,求得2t =-,再利用向量a b +在向量()0,1j = 上的投影向量为()a b jjjj+⋅⋅ ,计算即可得解.【详解】由向量()2,4a =-,()1,b t = ,若a与b共线,则240t --=,所以2t =-,(1,2)a b +=-,所以向量a b +在向量()0,1j = 上的投影向量为:()(1,2)(0,1)21a b jj j j jj+⋅-⋅⋅=⋅=,故选:C4.“1ab >”是“10b a>>”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断.【详解】当0a >时,由1ab >,可得10b a>>,当a<0时,由1ab >,得10b a<<;所以“1ab >”不是“10b a>>”的充分条件.因为01010a b ab a a>⎧⎪>>⇔-⎨>⎪⎩,所以1ab >,所以“1ab >”是“10b a>>”的必要不充分条件.故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题.5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是()A.60B.114C.278D.336【答案】D【解析】命题意图本题考查排列与组合的应用.录用3人,有353360C A =种情况;录用4人,有4232354333162C C A C A -=种情况;录用5人,有12323331345333333225)4(C C A C A (C A C A )11A -+-=种情况.所以共有336种.6.已知D :222210x y ax a +---=,点()3,0P -,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是()A.()5,11,3⎡⎫--⋃-+∞⎪⎢⎣⎭ B.[)5,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦C.(][) ,21,-∞-⋃+∞D.[)()2,11,---+∞ 【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1r a =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥︒,由此可求解.【详解】D 的标准方程为()()2221x a y a -+=+,圆心坐标为(),0D a ,半径为1r a =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=︒.要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥︒,故1sin sin 302r MPD PD ∠=≥︒=,即()1132a a +≥+,整理得23250a a +-≥,解得[)5,1,3a ⎛⎤∈-∞-⋃+∞ ⎥⎝⎦.故选:B.7.已知ABC 中,60BAC ∠=︒,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC 所成角的正弦值的最大值为3,则三棱锥-P ABC 的外接球的表面积为()A.4πB.6πC.8πD.9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥-P ABC 外接球的球心,求出外接球的半径,再计算它的表面积.【详解】三棱锥-P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ的最大值是63,∴sin 3PA PQ PQ θ==≤,解得PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1,直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°,所以,A Q 重合,则∠ACB =90°,则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径2R OB =====,∴三棱锥-P ABC 的外接球的表面积2264π4π6π2S R ⎛==⨯= ⎝⎭.故选:B .B.椭圆M的蒙日圆方程为D.长方形G的面积的最大值为【分析】由椭圆标准方程求得,a b后再求得c,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a2b=,则c==e==A正确;当长方形G的边与椭圆的轴平行时,长方形的边长分别为4,=因此蒙2210x y+=,B正确;设矩形的边长分别为,m n,因此22402m n mn+=≥,即20mn≤,当且仅当m n=时取等号,所以长方形G的面积的最大值是20,此时该长方形G为正方形,边长为C正确,D错误.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【分析】A,根据12||=MN x x p++结合基本不等式即可判断;B,由抛物线定义知当,,P M A三点共线时MF MP+;C,D,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A,设112212(,),(,),(,0)M x y N x y x x>,因为这些MN倾斜角不为0,则设直线MN的方程为32x ky=+,联立抛物线得2690y ky--=,则12126,9y y k y y+=⋅=-,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=,则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确;对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小,即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确;对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误;对D ,1212123339(()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a -=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则()A.若E的两条渐近线相互垂直,则a =B.若EE 的实轴长为1C.若1290F PF ∠=︒,则124PF PF ⋅=D.当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===A 正确;B 选项,若E的离心率为c e a =====,解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=︒,则122221224PF PF aPF PF c⎧-=⎪⎨+=⎪⎩,整理得222121224448,4PF PF c a b PF PF ⋅=-==⋅=,故C 正确;D 选项,根据双曲线的定义可知,121222PF PF aQF QF a ⎧-=⎪⎨-=⎪⎩,两式相加得11114,4PF QF PQ a PF QF a PQ +-=+=+,所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥=,当且仅当84a a=,即a =所以1F PQ周长的最小值为D 正确.故选:ACD【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫ ⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅==⋅,则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩ ,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111141717A B n n ⋅=,D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240【解析】【详解】因为二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x x ⎛+ ⎝,则二项式展开式的通项3662166C (C 2r r rr r rr T xx x--+==,令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r --++⎧≥⎨≥⎩,解得111433r ≤≤,因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x-⨯==,所以填24013.若函数()sin f x ax x =+的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0【解析】【详解】注意到,()cos f x a x =+'.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ''=-⇔++=-()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +-⎛⎫⎛⎫⇔++-= ⎪ ⎪⎝⎭⎝⎭12cos cos 1,0x x a ⇔=-=±=.故答案为014.若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +-=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D A y y ==,可求3AB CD +的值;当直线方程为()1x n y =-时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论.【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =-,圆()22114x y +-=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =-=+=-=+,当l y ⊥轴时,则1A D y y ==,所以113131622AB CD ⎛⎫+=+++= ⎪⎝⎭;当l 不垂直于y 轴时,设l 的方程为:()1x n y =-,代入抛物线方程得:()2222240n y n y n -++=,所以2224,1A D A D n y y y y n++=⋅=。
2023届高三新高考数学原创模拟试题(含答案解析)
2023届高三新高考数学原创模拟试题学校:___________姓名:___________班级:___________考号:___________A .||OQB .|5.若()20230112x a a x -=++A .2-B .-6.函数y=ax 2+bx 与y=log b aA ..C ..7.以()x φ表示标准正态总体在区间内取值的概率,若随机变量()2,N μσ,则概率(P ξμ-A .()()φμσφμσ+--()() 11φφ--C .1 μφσ-⎛⎫⎪⎝⎭.()2φμσ-8.若干个能确定一个立体图形的体积的量称为该立体图形的“基本量1111ABCD A B C D -,下列四组量中,一定能成为该长方体的“基本量”的是(A .1AB ,AC ,1AD 的长度B .AC ,1B D ,1AC 的长度D .1AC ,BD ,1CC 的长度二、多选题三、双空题13.设i 是虚数单位,已知2i 3-是关于x 的方程220(,)x px q p q ++=∈R 的一个根,则p =________,q =________.四、填空题五、双空题16.正方形ABCD 位于平面直角坐标系上,其中(1,1)A ,(1,1)B -,(1,1)C --,(1,1)D -.考虑对这个正方形执行下面三种变换:(1)L :逆时针旋转90︒.(2)R :顺时针旋转90︒.(3)S :关于原点对称.上述三种操作可以把正方形变换为自身,但是A ,B ,C ,D 四个点所在的位置会发生变化.例如,对原正方形作变换R 之后,顶点A 从(1,1)移动到(1,1)-,然后再作一次变换S 之后,A 移动到(1,1)-.对原来的正方形按1a ,2a ,L ,k a 的顺序作k 次变换记为12k a a a ,其中{,,}i a L R S ∈,1,2,,i k = .如果经过k 次变换之后,顶点的位置恢复为原来的样子,那么我们称这样的变换是k -恒等变换.例如,RRS 是一个3-恒等变换.则3-恒等变换共________种;对于正整数n ,n -恒等变换共________种.六、解答题17.如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点.(1)证明:PB DM ⊥.(2)求BD 与平面ADMN 所成角的正弦值.18.十字测天仪广泛应用于欧洲中世纪晩期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置.如图1所示,十字测天仪由杆AB 和横档CD 构成,并且E 是CD 的中点,横档与杆垂直并且可在杆上滑动.十字测天仪的使用方法如下:如图2,手持(1)在某次测量中,40AE =,横档的长度为20,求太阳高度角的正弦值.(2)在杆AB 上有两点1A ,2A 满足1212AA AA =.当横档CD 的中点E 位于度角为(1,2)i i α=,其中1α,2α都是锐角.证明:122αα<.19.设正项数列{}n a 满足11a =,12121n n n a a a ++=-,*n ∈N .数列{}n x 满足π0,2n x ⎛⎫∈ ⎪⎝⎭,*n ∈N .已知如下结论:当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin tan <<x x x (1)求{}n x 的通项公式.(2)证明:222212π11112111n n n a a a -<+++<+++ .20.椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,O 为坐标原点.椭圆C 于A ,B 两点.(1)若直线l 与x 轴垂直,并且OA OB ⊥,求a 的值.(2)若直线l 绕点F 任意转动,当A ,O ,B 不共线时,都满足AOB ∠取值范围.21.某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,i y i =学生编号i 123456789数学成绩i x 1009996939088858380知识竞赛成绩iy 29016022020065709010060参考答案:【详解】,,或是,,根据集合元素的互异性,集合为,共含有9.AC【分析】对于A:根据线面平行分析判断;对于D:根据线面、面面垂直的判定定理分析判断【详解】对于选项A:因为D,DF⊂平面PDF,BC⊄平面PDF所以BC∥平面PDF,故A正确;对于选项B:因为D,E分别是且PA与AC夹角为60︒,所以异面直线对于选项C:因为E是BC的中点,且同理可得:AE BC ⊥,PE AE E = ,,PE AE ⊂平面PAE ,所以DF ⊥平面PAE ,且DF ⊂平面ABC ,所以平面PAE ⊥平面ABC ,故C 正确;对于选项D :取底面ABC 的中心O ,连接PO ,则PO ⊥平面ABC ,但PO 与平面PDF 相交,所以平面PDF 与平面ABC 不垂直,故D 错误;故选:AC.10.ABD【分析】由n S 与n a 的关系得出n a 与1n a -的关系式即可判断ABD ,通过举反例即可判断出C .【详解】对于A ,当2n ≥时,n n S a =且11n n S a --=,两式相减可得11n n n n n a S S a a --=-=-,即10n a -=.所以{}n a 是恒为0的数列,即{}n a 是公差为0的等差数列,故A 正确;对于B ,当2n ≥时,n n S na =且11(1)n n S n a --=-,两式相减可得11(1)n n n n n a S S na n a --=-=--,即1(1)(1)n n n a n a --=-,所以1n n a a -=,即{}n a 是常数列,是公差为0的等差数列,故B 正确;对于C ,如果10a ≠,令1n =可得21a =,当2n ≥时,1n n n S a a +=且11n n n S a a --=,两式相减可得()111n n n n n n a S S a a a -+-=-=-,如果0n a ≠,则111n n a a +--=,这并不能推出{}n a 是等差数列,例如:考虑如下定义的数列{}n a :1,1,2,2,3,3,L ,则其通项公式可写成2n a n =,21n a n -=.则()222122111(2)(1)nnn k k n n k k S a a k n n a a -+===+==+=∑∑,)DN.由(1)可知PB⊥平面BDN∠是BD与平面ADMN所成角.2AD AB BC a====,于是另一方面,22BD AB AD=+=因此,在直角三角形BDN中,sinBD与平面ADMN所成角的正弦值为(1)8 17证明见解析【分析】(1)方法一,根据三边长度,利用余弦定理,求方法二,先求sin CAE∠,再根据二倍角公式求)如图:轴垂直,则直线l :1x =,联立直线与椭圆方程可得2b a =±.所以不妨设1,A ⎛ ⎝,所以4210b OA OB a ⋅=-= ,则b a,所以210a a --=,解得)如图:(i )若直线AB 与x 轴垂直,由(1)可知钝角,只需4210b OA OB a ⋅=-< ,即21b a >.代入152-(舍去).)若直线AB 与x 轴不垂直,设()11,A x y ,221b a =-,椭圆方程变为222211x y a a +=-.联立直线与椭圆方程选做(ii )问:根据()g x 的单调性,可知:()g x 在区间π3π2π,2π()22m m m ⎛⎫++∈ ⎪⎝⎭Z 即()1,m m a b +()g x 在ππ2,2π()22m m m π⎛⎫-++∈ ⎪⎝⎭Z 即(),m m b a 中的值域为结合①②两式以及()1(0)g g b >,可知当N m ∈时,()g x 在πππ,π[0,22m m ⎛⎫-+++∞ ⎪⎝⎭I 当21m k =-时,()()()211,k k k A g a g b --=;当2m k =。
备战2024高考数学全真模拟卷(新高考专用)(解析版)
备战2024高考数学全真模拟卷(新高考专用)第一模拟注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2022·海南·嘉积中学模拟预测)已知全集U =R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为()A.{}2,4B.{}0C.{}5D.{}0,5【答案】D【分析】根据给定条件,利用韦恩图表达的集合运算直接计算作答.【详解】依题意,图中的阴影部分表示的集合是()U A B ð,而全集U =R ,{}2,3,4A =,{}0,2,4,5B =,所以(){0,5}U A B ⋂=ð.故选:D2.(2022·天津市第四中学模拟预测)设x ∈R ,则“502x x->-”是“14x -<”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】先求出两个不等式的解集,然后根据充分条件和必要条件的定义判断即可【详解】由502x x->-,得(5)(2)0x x -->,解得25x <<,由14x -<,得414x -<-<,得35x -<<,因为当25x <<时,35x -<<一定成立,而当35x -<<时,25x <<不一定成立,所以“502x x->-”是“14x -<”的充分不必要条件,故选:A3.(2022·海南海口·模拟预测)已知圆柱的侧面积等于上、下底面积之和,圆柱的体积与表面积的数值相同,则该圆柱的高为()A .8B .4C .2D .1【答案】B【分析】根据已知条件及圆柱的侧面积、表面积和体积公式即可求解.【详解】设底面圆的半径为r ,高为h ,则由题意可知,2222π2ππ2π2πrh r r h r rh ⎧=⎨=+⎩,解得4h r ==.所以该圆柱的高为4.故选:B.4.(2022·河北秦皇岛·二模)设ln 2a =,25b =,0.22c =,则()A .a b c >>B .b c a>>C .c b a>>D .c a b>>【答案】B【分析】利用指数函数和对数函数的单调性求解.【详解】因为()ln20,1a =∈,22log 5log 42b =>=,()0.221,2c =∈,所以b c a >>.故选:B5.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =()A .5-B .7C .13D .26【答案】C【分析】根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤;第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤,以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤,所以111111223344556a a a a a ++++=⨯⨯⨯⨯,即1111111111(1)(112233445566a a -+-+-+-+-⋅=-⋅=,解得65a =,又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=.故选:C.6.(2022·浙江·高三专题练习)已知在OAB 中,2OA OB ==,AB =动点P 位于线段AB 上,当·PA PO取得最小值时,向量PA 与PO的夹角的余弦值为()A .BC .7-D .7【答案】C【解析】由已知得6OAB π∠=,再由向量数量积的定义表示PA PO ⋅,根据二次函数的性质求得其最值,再由向量夹角公式可得选项.【详解】因为在OAB 中,2OA OB ==,AB =6OAB π∠=,所以PA PO PA ⋅=⋅()225+|cos |6PA AO PA PA AO PA PA π=+⋅==23344PA ⎛-≥- ⎝⎭,当且仅当2PA = 时取等号,因此在OAP △中,PO = 所以向量PA 与PO73444722+-=-,故选:C.7.(2020·全国高三专题练习)已知点,,A B C 在半径为2的球面上,满足1AB AC ==,BC =,若S是球面上任意一点,则三棱锥S ABC -体积的最大值为()A .32312+B.36+C.212+D.312+【答案】A 【详解】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=,设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =,22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大,即S 为O O '的延长线与球面的交点,最大值为32+,所以三棱锥S ABC -体积的最大值为111132332)32)3332212ABC S ++=⨯+⨯⨯=.故选:A 8.(2022·山东·夏津第一中学高三阶段练习)已知不等式()3e 1xkx k x +<+恰有2个整数解,求实数k 的取值范围()A .32233e 5e k ≤<B .2315e 2ek <≤C .32233e 5e k <≤D .2315e 2ek ≤<【答案】D【分析】原不等式()3e 1xkx k x +<+等价于,()13e x x k x ++<,设()()3g x k x =+,()1e xx f x +=,然后转化为函数的交点结合图象可求.【详解】原不等式()3e 1xkx k x +<+等价于,()13e xx k x ++<,设()()3g x k x =+,()1e x xf x +=,所以()0e xx f x -'==,得0x =.当0x <时,()0f x '>,所以在(),0∞-上单调递增,当0x >时,()0f x '<,所以在()0,∞+上单调递减,又()10f -=,且0x >时,()0f x >,因此()()3g x k x =+与()1e xx f x +=的图象如下,当0k ≤时,显然不满足条件,当0k >时,只需要满足()()()()1122f g f g ⎧>⎪⎨≤⎪⎩,即224e 35e k k⎧>⎪⎪⎨⎪≤⎪⎩,解得2315e 2e k ≤<.故选:D .二.多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·广东·高三专题练习)已知不共线的两个单位向量,a b ,若向量2a kb - 与2a kb +的夹角为锐角,则符合上述条件的k 值可以是()A .1-B .1C .2D .3【答案】AB【分析】向量夹角为锐角时,数量积应大于0,从而求得参数.【详解】因为向量2a kb - 与2a kb +的夹角为锐角,所以()()222222440a kb a kb a k b k -⋅+=-=-> 且22a kb a kb -≠+ ,所以22k -<<且0k ≠,即20k -<<或02k <<,观察各选项可知符合条件的k 值可以是1-,1.故选:AB .10.(2022·江苏·南京市第一中学三模)在ABC 中,22cos cos 1A B +=,则下列说法正确的是()A .sin cos A B=B .2A B π+=C .sin sin A B 的最大值为12D .tan tan 1A B =±【答案】ACD【分析】根据已知条件,结合22cos sin 1A A +=得sin cos A B =,22111tan 1tan 1A B +=++,进而得tan tan 1A B =±,可判断AD ;进而得()cos 0A B -=或()cos 0A B +=,故2A B π-=或2A B π+=,再分别讨论sin sin A B 的最大值问题即可判断BC.【详解】解:因为22cos cos 1A B +=,22cos sin 1A A +=,所以22sin cos A B =,222222cos cos 1cos sin cos sin A BA AB B+=++所以sin cos A B =,22111tan 1tan 1A B +=++,故A 选项正确;所以,222222tan 1tan t tan tan an 1tan 1A B B A A B =+++⋅+++,即22tan t 1an B A ⋅=;所以tan tan 1A B =±,故D 选项正确;所以sin sin cos cos A B A B =±,即()cos 0A B -=或()cos 0A B +=,所以2A B π-=或2A B π+=,故B 选项错误;当2A B π-=时,0,2B π⎛⎫∈ ⎪⎝⎭,11sin sin sin sin sin cos sin 2222A B B B B B B π⎛⎫=+==≤ ⎪⎝⎭,当且仅当4B π=时,此时3244A πππ=+=,不满足内角和定理;当2A B π+=时,0,2B π⎛⎫∈ ⎪⎝⎭,11sin sin sin sin sin cos sin 2222A B B B B B B π⎛⎫=-==≤ ⎪⎝⎭,当且仅当4B π=时,此时244A πππ=-=,满足题意.综上,sin sin A B 的最大值为12,故C 选项正确.故选:ACD11.(2022辽宁省六校高三上学期期初联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是()A.68a = B.954S =C.135********a a a a a ++++= D.22212201920202019a a a a a +++= 【答案】ACD【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案.【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确;对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=L ,故C 正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018aa a a a =-,可得22212201920202019201920202019a a a a a a a a+++==L ,故D 正确;故选:ACD.12.(多选)(2022·广东潮州·二模)已如斜率为k 的直线l 经过抛物线24y x =的焦点且与此抛物线交于()11,A x y ,()22,B x y 两点,8AB <,直线l 与抛物线24y x =-交于M ,N 两点,且M ,N 两点在y 轴的两侧,现有下列四个命题,其中为真命题的是().A .12y y 为定值B .12y y +为定值C .k 的取值范围为()(),11,4-∞-⋃D .存在实数k使得MN =【答案】ACD【分析】设l 的方程为()()10y k x k =-≠,联立()241y x y k x ⎧=⎪⎨=-⎪⎩,整理得2440ky y k --=,根据根与系数的关系可判断A 、B 选项.由弦长公式122448AB x x p k =++=+<,得21k >,再联立()214y k x y x ⎧=-⎨=-⎩,M ,N 两点在y 轴的两侧,求得4k <,由此判断C .设()33,M x y ,()44,N x y ,由弦长公式得MN 241613k k -+=,求解即可判断D 选项.【详解】解:由题意可设l 的方程为()()10y k x k =-≠,联立()241y x y k x ⎧=⎪⎨=-⎪⎩,得2440ky y k --=,则1244k y y k -==-为定值,故A 正确.又124y y k+=,故B 不正确.12122422y y x x k k ++=+=,则122448AB x x p k=++=+<,即21k >,联立()214y k x y x ⎧=-⎨=-⎩,得240x kx k -+-=,∵M ,N 两点在y 轴的两侧,∴()22444160k k k k ∆=--=-+>,且40k -<,∴4k <.由21k >及4k <可得1k <-或14k <<,故k 的取值范围为()(),11,4-∞-⋃,故C 正确.设()33,M x y ,()44,N x y ,则34x x k +=,344x x k =-,则MN =假设存在实数k ,则由MN =得241613k k -+=,解得1k =或3,故存在3k =满足题意.D 正确.故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·山东潍坊市·高一期中)已知偶函数()f x 在[)0,+∞上单调递增,且1是它的一个零点,则不等式()20f x -<的解集为______.【答案】{}13x x <<【详解】因为1是函数()f x 的一个零点,所以()10f =,因为函数()f x 是偶函数,所以()()22f x fx -=-,所以由()20f x -<,可得()2(1)f x f -<,又因为函数()f x 在[)0,+∞上单调递增,所以有21x -<,解得13x <<.故答案为:{}13x x <<14.(2021辽宁省锦州市第二高级中学高三检测)学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求________.15.(2020·江西景德镇一中高二期中)已知双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,设过2F 的直线l 与C 的右支相交于A B ,两点,且112AF F F =,222BF AF =,则双曲线C 的离心率是______.【答案】53【详解】如图:设2AF 的中点为M ,连接1F M ,1BF ,因为1122AF F F c ==,M 为2AF 的中点,所以12F M AF ⊥,由122AF F A a =-,得222F A c a =-,所以2212F A M F c a ==-,在12MF F △中,22112cos 2MF c a BF F F F c -∠==,22244BF AF c a ==-,所以12242BF a BF c a =+=-,在12BF F △中,()()()22222212212112241642cos 2224F F BF BF c c a c a BF F F F BF c c a +-+---∠==⨯⨯⨯-()224121616c a ac c c a +-=-,因为2121BF F MF F π∠+∠=,2121cos cos 0BF F MF F ∠+∠=,所以()22412160216c a c a ac c c c a -+-+=-,整理可得:221616120a ac c -+=,即225830a ac c -+=,所以225830a ac c -+=,即()()530a c a c --=,所以53a c =或a c =(舍),所以离心率53c e a ==,故答案为:5316.(2020·山东高二期末)在棱长为6的正方体空盒内,有四个半径为r 的小球在盒底四角,分别与正方体底面处交于某一顶点的三个面相切,另有一个半径为R 的大球放在四个小球之上,与四个小球相切,并与正方体盒盖相切,无论怎样翻转盒子,五球相切不松动,则小球半径r 的最大值为________;大球半径R 的最小值为________.【答案】32158【详解】当四个半径为r 的小球相切时,小球的半径最大,大球的半径最小,如图所示:四个小球的球心和大球的球心构成一个正四棱锥P ABCD -,所以4r =6,解得32r =,其中3329,23,6222PA R AB r OA OP R r R =+====--=-,在Rt PAO 中,222PA OA OP =+,即22239222R R ⎛⎫⎛⎫⎛⎫+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得158R =,故答案为:(1)32;(2)158.四、解答题(本大题共6小题,共70分)17.(2020·山东师范大学附中高三学业考试)在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足__________,__________;又知正项等差数列{}nb 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式;(2)若n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)答案见解析;(2)5352n nn T +=-.【详解】(1)选择①②:当2n ≥时,由121n n S S +=+得121n n S S -=+,两式相减,得12n n a a +=,即()1122n n a n a +=≥,由①得2121S S =+,即()12121a a a +=+,∴121112122a a =-=-=,得112a =.∴2112a a =,∴{}n a 为112a =,公比为12的等比数列,∴1111222n nn a -⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭.选择②③:当2n ≥时,由③112n n S a +=-,得112n n S a -=-,两式相减,得122n n n a a a +=-,∴()1122n n a n a +=≥,又1212S a =-,得112a =,∴2112a a =,∴{}n a 为112a =,公比为12的等比数列,∴111111222n nn n a a q --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.选择①③,由于121n n S S +=+和112n n S a +=-等价,故不能选择;设等差数列{}n b 的公差为d ,0d ≥,且1b ,21b -,3b 成等比数列.()21321b b b =-,即()()22221d d +=+,解得3d =,1d =-(舍去),∴()21331n b n n =+-=-.(2)312n n n n n c a b -==,231132131222n nn T ⨯-⨯--=+++ ,2311311321343122222n n n n n T +⨯-⨯---=++++ ,∴21113331533112222222n n n n n n n T ++--=+++-=-- ,∴5352n nn T +=-.18.(2020·山东省淄博实验中学高三月考)已知向量,12x m ⎫=⎪⎭ ,2cos ,cos 22x x n ⎛⎫= ⎪⎝⎭ ,函数1()2f x m n =⋅- .(1)若,36x ππ⎛⎫∈- ⎪⎝⎭,求()f x 的取值范围;(2)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若()1f B =,5a =,b =ABC 的面积.【答案】(1)1(,22-;(2)2.【详解】(1)向量2,1),(cos ,cos )222x x x m n == ,∴231cos cos (1cos )22222x x x m n x x =+=++ .由此可得函数11()cos sin()226f x m n x x x π=-=+=+ ,又 (,)36x ππ∈-,得(,)663x πππ+∈-1sin()(62x π∴+∈-,即()f x 的取值范围是13(,22-;(2)()sin()6f x x π=+,f ∴(B )sin()16B π=+=,又(66B ππ+∈ ,76π,62B ππ∴+=,可得3B π=.5,a b ==,∴根据正弦定理sin sin a b A B =,可得5sin sin 13sin 2a B A b π⨯===,由a b <得A B <,所以6A π=,因此()2C A B ππ=-+=,可得ABC 是以C 为直角顶点的直角三角形,ABC ∴的面积11522S ab ==⨯⨯.19.(2020·山东宁阳县一中高二期中)如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且PCD 是边长为2的等边三角形,四边形ABCD是矩形,BC =M 为BC 的中点.(1)证明:AM PM ⊥;(2)求二面角P AM D --的大小;(3)求点D 到平面APM 的距离.【答案】(1)证明见解析;(2)45 ;(3)263.【详解】(1)取CD 的中点E ,连接PE 、EM 、EA .PCD 为正三角形,PE CD ∴⊥, 平面PCD ⊥平面ABCD ,PE ∴⊥平面ABCD AM PE∴⊥ 四边形ABCD 是矩形ADE ∴V 、ECM 、ABM 均为直角三角形由勾股定理可求得:EM =,AM =,3AE =222EM AM AE ∴+=AM EM∴⊥又PE EM E AM =∴⊥ 平面PEMAM PM∴⊥(2)由(1)可知EM AM ⊥,PM AM⊥PME ∴∠是二面角P AM D --的平面角tan 1PE PME EM ∴∠===45PME ∴∠=︒∴二面角P AM D --为45︒(3)设D 点到平面PAM 的距离为d ,连接DM ,则P ADM D PAM V V --=,∴11··33ADM PAM S PE S d =而1·2ADM S AD CD ==在Rt PEM 中,由勾股定理可求得PM =1·32PAM S AM PM ∴== ,所以:11333d ⨯=⨯⨯d ∴=即点D 到平面PAM 的距离为3.20.(2020·山东师范大学附中高三学业考试)冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现有A材料、B材料供选择,研究人员对附着在A、B材料上再结晶各做了50次试验,得到如下等高条形图.(1)由上面等高条形图,填写22⨯列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV胶层;②石墨烯层;③表面封装层.每个环节生产合格的概率均为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,且生产1吨石塑烯发热膜的每个环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标?附:参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.1000.0500.0100.0050.001 k 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析;有99%的把握认为试验成功与材料有关;(2)2.1万元/吨.【详解】(1)根据所给等高条形图,得到22⨯的列联表:A 材料B 材料合计成功453075不成功52025合计50501002K 的观测值()210045205301250507525K ⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元.易知X 可得0,0.1,0.2,0.3.()3280327P X ⎛⎫=== ⎪⎝⎭,()21321120.13327P X C ⎛⎫==⨯= ⎪⎝⎭,()2231260.23327P X C ⎛⎫==⨯= ⎪⎝⎭,()2110.3327P X ⎛⎫=== ⎪⎝⎭,则X的分布列为:(分布列也可以不列)X 00.10.20.3P 8271227627127修复费用的期望:()8126100.10.20.30.127272727E X =⨯+⨯+⨯+⨯=.所以石墨烯发热膜的定价至少为0.111 2.1++=万元/吨,才能实现预期的利润目标.21.(2020·五莲县教学研究室高二期中)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值;(3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0)∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =.(2)抛物线C 的准线方程为1x =-.设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=.其判别式△1616()k k t =-+,令△0=,得:210k kt +-=.由韦达定理知12k k t +=-,121k k =-,故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k -=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k =,代入抛物线方程得21x k =,所以211(A k ,12k ,221(B k ,22k,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k =-==244t =+,当且仅当0t =时取等号.当且仅时取等号.故||AB 的最小值为4.22.(2020·山东高三期中)设函数()()22ln f x x a x a x =-++,()2ln 4g x a x x b =-+,其中0a >,b R ∈.(1)讨论函数()f x 的单调性;(2)若2a >且方程()()f x g x =在()1,+∞,上有两个不相等的实数根1x ,2x ,求证1202x x f +⎛⎫'> ⎪⎝⎭.【详解】(1)()()()()()221222220a x x x a x a a x x a x x x xf ⎛⎫-- ⎪-++⎝⎭=-++'>==1°若12a <,即02a <<时,令()0f x '>,得02a x <<或1x >,令()0f x '<,得12a x <<.()f x 在0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在,12a ⎛⎫ ⎪⎝⎭上单调递减2°若12a =,即2a =时,()()2210x f x x-'=恒成立,()f x 在()0,∞+上单调递增3°若12a >,即2a >时,令()0f x '>得01x <<或2a x >,令()0f x '<得12a x <<()f x 在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2a ⎛⎫ ⎪⎝⎭上单调递减综上:02a <<时,()f x 在,02a ⎛⎫⎪⎝⎭上单调递减,0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增2a =时,()f x 在()0,∞+上单增2a >时,()f x 在1,2a ⎛⎫ ⎪⎝⎭上单减,在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单增(2)方程()()f x g x =即()22ln x a x a x b ---=在()1,+∞上有两个不等实根1x 和2x 不妨设121x x <<则()21112ln x a x a x b ---=①()22222ln x a x a x b ---=②①-②得221122112222ln ln +--=+--x x x x a x x x x 因为2a >,由(1)知,()f x 在1,2a ⎛⎫ ⎪⎝⎭上单减,,2a ⎛⎫+∞ ⎪⎝⎭上单增即1,2a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>故若证1202x x f +⎛⎫'> ⎪⎝⎭,只需证1222+>x x a ,即证12a x x <+只需证22112212112222ln ln x x x x x x x x x x +--<++--因为12x x <,所以1122ln ln x x x x +<+即需证:()()22112212112222ln ln x x x x x x x x x x +-->++--整理得:()1212122ln ln x x x x x x --<+即证12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭<+令()120,1x t x =∈,()()21ln 1t h t t t -=-+()()()22101t h t t t -'=>+显然()h t 在()0,1上单增.所以()()10h t h <=故1202x x f +⎛⎫'> ⎪⎝⎭得证。
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
全真模拟高考数学测试题含答案
全真模拟高考数学测试题含答案第一部分:选择题(共10题,每小题4分,共40分)题目1:已知函数f(x) = 2x^3 - 3x^2 + 5x - 7,求f'(2)的值。
答案:f'(x) = 6x^2 - 6x + 5,代入x=2可得f'(2) = 13。
题目2:已知函数f(x) = ln(x + 1),求f''(2)的值。
答案:f'(x) = 1/(x + 1),f''(x) = -1/(x + 1)^2,代入x=2可得f''(2) = -1/9。
题目3:已知复数z = 3 + 4i,则复数z的共轭是多少?答案:复数z的共轭是3 - 4i。
题目4:已知事件A与事件B相互独立,且事件A的概率为1/3,事件B的概率为1/4。
求事件A与事件B同时发生的概率。
答案:由独立事件的性质可知,事件A与事件B同时发生的概率为P(A∩B) = P(A) × P(B) = (1/3) × (1/4) = 1/12。
题目5:已知正弦函数y = a*sin(2x + π/4)的一个最小正周期为π/3,求a的值。
答案:最小正周期为2π/k,其中k为常数。
根据题目给出的信息得知k = π/(2π/3) = 3/2。
由于y = a*sin(2x + π/4)的一个完整周期为2π,所以有2π/3 = 2π/|2|k,解得a = |2|k/2 = 3/2。
题目6:已知集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},求集合A与B的交集。
答案:集合A与B的交集为{3, 4}。
题目7:已知集合A = {x | x > 0},集合B = {x | 0 < x < 1},求A与B的差集。
答案:由题目给出的条件可知集合B中的元素都是正数小于1的数,所以A与B的差集为A。
题目8:已知等差数列的首项为a1 = 1,公差为d = 3,求该等差数列的第n项。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
高考数学模拟复习试卷试题模拟卷230 4
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值;(2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( ) A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+2B .1+3C .3D .4题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________. (2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________. 【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1) (2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________.【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max , a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性. 【举一反三】 已知函数f(x)=x +px -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q2%,若p>q>0,则提价多的方案是________.【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .83.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .24.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b25.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.9.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S的最大允许值是多少?为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1. 【海南中学高三5月月考数学文6】在圆22260x y x y +--=内,过点()0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .52B .102C .152. D .202 【答案】B考点:直线与圆的位置关系.2.【八校联盟高三第二次联考文4】直线0x y +=被圆22(2)4x y -+=截得的弦长为 ( )A.22B.2C.22D.2 【答案】C 【解析】试题分析:根据点到直线的距离公式可求得,圆心)0,2(到直线0x y +=的距离为2202=+=d ,所以直线0x y +=被圆22(2)4x y -+=截得的弦长为22242222=-=-d r ,故应选C .考点:1.直线与圆的位置关系;2.点到直线的距离公式;3.【黑龙江哈尔滨第三中学高三第四次模拟考试文6】直线:8630l x y --=被圆22:20O x y x a +-+=3,则实数a 的值是( )A .1-B .0C .1D .131-【答案】B考点:直线与圆位置关系4.【高三第一次复习统测数学文8】已知32()26f x x x x =-++,则()f x 在点(1,2)P -处的切线与坐标轴围成的三角形的面积等于( ) A.4 B.5 C.254 D.132【答案】C. 【解析】试题分析:∵32()26f x x x x =-++,∴2'()341f x x x =-+,∴'(1)8f -=,切线方程为28(1)y x -=+,即8100x y -+=,∴152510244S =⋅⋅=. 考点:1.利用导数求曲线上某点的切线方程;2.直线的方程.5.【甘肃天水第一中学高三第五次高考模拟文5】直线b x y +=与曲线21y x -=有且只有一个交点,则b 的取值范围是 ( )A .2=bB .11≤<-b 或2-=bC .11≤≤-b 或2-=bD .11≤≤-b 【答案】B考点:直线与曲线有一个交点时对应的参数的取值范围,数形结合的思想.6.【吉林市高三第三次模拟考试文14】圆心在原点且与直线0=4-+y x 相切的圆的方程为. 【答案】228x y += 【解析】试题分析:因为所求圆与直线40x y +-=相切,所以2200422211r +-===+,所以圆心在原点且与直线40x y +-=相切的圆的方程是228x y +=,所以答案应填:228x y +=. 考点:1、直线与圆的位置关系;2、圆的标准方程. 二.能力题组1. 【八校联盟高三第二次联考文7】已知点(,)A m n 在直线21x y +=上,其中0mn >,则21m n+的最小值为 ( ) A.42B.8C.9 D.12 【答案】B考点:1.直线的方程;2.基本不等式;2.【实验中学高三上学期第五次模拟考试数学文12】已知函数()sin ()f x x x x R =+∈,且22(23)(41)0f y y f x x -++-+≤,则当1y ≥时,1yx +的取值范围是( ) A .4[0,]3B .3[0,]4C .14[,]43D .13[,]44【答案】D 【解析】试题分析:因为()sin (),()1cos 0f x x x f x f x x '-=--=-=+≥,所以函数()f x 为奇函数且为增函数,所以由22(23)(41)0f y y f x x -++-+≤得222222(23)(41),(23)(41),2341,f y y f x x f y y f x x y y x x -+≤--+-+≤-+--+≤-+- 22(2)(1)1,x y -+-≤当1y ≥时,1yx +表示半圆上的点P 与定点(10)A -,连线的斜率,其取值范围为13[,][,]44PB l k k =,其中(3,1),B l 为切线考点:函数性质,直线与圆位置关系3.【内蒙古赤峰市宁城县高三3月统一考试(一模)文12】已知两点(1,0)M -,(1,0)N ,若直线(2)y k x =-上至少存在三个点P ,使得△MNP 是直角三角形,则实数k 的取值范围是(A )[5,5]-(B )11[,]33-(C )11[,0)(0,]33-(D )33[,0)(0,]33- 【答案】C考点:直线与圆的位置关系4.【黑龙江哈尔滨第九中学高三第三次高考模拟文11】直线2:,:21+==x y l x y l 与圆C 02222=--+ny mx y x 的四个交点把圆C 分成的四条弧长相等,则=mA .0或1 B. 0或1- C . 1- D . 1 【答案】B 【解析】试题分析:圆的标准方程为:()()2222n m n y m x +=-+-,由题意可得:02222222=⇒⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫⎝⎛--=-mnmnmnmnm或1-=m.考点:圆的性质.5.【八校联盟高三第二次联考文16】已知点M在曲线23lny x x=-上,点N在直线20x y-+=上,则MN的最小值为.【答案】22.考点:1、导数在研究函数中的应用;2、点到直线的距离公式6.【辽宁沈阳东北育才学校高三第八次模拟考试数学文15】已知直线21ax by+=(其中,a b为非零实数)与圆221x y+=相交于,A B两点,O为坐标原点,且AOB∆为直角三角形,则2212a b+的最小值为. 【答案】4考点:直线与圆位置关系,基本不等式求最值三.拔高题组1. 【海南中学高三5月月考数学文19】(本题满分12分)如图,已知圆心坐标为)1,3(的圆M 与x 轴及直线x y 3=分别相切于B A 、两点,另一圆N 与圆M 外切,且与x 轴及直线x y 3=分别相切于D C 、两点。
2023高考数学模拟试题(带答案解析)
2023高考数学模拟试题(带答案解析)第一部分:选择题1. 设$A$ 为向量组$\alpha_1,\alpha_2$ 与$\beta$ 的张成空间,则下列命题成立的是()A. 若 $\beta = \alpha_1 + \alpha_2$,则 $\beta \in A$B. 若 $\beta \in A$,则 $\beta$ 一定能表示成$\alpha_1,\alpha_2$ 的线性组合C. 若 $\alpha_1,\alpha_2$ 线性无关,则 $\beta \notin A$D. 若 $\beta = \lambda_1\alpha_1 + \lambda_2\alpha_2$,则$\beta \in A$答案:B解析:$\forall \beta \in A$,$\beta$ 一定是向量组$\alpha_1,\alpha_2$ 的线性组合,即 $\beta = \lambda_1\alpha_1 + \lambda_2\alpha_2$,故选 B。
2. 已知函数 $f(x)=\frac{2x^2-8x}{x-4}$,若 $f(a)=5$,则$a=$()A. 4B. 5C. 6D. 7答案:6解析:$f(x)=\frac{2x^2-8x}{x-4} = \frac{2x(x-4)}{x-4} = 2x$所以 $f(a)=5$ 即 $2a=5$,解得 $a=\frac{5}{2}$。
故选 C。
第二部分:填空题1. 若 $|a|=3,|b|=1$,则 $|\frac{1}{2}a-2b|=$()答案:$\frac{\sqrt{17}}{2}$解析:$|\frac{1}{2}a-2b| = \frac{1}{2}|3\alpha - 2\beta| =\frac{1}{2}\sqrt{9+4}= \frac{\sqrt{17}}{2}$。
2. 已知 $cos A = -\frac{1}{3}$,则 $tan \frac{A}{2}=$()答案:$-\frac{1}{2}$解析:由 $\cos A = -\frac{1}{3}$,得 $\sin A = \frac{\sqrt{8}}{3}$,且由 $\cos A = -\frac{1}{3}$ 得 $A\in (90^\circ,180^\circ)$。
2024年河北高考数学模拟试卷及答案
2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。
高考数学模拟试题及答案 (二十套)
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小
高考数学模拟考试试卷(含有答案)
高考数学模拟考试试卷(含有答案)本试卷共19题。
全卷满分120分。
考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。
模拟高考数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,y是x的函数的是()A. y = 2x + 1,x = 3B. y = 2x + 1,x = 3或x = 4C. y = 2x + 1,x可以是任意实数D. y = 2x + 1,x = 2或x = 32. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a和b的关系是()A. a = bB. a = b + 1C. a = b - 1D. a + b = 23. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. √3/4C. 1/2D. √2/24. 下列各式中,表示x与y成反比例关系的是()A. xy = 5B. x + y = 5C. x/y = 5D. x - y = 55. 已知等差数列{an}的公差d = 3,且a1 + a3 = 15,则a2的值为()A. 6B. 9C. 12D. 156. 下列各式中,表示一元二次方程的判别式的是()A. b^2 - 4acB. a^2 + b^2 + c^2C. a^2 - b^2D. a^2 + b^27. 已知等比数列{bn}的公比q = 2,且b1 + b2 = 6,则b3的值为()A. 12B. 18C. 24D. 308. 下列各式中,表示圆的方程的是()A. x^2 + y^2 = 1B. x^2 + y^2 + 2x - 2y + 1 = 0C. x^2 + y^2 - 2x + 2y + 1 = 0D. x^2 + y^2 + 2x + 2y + 1 = 09. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^310. 已知等差数列{an}的前n项和为Sn,若S5 = 25,则S10的值为()A. 45B. 50C. 55D. 6011. 下列各式中,表示一元二次不等式的解集的是()A. x^2 - 4 > 0B. x^2 - 4 < 0C. x^2 - 4 ≥ 0D. x^2 - 4 ≤ 012. 已知函数f(x) = ax^2 + bx + c,若f(1) = 3,f(-1) = 1,则a、b、c的值分别为()A. a = 1,b = -2,c = 3B. a = 1,b = 2,c = 3C. a = -1,b = -2,c = 3D. a = -1,b = 2,c = 3二、填空题(本大题共6小题,每小题5分,共30分。
2023年普通高等学校招生全国统一考试高三数学仿真模拟卷+答案解析(附后)
2023年普通高等学校招生全国统一考试高三数学仿真模拟卷✽一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则的子集共有( )A. 2个B. 3个C. 4个D. 8个2.已知复数,i 为虚数单位,则( )A. 1B.C.D.3.在中,记,,则( )A. B. C. D.4.已知函数,则的单调递增区间为( )A. B. C. D.5.如图,已知正四棱锥的底面边长和高分别为2和1,若点E是棱PD的中点,则异面直线PA 与CE所成角的余弦值为( )A. B. C. D.6.某芯片制造厂有甲、乙、丙三条生产线均生产5 nm规格的芯片,现有25块该规格的芯片,其中甲、乙、丙生产的芯片分别为5块,10块,10块,若甲、乙、丙生产该芯片的次品率分别为,,,则从这25块芯片中任取一块芯片,是正品的概率为( )A. B. C. D.7.已知若存在,使不等式有解,则实数m的取值范围为( )A. B.C. D.8.已知a ,b ,,且,,,其中e 是自然对数的底数,则( )A.B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.空气质量指数大小分为五级,指数越大说明污染的情况越严重,对人体危害越大,指数范围分别对应“优”“良”“轻度污染”“中度污染”“重污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下面说法正确的是( )A. 这14天中有5天空气质量指数为“轻度污染”B. 从2日到5日空气质量越来越好C. 这14天中空气质量的中位数是D. 连续三天中空气质量指数方差最小是5日到7日10.密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“”,478密位写成“”.若,则角可取的值用密位制表示可能是( )A.B.C.D.11.已知点A ,B 分别是双曲线C :的左,右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记PA 、PB 的斜率分别为、,则下列说法正确的是( )A. 双曲线C 的离心率为B. 双曲线C 的焦点到其渐近线的距离为1C.为定值D. 存在点P ,使得12.已知,,若关于x的方程有四个不同的实数根,则满足上述条件的a值可以为( )A. B. C. D. 1三、填空题:本题共4小题,每小题5分,共20分。
高考数学模拟复习试卷试题模拟卷2322 29
高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.【热点题型】题型一命题及其相互关系例1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题答案:A【提分秘籍】(1)首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.(2)要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”、“否命题”、“逆否命题”.(3)判断命题真假时,可直接依据定义、定理、性质直接判断,也可使用特值进行排除.【举一反三】(1)有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.(2)命题“若△ABC有一内角为π3,则△ABC的三内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题题型二充分条件和必要条件的判定例2、设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析当a=0,b=-1时,a>b成立,但a2=0,b2=1,a2>b2不成立,所以“a>b”是“a2>b2”的不充分条件.反之,当a=-1,b=0时,a2=1,b2=0,即a2>b2成立,但a>b不成立,所以“a>b”是“a2>b2”的不必要条件.综上,“a>b”是“a2>b2”的既不充分也不必要条件,应选D.答案D【提分秘籍】判断充要条件应注意:首先弄清条件p和结论q分别是什么?然后尝试p⇒q,q⇒p.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【举一反三】“a+c>b+d”是“a>b且c>d”的()A.充分不必要条件B.既不充分也不必要条件C.充分必要条件D.必要不充分条件解析:由“a+c>b+d”不能得知“a>b且c>d”,反过来,由“a>b且c>d”可得知“a+c>b+d”,因此“a +c>b+d”是“a>b且c>d”的必要不充分条件,选D.答案:D题型三充要条件的应用例3、已知P ={x|x2-8x -20≤0},S ={x|1-m≤x≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围.【提分秘籍】利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的包含、相等关系,一定要注意区间端点值的检验.【举一反三】已知不等式x2-5x +4≤0成立的充分不必要条件是-1≤x +2m≤1,求实数m 的取值范围.解析:由x2-5x +4≤0得1≤x≤4,由-1≤x +2m≤1得-1-2m≤x≤1-2m ,由题意知{x|-1-2m≤x≤1-2m}{x|1≤x≤4},所以⎩⎪⎨⎪⎧-1-2m≥1,1-2m≤4解得-32≤m≤-1, ∴实数m 的取值范围是⎣⎡⎦⎤-32,-1. 【高考风向标】1.【高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D2.【高考重庆,文2】“x 1”是“2x 210x ”的()(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】由“x 1 ”显然能推出“2x 210x ”,故条件是充分的,又由“2x 210x ”可得10)1(2=⇒=-x x ,所以条件也是必要的,故选A.3.【高考天津,文4】设x R ,则“12x ”是“|2|1x ”的()(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A 【解析】由2112113x x x -<⇔-<-<⇔<<,可知“12x”是“|2|1x ”的充分而不必要条件,故选A.4.【高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log2a >l og2b >0”的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【解析】a >b >1时,有log2a >log2b >0成立,反之当log2a >log2b >0成立时,a >b >1也正确.选A5.【高考湖南,文3】设x ∈R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】C【解析】由题易知“x >1”可以推得“2x >1”, “2x >1”不一定得到“x >1”,所以“x >1”是“2x >1”的充分不必要条件,故选A.6.【高考安徽,文3】设p :x<3,q :1<x<3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 【答案】C【解析】∵3: x p ,31: x q -∴p q ⇒,但p ⇒/q ,∴p 是q 成立的必要不充分条件,故选C.1.(·北京卷)设a ,b 是实数,则“a >b”是“a2>b2”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】当ab<0时,由a>b 不一定推出a2>b2,反之也不成立.2.(·广东卷)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a≤b”是“sin A≤sin B”的()A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件【答案】A【解析】设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2Rsin A ,b =2Rsin B .故选A.∵sin≤A sin B ,∴2Rsin A≤2Rsin B ,∴a≤b.同理也可以由a≤b 推出sin A≤sinB.3.(·江西卷)下列叙述中正确的是()A .若a ,b ,c ∈R ,则“ax2+bx +c≥0”的充分条件是“b2-4ac≤0”B .若a ,b ,c ∈R ,则“ab2>cb2”的充要条件是“a>c”C .命题“对任意x ∈R ,有x2≥0”的否定是“存在x ∈R ,有x2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β【答案】D【解析】对于选项A ,a>0,且b2-4ac≤0时,才可得到ax2+bx +c≥0成立,所以A 错.对于选项B ,a>c ,且b≠0时,才可得到ab2>cb2成立,所以B 错.对于选项C ,命题的否定为“存在x ∈R ,有x2<0”,所以C 错.对于选项D,垂直于同一条直线的两个平面相互平行,所以D正确.4.(·辽宁卷)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧qC.(p)∧(q) D.p∨(q)【答案】A【解析】由向量数量积的几何意义可知,命题p为假命题;命题q中,当b≠0时,a,c一定共线,故命题q是真命题.故p∨q为真命题.5.(·新课标全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【答案】C6.(·山东卷)用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【答案】A【解析】方程“x2+ax+b=0至少有一个实根”等价于“方程x2+ax+b=0有一个实根或两个实根”,所以该命题的否定是“方程x2+ax+b=0没有实根”.故选A.7.(·陕西卷)原命题为“若an+an+12<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,真,真 B.假,假,真C .真,真,假D .假,假,假【答案】A 【解析】由an +an +12<an ,得an +1<an ,所以数列{an}为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.8.(·浙江卷)设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若四边形ABCD 为菱形,则AC ⊥BD ;反之,若AC ⊥BD ,则四边形ABCD 不一定为平行四边形.故“四边形ABCD 为菱形”是“AC ⊥BD”的充分不必要条件.故选A.9.(·重庆卷)已知命题p :对任意x ∈R ,总有|x|≥0,q :x =1是方程x +2=0的根.则下列命题为真命题的是()A .p ∧qB .p ∧qC .p ∧qD .p ∧q【答案】A【解析】由题意知p 为真命题,q 为假命题,则q 为真命题,所以p ∧q 为真命题.10.(·安徽卷) “(2x -1)x =0”是“x =0”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】(2x -1)x =0x =12或x =0;x =0(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.11.(·山东卷)给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A12.(·湖南卷) “1<x<2”是“x<2”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】1<x<2,一定有x<2;反之,x<2,则不一定有1<x<2,如x =0.故“1<x<2”是“x<2”成立的充分不必要条件,选A.13.(·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q【答案】A【解析】“至少一位学员没降落在指定区域”即为“甲没降落在指定区域或乙没降落在指定区域”,可知选A.14.(·福建卷)设点P(x ,y),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当x =2,y =-1时,x +y -1=0;但x +y -1=0不能推出x =2,y =-1,故选A.15.(·北京卷)双曲线x2-y2m =1的离心率大于2的充分必要条件是()A .m>12B .m≥1C .m>1D .m>2【答案】C【解析】双曲线的离心率e =c a =1+m>2,解得m>1.故选C.16.(·天津卷)设a ,b ∈R ,则“(a -b)·a2<0”是“a<b”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】当(a -b)·a2<0时,易得a<b ,反之当a =0,b =1时,(a -b)·a2=0,不成立.故选A.17.(·四川卷)设x ∈,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A ,2x ∈B ,则()(A ):,2p x A x B ⌝∃∈∈(B ):,2p x A x B ⌝∃∉∈(C ):,2p x A x B ⌝∃∈∉(D ):,2p x A x B ⌝∀∉∉【答案】C【解析】注意“全称命题”的否定为“特称命题”.18.(·陕西卷)设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<0【答案】C19.(·浙江卷)若α∈R ,则“α=0”是“sin α<cos α”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若α=0,则sin 0=0<cos 0=1,而sin α<cos α,则2sinα-π4<0,所以α=0是sin α<cos α的充分不必要条件.所以选择A.【高考押题】1.下列命题中为真命题的是( )A .命题“若x>y ,则x>|y|”的逆命题B .命题“若x>1,则x2>1”的否命题C .命题“若x =1,则x2+x -2=0”的否命题D .命题“若x2>0,则x>1”的逆否命题答案 A2.“如果x 、y ∈R ,且x2+y2=0,则x 、y 全为0”的否命题是( )A .若x 、y ∈R 且x2+y2≠0,则x 、y 全不为0B .若x 、y ∈R 且x2+y2≠0,则x 、y 不全为0C .若x 、y ∈R 且x 、y 全为0,则x2+y2=0D .若x 、y ∈R 且x 、y 不全为0,则x2+y2≠0答案 B解析 “x2+y2=0”的否定是“x2+y2≠0”,“x 、y 全为0”的否定是“x ,y 不全为0”.3.下列结论错误的是( )A .命题“若x2-3x -4=0,则x =4”的逆否命题为“若x≠4,则x2-3x -4≠0”B .“x =4”是“x2-3x -4=0”的充分条件C .命题“若m>0,则方程x2+x -m =0有实根”的逆命题为真命题D .命题“若m2+n2=0,则m =0且n =0”的否命题是“若m2+n2≠0,则m≠0或n≠0”答案 C解析 C 项命题的逆命题为“若方程x2+x -m =0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,即m≥-14,不能推出m>0.所以不是真命题,故选C.4.已知集合A ={1,2},B ={1,a ,b},则“a =2”是“A ⊆B”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析当a=2时,因为B={1,2,b},所以A⊆B;反之,若A⊆B,则必有2∈B,所以a=2或b=2,故“a=2”是“A⊆B”的充分不必要条件.选A.5.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”答案C解析根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.6.已知向量a=(m2,-9),b=(1,-1),则“m=-3”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A7.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3B.2C.1D.0答案C解析原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.8.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2B.m=2C.m=-1D.m=1答案 A解析 已知函数f(x)=x2-2x +1的图象关于直线x =1对称,则m =-2;反之也成立.所以函数f(x)=x2+mx +1的图象关于直线x =1对称的充要条件是m =-2.9.“若a≤b ,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.“m<14”是“一元二次方程x2+x +m =0有实数解”的____________条件.答案 充分不必要解析 x2+x +m =0有实数解等价于Δ=1-4m≥0,即m≤14,因为m<14⇒m≤14,反之不成立.故“m<14”是“一元二次方程x2+x +m =0有实数解”的充分不必要条件.11.若x<m -1或x>m +1是x2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.答案 [0,2]12.有下列几个命题:①“若a>b ,则a2>b2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案 ②③解析 ①原命题的否命题为“若a≤b ,则a2≤b2”错误.②原命题的逆命题为:“x ,y 互为相反数,则x +y =0”正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”正确.13.若集合A ={x|2<x<3},B ={x|(x +2)(x -a)<0},则“a =1”是“A∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 当a =1时,B ={x|-2<x<1},满足A∩B =∅;反之,若A∩B =∅,只需a≤2即可,故“a =1”是“A∩B =∅”的充分不必要条件.14.设a ,b 为正数,则“a -b>1”是“a2-b2>1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A15.给定两个命题p 、q ,若p 是q 的必要不充分条件,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 充分不必要条件解析 若p 是q 的必要不充分条件,则q ⇒p 但pq ,其逆否命题为p ⇒q 但q p ,所以p 是q 的充分不必要条件.16.已知“命题p :(x -m)2>3(x -m)”是“命题q :x2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________.答案 (-∞,-7]∪[1,+∞)解析 将两个命题化简得,命题p :x>m +3或x<m ,命题q :-4<x<1.因为p 是q 成立的必要不充分条件,所以m +3≤-4,或m≥1,故m 的取值范围是(-∞,-7]∪[1,+∞).17.已知集合A =⎩⎨⎧⎭⎬⎫x|12<2x<8,x ∈R ,B ={x|-1<x<m +1,x ∈R},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x|12<2x<8,x ∈R ={x|-1<x<3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m>2.18.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB2+AC2=BC2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a2+b2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a2+b2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
2024年高考数学全真模拟试题
2024年高考数学全真模拟试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x | x² 3x + 2 = 0},B ={1, 2},则A ∩ B =()A {1}B {2}C {1, 2}D ∅2、复数 z =(1 + i)(2 i),则|z| =()A 2B 5C 10D 2 23、已知向量 a =(1,2),b =(2,-1),则 a·b =()A 0B 3C 4D 54、函数 f(x) = sin(2x +π/3)的最小正周期为()A πB 2πC π/2D 4π5、若直线 l₁:x + 2y 3 = 0 与直线 l₂:2x my + 1 = 0 平行,则 m =()A -4B -1C 1D 46、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 1,d = 2,则S₅=()A 25B 20C 15D 107、从 5 名男生和 3 名女生中选出 3 人参加某项活动,至少有 1 名女生的选法有()A 80 种B 70 种C 65 种D 60 种8、抛物线 y²= 8x 的焦点到准线的距离为()A 2B 4C 8D 169、已知函数 f(x) = x³ 3x + 1,则函数 f(x) 的单调递增区间是()A (∞,-1)和(1,+∞)B (-1,1)C (∞,-1)D (1,+∞)10、若函数 f(x) =logₐx(a > 0 且a ≠ 1)在区间2,4上的最大值与最小值之差为 1,则 a =()A 2B 4C 1/2D 1/411、若圆 C:x²+ y² 2x 4y + 1 = 0 关于直线 l:ax + by 1 = 0(a > 0,b > 0)对称,则 1/a + 2/b 的最小值为()A 4B 6C 8D 1012、已知函数 f(x) =2sin(ωx +φ)(ω > 0,|φ| <π/2)的图象过点(0,1),且在区间(π/12,5π/12)上单调递减,则ω 的最大值为()A 11B 9C 7D 5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线 y = x³ 3x²+ 1 在点(1,-1)处的切线方程为________。
2023年全国高考数学模拟试卷(附答案)
2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.【热点题型】题型一命题及其相互关系例1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题【提分秘籍】(1)首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.(2)要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”、“否命题”、“逆否命题”.(3)判断命题真假时,可直接依据定义、定理、性质直接判断,也可使用特值进行排除.【举一反三】(1)有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.(2)命题“若△ABC有一内角为π3,则△ABC的三内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题题型二充分条件和必要条件的判定例2、设a ,b 是实数,则“a>b”是“a2>b2”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【提分秘籍】判断充要条件应注意:首先弄清条件p 和结论q 分别是什么?然后尝试p ⇒q ,q ⇒p.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.【举一反三】“a +c>b +d”是“a>b 且c>d”的()A .充分不必要条件B .既不充分也不必要条件C .充分必要条件D .必要不充分条件题型三充要条件的应用例3、已知P ={x|x2-8x -20≤0},S ={x|1-m≤x≤1+m}.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围.【提分秘籍】利用充要条件求参数的值或范围,关键是合理转化条件,准确地将每个条件对应的参数的范围求出来,然后转化为集合的包含、相等关系,一定要注意区间端点值的检验.【举一反三】已知不等式x2-5x +4≤0成立的充分不必要条件是-1≤x +2m≤1,求实数m 的取值范围.【高考风向标】1.【高考浙江,文3】设a ,b 是实数,则“0a b +>”是“0ab >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【高考重庆,文2】“x 1”是“2x 210x ”的()(A) 充要条件 (B) 充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件3.【高考天津,文4】设x R ,则“12x ”是“|2|1x ”的()(A) 充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件4.【高考四川,文4】设a ,b 为正实数,则“a >b >1”是“log2a >l og2b >0”的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件5.【高考湖南,文3】设x R ,则“x >1”是“2x >1”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件6.【高考安徽,文3】设p :x<3,q :1<x<3,则p 是q 成立的( )(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件1.(·北京卷)设a ,b 是实数,则“a >b”是“a2>b2”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(·广东卷)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件3.(·江西卷)下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β4.(·辽宁卷)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)5.(·新课标全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件6.(·山东卷)用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根7.(·陕西卷)原命题为“若an+an+12<an,n∈N+,则{an}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,真,真 B.假,假,真C.真,真,假 D.假,假,假8.(·浙江卷)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(·重庆卷)已知命题p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧綈q B.綈p∧qC.綈p∧綈q D.p∧q10.(·安徽卷)“(2x-1)x=0”是“x=0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.(·山东卷)给定两个命题p,q,若⌝p是q的必要而不充分条件,则p是⌝q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(·湖南卷)“1<x<2”是“x<2”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件13.(·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q14.(·福建卷)设点P(x ,y),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件15.(·北京卷)双曲线x2-y2m =1的离心率大于2的充分必要条件是()A .m>12B .m≥1C .m>1D .m>216.(·天津卷)设a ,b ∈R ,则“(a -b)·a2<0”是“a<b”的() A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件17.(·四川卷)设x ∈,集合A 是奇数集,集合B 是偶数集.若命题p :x ∈A ,2x ∈B ,则() (A ):,2p x A x B ⌝∃∈∈(B ):,2p x A x B ⌝∃∉∈(C ):,2p x A x B ⌝∃∈∉(D ):,2p x A x B ⌝∀∉∉18.(·陕西卷)设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<019.(·浙江卷)若α∈R,则“α=0”是“sin α<cos α”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【高考押题】1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题2.“如果x、y∈R,且x2+y2=0,则x、y全为0”的否命题是()A.若x、y∈R且x2+y2≠0,则x、y全不为0B.若x、y∈R且x2+y2≠0,则x、y不全为0C.若x、y∈R且x、y全为0,则x2+y2=0D.若x、y∈R且x、y不全为0,则x2+y2≠03.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”4.已知集合A={1,2},B={1,a,b},则“a=2”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.命题“若x2>y2,则x>y”的逆否命题是( )A .“若x<y ,则x2<y2”B .“若x>y ,则x2>y2”C .“若x≤y ,则x2≤y2”D .“若x≥y ,则x2≥y2”6.已知向量a =(m2,-9),b =(1,-1),则“m =-3”是“a ∥b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.给出命题:若函数y =f(x)是幂函数,则函数y =f(x)的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .08.函数f(x)=x2+mx +1的图象关于直线x =1对称的充要条件是( )A .m =-2B .m =2C .m =-1D .m =19.“若a≤b ,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.10.“m<14”是“一元二次方程x2+x +m =0有实数解”的____________条件.11.若x<m -1或x>m +1是x2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.12.有下列几个命题:①“若a>b ,则a2>b2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.13.若集合A ={x|2<x<3},B ={x|(x +2)(x -a)<0},则“a =1”是“A∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.设a ,b 为正数,则“a -b>1”是“a2-b2>1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件15.给定两个命题p 、q ,若綈p 是q 的必要不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件16.已知“命题p :(x -m)2>3(x -m)”是“命题q :x2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________.17.已知集合A =⎩⎨⎧⎭⎬⎫x|12<2x<8,x ∈R ,B ={x|-1<x<m +1,x ∈R},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.18.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB2+AC2=BC2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a2+b2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a2+b2≠0”是“a ,b 不全为零”的充要条件.正确的是________.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。