三角形全等的判定 (2)

合集下载

三角形全等的判定(二)说课稿

三角形全等的判定(二)说课稿

新人教版数学八年级上册12。

2。

2《三角形全等的判定(SAS)》说课稿说课教师:清远市清城区清城中学蒋晓清《三角形全等的判定(SAS)》说课稿尊敬的各位评委:大家好!我叫蒋晓清,来自于清远市清城中学。

今天我说课的内容是新人教版八年级数学上册第十二章第二节第二课时“三角形全等的判定(SAS)”。

根据新课标的理念,对于本节课,我将主要从以下六个环节来进行说明.一、教材分析:1。

教材的地位和作用:三角形是最常见的几何图形之一,在日常生活中有着广泛的应用。

本课是探索三角形全等条件的第二课时,是在学习了全等三角形的判定1-SSS之后展开的。

它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。

因此,本节课的知识具有承前启后的作用,占有相当重要的地位。

2。

教学目标:根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:(1)知识与技能目标:使学生理解并掌握“边角边公理"的内容及含义,能初步运用“边角边公理”解决实际问题。

(2)过程与方法目标:让学生经历猜想-作图-验证“边角边”公理的过程,培养学生的识图能力和动手能力。

(3)情感态度与价值观目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望;通过渗透分类讨论的数学思想,培养学生的逻辑推理能力.3.教学重点难点:根据本节课的内容和地位,我确定:(1)教学重点:掌握全等三角形的判定方法--“边角边(SAS)”(2)教学难点:验证并归纳边角边公理内容,运用此结论解决实际问题。

二、学情分析:通过对前面知识的学习,学生已掌握了全等三角形定义、性质及“边边边”(SSS)公理,对本节课学习的三角形全等判定—-“边角边”(SAS)有了一定的基础,但个别学生在理解、运用上还须借助教师、同学的帮助。

湘教八年级数学上册《全等三角形的判定(二)》课件(共9张幻灯片)

湘教八年级数学上册《全等三角形的判定(二)》课件(共9张幻灯片)

D
∴ AB=CD .(全等三角形的对应边相等)
因此,CD的长就是河的宽度.
练习
1、已知:点D在AB上,点E在AC上,BE和CD相交于 点O, AB=AC,∠B=∠C。 求证:△ADC≌△AEB
2.如图,AB∥CD,AD∥BC,那么AB=CD吗?为 3什.如么图?,A∠D1与=∠B2C,呢∠?3=∠4 。求证:AC=AD
7.如图,已知∠1=∠2,要使 △ABD≌△ACD,你添加一 个条件是 ∠ADB=∠ADC 或AB.=AC
A BF
B
EC
1
3
A 2O
4
A B 12 C C
5题
D
D 6题
7题 D
本节课你有什么收获? 小结 1、三角形全等的判定定理2:角边角定理
两角及其夹边对应相等的两个三角形全等. 简称“角边角”或“ASA”
湘教版SHUXUE八年级上
本节内容
2.5
全等三角形的对应边、对应角有什么重要性质?
全等三角形的对应边相等,对应角相等。
如何判断两个三角形是全等三角形?
两边和它们的夹角对应相等的两个三角形全等 简写成“边角边”或“SAS”
小颖不小心将一块三角形玻璃打成了三块,如 图所示,他想拿去到商店配一块与原来一模一样 的玻璃,请你帮他想想办法,带哪一块去最省事?
的方向走到C点,并在AC的中点E处立一根标杆,然后从C点
沿着与AC垂直的方向走到D 点,使D,E,B恰好在一条直线
上. 于是小军 说:“CD的长就是河的宽.”你能说出这个道理
吗?
B
解:在△AEB和△CED中,
∠A =∠C = 90°, AE = CE,
A
E
C
∠AEB =∠CED (对顶角相等)

12.2三角形全等的判定(2)(SAS)(可用)

12.2三角形全等的判定(2)(SAS)(可用)
B
A
D
C A DE C
证明三角形全等的步骤:
1.写出在哪两个三角形中证明全等。 (注意把表示对应顶点的字母写在对 应的位置上).
2.按边、角、边的顺序列出三个条件, 用大括号合在一起. 3.证明全等后要有推理的依据.
问题 : 如图有一池塘。要测池塘两端 A 、 B的距离,可 无法直接达到,因此这两点的距离无法直接量出。你能想 出办法来吗?
A A′
∠C=∠C′
BC=B′C′
B
C
C′
B′
∴△ABC≌△A′B′C′(SAS)
练习
1.在下列图中找出全等三角形
30º


Ⅲ Ⅲ
Ⅳ Ⅳ
5 cm
30º


30º


2.在下列推理中填写需要补充 的条件,使结论成立:
如图,在△AOB和△DOC中
A
D
O B
C
AO=DO(已知)
______=________( ∠ DOC 对顶角相等 ) ∠ AOB
A 证明:在△ABC和△DEC中, 分析:已知两边(相等) AC=DC(已知) 找第三边( SSS) ) ∠ACB= ∠DCE(对顶角相等 BC=EC(已知) 找夹角 (SAS) ∴△ABC≌△DEC(SAS)E ∴AB=DE (全等三角形的对应边相等)
C
D
例2.已知:如图,AD=CB,AD∥BC.
A D
B
E
F
C
探索两边和Байду номын сангаас边的对角
C
10cm
8cm
8cm
45° A
B
B′
显然:△ABC与△AB′C不全等 SSA不存在

1.5 三角形全等的判定(2)

1.5  三角形全等的判定(2)

∴ △ABC ≌△ DEF(SAS). E
F
有一个角和夹这个角的两边对应相等的两个 三角形全等(简写成“边角边”或“SAS”)
➢注 意
A
BD
E
这个角一定要是两条边的夹角
用数学语言表述:
在△ABC和△DEF中,
C
AB=DE, ∠B=
∠ E,
BC=EF,
∴ △ABC ≌△ DEF(SAS)
F
以2.5cm,3.5cm为三角形的两边,长度 为2.5cm的边所对的角为40° ,情况又怎 样?动手画一画,你发现了什么?
在△ABE中,AE<AB+BE(三角形两边之和大于第三边)
AD 1 (AB AC) 2
说一说
1、今天我们学习哪种方法判定两三角形全等? 答:边角边(SAS)
2、通过这节课,判定三角形全等的条件有哪些?
答:SSS、SAS、
“边边角”不能判定两个 三角形全等
注意哦!
C
F
A 40°
B
40°
D
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等.
SAS中 对于这个角有什么要求
夹 注意:这个角一定要是这两边所 的角
请在下列图中找出全等三角形,并把它们用 符号写出来.
30º


ⅣⅣ ⅢⅢ
5 cm
30º


30º


1.根据已知条件,再补充一个条件,使图1中的 △ABC≌△A′B′C′. (1)AB=A′B′,AC=A′C′,_B_C_=_B_′C_′;(要求用SSS)
OA=OB
(已知)
∠AOB=∠COD
(对顶角相等)
OB=OD

八年级数学全等三角形的判定(二)(SAS)(人教版)(基础)(含答案)

八年级数学全等三角形的判定(二)(SAS)(人教版)(基础)(含答案)

全等三角形的判定(二)(SAS)(人教版)(基础)一、单选题(共7道,每道14分)1.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°答案:B解题思路:由题意得:AB=ED,BC=DC,∠B=∠D=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∴∠1+∠2=∠BAC+∠2=180°.故选B试题难度:三颗星知识点:略2.如图,将两根钢条,的中点O连在一起,使,可以绕着点自由旋转,就做成了一个测量工件,则的长等于内槽宽,那么判定的理由是( )A.SSSB.ASAC.SASD.AAS答案:C解题思路:∵AA′,BB′的中点O连在一起,∴OA=OA′,OB=OB′,在△OAB和△OA′B′中,,∴(SAS).故选C试题难度:三颗星知识点:略3.如图,已知AB∥DE,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于( )A.55°B.65°C.60°D.70°答案:D解题思路:∵AB∥DE∴∠B=∠DEF∵BE=CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠F=∠ACB=180°-32°-78°=70°故选D试题难度:三颗星知识点:略4.如图,线段AD,CE相交于点B,BC=BD,AB=EB,则下列说法不正确的是( )A.△ABC≌△EBDB.AC=EDC.∠CBD=∠ED.∠ACB=∠EDB答案:C解题思路:在△ABC和△EBD中∴△ABC≌△EBD(SAS)所以AC=ED,∠ACB=∠EDB故选项A,B,D正确,选项C错误故选C试题难度:三颗星知识点:略5.如图,已知∠ABC=∠DEF,AB=DE,若以“SAS”为依据来证明△ABC≌△DEF,还要添加的条件为( )A.∠A=∠DB.AC=DFC.∠ACB=∠FD.BC=EF或BE=CF答案:D解题思路:在△ABC和△DEF中,已知∠ABC=∠DEF,AB=DE要以“SAS”为依据来证明△ABC≌△DEF,只需要BC=EF故需添加的条件为BC=EF或BE=CF故选D试题难度:三颗星知识点:略6.如图所示,要测量池塘两岸相对的两点A,B之间的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.可以说明△DEC≌△ABC,得ED=AB,那么量出DE的长,就能求A,B两点间的距离.判定△DEC≌△ABC最恰当的理由是( )A.SSSB.ASAC.SASD.ASS答案:C解题思路:要证两个三角形全等要找三组条件,由题意知CD=CA,CE=CB,根据对顶角相等,又有∠DCE=∠ACB,所以可以根据SAS得到△DEC≌△ABC.故选C试题难度:三颗星知识点:略7.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=PA,PD=PB,连接CD,测得CD长为10m,则池塘宽度AB为________m,理由是________.上述两个空格处应填( )A.5,SSSB.10,SASC.5,SASD.10,SSS答案:B解题思路:由题意可得,在△APB和△CPD中∴△APB≌△CPD(SAS)∴AB=CD=10m故选B试题难度:三颗星知识点:略。

全等三角形判定(二)

全等三角形判定(二)

例01.如图,已知:21∠=∠,43∠=∠. 求证:BCD ADC ∆≅∆.分析:ADC ∆与BCD ∆的对应边是DC 与DC ,AD 与BC ,AC 与BD . 对应角是1∠与2∠,ADC ∠与BCD ∠,DAC ∠与CBD ∠. 由条件已有一对应边DC 与DC ,和一对应角1∠和2∠相等,只需证明BCD ADC ∠=∠,就可以证明两三角形全等.证明:21∠=∠,43∠=∠(已知),∴ 4231∠+∠=∠+∠. 即BCD ADC ∠=∠ 在ADC ∆与BCD ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(12)()(已知公共边已证CD DC BCD ADC ∴ )(ASA BCD ADC ∆≅∆例02.已知:如图,21∠=∠,C B ∠=∠. 求证:COD BOE ∆≅∆.分析:欲证COD BOE ∆≅∆,已有两组条件,即C B ∠=∠和COD BOE ∠=∠. 因此,必须再具备一组对应边相等这一条件. BE 和CD 是在BOE ∆和COD ∆中,但直接证明CE BE =比较困难. 若证OE 和OD 相等或OB 和OC 相等,可以分别转化到证明AOD AOE ∆≅∆和AOC AOB ∆≅∆. 由已知条件,不难证出这两对三角形分别全等.证明:∵ 21∠=∠(已知),DOC EOB ∠=∠(对顶角相等), ∴ DOC EOB ∠+∠=∠+∠21. 即 AOC AOB ∠=∠. 在AOB ∆与AOC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(公共边已证已知AO AO AOC AOB C B ∴ )(AAS AOC AOB ∆≅∆. ∴CO BO =在EOB ∆与COD ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(已知已证对顶角相等C B CO BO COD EOB∴ COD BOE ∆≅∆(ASA )例03.如图,已知:AB 与CD 相交于点O ,且OD OC BD AC =,//,E 、F 为AB 上两点,且BF AE =.求证:DOF COE ∆≅∆.分析:欲证DOF COE ∆≅∆,已具备了两个条件,OD OC =和DOF COE ∠=∠. 所以只需证另一对角相等或证明OF OE =,即可. 证明另一对角相等,比较困难. 所以就证明OF OE =. 因为有BF AE =. 要证OF OE =只需证OB OA =即可. 由已知条件容易证得BOD AOC ∆≅∆,从而证明OB OA =.证明:∵BD AC //(已知)∴B A ∠=∠(两直线平行,内错角相等) 在AOC ∆与BOD ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证OD OC BOD AOC B A ∴)(AAS BOD AOC ∆≅∆∴BO AO =(全等三角形的对应边相等) ∵BF AE =(已知), ∴BF BO AE AO -=-. 即OF OE =在COE ∆与DOF ∆中,⎪⎩⎪⎨⎧=∠=∠=)()()(已证对顶角相等已知OE OE DOE COE DO CO ∴)(SAS DOF COE ∆≅∆例04.如图,已知:CE BD ACE ABD DAE BAC =∠=∠∠=∠,,. 求证:AE AD =.分析:欲证相等的两条线段AD ,AE 分别在ABD ∆和ACE ∆中,由于CE BD =,ACE ABD ∠=∠,所以只需再证CAE BAD ∠=∠即可,这由已知条件DAE BAC ∠=∠容易得到.证明:∵DAE BAC ∠=∠(已知) ∴DAC DAE DAC BAC ∠-∠=∠-∠ 即CAE BAD ∠=∠ 在ABD ∆与ACE ∆中,⎪⎩⎪⎨⎧∠=∠∠=∠=)()()(已证已知已知CAE BAD ACE ABD CE BD ∴)(AAS ACE ABD ∆≅∆∴AE AD =(全等三角形的对应边相等)例05.已知:(如图)21,∠=∠∠=∠D A . 求证:DO AD =分析:要证DO AD =,只要证DOC AOB ∆≅∆即可,在AOB ∆和DOC ∆中,已知D A ∠=∠,DOC AOB ∆=∆,只要再证一边对应相等即可,根据已知可得DCB ABC ∆≅∆,从而可证DC AB =,进而可证DO AO =,思路即为:DO AO =⇐DOC AOB ∆≅∆⇐DC AB =⇐DCB ABC ∆≅∆⇐“AAS ”证明:在ABC ∆和DCB ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(21公共边已知已知CB BC D A ∴)(AAS DCB ABC ∆≅∆∴DC AB =(全等三角形的对应边相等)在AOB ∆和DOC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已证已知对顶角相等DC AB D A DOC AOB ∴ )(AAS DOC AOB ∆≅∆∴ DO AO =(全等三角形的对应边相等)例06.求证:三角形的一边的两端到这边的中线或中线的延长线的距离相等.分析:这是一道了题,必须先根据题意画出图形,再结合题意写出已知,求证,再证明.已知:AD 是ABC ∆的中线. 如图,且AD CF ⊥于F ,AD BE ⊥的延长线于E , 求证:CF BE =证明:∵AD 为ABC ∆的中线(已知) ∴ CD BD =(中线定义)∵ AD BE ⊥ AD CF ⊥(已知)∴ ︒=∠=∠90CFD BED (等于定义) 在BED ∆与CFD ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()(21)(已证对顶角相等已知CD BD CFD BED ∴CFD BED ∆≅∆(AAS )∴CF BE =(全等三角形对应边相等)说明 本题还可利用面积相等来证明,提示,过A 作BC AN ⊥于N ,希同学们自己来证明.例07.已知:如图,BC AD CD AB //,//, 求证:CD AB =.分析:因为四边形,我只学过三角形的有关知识,因此只要连结四边形的对角线从而把四边形的总是转化为三角形的总是来解决.证明:连结AC∵BC AD CD AB //,//(已知)∴43,21∠=∠∠=∠(两直线平行内错角相等)在ABC ∆和CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已知CA AC∴ )(ASA CDA ABC ∆≅∆∴CD AB =(全等三角形的对应边相等)例08.已知:如图,AO CO DO BO ==,求证:OF OE =证明:在BOC ∆和DOA ∆中⎪⎩⎪⎨⎧=∠=∠=)()()(已知对顶角相等已知OA OC DOA BOC DO BO ∴ )(SAS DOA BOC ∆≅∆∴ D B ∠=∠(全等三角形的对应角相等) 在BOE ∆和DOF ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(对顶角相等已知已证DOF BOE DO BO D B ∴)(ASA DOF BOE ∆≅∆∴OF OE =(全等三角形的对应边相等)说明 找到题目中的隐性条件并加以应用是关键.例09.如图,在ABC ∆和DBC ∆中,43,21∠=∠∠=∠,P 是BC 上任意一点, 求证:PD PA =.证明:在ABC ∆和DBC ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已知公共边已知BC BC ∴ )(ASA DBC ABC ∆=∆∴ DB AB =(全等三角形对应边相等) 在ABP ∆和DBP ∆中,⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知已证BP BP DB AB ∴ )(SAS DBP ABP ∆≅∆∴ PD PA =(全等三角形对应边相等)说明:本题也可通过DBC ABC ∆≅∆,得到DC AC =,从而证DCP ACP ∆≅∆,得到PD PA =.选择题(1)已知ABC Rt ∆与C B A Rt '''∆,︒=∠90C ,︒='∠90C ,B A '∠=∠.B A AB ''=.那么下列结论正确的是( )(A )C A AC ''= (B )C B BC ''= (C )C B AC ''= (D )以上答案都不对(2)在ABC ∆和C B A '''∆,甲:B A AB ''=;乙:C B BC ''=;丙:C A AC ''=;丁:A A '∠=∠;戊:B B '∠=∠;己:C C '∠=∠,则不能保证ABC ∆≌C B A '''∆成立的条件为( )(A )丙、丁、己 (B )甲、丙、戊 (C )甲、乙、戊 (D )乙、戊、己 (3)如图,已知ABD ∆和ACE ∆均为等边三角形,那么ADC ∆≌ABE ∆的根据是( )(A )ASA (B )SAS(C )AAS (D )以上都不对(4)如图,C 是BE 上一点,CD AB =,D A ∠=∠,E BCA ∠=∠,那么( )(A )ECD B ∠=∠ (B )C 是BE 的中点 (C )CD AB //(D )以上结论都正确参考答案:(1)C (2)B (3)B (4)D填空题(1)如图,已知:21∠=∠,D C ∠=∠. 求证:AD AC =.证明:在ACB ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) _______()()(21AB D C 已知已知 ∴ACB ∆≌ADB ∆( ) ∴AD AC =(2)如图,已知:BC AB ⊥,DC AD ⊥,垂足分别为B ,D .21∠=∠. 求证:AD AB =.证明:在ABC ∆与ADC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()(21)(AC AC ADC ABC ∴ ABC ∆≌ADC ∆( ) ∴AD AB =( )(3)如图,已知:CE AE =,C A ∠=∠.求证:ADE ∆≌CEB ∆.证明:在AED ∆与CEB ∆中,⎪⎩⎪⎨⎧==∠=∠) _____(______)()(已知CE AE C A ∴ AED ∆≌CEB ∆(ASA )(4)如图,已知:C B ∠=∠,AD AE =.求证:AEC ∆≌ADB ∆.证明:在AEC ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()()(AE AE C B A A 已知 ∴AEC ∆≌ADB ∆( )参考答案:(1)AB ;公共边;AAS ;全等三角形的对应边相等(2)垂直定义;已知;公共边;AAS ;全等三角形的对应边相等. (3)已知:AED ∠;CEB ∠;对顶角相等 (4)公共角;已知;AAS证明题1.如图,已知,21∠=∠,DCB ABC ∠=∠. 求证:DC AB =.2.如图,已知:E D ∠=∠,AM EM CN DN ===. 求证:点B 是线段AC 的中点.3.如图,已知:21∠=∠,AE AD =. 求证:OC OB =.4.如图,已知:在ABC ∆中,AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于C ,求证:AF AE =.5.如图,已知:E 在AC 上,21∠=∠,43∠=∠. 求证:DE BE =.6.如图,已知:BC AD //,21∠=∠,43∠=∠,直线DC 过E 点交AD 于D ,交BC 于C .求证:AB BC AD =+.7.求证:三角形一边的两个端点到这边上的中线的距离相等. 8.如图,已知:DE AB =,直线AE ,BD 相交于点C ,︒=∠+∠180D B ,DE AF //,交BD 于F .求证:CD CF =.9.如图,已知:AB 与CD 相交于点O ,O 是AB ,CD 的中点,过点O 引直线EF 分别与AD ,BC 相交于E 、F 两点.求证:BF AE =.参考答案:1.证:由DCB ABC =∠,21∠=∠,可得ACB DBC ∠=∠.易证ABC ∆≌DCB ∆,∴ DC AB =2.证:易证DNB ∆≌EMB ∆,∴ EB DB =,由此可证:EA DC =.因此,可证DCB ∆≌EAB ∆.∴BC AB =,∴B 是AC 的中点.3.易证ABE ∆≌ACD ∆,∴C B ∠=∠,AC AB =,又∵AE AD =,∴CE BD =.由此可证BOD ∆≌COE ∆,∴OC OB =4.︒=∠=∠90AFD AED ,FAD EAD ∠=∠,AD AD =,∴AFD AED ∆≅∆,∴AF AE =.5.∵ 21∠=∠,AC AC =,43∠=∠,∴ABC ∆≌ADC ∆,∴AD AB =,又∵21∠=∠,AE AE =,∴ADE ABE ∆≅∆,∴DE BE =6.在AB 上取一点F ,使BF BC =,又∵43∠=∠,EB EB =,∴EC B EFB ∆≅∆,∴C EFB ∠=∠,又∵BC AD //,由此可推出D EFA ∠=∠.可证AFE ADE ∆≅∆,∴AF AD =,∴BC AD AB +=.7.已知:如图,AD 为ABC ∆的中线,AD BF ⊥于F ,AD CE ⊥于E . 求证:CE BF =.证:︒=∠=∠90BFD CED ,BDF CDE ∠=∠,BD CD =,∴ BFD CED ∆≅∆,∴ CE BF =8.证:∵ DE AF //, ∴AFC D ∠=∠,又∵︒=∠+∠180AFB AFC ,︒=∠+∠180D B ,∴ AFB B ∠=∠∴ DE AF AB ==,∴ 可证ECD ACF ∆≅∆,∴CD CF =9.证:BO AO =,BOC AOD ∠=∠,CO DO =,∴B O C A O D ∆≅∆,∴B A ∠=∠.而BOF AOE ∠=∠,BO AO =,∴BOF AOE ∆≅∆,∴ BF AE =能力:1、如图1,已知:AD 平分∠BAC ,AB=AC ,连接BD ,CD ,并延长相交AC 、AB 于F 、E 点.则图形中有( )对全等三角形.A 、2B 、3C 、4D 、5答案:C.2、如图2,已知:∠1=∠2,AB=DC ,图中全等三角形的对数是( )A 、0B 、1C 、2D 、3答案:A3、如图3,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( )A 、5对B 、4对C 、3对 D2对答案:C.1、如图4,已知:在△ABC 中,AD 是BC 边上的高,AD=BD ,DE=DC ,延长BE 交AC 于F ,求证:BF 是△ABC 中边上的高. 图1 A B B 、E F D C AD B O C 1 2 图2 图3 D FE C AF C D B E 图4提示:关键证明△ADC ≌△BFC2、如图5,已知:∠D=∠E ,DN=EM ,AM=CN ,求证:点B 是线段AC 的中点.提示:欲证点B 是线段AC 的中点,只需证AB =BC.选择AB 、BC 所在的两个三角形,然后证这两个三角形△AMB ≌△CNB.由条件可得△EMB ≌△DNB ,所以得到∠EMB =∠DNB ,MB =NB由此易证△AMB ≌△CNB.3、如图6,已知:AB=CD ,∠A=∠D.求证:∠ABC=∠DCB提示:欲证∠ABC=∠DCB ,选择这两个角所在的三角形,只需证△ABC ≌△DBC由条件可知△ADC ≌△DAB ,所以得到∠DAC =∠ADB ,BD =AC ,加之条件利用边角边公理可证△ABC ≌△DBC4、如图7,已知:在△ABC 中,∠ACB=090,AC=BC ,AE 是BC 边上的中线过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于点D.(1)求证:AE=CD.(2)AC=12cm ,求BD 的长.提示:欲证AE=CD ,只需证△ACE ≌△CBD 由条件可知∠CAE =∠BCD (同角的余角相等)加之其它两个条件易证得结论.由E 是BC 的中点,EC =BE又BD =EC ,BC =AC 知BD =6 cm5、如图8,已知:在△ABC 中,AB=AC ,∠A=90,BD 平分∠ABC 交AC 于D ,CE ⊥BD 交BD 的延长线于E ,求证:BD=2CE提示:本题的关键是从结论BD=2CE 出发,想到构造线段CF =2CE ,再证BD =CFA M N E C DB 图5 A D BC 图6 O E ┛ ┓ ┏D A CF 图7 B A E C D 图8 F。

1.2.-3三角形全等的判定(二)角边角定理

1.2.-3三角形全等的判定(二)角边角定理

例2:如图,已知AB=AC,∠ADB= ∠AEC,
求证:△ABD≌△ACE 证明:∵ AB=AC,
∴ ∠B= ∠C(等边对等角)
∵ ∠ADB= ∠AEC, AB=AC, ∴ △ABD≌△ACE(AAS)
B D
A
E
C
例 3:若△ABC中 , BE⊥ AD于 E, CF⊥ AD于 F,且 BE=CF,那么 BD与 CD相等吗?为什么? 证明:∵ BE⊥ AD, CF⊥ AD(已知) ∴∠ BED=∠ CFD= 900 (垂直的定义) 在△ BDE和△ CDF中
A
B
3、如图,△ABC是等腰三角形,AD、BE分 别是∠BAC、∠ABC的角平分线,△ABD和 △BAE全等吗?试说明理由?
思考:如果两个三角形有两个角和其 中一个角的对边分别对应相等,那么 这两个三角形是否全等?
A A′
B
C B′
C′
动脑筋
△ ABC =BC ,∠A=∠A′,∠B=∠B′. 求证:△ABC和 是全等三角形 在△ABC和 △ ABC 中,
B
A
E
图3-35
C
D
证明:
图3-35
练习
1.如图3-37,观察图中的三角形.小强说:“图 中有两个三角形全等.”你认为小强的判断对吗? 请说明理由.
证明:
图3-37
例2 如图3-39中,已知BE//DF,∠B=∠D,
AE=CF.求证:△ADF≌△CBE.
证明:
图3-39
2.要使下列各对三角形全等,需要增加什 么条件? (1) (2)
4、判定定理:
如果两个三角形有两个角及其夹边分别 对应相等,那么这两个三角形全等。简 记为A.S.A.(或角边角)

三角形全等的判定二 《边角边》判定

三角形全等的判定二  《边角边》判定

教学设计课题名称:12.2 三角形全等的判定二《边角边》判定姓名:傅春明工作单位:陆丰市铜锣湖农场中学学科年级:八年级数学(上) 教材版本:新人教版一、教学内容分析《边角边》定理是新人教版八年级上册第12章“三角形全等判定”的第二课时,它是同学们在学习了全等图形的概念以及学习第一种判定方法“SSS”定理的基础上,进一步学习三角形全等的判定方法,为后续学习内容奠定了基础,是初中数学的重要基础内容。

二、教学目标1、知识与能力:(1)让学生在探究的过程中得出“SAS”判定方法。

(2)使学生会运用”SAS”判定方法解决实际问题。

2、过程与方法(1)初步渗透综合法和分析法的思想方法,提高学生演绎推理的条理性和逻辑性。

(2)在探究的过程中提高学生观察、分析归纳能力,(3) 体会利用数学建模解决实际问题的方法。

3、情感与态度:(1)在合作探究三角形全等条件的过程中,积累数学活动经验,学会与他人合作交流。

三、学习者特征分析学生通过前面的学习,已了解了三角形全等的概念及性质,掌握了全等三角形的对应边、对应角的关系,这为探索三角形全等的条件做好了知识上的准备。

从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,而且八年级学生还不具备独立系统地推理论证几何问题的能力,思维有一定的局限性,考虑问题不够全面。

四、教学策略选择与设计根据本节课的教学特点和学生的实际:本节课采用“→创设问题情境→引导探索→发现归纳→运用与拓展”来展开,并用多媒体辅助演示和训练,在探索三角形全等判别方法的过程中,不是简单地让学生去发现课本上给出的判别方法而是让学生通过动手操作经历知识形成,从而调动、引导学生发现三角形全等的判别方法,给学生创设自主探索、合作交流、独立获取知识的机会,进而让学生更好地理解和掌握三角形全等的判定方法,且教师给于充分肯定。

五、教学重点及难点教学重点:理解“边角边公理”,并能利用它们判定两个三角形全等。

直角三角形全等的判定(2)

直角三角形全等的判定(2)
课后随笔
情感、态度与价值观
学习角平分线的性质定理与逆定理,从而锻炼学生的逆向思维能力,发展学生的演绎推理能力。
教学重点
角平分线的性质定理及逆定理、三角形的三条角平分线交于一点。
教学难点
在学习定理后,注意用定理解题,克服习惯于用三角形全等去证明的思维定势。
预习内容
预习活动
课堂补充
一、情境创设:
1、画一个角,再画出它的角平分线,在角平分线上任取一点,作出到角两边的垂线段,测量这两条垂线段的长度,你能得到什么结论?
三、典例分析:
例1、如图,已知四边形ABCD中,∠ABC=90°,BC>AB,BD平分∠ABC,∠ADC=90°。
求证:AD=DC
例2、已知,如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,OB=OC。
求证:AO平分∠BAC。
拓展延伸:
“如果一个点到角的两边的距离不相等,那么这个点不在这个角的平分线上。”你认为这个结论正确吗?如果正确,你能证明它吗?
2、你能用自己的话总结概括这样一个结论吗?
二、探索活动
1、证明上面得到的结论。
图形:
已知:
求证:
2、写出上面结论的逆命题:

你认为这个命题是真命题吗?如果正确,如何证明?
3、总结角平分线的性质定理与判定定理。
4、画出三角形的三条角平分线,你发现这三条角平分线有什么特征?请用一句话进行概括并证明你的结论。
课时编号
003
课题
1、2直角三角形全等的判定(2)
教学目标
知识与技能
1、能证明角平分线的性质定理及逆定理、三角形的三条角平分线交于一点。
2、经历探索、猜想与证明的过程,感受合理推理和演绎推理是人们正确认识事物的重要途径。

数学人教版八年级上册12.2三角形全等的判定定理2(SAS).2 三角形全等的判定

数学人教版八年级上册12.2三角形全等的判定定理2(SAS).2 三角形全等的判定

A
A
B 图一 在图一中, ∠A 是AB和AC的夹角, 符合图一的条件,它可称为 “两边夹角”。
C
B
图二
C
符合图二的条件, 通常 说成“两边和其中一边的对角”
探索边角边
已知△ABC,画一个△A′B′C′使A B =A′B′,A C =A′ C ′, ∠A =∠A′。
画法: 1.画 ∠DA′ E= ∠A; ′ 2.在射线A D上截取A′ B′ =AB,在射线A′ E上截 取A ′C ′=AC; C C′ 3. 连接B ′C′.
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
A B 归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
课堂小结:
A B A′ B′ D
思考: ① △A′ B′ C′ 与 △ABC 全等吗?如何验正? 思考: ②这两个三角形全等是满足哪三个条件? 结论:两边及夹角对应相等的两个三角形全等
三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“ SAS ” )
用符号语言表达为:
A D
B
1
那么量出ED的长,就是A、B的 距离.为什么?【要求学生写出 理由即证明过程】
C
2
E
D
例2:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证(1)△AFD≌△CEB
A 分析:证三角形全等的三个条件 边 AD = CB (已知) 角 ∠A=∠ 边 C AF = CE E F C D

全等三角形性质与判定(二)-教师版

全等三角形性质与判定(二)-教师版

一、全等三角形的性质全等三角形对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,周长相等,面积相等.二、全等的性质和判定(1)全等三角形的判定方法:()tSSS SAS ASA AAS HL R、、、、△(2)全等三角形的图形变换形式:平移、对称、旋转(3)由全等可得到的相关定理:①角平分线定理②等腰、等边三角形性质和判定③垂直平分线定理共顶点等腰三角形旋转模型——“手拉手”模型证明全等的基本思想“SAS”等边三角形共顶点全等三角形性质与判定知识回顾知识讲解共顶点等腰直角三角形共顶点等腰三角形共顶点等腰三角形【例1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.【解析】通过“SAS ”证明BCD ACE ≌△△,得到AE BD =.【例2】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形. 求证:(1)AN BM =;(2)DE AB ∥;(3)CF 平分AFB ∠.同步练习【解析】通过“SAS ”证明MCB ACN ≌△△,得到AN BM =.通过“SAS ”证明MCE ACD ≌△△,得到CE CD =,从而推出DCE △为等边三角形, ︒=∠=∠60NCB DEC DE AB ∥.【变式练习】如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.【解析】通过“SAS ”证明BCD ACE ≌△△,得到CBD CAE ∠=∠. 再通过“SAS ”证明CAN CBM ≌△△,得到CM CN =.【例3】 如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.【解析】通过“SAS ”证明MCB ACN ≌△△,得到CMB CAN MB AN ∠=∠=,.再通过“SAS ”证明CAD CME ≌△△,得到MCE ACD CE CD ∠=∠=,,从而推出︒=∠60DCE .【变式练习】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若2BE =,则CD = .【解析】通过“SAS ”证明BDE ADC ≌△△,得到1322-====CD AB BE AC ,,.【例4】 平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EF 与CD 平分.【解析】通过“SAS ”证明,得到ACB AFD △≌△,DF CB CE ==; 再通过“SAS ”证明,得到BCA BED △≌△,DE AC CF ==; 得到四边形ABCD 为平行四边形,对角线互相平分.【例5】 已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD ∆也是等边三角形.【解析】连接CH 交AD 于M通过“SAS ”证明FCH FDK △≌△,得到CH DK AD ==,60AMC ∠=︒,推出DAB HCB ∠=∠; 再通过“SAS ”证明,得到ABD CBH △≌△,HB HD BHC BDA =∠=∠,; 进一步推出HBD △也是等边三角形.【例6】 (2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.【解析】通过“SAS ”证明CDG ADE ≌△△,得到DG AE =.【变式练习】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE ⊥BG .【解析】通过“SAS ”证明ABG AEC ≌△△,得到ABG AEC BG CE ∠=∠=,, 再通过“8”字图导角得到BG CE ⊥.【例7】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.【解析】通过“ASA ”证明ADE ABF △≌△,得到DE BF =.【变式练习】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD 的面积是16,求DP 的长.【解析】过点D 作DE BC ⊥交BC 延长线于通过“AAS ”证明DPA DEC △≌△,得到DE DP =,从而推出四边形ABCD 是正方形 =164ABCD DPBE S S DP ==,【例8】 如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .QRPOD CBA【解析】通过“ASA ”证明ADQ DCP △≌△,得到DQ CP =,再通过“SAS ”证明,得到ODQ OCP △≌△,POC QOD ∠=∠从而推出OP OQ ⊥.【变式练习】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.【解析】通过“ASA ”证明AOE BOF △≌△,得到AE BF =,从而推出AE CF AB +=.【例9】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.【解析】连接OB通过“SAS ”证明BOE COF △≌△,得到BE CF =. BE BF BF CF BC a +=+==【变式练习】等腰直角三角形ABC ,90ABC =︒∠,AB a =,O 为AC 中点,45EOF =︒∠,试猜想,BE 、BF 、EF 三者的关系.【解析】过点O 作OD OE ⊥交BC 于D通过“SAS ”证明BOE COD △≌△,得到OE OD BE CD ==,. 再通过“SAS ”证明0E F DOF △≌△,得到EF DF =. 可以推出BE BF EF CD DF BF BC AB a ++=++===【例10】 已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.【解析】延长EB 至M ,使得BM DF =,通过“SAS ”证明ADF ABM △≌△,得到AM AF =. 再通过“SAS ”证明AME AFE △≌△,得到AB AH =.【例11】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =M EFHGD CBA【解析】(1)通过“SAS ”证明AFC ABH △≌△,得到CF BH =. (2)过F H 、分别作FN MD D HK MD K ⊥⊥于,于,再通过“AAS ”证明BDA ANF HKA ADC △≌△,△≌△,得到FN HK =. 再通过“8”字全等证明FNM HKM △≌△,从而得到MF MH =.【注】这道题有很多重要的结论,条件结论互换依然成立,2,ABC AFH BC AM S S ==△△【例12】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化【解析】见下题 【答案】B【例13】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; ⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.【解析】(1)过点A 作AD 的垂线AF ,使得AD AF =,连接EF CF 、通过“SAS ”证明ABD ACF △≌△,得到45B ACF BD CF ∠=∠==,. 再通过“SAS ”证明ADE AFE △≌△,得到DE EF =.在Rt ECF △中满足勾股定理,,得到222.CE CF EF +=,故222.CE BD DE += (2)同理可证222.CE BD DE +=【例14】 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.⑴如图①,当点M ,N 在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=_________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN =x ,则Q =_________(用x ,L 表示.图③图②图①ABCD MNABCD MNN MD CBA【解析】(1)MN BM CN =+,Q 2=L 3(2)延长AC 至E ,使得CE BM =,连接DE通过“SAS ”证明DBM DCE △≌△,得到DE DM =.再通过“SAS ”证明MDN EDN △≌△,得到MN NE BM CN ==+ 2223Q MN AN AM ME AN AC BM NC L x =++=+++==+ (3)在AC 上截取CE BM =,连接DE通过“SAS ”证明DBM DCE △≌△,得到DE DM =.再通过“SAS ”证明MDN EDN △≌△,得到MN NE CN BM ==- 2223Q MN AN AM NE AN AC BM NC L x =++=+++==+【变式练习】(1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ; (2)如图在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明. (3)如图在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.FED CBAF EDCBA【解析】(1)延长BC 至M ,使得DK BM =,连接AM 通过“SAS ”证明ADF ABM △≌△,得到AF AM =.再通过“SAS ”证明AME AFE △≌△,得到EF EM BE DF ==+ (2)同理可证 (3)同理可证【变式练习】如图所示,在四边形ABCD 中,AB =BC ,∠A =∠C =90°,∠B =135°,K 、N 分别是AB 、BC 上的点,若△BKN 的周长为AB 的2倍,求∠KDN 的度数.【解析】延长BC 至E ,使得CE AK =,连接DE 、BD 通过“HL ”证明ABD CBD △≌,得到AD CD =.通过“SAS ”证明ADK CDE △≌△,得到DK DE ADK CDE =∠=∠,.再通过“SSS ”证明KDN EDN △≌△,得到122.52NDK NDE KDN ADC ∠=∠∠=∠=,【例15】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 、AD 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△, 12212ABCDE ADE S S DF AE==∙∙=△同步课程˙全等三角形性质与判定 【变式练习】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2.求该五边形的面积.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 、AD 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△, 12242ABCDE ADE S S DF AE ==∙∙=△【变式练习】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△,得到ADC ADF ∠=∠.【习题1】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相等的理由.【解析】通过“SAS ”证明ABD ACE △≌△,得到BD CE AC CD ==+.【习题2】已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【解析】通过“ASA ”证明ADE CDF △≌△,得到DE DF =.【习题3】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.课后练习【解析】通过“SAS ”证明ACN MCB △≌△,得到CAN CMB ∠=∠. 再通过“AAS ”证明CAG CMH △≌△,得到CG CH =.【习题4】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.QP DCBA【解析】延长AB 至M ,使得BM DQ =,连接CM 依题可知:PQ DP BP =+通过“ASA ”证明CDQ CBM △≌△,得到,CQ CM DCQ BCM =∠=∠. 再通过“ASA ”证明CQP CMP △≌△,得到45QCP MCP ∠=∠=【习题5】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.【解析】通过“ASA ”证明MBP MCP △≌△,得到BMP CMQ BM CM ∠=∠=,,从而推出 MPQ ∆是等腰直角三角形,点P 从B 出发向C 运动,MP 先变小在变大, 故MPQ ∆的面积先变小再变大.同步课程˙全等三角形性质与判定【习题6】如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.【解析】延长EB 至M ,使得BM DF =,通过“SAS ”证明ADF ABM △≌△,得到AFD M DAF BAM ∠=∠∠=∠,. 通过导角推出M EAM ∠=∠,从而推出AE ME =,故BE DF AE +=.【习题7】等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.【解析】依题可知,AE DF =,通过“SAS ”证明ABE DBF △≌△,得到ABE DBF BE BF ∠=∠=,. 从而推出BEF △为等边三角形.【习题8】(北京市数学竞赛试题,天津市数学竞赛试题) 如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.同步课程˙全等三角形性质与判定【解析】延长AC 至E ,使得BM CE =,通过“SAS ”证明DBM DCE △≌△,得到BDM CDE ∠=∠. DM DE =,再通过“SAS ”证明MDN EDN △≌△,得到MN EN MN BM CN ==+,.。

12.2三角形全等的判定(2)(“边角边”判定三角形全等)教案

12.2三角形全等的判定(2)(“边角边”判定三角形全等)教案
2.提升学生的数据分析能力,让学生在解决实际问题时,能够准确识别和应用“边角边”(SAS)判定法则,对问题进行有效分析。
3.培养学生的团队合作意识,通过小组讨论、合作完成练习题,提高学生的沟通能力和协作能力。
4.培养学生的创新思维,鼓励学生在掌握基本知识的基础上,探索其他三角形全等的判定方法,激发学生的探究欲望和创新能力。
4.增强学生的数学应用意识,使学生能够将所学的“边角边”(SAS)判定法则应用于解决实际生活中的问题,体会数学知识在实际生活中的价值。
三、教学难点与重点
1.教学重点
- “边角边”(SAS)判定法则的概念及其应用:这是本节课的核心内容,教师需详细讲解“边角边”(SAS)判定法则的原理,并通过实例强调其应用。
-识别和运用“边角边”(SAS)判定条件:教师应指导学生学会在实际问题中识别符合条件的边和角,并运用该法则证明三角形全等。
-解决与“边角边”(SAS)相关的实际问题:通过练习题,让学生掌握如何将“边角边”(SAS)应用于解决具体问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了“边角边”(SAS)判定法则的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对三角形全等判定方法的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
举例:在三角形ABC中,已知AB=DE,∠B=∠E,BC=DF,证明三角形ABC与三角形DEF全等。
2.教学难点
-理解“边角边”(SAS)判定法则的严格性:学生需要理解该法则的严格性,即边和角的对应关系必须完全一致,不能有丝毫偏差。

13.3 全等三角形的判定 - 第2课时课件(共17张PPT)

13.3 全等三角形的判定 - 第2课时课件(共17张PPT)
探究二
尺规作图:作△A'B'C'使A'B'=AB=3 cm,∠B'=∠B=30°,B'C'=BC=5 cm.
基本事实二
如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.
基本事实二可简记为“边角边”或“SAS”.
例1 已知:如图,AD//BC,AD=CB. 求证:△ADC≌△CBA.
B′
A′
C
解:在岸上取可以直接到达A,B的一点C,
连接AC,延长AC到点A′,使A′C=AC;
连接BC,并延长BC到点B′,使B′C=BC.
连接A′ B′,量出的长度就是AB两点间距离.
证明:在△ABC与△A′B′C中,
∴△ABC≌△A′B′C(SAS).
∴A′B′=AB(全等三角形对应边相等).
13.3 全等三角形的判定第2课时
第十三章 全等三角形
学习目标
1.探索并正确理解三角形全等的判定方法“SAS”.2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用.3.了解“SSA”不能作为两个三角形全等的条件.
学习重难点
三角形全等的判定方法“SAS”.
难点
重点
“SAS”判定方法证明两个三角形全等.
2.已知:如图, AC和BD相交于点O,OA=OC,OB=OD. 求证:DC∥AB.
∴△COD≌△AOB(SAS),
∴∠C=∠A(全等三角形对应角相等),
∴ DC∥AB (内错角相等的两条直线平行).
3.如图,在湖泊的岸边有A、B,难以直接量出A, B两点间的距离,你能设计一种量出A, B间距的方案吗?说明你这样设计的理由.
拓展提升
1.如图, 点E、F在AC上, AD//BC, AD=CB, AE=CF. 求证:△AFD≌△CEB.

(完整版)全等三角形判定2(SAS)学案及题型

(完整版)全等三角形判定2(SAS)学案及题型

C'B'A'CBACBADCBA2111.2三角形全等的判定(2)SAS营山希望学校任画一个△ABC求作:'''A B C∆,使''A B AB=,''B C BC=,'A A∠=∠作图步骤:(2) 把△'''A B C剪下来放到△ABC上,观察△'''A B C与△ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形(可以简写成“”或“”)(4)用数学语言表述全等三角形判定(二)在△ABC和'''A B C∆中,∵''AB A BBBC=⎧⎪∠=⎨⎪=⎩∴△ABC≌三、合作探究例如图,AC=BD,∠1=∠2,求证:BC=AD.1、如图,已知AC,BD相交于O,AO=DO,BO=CO,证明:∠A=∠D2.如图,AE是,BAC的平分线∠AB=AC.证明△ABD≌△ACD3 已知:如图,BD=CE,AD=AE,求证:BE=CD.5 如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,求证:BE=DCDABQCPE1图2图3图6 如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE 的关系。

7 如图:已知AC ,BD 相交于O ,OA=OB ,OC=OD.证明:△ABC ≌△BAD(提高题)如图,已知CA=CB,AD=BD,M 、N 分别是CA 、CB 的中点,求证:DM=DNAC E DDC12 O。

三角形全等的判定 (2)

三角形全等的判定 (2)
全等三角形
一、全等三角形
1.什么是全等三角形?一个三角形经过 哪些变化可以得到它的全等形?
能够完全重合的两个三角形叫做全等三角形。 一个三角形经过平移、翻折、旋转可以得到 它的全等形。
2:全等三角形有哪些性质?
(1)全等三角形的对应边相等、对应角相等。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、 高线分别相等。
练习
6:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全
等三角形?请任选一对给予证明。
E
答: △ABC≌△DEF
A
F
B
证明:∵ AB∥DE
∴ ∠A=∠D
C
D
∵ AF=DC ∴ AF+FC=DC+FC
∴ AC=DF
在△ABC和△DEF中
AC=DF
∠A=∠D
AB=DE
∴ △ABC≌△DEF (SAS)
谢谢观赏
You made my day!
我们,还在路上……
∵BM是△ABC的角平分线,点P
在BM上,
A
ND
M
PF
∴PD=PE
B
E
C
(角平分线上的点到这个角的两边距离相等).
同理,PE=PF.
∴PD=PE=PF.
即点P到三边AB、BC、CA的距离相等
3.如图,已知△ABC的外角∠CBD和∠BCE的平 分线相交于点F,
求证:点F在∠DAE的平分线上.
证明:过点F作FG⊥AE于G,
E
证明:
A
∵ △ABC和△ECD都是等边三角形
∴ AC=BC DC=EC
∠BCA=∠DCE=60°

全等三角形的判定(2)教学设计

全等三角形的判定(2)教学设计

114.4全等三角形的判定(2)教学设计【教学目标】:1.掌握全等三角形判定方法2、3;初步运用“边角边”、“角角边”条件判定两个三角形全等。

2.在说明两个三角形全等的过程中,体会说理表达的严密性及规范性。

3.在自主学习与合作学习的过程中,逐步养成主动探索、勇于创新的学习品质。

【教学重点难点】:教学重点:掌握全等三角形判定方法2、3.教学难点:运用三角形全等的性质和判定方法进行简单的逻辑推理.【教学过程】:学前准备:操作:画ABC ∆,使=60A ∠︒,=45B ∠︒,5AB cm =。

剪下所画的三角形并在小组间比较一下你们所画的三角形能否重合。

一、 复习引入回顾全等三角形判定方法1,引出课题。

二、 新课探究(一)、探究:“两角及其夹边对应相等”的两个三角形全等。

1、操作:画ABC ∆,使=60A ∠︒,=45B ∠︒,5AB cm =。

剪下所画的三角形在小组间比较一下你们所画的三角形能否重合。

猜想:具备怎样条件的两个三角形也能够全等呢?2、验证:利用叠合法进行说明3、得出结论:全等三角形判定方法2及符号语言注:这个全等的条件可以简写成“角边角”,“A.S.A ”。

特别注意的是,“角边角”中的“边”必须是“两角的夹边”。

在用符号语言书写的时候大括号中的三个条件也要按照这个顺序来书写(二)、探究:“两角及其中一角的对边对应相等”的两个三角形全等。

1、思考:在ABC ∆和'''A B C ∆中,'A A ∠=∠,'B B ∠=∠,''AC A C =,ABC ∆和'''A B C ∆全等吗?2、说明:利用三角形内角和的性质得到第三个角也相等,就能转化到两角及其夹边对应相等,利用“A.S.A ”的判定方法进行说明这两个三角形全等。

260°57°57°60°44CA O DB E AC OD B3、得出结论:全等三角形判定方法3及符号语言注: 这个条件我们可以简写成“角角边”或“A.A.S ”,注意的是这里的“边”必须是“其中一个角的对边”,所以我们不能写在两角的中间位置,我们把它写在第三个位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.2 三角形全等的判定
一、回顾
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。

思考:
如果两个三角形的三条边分别对应相等,三个角分别对应相等,是不是这两个三角形就全等了呢?
这些条件是都必须同时满足吗?
能不能只证明其中的一部分就得出这两个三角形全等呢?
一、“边边边”即“SSS”
1、“边边边”的概念:三边分别相等的两个三角形全等(“边边边”即“SSS”)
2、证明格式:
A D
)
(SSS DEF ABC EF BC DF
AC DE AB DEF ABC ≌△△中,
和△在△∴⎪⎩
⎪⎨⎧===
注意:
①证明的基本格式不能错,要特别指明在哪两个三角形中; ②证明中所使用到的条件,要用大括号把它括起来; ③证明中所出现的对应点的位置不能出错;
④证明所用的判定定理,要在结论的最后写出来。

如(SSS)。

例题
1:如图,点C 是AB 的中点,AD=CE ,CD=BE .求证:△ACD ≌△CBE .
例题2:工人师傅常用角尺平分一个任意角,作法如下:
重合.则过角尺顶点P的射线OP便是∠AOB的角平分线,为什么?请你说明理由.
例题3:如图,已知AB、CD相交于o,且AB=DC,AC=BD,能得到∠A=∠D吗?为什么?
二、“边角边”即“SAS”
1、概念:两边和它们的夹角分别相等的两个三角形全等。

(“边角边”即“SAS”)
2、证明格式:
A D
)
(SAS DEF ABC EF BC E
B DE AB DEF AB
C ≌△△中,
和△在△∴⎪⎩
⎪⎨⎧=∠=∠=
注意:
①用“边角边”证明两个三角形全等时,是“两边”和“夹角”,而不是两边及其任意一边的对角;
②有两边和其中一边的对角分别相等的两个三角形不一定全等。

例题1、如图所示,要测量池塘两岸相对的两点A ,B 之间的距离,可先在平地上取一个可以直接到达点A 和B 的点C ,连接AC 并延长到点D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A ,B 两点间的距离.为什么?试说明理由.
例题2、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.
例题3、如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,BF=DE,
求证:(1)∠A=∠C
(2)AE∥CF.
三、“角边角”即“ASA”
1、概念:两角和它们的夹边分别相等的两个三角形全等。

(“角边角”即“ASA”)
2、证明格式:
A D
B C E F
)
(ASA
DEF
ABC
E
B
DE
AB
D
A
DEF
ABC
≌△

中,
和△
在△







=

=

=

注意:在书写两个三角形全等的条件时,一般把夹边相等写在中间位置,突出角边角的位置关系。

例题1、已知:如图,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:BE=CD.
现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是什么?依据是什么?
四、“角角边”即“AAS”
1、概念:两角和其中一个角的对边分别相等的两个三角形全等。

(“角角边”即“AAS”)
2、证明格式:
A D
B C E F
)
(AAS
DEF
ABC
DF
AC
E
B
D
A
DEF
ABC
≌△

中,
和△
在△






=

=


=

注意:
①由“两角和他们的夹边对应相等的两个三角形全等”可以推出“两个角和其中一个角的对边对应相等的两个三角形全等”。

②要区分清楚“ASA”和“AAS”:在“ASA”中,“边”必须是“两角的夹边”,在“AAS”中,“边”必须是“其中一个角的对边”。

③在写证明条件的时候,要按照顺序,有序的列出。

例题1、已知:如图,D是△ABC的边AB上的一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.
例题2、已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.
例题3、已知:如图,AB⊥BC,AD⊥DC,垂足分别为B、D,∠1=∠2.求证:AB=AD.
例题4、如图,要测量池塘两岸相对的两点A,B的距离,可以再AB的垂直线BF上取两点C,D.使BC=CD,再画出BF的垂直线DE,使E与A,C在一条直线上,这时测得DE 的长就是AB的长.为什么?理论依据是什么?
例题5、如图,已知∠1=∠2=∠3,AB=AD,求证:BC=DE
例题6、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB 于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.
五、“斜边、直角边”即“HL”
1、概念:斜边和一条直角边分别相等的两个直角三角形全等。

(“斜边、直角边”即“HL”)
2、证明格式:
A D
B C E F
)
(
t
)
(
HL
DEF
Rt
ABC
R
EF
BC
DE
AB
DF
AC
DEF
ABC




中,
和△
在△




=
=
=
注意:
①这是判定两个直角三角形全等的特殊方法,只对判定两个直角三角形全等适用;
②在应用“HL”判定两个直角三角形的过程中,要突出直角三角形这个条件,书写时必须带上“Rt”。

例题1、如图,AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.
例题2、如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AE=DF.
例题3、如图,AC⊥AD,BC⊥BD,且AC=BD,求证:AD=BC.。

相关文档
最新文档