算法设计与分析 背包问题
贪心算法-01背包问题
贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
(陈慧南 第3版)算法设计与分析——第6章课后习题答案
⑥ 选择作业 1,则 X 6, 2,3,5,1 。将其按照期限 di 非减次序排列可
得:
ID
di
5
1
6
2
3
3
1
3
2
4
作业5
作业3 作业2
-1
0
1
2
3
4
作业6 作业1(冲突)
该集合无可行排序,因此 X 6, 2,3,5,1 不可行, X 6, 2,3,5 ;
3
⑦ 选择作业 0,则 X 6, 2,3,5, 0 。将其按照期限 di 非减次序排列
可得:
ID
di
5
1
0
1
6
2
3
3
2
4
作业5
作业3 作业2
-1
0
1
2
3
4
作业0(冲突)作业6
该集合无可行排序,因此 X 6, 2,3,5, 0 不可行,X 6, 2,3,5 ;
⑧ 选择作业 4,则 X 6, 2,3,5, 4 。将其按照期限 di 非减次序排列
可得:
ID
Hale Waihona Puke di516
12,5,8,32, 7,5,18, 26, 4,3,11,10, 6 。请给出最优存储方案。
解析:首先将这 13 个程序按照程序长度非降序排列,得:
程序 ID
9 8 1 5 12 4 2 11 10 0 6 7 3
程序长度 ai 3 4 5 5 6 7 8 10 11 12 18 26 32
根据定理可知,按照程序编号存放方案如下:
解析:已知 Prim 算法时间复杂度为 O n2 ,受顶点 n 影响;
Kruskal 算法时间复杂度为 O m logm ,受边数 m 影响;
分支界限方法01背包问题解题步骤
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
(完整版)01背包问题
01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
c语言算法--贪婪算法---01背包问题
c语言算法--贪婪算法---0/1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。
从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。
对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。
约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。
在这个表达式中,需求出xt 的值。
xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。
0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。
货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。
例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。
店中有n 种不同的货物。
规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。
你的目标是使车中装载的物品价值最大。
当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。
这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。
0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。
在每一步过程中利用贪婪准则选择一个物品装入背包。
一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。
这种策略不能保证得到最优解。
例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。
当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。
而最优解为[ 0 , 1 , 1 ],其总价值为3 0。
另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。
背包问题的算法
背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
贪心算法之背包问题
贪⼼算法之背包问题贪⼼算法之背包问题1.与动态规划的区别通过研究解决经典的组合优化问题,来说明⼆者的差别。
即0-1背包问题与背包问题0-1背包问题:给定n中物品和⼀个背包。
物品i的重量为W i,其价值为V i,背包的容量为C。
应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?对于每种物品i只有俩种选择,即装⼊背包或不装⼊背包背包问题:与0-1背包问题类似,不同在于选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1≤i≤n。
这2类问题都具有最优⼦结构性质,极为相似。
背包问题可以⽤贪⼼算法求最优解,0-1背包不能使⽤贪⼼求解。
2.贪⼼解决背包问题步骤贪⼼策略:每次选择单位重量价值最⾼的物品装⼊背包计算每种物品单位重量的价值V iW i,按单位重量的价值从⼤到⼩将n中物品排序。
以排序后的次序依次将物品装⼊背包。
直⾄全部物品都装⼊或者因背包容量不⾜不能装⼊为⽌如果背包尚有容量,将最后不能完全装⼊物品切割⼀部分装满背包算法结束3.代码实现/*** n 物品数* M 背包容量* v[] 物品价值数组* w[] 物品重量数组* x[] 保存最优解路径数组,为1则表⽰该物品完全装⼊,否则装⼊该物品的⼀部分**/void Knapsack(int n, float M, float v[], float w[], float x[]) {// 按照物品单位重量的价值递减排序Sort(n, v, w);int i;for (i = 1; i <= n; i++)x[i] = 0;float c = M;for (i = 1; i <= n; i++) {if (w[i] > c)break;x[i] = 1;c -= w[i];}if (i <= n)x[i] = c / w[i];}Processing math: 100%。
用贪心法求解0-1背包问题
算法设计与分析期末论文题目用贪心法求解“0-1背包问题”专业计算机科学与技术班级09计算机一班学号0936021姓名黄帅日期2011年12月28日一、0-1背包问题的算法设计策略分析1.引言对于计算机科学来说,算法的概念是至关重要的,例如,在一个大型软件系统的开发中,设计出有效的算法将起决定性的作用。
算法是解决问题的一种方法或一个过程。
程序是算法用某种设计语言具体实现描。
计算机的普及极大的改变了人们的生活。
目前,各行业、各领域都广泛采用了计算机信息技术,并由此产生出开发各种应用软件的需求。
为了以最小的成本、最快的速度、最好的质量开发出适合各种应用需求的软件,必须遵循软件工程的原则。
设计一个高效的程序不仅需要编程小技巧,更需要合理的数据组织和清晰高效的素算法,这正是计算机科学领域数据结构与算法设计所研究的主要内容。
2. 算法复杂性分析的方法介绍算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。
这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。
如果分别用N 、I 和A 表示算法要解问题的规模、算法的输入和算法本身,而且用C 表示复杂性,那么,应该有C=F(N,I,A)。
一般把时间复杂性和空间复杂性分开,并分别用T 和S 来表示,则有: T=T(N,I)和S=S(N,I) 。
(通常,让A 隐含在复杂性函数名当中最坏情况下的时间复杂性:最好情况下的时间复杂性:平均情况下的时间复杂性:其中DN 是规模为N 的合法输入的集合;I*是DN 中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, )达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I 的概率。
算法复杂性在渐近意义下的阶:渐近意义下的记号:O 、Ω、θ、o 设f(N)和g(N)是定义在正数集上的正函数。
O 的定义:如果存在正的常数C 和自然数N0,使得当N ≥N0时有f(N)≤Cg(N),则称函数f(N)当N 充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N))。
背包问题和TSP问题算法报告
算法报告班级: 140710班组员: 14071006 魏泽琳14071008 田恬14071019 黄婧婧14071021 宋蕊14071026 于婷雯指导老师:徐旭东广义背包问题一、问题描述广义背包问题的描述如下:给定载重量为M的背包和n种物品,每种物品有一定的重量和价值,现在需要设计算法,在不超过背包载重量的前提下,巧妙选择物品,使得装入背包的物品的总价值最大化。
规则是,每种物品均可装入背包多次或不装入(但不能仅装入物品的一部分)。
请用数学语言对上述背包问题加以抽象,在此基础上给出动态规划求解该问题的递归公式。
要求对所给公式中的符号意义加以详细说明,并简述算法的求解步骤。
用一种你熟悉的程序设计语言加以实现。
二、基本思路1、01背包问题在讨论广义背包问题前应该先讨论最基础的01背包问题。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即F[i][m]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值。
其状态转移方程是:F[i][m]=max{F[i−1][m],F[i−1][m−wi]+Ci}}这个方程是解决背包问题的关键点,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要解释一下:“将前i件物品放入容量为m的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只和前i−1件物品相关的问题。
如果不放第i件物品,那么问题就转化为“前i−1件物品放入容量为v的背包中”,价值为F[i−1][m];如果放第i件物品,那么问题就转化为“前i−1件物品放入剩下的容量为m−wi 的背包中”,此时能获得的最大价值就是F[i−1][m−wi]再加上通过放入第i件物品获得的价值Ci。
最优解的函数从方程中能得出:F[i][m]=F[i-1][m](当第i个物品不装入)F[i][m]>F[i-1][m](当第i个物品装入)以上是有关01背包的讨论,现在讨论广义背包的问题。
背包问题的数学模型
背包问题的数学模型摘要:1.背包问题的定义2.背包问题的数学模型3.背包问题的求解方法4.背包问题的应用实例正文:一、背包问题的定义背包问题是一个经典的优化问题,它的问题是给定一个背包和n 种物品,其中,背包的容量为V,第i 种物品的质量为c_i,价值为p_i,如何通过物品选择,使得装入背包中的物品总价值最大。
二、背包问题的数学模型为了更好地理解背包问题,我们可以将其建立一个数学模型。
假设有n 种物品,分别用v_i 表示第i 种物品的价值,c_i 表示第i 种物品的质量,那么背包问题的数学模型可以表示为:f(x) = max {v_1x_1 + v_2x_2 +...+ v_nx_n}s.t.c_1x_1 + c_2x_2 +...+ c_nx_n <= Vx_i >= 0, i = 1,2,...,n其中,f(x) 表示背包中物品的总价值,x_i 表示第i 种物品的数量,V 表示背包的容量,c_i 表示第i 种物品的质量,v_i 表示第i 种物品的价值。
三、背包问题的求解方法背包问题的求解方法有很多,常见的有动态规划法、回溯法、贪心算法等。
这里我们以动态规划法为例进行介绍。
动态规划法的基本思想是将问题分解为子问题,通过求解子问题,最终得到原问题的解。
对于背包问题,我们可以将问题分解为:在容量为V 的情况下,如何选择物品使得总价值最大。
然后,我们可以通过递归的方式,依次求解子问题,最终得到原问题的解。
四、背包问题的应用实例背包问题是一个非常实用的优化问题,它在现实生活中有很多应用。
例如,一个果农需要根据市场需求和成本,选择合适的水果进行装箱;一个旅行者需要根据行李箱的容量和物品的价值,选择携带的物品等。
这些都可以通过背包问题来求解。
综上所述,背包问题是一个经典的优化问题,它有着广泛的应用。
背包问题 实验报告
实验报告课程名称:算法设计与分析实验名称:解0-1背包问题任课教师:王锦彪专业:计算机应用技术班级: 2011 学号: ****** 姓名:严焱心完成日期: 2011年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1. 要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2. 要求显示结果。
三、实验环境和工具:操作系统:Windows7开发工具:Eclipse3.7.1 jdk6开发语言:Java四、实验问题描述:0/1背包问题:现有n 种物品,对1<=i<=n ,第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数C ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过C 且总价值尽量大。
动态规划算法描述: 根据问题描述,可以将其转化为如下的约束条件和目标函数:⎪⎩⎪⎨⎧≤≤∈≤∑∑==)1}(1,0{C max 11n i x x w x v ini i i ni ii寻找一个满足约束条件,并使目标函数式达到最大的解向量),......,,,(321n x x x x X =,使得C 1∑=≤n i i i x w ,而且∑=ni i i x v 1达到最大。
0-1背包问题具有最优子结构性质。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤n i i i ini i i x v n i x x w x w 2211max )2}(1,0{C 。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i x v y v 22,且∑=≤+n i i i y w x w 211C 。
背包问题的算法设计与分析研究
1引 言
算 法 是 计 算 机 科 学 的 核 心 , 是 程 序 设 计 的 关 键 , 算 法 的研 究 是 通 过 程 序 来 实 践 的 . 法 + 据 结 构 = 序 . 经 典 公 式 表 明 也 对 算 数 程 此
有 了算 法 , 上 合 适 的 数据 结 构 , 高 级 语 言 进行 实现 就 可 以得 到 程 序 。那 么 要 解 决 背 包 问题 , 加 用 首要 的前 提 就 是 设 计 出好 的算 法 , 想 求得 背包 问题 的解 , 要 先设 计 出算 法 。 本 文采 用 三 种 方法 来 对 背 包 问题 进 行 算 法设 计 , 分析 其 时 间复 杂 度 , 而 得 出结论 。 就 并 进
A s a t T ek as kpo l i ac scl u so ea ao grh ds nadaa s,ntipp r reyme o ,h y bt c: h npa rb m ls a q e ni t r floi m eg n nl i i hs ae ged t d ted— r c e s ai  ̄ nh e a t i ys h
l SSN 1 0 — 0 4 9 3 4 0
E—ma l du @c e . t n i:e f c cne. e
C m u r n we g n e h o g o p t K o l eA d T c n l y电脑 知 识 与技术 e d o
Vo . , ., e t mb r2 0 , .5 4 5 5 13 No7 S p e e 0 8 PP 1 3 —1 3
2背 包 问题描述
背包 问题 是 整 数规 划 中 的一 类 特殊 问题 , 现 实 生 活 中具 有 广 泛 应 用 , 能 提 出 求 解 此 问 题 的 有 效算 法 , 具 有 很 好 的 经 济 价 在 如 则 值 和 决策 价 值 , 物 流 公 司 的货 物发 配 问 题 , 装 箱 的运 载 问题 , 如 集 如何 才 能 获 得 最 大 利 润 。 问题 的一 般 描 述是 : 行 者 背包 登 山 , 包 的 最 大 承重 为 M, 有 n 物 品可 供 选 择 装 入 背 包 , i 物 品重 量为 , 旅 背 现 个 第 个 价值 为 p, i
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
01背包问题实验心得体会
01背包问题实验心得体会01背包问题是一个经典的动态规划问题,也是算法设计与分析中常见的一个问题。
在这个问题中,有一个容量为C的背包和N个物品,每个物品有一个重量和一个价值,要求选出一些物品放入背包中,使得总重量不超过背包容量且总价值最大。
在实验中,我首先对01背包问题进行了建模和分析,然后使用了两种不同的算法进行求解,分别是基于贪心算法和动态规划算法。
最后,对两种算法进行了对比和分析。
首先,我对01背包问题进行了建模。
根据题目要求,我将问题定义为一个二维表格,表格的行表示物品的索引,列表示背包的容量。
表格中的每个元素表示在考虑前i个物品并且背包容量为j的情况下,可以获得的最大价值。
根据这个定义,我可以通过填充表格中的元素来逐步求解问题。
然后,我使用了两种算法来求解01背包问题。
首先是贪心算法,贪心算法的核心思想是每次选择当前最优解,但是在01背包问题中,贪心算法不一定能够得到最优解。
因此,我使用了一个简单的贪心策略,即每次选择单位价值最高的物品放入背包中。
这个算法的时间复杂度为O(NlogN),因为需要对物品按照单位价值进行排序。
然后是动态规划算法,动态规划算法是一种通过将问题分解为子问题,并且利用子问题的解来求解原问题的方法。
对于01背包问题,动态规划算法的思路是从表格的左上角开始,逐行逐列地填充表格中的元素。
具体的填充方法是,对于第i个物品和第j个背包容量,如果当前物品的重量大于背包容量,则当前元素的值等于上一行相同列的元素的值;否则,当前元素的值等于上一行相同列的元素的值和上一行当前列减去当前物品重量所对应的元素的值的最大值。
这个算法的时间复杂度为O(NC),其中N为物品的个数,C为背包的容量。
实验结果显示,贪心算法的解并不一定是最优解,而动态规划算法的解一定是最优解。
这是因为贪心算法在每一次选择中只考虑了当前最优解,而没有考虑到整体最优解。
而动态规划算法通过填充表格的方式,可以逐步求解出整体最优解,并且保证了子问题的最优解是原问题的最优解。
贪心算法实现背包问题算法设计与分析实验报告
算法设计与分析实验报告实验名称贪心算法实现背包问题评分实验日期年月日指导教师姓名专业班级学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。
可行解一般来说是不唯一的。
那些使目标函数取极值(极大或极小)的可行解,称为最优解。
2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。
在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。
决策一旦作出,就不可再更改。
作出贪心决策的依据称为贪心准则(greedy criterion)。
3.一般方法1)根据题意,选取一种量度标准。
2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容1. 编程实现背包问题贪心算法。
通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。
2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。
3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。
三.程序算法1.背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。
0_1背包问题算法分析与研究
背包问题的研究在理论研究及应用领域都具有 十分重要的意义。 自 20 世纪 50 年代起就有人提出了 该问题的解决方法,之后便有更多更好的算法层出不 穷。 通过以上的分析,我们可以总结:
●分支界限法:适合于问题规模很小,但协同系 数改变,问题显得更困难的情况,不足是如果在最差 情况下,时间复杂度增大;
(2)动态规划法(Dynamic Programming)
动 态 规 划 法 在 背 包 问 题 的 应 用 是 由 Gilmore 和
Gomony 提出。
动态规划的基本思想:将一个比较大的问题逐层
分解成相对比较小的问题,这些较小的问题一般都可
以解决, 并且利用了最优子结构, 由下向上的方法从
子问题的最优解一步一步地构造出整个问题的最优
种群进化越来越接近某一目标。 如果视种群为超空间
的一组点,选择、杂交和变异的过程即是在超空间中
进行点集之间的某种变换,通过信息交换使种群不断
○
研究与开发
变化。 它最初由美国的 J.H Holland 提出。 遗传算法求
解问题的过程为: ①首先生成一组初群体 (假设为 M 个候选解个
体),称为第 0 代; ②计算群体中各个候选解的适应值; ③如果有候选解满足算法终止条件, 算法终止;
行之有效的决策方法是至关重要的,能够分解成比较
容易解决的子问题, 是决策设计的最佳标准。
(3)近似算法(Approximate Algorithms)
第一个近似算法是基于动态规划法定义的。 其思
想是:如果价值用其他方法衡量,可能减少运行时间,
但它是以解的准确性为代价的。 具体做法:用 Pi/2k 代 替 Pi(i=1,…,n)。 实际上是将 Pi 的最后 k 位删除,如 果我们期望相对误差最大值为 e>0,整数 k 即为满足
基于朴素贪心算法的背包问题解决方案
基于朴素贪心算法的背包问题解决方案背包问题是一类经典的组合优化问题,它的一般形式描述为:有一个固定大小的背包,和一些物品,每个物品都有自己的价值和大小,需要选出一些物品装入背包中,使得装进去的物品价值最大化,同时又不能超出背包容量的限制。
这个问题在实际生活中有很多应用,比如在货物的装载和运输、在零售商的库存管理、在网页推荐系统等等。
解决背包问题的方法有很多,其中比较经典的是基于动态规划的解法,但是这种解法需要使用大量的存储空间,如果物品数量很大的话,计算复杂度也会很高。
因此本文将介绍一种基于朴素贪心算法的背包问题解决方案。
一、背包问题的数学模型在介绍具体的解决方案之前,我们需要先来看一下背包问题的数学模型。
假设我们有n个物品,第i个物品的重量为wi,价值为vi,背包的容量为W。
那么背包问题可以用下面的数学模型来描述:$$\begin{aligned}&\max\sum_{i=1}^{n}v_ix_i\\&s.t.\sum_{i=1}^ {n}w_ix_i\leq W\\&x_i\in \{0,1\}\end{aligned}$$其中,$x_i$表示第$i$个物品是否被选中,$v_i$和$w_i$分别表示第$i$个物品的价值和重量。
第一个约束条件表示所有选中的物品的总重量不能超过背包的容量$W$,第二个约束条件表示每个物品最多只能选一次。
二、基于朴素贪心算法的解法朴素贪心算法的思路很简单:每次选择可行的物品中价值最大的那一个,直到不能再选为止。
对于背包问题来说,我们可以按照物品的单位价值(即价值与重量比值)从大到小排序,然后依次选择可行的物品加入背包中。
具体步骤如下:1. 计算每个物品的单位价值,按照单位价值从大到小排序。
2. 依次加入可行的物品,直到不能再加入为止。
3. 最后得到的物品组合就是背包问题的最优解。
该算法的时间复杂度为$O(nlogn)$,其中$n$为物品的数量。
《程序设计创新》分支限界法解决01背包问题
《程序设计创新》分支限界法解决01背包问题一、引言分枝限界法通常以广度优先或最小成本(最大收益)优先搜索问题的解空间树。
在分枝限界方法中,每个活动节点只有一次成为扩展节点的机会。
当活动节点成为扩展节点时,将同时生成所有子节点。
这些子节点将丢弃不可执行或非最优解的子节点,并将剩余的子节点添加到活动节点表中。
然后,从活动节点表中选择节点作为当前扩展节点,然后重复上述节点扩展过程。
此过程将持续到所需的解决方案或节点表为空。
二、研究背景在生活或企业活动中,我们常常会遇到一些装在问题。
例如在生活中我们要出去旅游,背包的容量是有限的而要装物品可能很多,但是每个物品的装载优先级肯定是不一样的,那么怎么装更合适一些呢。
在企业活动中,比如轮船集装箱装载问题,集装箱是有限的,那么怎么装载这些货物才能每次都是装载最多的,只有这样企业利润才能最大化。
三、相关技术介绍上述问题就是我们算法中会遇到的背包问题。
而背包问题又分许多。
如背包问题,通常用贪心法解决。
如01背包问题通常用动态规划或者分支限界法解决。
本次我们考虑使用分支限界法来解决01背包问题四、应用示例在01背包问题中,假设有四个物品。
重量W(4,7,5,3),价值V(40,42,25,12),背包重量W为10,试求出最佳装载方案。
定义限界函数: ub = v + (W-w)×(Vi+1/W+1)画出状态空间树的搜索图步骤:①在根结点1,没有将任何物品装入背包,因此,背包的重量和获得的价值均为0,根据限界函数计算结点1的目标函数值为10×10=100;②在结点2,将物品1装入背包,因此,背包的重量为4,获得的价值为40,目标函数值为40 + (10-4)×6=76,将结点2加入待处理结点表PT中;在结点3,没有将物品1装入背包,因此,背包的重量和获得的价值仍为0,目标函数值为10×6=60,将结点3加入表PT 中;③在表PT中选取目标函数值取得极大的结点2优先进行搜索;④在结点4,将物品2装入背包,因此,背包的重量为11,不满足约束条件,将结点4丢弃;在结点5,没有将物品2装入背包,因此,背包的重量和获得的价值与结点2相同,目标函数值为40 + (10-4)×5=70,将结点5加入表PT中;⑤在表PT中选取目标函数值取得极大的结点5优先进行搜索;⑥在结点6,将物品3装入背包,因此,背包的重量为9,获得的价值为65,目标函数值为65 + (10-9)×4=69,将结点6加入表PT中;在结点7,没有将物品3装入背包,因此,背包的重量和获得的价值与结点5相同,目标函数值为40 + (10-4)×4=64,将结点6加入表PT中;⑦在表PT中选取目标函数值取得极大的结点6优先进行搜索;⑧在结点8,将物品4装入背包,因此,背包的重量为12,不满足约束条件,将结点8丢弃;在结点9,没有将物品4装入背包,因此,背包的重量和获得的价值与结点6相同,目标函数值为65;⑨由于结点9是叶子结点,同时结点9的目标函数值是表PT中的极大值,所以,结点9对应的解即是问题的最优解,搜索结束。
“遗传算法”解决“背包问题”
“遗传算法”解决“背包问题”遗传算法基本思想:1) ⼀个种群有多个个体,每个个体有染⾊体和对应的基因为了繁殖进⾏:2) 选择:在残酷的世界中,适者⽣存,优胜略汰。
3) 重组:染⾊体交叉,基因重组4) 突变:染⾊体上的基因⼩概率的突变(⼀般给⼩数点后两位)背包问题:背包只能容得下⼀定重量b的物品,物品有m种,每种物品有⾃⼰的重量w(i)和价值v(i)(0<i<=m),从这些物品中选择装⼊背包,是背包不超过重量b,但价值⼜要最⼤。
运⽤动态规划,分⽀限界都可以达到效果,但不佳。
我⽤遗传算法解决:⼀般⼈有多条染⾊体,但对于背包问题,⼀个解我们将看成⼀个个体,所以,⼀个个体只有⼀个染⾊体,⼀个染⾊体对应多个基因。
如:100101010100111 表⽰装⼊背包的可能解。
(具体情况具体分析)遗传所做准备:1) ⽤0表⽰“不选择装⼊”,1表⽰“装⼊”,形成⼀条基因链;100101010100111则表⽰“15种物品”装⼊或不装⼊背包的可能解。
------- 此处⽤chrom[]存放基因,代表染⾊体2) ⼀个基因对应⼀个个体。
------- 此处⽤Population类或结构体声明其含有chrom[]等信息3) 可能的解有很多,构成⼀个种群。
------- ⽤Population类定义⼀个数组代表个体构成的种群newPop[]:存放新⽣代,oldPop[]:存放上⼀代4) 适应度:适应度和⽬标函数是正相关的,所以需要物品价值和重量。
------- fitness,weight包含在Population类中最⼤适应度:maxFitness,最⼩适应度:minFitness,总适应度:sumFitness,(帮助求突变和交叉的染⾊体)平均适应度:avgFitness遗传算法的函数:基本:1) InitPop() 初始化个体,使每个个体都有基因组2) Statistics(*pop) 计算适应度(最⼤,最⼩,总的,平均的)3) Selection(*pop) 通过选择种群中符合要求的⽗母去繁殖新代,返回这对⽗母的位置4) crossover(*parent1,*parent2,pos) 传⼊要改的个体位置,随机产⽣交叉位置,⽤优良⽗母繁殖优良后代并替代传⼊个体位置5) mutation(i) i为基因组基因的位置,逐个基因看是否要变异6) generation() 对个体进⾏判断,若不符合要求,进⾏选择,重组,突变。
算法设计与分析试题及答案
1. 按分治策略求解棋盘覆盖问题时,对于如图所示的24×24的特殊棋盘,共需要多少个L 型骨牌;并在棋盘上填写L 型骨牌的覆盖情况。
2. 假设有7个物品,给出重量和价值。
若这些物品均不能被分割,且背包容量M =140,使用回溯方法求解此0-1背包问题。
请画出状态空间搜索树。
3. 假设有7个物品,它们的重量和价值如下表所示。
若这些物品均可以被分割,且背包容量M=140,使用贪心算法求解此背包问题。
请写出求解策略和求解过程。
W (35,30,50,60,40,10,25)p (10,40,30,50,35,40,30)4. 在给出的电路板中,阴影部分是已作了封锁标记的方格,请按照队列式分支限界法在图中确定a 到b 的最短布线方案,要求布线时只能沿直线或直角进行,在图中标出求得最优解时各方格情况。
5. 画出字符表的哈夫曼编码对应的二叉树。
6. 已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=8,r 5=5,r 6=20,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序。
7. 给出城市网络图,售货员要从城市1出发,经过所有城市回到城市1,画出该问题的解空间树,描述出用优先队列式分支限界法求解时的搜索情况。
表示出优先队列、当前扩展结点等的变化情况。
8. 依据优先队列式分支限界法,求从s 点到t 点的单源最短路径,画出求得最优解的解空间树。
一、假设有7个物品,它们的重量和价值如下表所示。
若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。
请写出状态空间搜索树(20分)。
答:按照单位效益从大到小依次排列这7个物品为:FBGDECA 。
将它们的序号分别记为1~7。
则可生产如下的状态空间搜索树。
其中各个节点处的限界函数值通过如下方式求得:【排序1分】5x =6x =7x =17分,每个节点1分】a .1501154040305035190.62540-++++⨯= 7(1,1,1,1,,0,0)8b. 1501154040305030177.560-++++⨯=7(1,1,1,1,0,,0)12c .4040305010170++++=(1,1,1,1,0,0,1)d. 1501054040303530167.560-++++⨯= 3(1,1,1,0,1,,0)4e. 150130404050353017560-++++⨯=1(1,1,0,1,1,,0)3f. 1501304040503510170.7135-++++⨯=4(1,1,0,1,1,0,)7g. 40405030160+++=(1,1,0,1,0,1,0)h. 1501404040353010146.8535-++++⨯= 2(1,1,0,0,1,1,)7i.1501254030503530167.560-++++⨯=5(1,0,1,1,1,,0)12 j. 1501454030503530157.560-++++⨯=1(0,1,1,1,1,,0)12在Q 1处获得该问题的最优解为(1,1,1,1,0,0,1),背包效益为170。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0/1背包问题的分枝-限界法
用优先队列式分枝限界法解决0/1背包问题(作为极大化问题),需要确定以下四个问题:解空间树中结点的结构、如何生成一个给定结点的儿子、如何组织活结点表、如何识别答案结点。
我们采用完整的二叉树作为解空间树,放在活结点表中的每个结点具有6个信息段:Parent 、Level 、Tag 、CC 、CV 、CUB 。
其中Parent 是结点X 的父亲结点连接指针;Level 标志出结点X 在解空间树中的级数,通过置1)(=X Level X 表示生成X 的左儿子,置0)(=X Level X 表示生成X 的右儿子;信息段Tag 用来输出最优解各个分量i x 的值;信息段CC 记录背包在结点X 处的可用空间(即剩余空间),在确定X 左儿子的可行性时用;CV 记录在结点X 处背包中已装物品的价值(或效益值),等于∑<≤)(1X Level i i
i x p ;信息段CUB 用来存放结点X 的Pvu 值。
这里,Pvu 表示
在结点X 所表示的状态下,可行解所能达到的可能值的上界。
也即是说,当11,,-l x x 的值确定后,可行解n l l x x x x ,,,,11-所能达到的效益值的上界。
类似地,当11,,-l x x 的值确定后,可行解n l l x x x x ,,,,11-所能达到的最大效益值的下界记做Pvl 。
如果到目前为止所知道的可行解的最大效益值CV 不小于Pvl ,则当Pvu<CV 时,就应该杀死结点X 。
所以,Pvu(X)可以作为限界函数和优先级函数。
关于它们的计算将由一个子程序给出。
作为极大化问题处理的优先队列式分枝限界法解0/1背包问题的程序LCKNAP 采用了六个子程序:LUBound 、NewNode 、Finish 、Init 、GetNode 和Largest 。
子程序LUBound 计算Pvl 和Pvu 之用;NewNode 生成一个具有六个信息段的结点,给各个信息段置入适当的值,并将此结点加入结点表;Finish 打印出最优解的值和此最优解中1=i x 的物品;Init 对可用结点表和活结点表置初值;GetNode 取一个可用结点;Largest 在活结点表中取一个具有最大Pvu 值结点作为下一个扩展结点。
程序8-2-1 0/1背包问题的优先队列式分枝限界算法
LCKNAP(P,W,M,N,ε)//假定物品的排列顺序遵循 P[i]/W[i]≥P[i+1]/W[i+1]; real P[1:N],W[1:N],M,CL,Pvl,Pvu,cap,cv,prev;
integer ANS ,X ,N ;
1. Init ;//初始化可用结点表及活结点表
2.GetNode(E);//生成根结点
3.Parent(E)=0;Level=1;CC(E)=M;CV(E)=0;
4.LUBound(P,W,M,0, N,1,Pvl,Pvu);
5.prev=Pvl-ε;CUB(E)=Pvu;
6.Loop
7. i=Level(E); cap=CC(E); cv=CV(E);
8. case
9. :i=N+1: //解结点
10. if cv>prev then
11. prev=cv; ANS=E;
12. endif
13. :else: //E是内部结点,有两个儿子
14.if cap≥W[i] then //左儿子可行
15. NewNode(E,i+1,1,cap-W[i],cv+P[i],CUB(E));
16. endif
17.LUBound(P,W,cap,cv,N,i+1,Pvl,Pvu);
18.if Pvu>prev then //右儿子会活
19. NewNode(E,i+1,0,cap,cv,Pvu);
prev=max(prev,Pvl-ε);
20.endif
21.endcase
22.if不再有活结点then exit endif
rgest(E);//取下一个扩展结点
24.until CUB(E)≤ prev endloop
25.Finish(cv,ANS,N);
26.end LCKNAP
算法中有两点值得注意:(1).第6~24行的循环依次检查所生成的每个结点。
此循环在以下两种情况下终止:或者活结点队列为空,或者为了扩展而选择的结点E(扩展结点)满足CUB(E)≤ prev.在后一种情况下,由扩展结点的选法可知,对所有的扩展结点X均有CUB(X)≤ CUB(E) ≤ prev,因而它们都不能导致其值比prev更大的解。
(2).在左儿子X可行的情况下,由LUBound算出它的上界,并由此而得CUB(X)=CUB(E).因为CUB(E)>prev或者
prev=Pvl-ε< Pvu,所以将X加入活结点表。
由于左儿子的下界、上界与E 的相同,因而不必再计算。
但是右儿子则不同,所以需要调用函数LUBound来获取CUB(Y)= Pvu.如果Pvu≤prev,则杀死结点Y(即,不放在结点表中)。
否则,将
结点Y加入活结点表,并修改prev的值(第19行)。
以下附上前面提到的几个子程序。
程序8-2-2 计算结点状态下的可能取得最大效益值的上、下界
LUBound(P,W,rw,cp,N,k,Pvl,Pvu)//rw是背包的剩余容量,cp是已取得的效益值,还有物品k,…,N要考虑
Pvl=cp; c=rw;
for i from k to N do
if c<W[i] then Pvu=Pvl+c*P[i]/W[i];
// 从第k件到第N件至少有一件物品不能装进背包的情形出现
for j from i+1 to N do
if c W[j] then
c=c-W[j]; Pvl=Pvl+P[j];
endif
endfor
return //此时Pvl < Pvu
endif
c=c-W[i]; Pvl=Pvl+P[i];
endfor
Pvu= Pvl; // 从第k件物品到第N件物品都能装进背包的情形出现,
end LUBound
程序8-2-3 程序生成新结点算法
NewNode(par,lev,t,cap,cv,ub)//生成一个新结点J,并把它加到//活结点表 GetNode(J);
Parent(J)=par;Level(J)=lev;Tag(J)=t;
CC(J)=cap; CV(J)=cv; CUB(J)=ub;
Add(J);
end NewNode
程序8-2-4 打印答案程序
Finish(CV,ANS,N)//输出解
real CV; global Tag,Parent;
print(‘OBJECTS IN KNAPSACK ARE’)
for j from N by–1 to 1 do
if Tag(ANS)=1 then
print(j);
endif
ANS=Parent(ANS);
endfor
end Finish
例子 n=4, P=(10,10,13,18), W=(2,4,6,9), M=15. 试绘出算法LCKNAP求最优解的检索过程。