【真卷】2017年安徽省十校联考中考数学二模试卷含参考答案

合集下载

2017安徽省中考数学试题及答案

2017安徽省中考数学试题及答案

2017安徽省中考数学试题及答案2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、 选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是 A .21 B .12- C .2 D .2-【答案】B 【考查目的】考查实数概念——相反数.简单题. 2.计算32()a -的结果是A .6aB .6a -C .5a - D .5a 【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒ 【答案】C【考查目的】考查三角形内角和,平行线性质,简单题. 7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240 C .300 D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x += D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简频数(人数)8102430)第7题图单题. 9.已知抛物线2y axbx c=++与反比例函数b y x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B . 【考查目的】考查初等函数性质及图象,中等题. 10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PABABCDS S∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( ) A 29 B 34C .52D 41【答案】D ,P 在与AB 平行且到AB 距离为2直线上,O O OO xyxyx yy x A . B . C . D .第10题图PDCBA第14题图图1 图2BE (A )DBECD 第13题图OEABCD即在此线上找一点到A B,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是____________ .【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b-+=____________ .【答案】2b a-(2)【考查目的】考查因式分解,简单题.13.如图,已知等边ABC△的边长为6,以AB为直径的⊙O与边AC BC,分别交于D E,两点,则劣弧的DE的长为____________ .【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC中,903030cm∠=︒∠=︒=,,,将A C AC该纸片沿过点E的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△后得到双层BDECDE△(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm.【答案】40cm 或203cm .(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、 (本大题共2小题,每小题8分,共16分) 15.计算:11|2|cos60()3--⨯︒-. 【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=- 16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

安徽省2017年中考数学真题试题(含扫描答案)

安徽省2017年中考数学真题试题(含扫描答案)

2017年安徽省初中学业水平考试数学试题卷一、选择题(本题共10个小题,每小题4分,满分40分) 每小题都给出A、B、C、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A.12- B.12- C.2D.-22.计算22()a -的结果是( ) A.6aB.6a -C.5a -D.5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D.4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B.101.610⨯ C.111.610⨯ D.120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A. B. C. D. 6.直角三角板和直尺如图放置.若201︒∠=,则2∠的度数为( )A.60︒ B.50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A.16(12)25x += B.25(12)16x -= C.216(1)25x += D.225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B. C. D.110.如图,在矩形ABCD 中,AB =5,AD =3动点P 满足S =S 则点P 到A ,B 两点距.∆PAB 矩形ABCD .3离之和PA +PB 的最小值为()二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)115.计算:|-2|⨯cos 60︒-()-1.316.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin 750.97︒≈,cos 750.26︒≈1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l.(1)将∆ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出∆DEF 关于直线l 对称的三角形;(3)填空:∠C +∠E =︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】n (n +1)2222我们知道,1+2+3+ +n =,那么1+2+3+ +n 结果等于多少呢?2在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为2+2,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++ .【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++ = .【解决问题】根据以上发现,计算222220171231232017++++++++ 的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;∠.(2)连接CO,求证:CO平分BCE六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数 中位数 方差甲 8 8乙 8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90︒,延长AG,BG分别与边BC,CD交于点E,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.。

安徽省2017年江淮十校中考数学二模试卷及参考答案

安徽省2017年江淮十校中考数学二模试卷及参考答案
立.
(1) 当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,
请说明理由.
(2) 当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF; ②当AB=4,AD= 时,求线段BG的长. 参考答案 1. 2.
②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0; ④
的最小值为3.其中正确的是( )
A . ①②③ B . ②③④ C . ①③④ D . ①②③④
二、填空题
10. 分解因式:ax2﹣6ax+9a=________. 11. 如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为________.
①∠B=∠CAD;②点C是AE的中点;③ = ;④tan B=

三、解答题
14. 计算: +(﹣ )﹣2﹣( 15. 解方程:x2+4x﹣2=0
﹣1)0﹣2sin60°.
ቤተ መጻሕፍቲ ባይዱ
16. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面
直角坐标系.
①将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1 , 若M为△ABC内的一点,其坐 标为(a,b),直接写出两次平移后点M的对应点M1的坐标;
A.
B.
C.
D.
4. 立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下
表:
成绩(m)
2.35
2.4
2.45

2017年安徽省六区中考数学二模试卷(解析版)

2017年安徽省六区中考数学二模试卷(解析版)

2017年安徽省六区中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.20172.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5 3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104 4.(4分)下面几何体的俯视图是()A.B.C.D.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,207.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣110.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=.12.(5分)分式方程=的解是.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.2017年安徽省六区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)2017的相反数是()A.B.﹣C.﹣2017D.2017【解答】解:2017的相反数是﹣2017.故选:C.2.(4分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.a5÷a3=a2D.(a2)3=a5【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项错误;C、a5÷a3=a2,正确;D、(a2)3=a6,故此选项错误;故选:C.3.(4分)2016年11月10日,记者从民政部召开的会议了解到,目前全国农村留守儿童数量为902万人,“902万”用科学记数法表示为()A.9.02×102B.9.02×105C.9.02×106D.9.02×104【解答】解:将902万用科学记数法表示为:9.02×106.故选:C.4.(4分)下面几何体的俯视图是()A.B.C.D.【解答】解:图中几何体的俯视图是B在的图形,故选:B.5.(4分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【解答】解:∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选:A.6.(4分)若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A.16,17B.17,18C.18,19D.19,20【解答】解:∵周长为x公分,∴边长为公分,∴()2=20,∴=20,∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选:B.7.(4分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁【解答】解:∵==9.7,S2甲>S2丙,∴选择丙.故选:C.8.(4分)某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.9.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选:C.10.(4分)如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.【解答】解:由题意可得,FE=GE,AB=FG=4,∠FEG=90°,则FE=GE=2,点E到FG的距离为2,当点E从开始到点E到边BC上的过程中,S==﹣t2+4t(0≤t≤2),当点E从BC边上到边FG与DC重合时,S=(2≤t≤4),当边FG与DC重合到点E到边DC的过程中,S==(6﹣t)2(4≤t≤6),由上可得,选项B中函数图象符合要求,故选:B.二、填空题(共4小题,每小题5分,满分20分)11.(5分)因式分解:2mx2﹣4mxy+2my2=2m(x﹣y)2.【解答】解:2mx2﹣4mxy+2my2,=2m(x2﹣2xy+y2),=2m(x﹣y)2.故答案为:2m(x﹣y)2.12.(5分)分式方程=的解是x=2.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.13.(5分)观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.【解答】解:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52∴1+3+5+7+9+…+(2n﹣1)+(2n+1)+(2n+3)=(n+2)2.故答案为:(n+2)2.14.(5分)已知四边形ABCD为矩形,延长CB到E,使CE=CA,连接AE,F为AE的中点,连接BF、DF,DF交AB于点G,下列结论:①BF⊥GF;②S△BDG=S△ADF;③EF2=FG•FD;④.其中正确的序号是①③④.【解答】解:如图,连接CF,设AC与BD的交点为点O,∵点F是AE中点,∴AF=EF,∵CE=CA,∴CF⊥AE,∵四边形ABCD是矩形,∴AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵点F是Rt△ABE斜边上的中点,∴AF=BF,∴∠BAF=∠FBA,∴∠F AC=∠FBD,在△BDF和△ACF中,,∴△BDF≌△ACF,∴∠BFD=∠AFC=90°,∴BF⊥DF,所以①正确;过点F作FH⊥AD交DA的延长线于点H,在Rt△AFH中,FH<AF,在Rt△BFG中,BG>BF,∵AF=BF,∴BG>FH,∵S△ADF=FH×AD,S△BDG=BG×AD,∴S△BDG>S△ADF,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG,∵∠BAF=∠FBA,∴∠BAF=∠ADG,∵∠AFG=∠DF A,∴△AFG∽△DF A,∴=,∴AF2=FG•FD,∵EF=AF,∴EF2=FG•FD,所以③正确;∵BF=EF,∴BF2=FG•FD,∴=,∵∠BFG=∠DFB,∴△BFG∽△DFB,∴∠ABF=∠BDF,∵由③知,∠ABF=∠ADF∴∠ADF=∠BDF,∴=(利用角平分线定理),∵BD=AC,AD=BC,∴,所以④正确,故答案为:①③④.三、解答题(共9小题,满分90分)15.(8分)计算:(2﹣π)0+﹣()﹣1﹣|tan45°﹣3|.【解答】解:原式=1+3﹣3﹣2=﹣1.16.(8分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:=÷(+)=÷=×=,把,代入原式====.17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.【解答】(1)C1的坐标是(﹣4,﹣1);(2)C2的坐标是:(4,1);(3)C3的坐标是(﹣2,1).18.(8分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)【解答】解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×2.732≈40.98(m).则CD=40.98+1.5=42.48(m).答:这栋建筑物CD的高度约为42m.19.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.【解答】(1)证明:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB.(2)解:设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.20.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.【解答】解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2种可能,∴P(恰好是1男1女的)=.(2)画树状图如下:或由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P(这三个小孩中至少有1个女孩)=.21.(12分)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3).(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b>的解集.【解答】解:(1)把点A的坐标(2,3)代入一次函数的解析式中,可得:3=2+b,解得:b=1,所以一次函数的解析式为:y=x+1;把点A的坐标(2,3)代入反比例函数的解析式中,可得:k=6,所以反比例函数的解析式为:y=;(2)把一次函数与反比例函数的解析式联立得出方程组,可得:,解得:x1=2,x2=﹣3,所以点B的坐标为(﹣3,﹣2);(3)∵A(2,3),B(﹣3,﹣2),∴使一次函数值大于反比例函数值的x的范围是:﹣3<x<0或x>2.22.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得5万元利润.23.(14分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:F A=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠ACB+∠ADE=180°,∴∠ADE=90°,∴∠BDE=90°,∵∠F AC=∠ACB+∠B=90°+∠B,∠CED=∠EDB+∠B=90°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△AFC≌△EDC(ASA),∴F A=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,∵AC=CE,∴△F AC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.。

安徽省2017年初中毕业班十校联考最后数学试题有答案

安徽省2017年初中毕业班十校联考最后数学试题有答案

安徽省2017年初中毕业班十校联考最后一卷数学试题温馨提示:1、你拿到的试卷满分为150分,考试时间为120分钟。

2、本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。

3、请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4、考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题:(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请把正确选项的代号写在题后的括号内。

每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是 ℃ A.-2 B.5 C.-10 D.-52.下列分式是最简分式的是A.b a a 232B.a a a 32-C.22ba ba ++ D.222b a ab a -- 3.估计327-的值在A.1和2之间B.2和3之间C.3和4之间D.4和5之间 4.如图是某物体的三视图,则这个物体的形状是 A.四面体 B.直三棱柱 C.直四棱柱 D.直五棱柱5. 3月12日为法定植树节。

某校团委这天组成20名团员同学共种了52棵树苗,其中男团员每人种树3棵,女团员每人种树2棵。

设男团员有x 人,女团员有y 人,根据题意,下列方程组正确的是 A.{522023=+=+y x y x B.{522032=+=+y x y x C.{205223=+=+y x y x D.{205232=+=+y x y x6.某市初中毕业生进行一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取3000个数据,统计如下表:数据x 7970≤≤x8980≤≤x9990≤≤x个数 800 1300 900 平均数788592A.92B.85C.83D.787.关于x 的一元二次方程0122=-+x ax 有两个不相等的实数根,则a 的取值范围是A.a>-1B.1-≥aC.0≠aD.a>-1且0≠a 8.下列语句中,其中正确的个数是①将多项式()()x y b y x a ---2因式分解,则原式=()()b ay ax y x +--②将多项式xy y x 4422-+因式分解,则原式=()22y x -;③90o的圆周角所对的弦是直径;④半圆(或直径)所对的圆周角是直角。

2017安徽省十校联考年中考数学二模试卷(含答案和解释)

2017安徽省十校联考年中考数学二模试卷(含答案和解释)

2017安徽省十校联考年中考数学二模试卷(含答案和解释)安徽省十校联考2017年中考数学二模试卷(解析版) 一.选择题 1.一元二次方程5x2�4x�1=0的二次项系数和一次项系数分别为()A. 5,�1 B. 5,4 C. 5,�4 D. 5x2 ,�4x 2.下列汽车标志中既是轴对称图形又是中心对称图形的是() A. B. C. D. 3.把抛物线y=�经()平移得到y=��1. A. 向右平移2个单位,向上平移1个单位 B. 向右平移2个单位,向下平移1个单位 C. 向左平移2个单位,向上平移1个单位 D. 向左平移2个单位,向下平移1个单位 4.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2 ,则y与x的函数的关系式是() A. y=10x� x2 B. y=10x C. y= �x D. y=x(10�x) 5.如图,已知⊙O 的半径为13,弦AB长为24,则点O到AB的距离是() A. 6 B. 5 C. 4 D. 3 6.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为() A. 1500(1+x)2=2160 B. 1500(1+x)2=2060 C. 1500+1500(1+x)+1500(1+x)2=2160 D. 1500(1+x)=2160 7.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45° B.90° C.180° D.270° 8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45° B. 60° C. 25° D. 30° 9.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2�4ac>0;④ab>0,其中正确的有()个. A. 1 B. 2 C. 3 D. 4 10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是() A. a B. a C. D. 二.填空题 11.在平面直角坐标系中,点(�3,2)关于原点对称的点的坐标是________. 12.关于x的一元二次方程(a�1)x2+x+(a2�1)=0的一个根是0,则a的值是________. 13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm. 14.如图,抛物线y1=(x�2)2�1与直线y2=x�1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题 15.解方程:4x2�12x+5=0. 16.已知二次函数图象经过点A(�3,0)、B(1,0)、C(0,�3),求此二次函数的解析式.四.解答题 17.如图,已知△ABC的顶点A,B,C的坐标分别是A(�1,�1),B(�4,�3),C(�4,�1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1 ,画出△A1B1C1 ,并写出点A1的坐标. 18.已知函数y=x2�mx+m�2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.解答题 19.已知抛物线y=�x2+2x+2 (1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象. 20.如图,四边形ABCD内接于⊙O,点E在对角线AC 上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题 21.在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:正方形边长1 3 5 7 … n(奇数)黑色小正方形个数 ________ ________ ________ ________ ________正方形边长2 4 6 8 … n(偶数)黑色小正方形个数 ________________ ________ ________ ________ (2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题 22.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?八.解答题 23.如图,已知四边形ABCD是正方形,△AEF是等边三角形,E,F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.答案解析部分一.<b >选择题</b> 1.【答案】C 【考点】一元二次方程的定义【解析】【解答】∵5x2�4x�1=0,∴二次项系数为:5,一次项系数分别为:�4,故答案为:C 【分析】根据一元二次方程ax2+bx+c=0(a≠0),由此即可得出答案. 2.【答案】D 【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A、是轴对称图形,不是中心对称图形,故此选项错误;A不符合题意; B、不是轴对称图形,也不是中心对称图形,故此选项错误;B不符合题意;C、是轴对称图形,不是中心对称图形,故此选项错误;C不符合题意;D、是轴对称图形,也是中心对称图形,故此选项正确.D符合题意;故答案为:D.【分析】轴对称图形:在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合;由此即可得出答案. 3.【答案】B 【考点】二次函数图象与几何变换【解析】【解答】∵抛物线y=�的顶点坐标是(0,0),抛物线y=��1的顶点坐标是(2,�1),∴由点(0,0)向右平移2个单位,向下平移1个单位得到点(2,�1),∴把抛物线y=�经向右平移2个单位,向下平移1个单位得到y=��1.故答案为:B.【分析】根据平移的性质:左+右-,上+下-,由此即可得出答案. 4.【答案】A 【考点】函数关系式,三角形的面积【解析】【解答】∵一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,∴另一边长为:(20�x)cm,则y= x(20�x)=10x� x2 .故答案为:A.【分析】由一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,则另一边长为:(20�x)cm,由三角形面积公式即可得出答案. 5.【答案】B 【考点】勾股定理,垂径定理【解析】【解答】过O作OC⊥AB于C,∴AC=BC= AB=12,在Rt△AOC中,∴OC= =5.故答案为:B.【分析】过O作OC⊥AB 于C,由垂径定理得AC=BC= AB=12,在Rt△AOC中,由勾股定理得出OC=5. 6.【答案】A 【考点】一元二次方程的应用【解析】【解答】设李师傅的月退休金从2012年到2014年年平均增长率为x,依题可得: 1500(1+x)2=2160.故答案为:A.【分析】设李师傅的月退休金从2012年到2014年年平均增长率为x,由企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元列出一元二次方程即可得出答案. 7.【答案】D 【考点】生活中的旋转现象【解析】【解答】∵早上8时分针指向数字12,45分钟后分针指向数字9,∴这节课中分针转动的角度为270°.故答案为:D.【分析】由早上8时分针指向数字12,45分钟后分针指向数字9,根据钟面角的问题即可得出答案. 8.【答案】D 【考点】含30度角的直角三角形,垂径定理,圆周角定理【解析】【解答】连接OB,∵OC⊥AB,P为OC的中点,∴OP= OB,∴∠OBP=30°,∴∠BOP=90°�30°=60°,∴∠BAC= ∠BOP=30°.故答案为:D.【分析】连接OB,由已知条件得出OP= OB,在直角三角形中,根据30°所对的直角边等于斜边的一半得出∠OBP=30°,再由三角形内角和定理得∠BOP=90°�30°=60°,由同弧所对的圆周角等于圆心角的一半即可得出∠BAC= ∠BOP=30°. 9.【答案】B 【考点】二次函数图象与系数的关系【解析】【解答】∵图象开口向下,∴a<0,故①正确;∵图象与y轴的交点坐标在x轴的下方,∴c<0,故②不正确;∵抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2�4ac>0,故③正确;∵图象对称轴在y轴的右侧,∴�>0,∴ab<0,故④不正确;∴正确的有两个,故答案为:B.【分析】①由图象开口向下得a<0,故①正确;②由图象与y轴的交点坐标在x轴的下方得c<0,故②不正确;③由抛物线与x轴有两个交点得b2�4ac>0,故③正确;由图象对称轴在y轴的右侧,即�>0得ab<0,故④不正确;由此即可得出答案. 10.【答案】D 【考点】全等三角形的判定与性质,等边三角形的性质,含30度角的直角三角形,旋转的性质【解析】【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC 的对称轴,∴HB= AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG= AB= ×2a=a,∴MG= CG= ×a= ,∴HN= ,故答案为:D.【分析】取BC的中点G,连接MG,依题可得∠MBH+∠HBN=60°,由等边三角形的性质得∠MBH+∠MBC=∠ABC=60°,等量代换得∠HBN=∠GBM,由等边三角形的性质和旋转的性质可知HB=BG,BM=BN,利用全等三角形的判定得△MBG≌△NBH(SAS),再由全等三角形的性质得MG=NH;根据垂线段最短得当MG⊥CH时,MG最短,即HN最短;在直角三角形中,30°所对的直角边等于斜边的一半即可得HN的值. 二.<b >填空题</b> 11.【答案】(3,�2)【考点】关于原点对称的点的坐标【解析】【解答】∴点(�3,2)关于原点对称的点的坐标是(3,�2),故答案为:(3,�2).【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,由此即可得出答案. 12.【答案】�1 【考点】一元二次方程的解【解析】【解答】∵关于x的一元二次方程(a�1)x2+x+(a2�1)=0的一个根是0,∴a2�1=0,且a�1≠0.∴a=�1.故答案是:�1.【分析】将x=0代入一元二次方程,得a2�1=0,且a�1≠0,由此即可得出答案. 13.【答案】3 【考点】三角形的外角性质,等腰三角形的性质,勾股定理,垂径定理,等腰直角三角形【解析】【解答】连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE= CD=3cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC= CE=3 cm,故答案为:3 .【分析】连接OC,根据垂径定理得出CE=DE= CD=3cm,由等腰三角形的性质得∠A=∠OCA=22.5°,根据三角形外角的性质得∠COE=45°,从而得△COE为等腰直角三角形,根据勾股定理得OC= CE=3 cm. 14.【答案】1≤x≤4 【考点】二次函数与不等式(组)【解析】【解答】联立,解得,,∴A(1,0),B(4,3),∴当y2≥y1时,x的取值范围为:1≤x≤4.故答案为:1≤x≤4.【分析】将抛物线和直线解析式联立求出A和B坐标,再结合图像得出答案. 三.<b >解答题</b> 15.【答案】解:(2x�5)(2x�1)=0,∴2x�5=0或2x�1=0,∴x1= ,x2= .【考点】解一元二次方程-因式分解法【解析】【分析】先将一元二次方程因式分解――十字相乘法,再解之即可得出答案. 16.【答案】解:依题可设抛物线解析式为y=a (x+3)(x�1),∵C(0,�3)在抛物线上,∴a×3×(�1)=�3,∴a=1,∴抛物线解析式为:y=(x+3)(x�1),即y=x2+2x�3.【考点】待定系数法求二次函数解析式【解析】【分析】依题可设抛物线解析式为y=a(x+3)(x�1),将C点坐标代入抛物线解析式即可得出a的值,从而求出抛物线解析式. 四.<b >解答题</b> 17.【答案】解:如图所示: A1(�1,1).【考点】中心对称及中心对称图形,坐标与图形变化-旋转【解析】【分析】①根据中心对称的特点分别求出A,B,C点相对应的坐标,连线即可得出△ABC关于原点O中心对称的图形△A′B′C′. ②根据旋转的性质得△A1B1C1的图形,由图即可得出A1坐标. 18.【答案】证明:y=x2�mx+m�2,∴△=(�m)2�4(m�2) =m2�4m+8 =(m�2)2+4,∵(m�2)2≥0,∴(m�2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点.【考点】抛物线与x轴的交点【解析】【分析】根据题意得出△=m2�4m+8==(m�2)2+4>0,从而得出不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.<b >解答题</b> 19.【答案】(1)解:∵y=�x2+2x+2,∴对称轴为:x=�,顶点坐标为:(�,),∴对称轴为:x=1,顶点坐标为:(1,3).∵a=�1<0,开口向下,∴当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小. (2)解:列表如下:x … �1 0 1 2 3 … y … �1 2 3 2 �1 … 【考点】二次函数的图象,二次函数的性质【解析】【分析】(1)根据抛物线解析式即可得出对称轴和顶点坐标,又因为抛物线开口向下,由二次函数的性质得出答案. (2)先列表、描点、连线即可得出二次函数解析式. 20.【答案】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°. (2)证明:∵EC=BC,∴∠CEB=∠CBE,又∵∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【考点】等腰三角形的性质,圆周角定理【解析】【分析】(1)由等腰三角形的性质得∠CBD=∠CDB=39°,再根据同弧所对的圆心角相等得∠BAC=∠CDB=∠CAD=∠CBD=39°,从而求出∠BAD值.(2)由等腰三角形的性质得∠CEB=∠CBE,又由∠CEB=∠2+∠BAE=∠CBE=∠1+∠CBD,由等量代换及等式额性质得∠1=∠2. 六.<b >解答题</b> 21.【答案】(1)1;5;9;13;2n�1;4;8;12;16;2n (2)解:由(1)可知n为偶数时P1=2n,白色与黑色的总数为n2,∴P2=n2�2n,根据题意假设存在,则n2�2n=5×2n, n2�12n=0,解得n=12,n=0(不合题意舍去).存在偶数n=12使得P2=5P1.【考点】解一元二次方程-因式分解法,探索图形规律【解析】【解答】解:(1)正方形边长1 3 5 7 … n (奇数)黑色小正方形个数1 5 9 13 … 2n�1正方形边长2 4 6 8 … n(偶数)黑色小正方形个数4 8 12 16 … 2n 【分析】(1)根据题中图形可以相应的完善表格,从而得出其规律. (2)由(1)可知n为偶数时P1=2n,白色与黑色的总数为n2,从而得P2=n2�2n,根据题意假设存在,即n2�2n=5×2n,解之即可得出答案. 七.<b >解答题</b> 22.【答案】(1)解:设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得:,解得,∴y与x之间的函数关系式y=�2x+60(10≤x≤18);(2)解:W=(x�10)(�2x+60) =�2x2+80x�600 =�2(x�20)2+200,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)解:由150=�2x2+80x�600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.【考点】待定系数法求一次函数解析式,二次函数的最值,二次函数的应用【解析】【分析】(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得到一个二元一次方程组,解之即可得出一次函数解析式. (2)根据题意得W=(x�10)(�2x+60)=�2x2+80x�600(10≤x≤18),再由二次函数的性质得当x=18时,Wmax=192.(3)又(2)得到的�2x2+80x�600=150(10≤x≤18),解之即可得出销售价格. 八.<b >解答题</b> 23.【答案】(1)解:∵四边形ABCD是正方形,∴AB=AD,AF=AE,∠B=∠D=90°,在Rt△ABF与Rt△ADE,,∴Rt△ABF≌Rt△ADE,∴∠DAE=∠BAF 又∠DAE+∠BAF=∠BAD�∠EAF=90°�60°=30° ∴∠DAE=15°;(2)解:设BF=x,由(1)可知DE=BF=x,则CF=CE=1�x ∴AB2+BF2=AF2 ,CF2+CE2=EF2 , AF=EF,即:12+x2=2(1�x)2 ∴x1=2+ ,x2=2 ,∵0<x<1,∴x1=2+ (舍去),x=2 ,∴S△AEF=S四边形ABCD�2S△ABF�S△EFC=12�2× 1×(2�)�(�1)2=2 �3;(3)解:依题意,点A可落在AB边上或BC边上.①当点A落在AB边上时,设此时点A的对应点为M,则EA=EM,∵∠EAB=75°,∴∠AME=75°,∴m=∠AEM=180°�75°�75°=30°,②当点A落在边BC上时,∵EA=EF,点A旋转后与点F重合,∴m=∠AEF=60°,综上,m=30°或m=60°.【考点】三角形的面积,全等三角形的判定与性质,等边三角形的性质,正方形的性质,旋转的性质【解析】【分析】(1)由正方形性质得AB=AD,AF=AE,∠B=∠D=90°,再根据直角三角形的判定得Rt△ABF≌Rt△ADE(HL),由全等三角形的性质得∠DAE=∠BAF,由等边三角形和正方形的性质得∠DAE的度数. (2)设BF=x,由(1)知DE=BF=x,则CF=CE=1�x,由勾股定理得AB2+BF2=AF2 , CF2+CE2=EF2 , AF=EF,即12+x2=2(1�x)2(0<x<1),求出x=2 ,再由S△AEF=S四边形ABCD�2S△ABF�S△EFC 求出即可. (3)依题分两种情况来分析:①当点A落在AB边上时,设此时点A的对应点为M,则EA=EM;②当点A落在边BC上时;根据旋转的性质和三角形内角和定理即可求出答案.。

2017安徽省中考数学试题及答案

2017安徽省中考数学试题及答案

精心整理2017年安徽省初中学业水平考试数学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.123简4沿线国20x ->轴上 【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题. 6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为 A .60︒ B .50︒C .40︒D .30︒【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时A .B .C .D . 30°21第6题图)第7题图之间的学生数大约是 A .280 B .240 C .300 D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.92b1.则【横C ,D 0,故ac <【10D ,P 平行距离A B ,11【考查目的】考查立方根运算,简单题. 12.因式分解:244a b ab b -+=____________. 【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的DE 的长为____________. 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm . 【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、 (本大题共2小题,每小题8分,共16分) 15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题. 【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

(完整word版)2017安徽中考数学试卷(含答案).docx

(完整word版)2017安徽中考数学试卷(含答案).docx

2017 年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共 10 个小题 , 每小题 4 分,满分 40 分)每小题都给出 A 、 B 、 C 、 D 四个选项,其中只有一个是正确的.1.1的相反数是()21 1A .C. 2D . -22B .22. 计算 ( a 2 )2的结果是()A . a 6B . a 6C . a 5D . a 53. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4. 截至 2016 年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过 1600 亿美元 . 其中 1600 亿用科学计数法表示为( )A. 16 1010 B. 1.6 1010C.1.6 1011D . 0.16 10125. 不等式 3 2x0 的解集在数轴上表示为()A .B . C. D .6. 直角三角板和直尺如图放置. 若 1 20 ,则 2 的度数为()A. 60B.50 C.40 D.307. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100 名学生进行统计,并绘成如图所示的频数直方图. 已知该校共有1000 名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B.240C.300D.2608. 一种药品原价每盒25 元,经过两次降价后每盒16 元. 设两次降价的百分率都为x ,则 x 满足()A.16(12x) 25B.25(12x) 16 C.16(1 x) 225D.25(1x)2169. 已知抛物线y ax 2bx c 与反比例函数y b的图象在第一象限有一个公共点,其横坐标为 1. 则一次x函数 y bx ac 的图象可能是()A.B. C.D.10. 如图,在矩形ABCD 中, AB 5 , AD 3.动点 P 满足S PAB 1 S矩形ABCD.则点P到A,B两点距3离之和 PA PB 的最小值为()A.29B.34 C. 5 2D.41二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)11.27 的立方根是.12. 因式分解:a2b 4ab 4b =.13.如图,已知等边 ABC 的边长为6,以 AB 为直径的⊙ O 与边 AC , BC 分别交于 D , E 两点,则劣弧DE 的长为.14. 在三角形纸片ABC 中, A 90 , C 30 , AC 30cm.将该纸片沿过点 B 的直线折叠,使点A 落在斜边 BC 上的一点 E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着边BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为cm.三、(本大题共 2 小题,每小题 8 分,满分 16 分)1115. 计算:| 2 | cos60( ).16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四 . 问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 元,还盈余 3 元;每人出 7 元,则还差 4 元 . 问共有多少人?这个物品的价格是多少?请解答上述问题 .四、(本大题共 2 小题,每小题 8 分,满分 16 分)17. 如图,游客在点 A 处坐缆车出发,沿 A B D 的路线可至山顶 D 处.假设 AB 和 BD 都是直线段,且AB BD 600m ,75 ,45 ,求DE的长.(参考数据:sin750.97 , cos75 0.26 ,2 1.41 )18.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC 和DEF (顶点为网格线的交点),以及过格点的直线l .( 1)将ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;( 2)画出DEF 关于直线 l 对称的三角形;( 3)填空:C E.五、(本大题共 2 小题,每小题 10 分,满分 20 分)19.【理解】我知道, 123n n( n1),那么 122232n2果等于多少呢?2在 1 所示三角形数中,第 1 行圈中的数1,即12;第 2 行两个圈中数的和 2 2 ,即 22;⋯⋯;第 n 行 n 个圈中数的和n n n ,即n2.,三角形数中共有n(n 1)个圈,所有圈中n个n2数的和 122232n2.【律探究】将桑拿教学数两次旋可得如所示的三角形数,察三个三角形数各行同一位置圈中的数(如第 n1行的第一个圈中的数分n 1 ,2,n),每个位置上三个圈中数的和均.由此可得,三个三角形数所有圈中数的和:3(122232n2 ).因此,122232n2=.【解决】根据以上,算12223220172的果.123201720. 如图,在四边形ABCD 中, AD BC ,B D , AD 不平行于 BC ,过点 C 作 CE / / AD 交ABC 的外接圆 O 于点 E ,连接 AE .(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分BCE .六、(本题满分 12 分)21.甲、乙、丙三位运动员在相同条件下各射靶10 次,每次射靶的成绩如下:甲: 9, 10, 8, 5,7, 8, 10, 8, 8,7;乙: 5, 7,8, 7, 8, 9, 7, 9, 10, 10;丙: 7, 6,8, 5, 4, 7, 6, 3, 9, 5.( 1)根据以上数据完成下表:平均数中位数方差甲88乙88 2.2丙63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定. 求甲、乙相邻出场的概率 .七、(本题满分 12 分)22. 某超市销售一种商品,成本每千克40 元,规定每千克售价不低于成本,且不高于80 元 . 经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价 x (元/千克)506070销售量 y (千克)1008060( 1)求y与x之间的函数表达式;( 2)设商品每天的总利润为W (元),求 W 与x之间的函数表达式(利润=收入 - 成本);(3)试说明( 2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分 14 分)23.已知正方形 ABCD ,点 M 为边 AB 的中点.( 1)如图 1,点G为线段CM上的一点,且AGB90 ,延长 AG , BG 分别与边 BC ,CD 交于点 E ,F.①求证: BE CF ;②求证: BE 2BC CE .( 2)如图 2,在边BC上取一点E,满足BE2BC CE ,连接AE交CM于点G,连接BG延长交CD 于点 F ,求 tan CBF 的值.2017 年中考数学参考答案一、 1-5: BABCD 6-10: CADBD14、 40或80 3二、 11、 312、 b (a - 2) 13、 p23三、 15、解:原式1 3 = -2 .= 2?216、解:设共有 x 人,根据题意,得 8x - 3 = 7x + 4 ,解得 x = 7 ,所以物品价格为 8? 7 3 = 53 (元 ).答:共有7 人,物品的价格为 53 元 .四、 17、解:在 Rt △BDF 中,由 sin b =DF得,BDDF = BD ?sin b2 300 2 ≈ 423 (m).600? sin 45° 600 ?2在 Rt △ ABC 中,由 cos a =BC可得,ABBC = AB ?cosa 600? cos75° 600? 0.26 156(m).所以 DE = DF + EF = DF + BC = 423+156 = 579 (m). 18、 (1)如图所示; (2)如图所示; (3)45五、 19、2n +1(2 n +1)?n (n +1)1n (n +1)( 2n +1)134526 20、 (1)证明:∵ ∠B =∠ D , ∠B = ∠E ,∴ ∠D = ∠E ,∵ CE ∥ AD , ∴∠ E +∠DAE = 180°.∴ ∠D +∠ DAE = 180°,∴ AE ∥ CD . ∴四边形 AECD 是平行四边形 .(2) 证明:过点 O 作 OM ^ EC , ON ^ BC ,垂足分别为 M 、 N .∵四边形 AECD 是平行四边形,∴AD = EC .又 AD = BC ,∴ EC = BC ,∴ OM = ON ,∴ CO 平分 ∠BCE .六、 21、解: (1)平均数中位数 方差甲 2乙丙6(2) 因为 2 < 2.2 < 3 ,所以 s 甲2 < s 乙2 < s 丙2 ,这说明甲运动员的成绩最稳定.(3) 三人的出场顺序有 (甲乙丙 ), ( 甲丙乙 ), (乙甲丙 ) ,(乙丙甲 ), (丙甲乙 ) , (丙乙甲 )共 6 种,且每一种结果 出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙 ),(乙甲丙 ),( 丙甲乙 ), (丙乙甲 )共 4 种,所以 甲、乙相邻出场的概率 P = 4 = 2 .6 3ììy = - 2x + 200 .七、 22.解: (1) 设 y = kx + b ,由题意,得 í,解得 í,∴所求函数表达式为?60k + b = 80?b = 200(2) W = (x - 40)(- 2 x + 200) = - 2 x 2+ 280 x - 8000 .2(3) W = - 2x 2 + 280x - 8000 = - 2( x - 70)+1800 ,其中 40 #x80 ,∵ - 2 < 0,∴当 40 ? x70 时, W 随 x 的增大而增大,当70 < x ? 80 时, W 随 x 的增大而减小,当售价为 70 元时,获得最大利润,这时最大利润为 1800 元.八、 23、 (1)①证明:∵四边形ABCD 为正方形,∴AB = BC ,,∠ABC = ∠BCF = 90°又,∴,又,∴ ∠BAE =∠CBF ,∠AGB = 90° ∠BAE +∠ABG = 90°∠ABG +∠CBF = 90°∴ △ ABE ≌△ BCF (ASA) ,∴ BE = CF .②证明:∵ ,点 M 为 AB 中点,∴ MG = MA = MB ,∴ ∠GAM = ∠AGM ,∠AGB = 90°又∵ ∠CGE = ∠AGM ,从而 ∠CGE = ∠CGB ,又 ∠ECG = ∠GCB ,∴ △CGE ∽△ CBG , ∴CE = CG,即 CG 2 = BC ?CE ,由 ∠CFG = ∠GBM = ∠CGF ,得 CF = CG . CG CB由①知, BE = CF ,∴ BE = CG ,∴ BE 2 = BC ?CE . (2) 解: ( 方法一 )延长 AE , DC 交于点 N ( 如图 1) ,由于四边形ABCD 是正方形,所以 AB ∥ CD ,∴ ∠N = ∠EAB ,又 ∠CEN = ∠BEA ,∴ △CEN ∽△ BEA , 故 CE =CN,即 BE ?CN AB?CE , BE BA∵ AB = BC , BE 2 = BC ?CE ,∴ CN = BE ,由 AB ∥ DN 知, CN = CG =CF,AM GM MB又 AM = MB ,∴ FC = CN = BE ,不妨假设正方形边长为1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2 =1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,∴ BE=5 - 1 ,22 BC2FCBE 5 - 1于是 tan ∠CBF ===,BCBC2( 方法二 )不妨假设正方形边长为 1,设 BE = x ,则由 BE 2= BC ?CE ,得 x 2= 1?(1 x ),解得 x 1 =5 - 1, x 2 =-5 - 1( 舍去 ) ,即 BE = 5 - 1 ,222作 GN ∥ BC 交 AB 于 N ( 如图 2) ,则 △ MNG ∽△ MBC ,∴MN=MB= 1,NGBC 25 y ,∵GN =AN,即2 y y +1设 MN = y ,则 GN = 2 y , GM =2 ,=BE AB 5 - 1 12解得 y =1 ,∴ GM = 1,从而 GM = MA = MB ,此时点 G 在以 AB 为直径的圆上, 2 5 2∴ △ AGB 是直角三角形,且 ,∠AGB = 90° 由 (1) 知 BE = CF ,于是 tan ∠CBF =FC = BE= 5 - 1 .BC BC 2。

【真卷】2017年安徽省江淮初中名校联考中考数学模拟试卷含参考答案

【真卷】2017年安徽省江淮初中名校联考中考数学模拟试卷含参考答案

2017年安徽省江淮初中名校联考中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项填涂在答题卡上,每一小题,选对得4分,不选、错选或多选一律得0分。

1.(4分)﹣2的绝对值是()A.﹣2 B.﹣ C.2 D.2.(4分)下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个3.(4分)H7N9病毒直径约为40纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是()A.40×10﹣9米B.4×10﹣8米C.4×10﹣10米D.0.4×10﹣9米4.(4分)不等式组的解集是()A.x≥1 B.x>5 C.﹣1<x<5 D.﹣1≤x<55.(4分)下列运算正确的是()A.﹣(﹣x+1)=x+1 B.C.D.(a﹣b)2=a2﹣b2 6.(4分)下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.(4分)某市2016年国内生产总值(GDP)比2015年增长了11%,预计2017年比2016年增长9%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.11%+9%=x% B.(1+11%)(1+9%)=2(1+x%)C.11%+9%=2•x%D.(1+11%)(1+9%)=(1+x%)28.(4分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C由△ABC 绕点C顺时针旋转得到,其中点A′与点A、点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.3 B.2 C.4 D.49.(4分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.10.(4分)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个 B.3个 C.4个 D.无数个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若在实数范围内有意义,则x的取值范围是.12.(5分)分解因式:4x2﹣16=.13.(5分)如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为.14.(5分)将矩形纸片ABCD折叠,使点B落在边CD上的B′处,折痕为AE,过B′作B′P∥BC,交AE于点P,连接BP.已知BC=3,CB′=1,下列结论:①AB=5;②sin∠ABP=;③四边形BEB′P为菱形;④S四边形BEB′P ﹣S△ECB′=1,其中正确的是.(把所有正确结论的序号都填在横线上)2017年安徽省江淮初中名校联考中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项填涂在答题卡上,每一小题,选对得4分,不选、错选或多选一律得0分。

2017安徽中考数学试卷(含答案).

2017安徽中考数学试卷(含答案).

2017安徽中考数学试卷(含答案).2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是() A .12- B .12- C .2D .-22.计算22()a -的结果是() A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为()A.101610? B .101.610? C.111.610? D .120.1610?5.不等式320x ->的解集在数轴上表示为()A .B . C. D .6.直角三角板和直尺如图放置.若120∠=?,则2∠的度数为()A.60? B .50? C.40? D.30?7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足() A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是()A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ?=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为()A .29B .34 C.52 D .41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是.12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ?的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为.14.在三角形纸片ABC 中,90A ∠=?,30C ∠=?,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ?后得到双层BDE ?(如图2),再沿着边BDE ?某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--??-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=?,45β=?,求DE 的长.(参考数据:sin750.97?≈,cos750.26?≈,2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ?和DEF ?(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ?向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出DEF ?关于直线l 对称的三角形;(3)填空:C E ∠+∠= ?.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ?的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;(2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数中位数方差甲 8 8 乙 8 8 2.2 丙 63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=?,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =;②求证:2BE BC CE =?.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =?,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD 二、11、312、()22b a -13、p 14、40或8033三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+,解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元. 四、17、解:在Rt BDF △中,由sin DFBDb =得, 2sin 600sin 4560030024232DF BD b=°≈(m).在Rt ABC △中,由cos BCABa =可得,cos 600cos756000.26156BC AB a =°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++ 134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠,∵CE AD ∥,∴180E DAE +=∠∠°.∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1) 平均数中位数方差甲 2 乙丙6(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=?í+=??,解得2200k b ì=-?í=??,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°,又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠,∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠,又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△,∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =. 由①知,BE CF =,∴BE CG =,∴2BE BC CE =?. (2)解:(方法一) 延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥,∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△,故CE CNBE BA=,即BE CN AB CE ??,∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==,又AM MB =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1512x -= ,2512x --=(舍去),∴512BE BC -=,于是51tan 2==∠,(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1512x -=,2512x --=(舍去),即512BE -=,作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==,设MN y =,则2GN y =,5GM y =,∵GN ANBE AB =,即1221512y y +=-,解得125y =,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB =∠°,由(1)知BE CF =,于是51 tan 2== ∠.。

2017年安徽省中考数学二模试卷解析及答案

2017年安徽省中考数学二模试卷解析及答案

2017年安徽省中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A.B. C. D.【考点】由三视图判断几何体.【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【解答】解:A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2•x2=x4,计算正确,本选项正确.故选D.4.2016年2月初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学生约为27600人,与去年相比增加300多人,用科学记数法表示“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,内错角相等以及三角形外角和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄金周”期间,小东和爸爸、妈妈外出旅游,一家三人随机站在一排拍照纪念,小东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出小东站在中间的结果数,然后根据概率公式求解.【解答】解:设小东和爸爸、妈妈分别为:甲、乙、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以小东在中间的概率=.故选:B.7.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式方程.【分析】设快车的速度为x千米/时,根据快车比慢车早40分钟到达乙站,列方程求解.【解答】解:设快车的速度为x千米/时,可得:,故选C8.如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三角形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表示出AE=DE=2EG=2x、DG=x,继而在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从而得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x•=(2﹣2)x,∴==,故选:D.9.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中心对称图形.【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该大长方形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该大长方形的周长是120,∴2(a+2b+c)=120.根据图示,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.10.一元二次方程m1x2+x+1=0的两根分别为x1,x2,一元二次方程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的大小关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,方程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是一元二次方程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成立,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这一关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是一元二次方程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是一元二次方程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,自变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代入函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;∴第n个图形中“•”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,解得n=11或n=0(舍去),故答案为:11.14.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是①④(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.【考点】反比例函数综合题.=S△OBA,由点E、点D在反【分析】①正确.由四边形ABCD是矩形,推出S△OBC=S△OAD=,即可推出S△OEB=S△OBD.比例函数y=(x>0)的图象上,推出S△CEO②错误.设点B(m,n),D(m,n′)则M(m,n,),由点M,点D在反比例函数y=(x>0)的图象上,可得m•n=m•n′,推出n′=n,推出AD=AB,推出BD=3AD,故②错误.=S△OBD﹣S△BDM=•b•a﹣•b•a=ab,S△CEO=S△OAD=③错误.因为S△ODM•a•b=ab,所以S△ODM:S△OCE=ab:ab=3:2,故③错误.④正确.由==3,推出DE∥AC,推出△BED∽△BCA.【解答】解:∵四边形ABCD是矩形,=S△OBA,∴S△OBC∵点E、点D在反比例函数y=(x>0)的图象上,=S△OAD=,∴S△CEO=S△OBD,故①正确,∴S△OEB设点B(m,n),D(m,n′)则M(m,n,),∵点M,点D在反比例函数y=(x>0)的图象上,∴m•n=m•n′, ∴n′=n , ∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =•b•a ﹣•b•a=ab ,∵S △CEO =S △OAD =•a•b=ab ,∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC , ∴BE=3EC ,∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确. 故答案为①④三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】首先把括号内的分式进行通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可.【解答】解:解不等式x﹣1>3x,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本大题共2小题,每小题8分,满分16分)17.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直角三角形的应用.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:工件如图摆放时的高度约为58.8cm.18.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反比例函数y=(x>0)的图象上,得到方程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反比例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反比例函数的解析式为:y=.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直角三角形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,又∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出大省,农民外出务工增长家庭收入的同时,也一定程度影响了子女的管理和教育,缺少管理和教育的留守儿童的学习和心理健康状况等问题日趋显现,成为社会关注的焦点.该省相关部门就留守儿童学习和心理健康状况等问题进行调查,本次抽样调查了该省某县部分留守儿童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生留守儿童?(2)扇形统计图中C类所占的圆心角是144°;这次调查中为D类的留守儿童有20人;(3)请你估计该县20000名留守儿童中,出现较为严重问题及以上的人数.【考点】条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)根据A类人数是10,所占的百分比是10%,据此即可求得总人数;(2)利用360°乘以对应的百分比即可求得C类圆心角的度数;利用总人数乘以对应的百分比求得D类的人数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)抽查的人数是10÷10%=100(人);(2)C类所占的圆心角是360°×=144°,D类的留守儿童人数所占的百分比是:=40%,则D类的人数是100×(1﹣10%﹣30%﹣40%)=20(人),故答案是:144;20;(3)出现较为严重问题及以上的人数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从而可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最大值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即月产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最大值,此时W=2650,即当月产量x(套)为35套时,这种产品的利润W(万元)最大,最大利润是2650万元.八、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB 的最大面积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三角形内角和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成比例,得出AC2=AB•AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三角形内角和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB•AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB•AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB•AD=AC2=16,当DA⊥DB时,△DAB的最大,最大面积为8,故答案为:8.。

2017年安徽省中考数学试卷(含答案)

2017年安徽省中考数学试卷(含答案)

2017年安徽省初中学业水平考试数学 (试题卷)一、选择题(本题共10个小题,每小题4分,满分40分) 每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.12的相反数是( ) A .12- B .12- C .2D .-22. 计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3. 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )4. 截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯5. 不等式320x ->的解集在数轴上表示为( )6. 直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒ 7. 为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .260 8. 一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ).A .16(12)25x +=B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9. 已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )10. 如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B两点距离之和PA PB +的最小值为( )A B C. D 二、填空题(本大题共4小题,每小题5分,满分20分) 11. 27的立方根是 .12. 因式分解:244a b ab b -+= .13. 如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧 DE的长为 .14. 在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm. 三、(本大题共2小题,每小题8分,满分16分) 15. 计算:11|2|cos 60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17. 如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin 750.97︒≈,cos 750.26︒≈ 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆ (顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分) 19.【阅读理解】我们知道,(1)1232n n n +++++=,那么2222123n ++++ 结果等于多少呢? 在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++ .【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++ = .【解决问题】根据以上发现,计算222212320171232017++++++++ 的结果为 .20. 如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD二、11、312、()22b a -13、p 14、40三、15、解:原式12322=?=-. 16、解:设共有x 人,根据题意,得8374x x -=+, 解得7x =,所以物品价格为87353?=(元). 答:共有7人,物品的价格为53元.四、17、解:在Rt BDF △中,由sin DFBDβ=得,sin 600sin 45600423DF BD b=???°(m).在Rt ABC △中,由cos BCABa =可得, cos 600cos756000.26156BC AB a =???°(m). 所以423156579DE DF EF DF BC =+=+=+=(m). 18、(1)如图所示;(2)如图所示;(3)45五、19、21n +()()1212n n n ++?()()11216n n n ++134520、(1)证明:∵B D =∠∠,B E =∠∠,∴D E =∠∠, ∵CE AD ∥,∴180E DAE +=∠∠°. ∴180D DAE +=∠∠°,∴AE CD ∥. ∴四边形AECD 是平行四边形.(2)证明:过点O 作OM EC ^,ON BC ^,垂足分别为M 、N . ∵四边形AECD 是平行四边形,∴AD EC =.又AD BC =,∴EC BC =,∴OM ON =,∴CO 平分BCE ∠.六、21、解:(1)(2)因为2 2.23<<,所以222s s s <<甲乙丙,这说明甲运动员的成绩最稳定. (3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P ==. 七、22.解:(1)设y kx b =+,由题意,得501006080k b k b ì+=ïí+=ïî,解得2200k b ì=-ïí=ïî,∴所求函数表达式为2200y x =-+.(2)()()240220022808000W x x x x =--+=-+-.(3)()22228080002701800W x x x =-+-=--+,其中4080x #,∵20-<,∴当4070x ?时,W 随x 的增大而增大,当7080x <?时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC =,90ABC BCF ==∠∠°, 又90AGB =∠°,∴90BAE ABG +=∠∠°,又90ABG CBF +=∠∠°,∴BAE CBF =∠∠, ∴ABE BCF △≌△(ASA),∴BE CF =.②证明:∵90AGB =∠°,点M 为AB 中点,∴MG MA MB ==,∴GAM AGM =∠∠, 又∵CGE AGM =∠∠,从而CGE CGB =∠∠,又ECG GCB =∠∠,∴CGE CBG △∽△,∴CE CGCG CB=,即2CG BC CE =?,由CFG GBM CGF ==∠∠∠,得CF CG =. 由①知,BE CF =,∴BE CG =,∴2BE BC CE =?. (2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB =∠∠,又CEN BEA =∠∠,∴CEN BEA △∽△, 故CE CN BE BA=,即BE CN AB CE ??, ∵AB BC =,2BE BC CE =?,∴CN BE =,由AB DN ∥知,CN CG CFAM GM MB==, 又AM M B =,∴FC CN BE ==,不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x =2x (舍去),∴BE BC ,于是tan FC BE CBF BC BC ==∠(方法二)不妨假设正方形边长为1,设BE x =,则由2BE BC CE =?,得()211x x =?,解得1x =2x (舍去),即BE =作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC ==, 设MN y =,则2GN y =,GM ,∵GN AN BE AB =121y +=,解得y ,∴12GM =,从而GM MA MB ==,此时点G 在以AB 为直径的圆上, ∴AGB △是直角三角形,且90AGB =∠°, 由(1)知BE CF =,于是tan FC BE CBF BC BC ===∠.。

(完整版)2017安徽省中考数学试题及解答

(完整版)2017安徽省中考数学试题及解答

2017年安徽省初中学业水平考试数 学(试 题 卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,共40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( )A .12;B .12-; C .2; D .-22.计算()23a-的结果是( )A .6a ; B .6a -; C .5a -; D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为( )4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为( ) A .101610⨯; B .101.610⨯; C .111.610⨯; D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为( )6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为( ) A .60︒; B .50︒; C .40︒; D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( ) A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足( )A .()161225x +=;B .()251216x -=;C .()216125x +=;D .()225116x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是( )10.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足13PABABCD S S =矩形,则点P 到A ,B 两点距离之和PA+PB 的最小值为( ) A 29;B 34C .52D 41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边ABC 的边长为6,以AB 为直径的O 与边AC ,BC 分别交于D ,E两点,则劣弧DE 的长为___________.14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着过BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。

【真题】2017安徽省中考数学试题与答案解析(word版)

【真题】2017安徽省中考数学试题与答案解析(word版)

2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是A .21 B .12-C .2D .2-2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a 3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为 A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 5.不等式420x ->的解集在数轴上表示为 ( )6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 B .240 C .300 D .260频数(人数)8102430)A .B .C .D . –1–212–1–212–1–212–1–212A .B .C .D .8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( ) A .29 B .34 C .52 D .41二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是____________ .12.因式分解:244a b ab b -+=____________ .13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的»DE的长为____________ .第13题图 第14题图14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-.O O OO xyxyx yyx A . B . C . D .16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

2017安徽数学中考二轮复习专题卷:圆(含解析)

2017安徽数学中考二轮复习专题卷:圆(含解析)

圆学校:___________姓名:___________班级:___________考号:___________1、半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A.3 B.4 C.D.2、两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是【】A.内含B.内切C.相交D.外切3、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是A.90°B.60°C.45°D.30°5、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=500,则∠DAB等于A.55°B.60°C.65°D.70°6、如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36° B.46° C.27° D.63°7、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是【】A.4 B.5 C.6 D.88、如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为【】A.cm B.cm C.cm D.7πcm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A.外离B.外切C.相交D.内切10、如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为【】A.40°B.50°C.80°D.100°11、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为【】A. B.8 C. D.12、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.cm B.cm C.cm D.4 cm13、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年安徽省十校联考中考数学二模试卷一、选择题(本大题共10个小题,每小题4分,满分40分)1.(4分)一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x2.(4分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)把抛物线y=﹣经()平移得到y=﹣﹣1.A.向右平移2个单位,向上平移1个单位B.向右平移2个单位,向下平移1个单位C.向左平移2个单位,向上平移1个单位D.向左平移2个单位,向下平移1个单位4.(4分)一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A.y=10x﹣x2B.y=10x C.y=﹣x D.y=x(10﹣x)5.(4分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.36.(4分)近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A.1500(1+x)2=2160B.1500(1+x)2=2060C.1500+1500(1+x)+1500(1+x)2=2160D.1500(1+x)=21607.(4分)学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180° D.270°8.(4分)如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC 的度数是()A.45°B.60°C.25°D.30°9.(4分)二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A.1 B.2 C.3 D.410.(4分)如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.12.(5分)关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.13.(5分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为cm.14.(5分)如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:4x2﹣12x+5=0.16.(8分)已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B (﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O中心对称的图形;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.(8分)已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.20.(10分)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六、解答题(本题满分12分)21.(12分)在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七、解答题(本题满分12分)22.(12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?八、解答题(本题满分14分)23.(14分)如图,已知四边形ABCD是正方形,△AEF是等边三角形,E、F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.2017年安徽省十校联考中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,满分40分)1.(4分)一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x【解答】解:一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为5,﹣4,故选C2.(4分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.(4分)把抛物线y=﹣经()平移得到y=﹣﹣1.A.向右平移2个单位,向上平移1个单位B.向右平移2个单位,向下平移1个单位C.向左平移2个单位,向上平移1个单位D.向左平移2个单位,向下平移1个单位【解答】解:∵抛物线y=﹣的顶点坐标是(0,0),抛物线y=﹣﹣1的顶点坐标是(2,﹣1),∴由点(0,0)向右平移2个单位,向下平移1个单位得到点(2,﹣1),∴把抛物线y=﹣经向右平移2个单位,向下平移1个单位得到y=﹣﹣1.故选:B.4.(4分)一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A.y=10x﹣x2B.y=10x C.y=﹣x D.y=x(10﹣x)【解答】解:∵一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,∴另一边长为:(20﹣x)cm,则y=x(20﹣x)=10x﹣x2.故选:A.5.(4分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.6.(4分)近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A.1500(1+x)2=2160B.1500(1+x)2=2060C.1500+1500(1+x)+1500(1+x)2=2160D.1500(1+x)=2160【解答】解:如果设李师傅的月退休金从2012年到2014年年平均增长率为x,那么根据题意得2014年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故选:A.7.(4分)学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180° D.270°【解答】解:早上8时分针指向数字12,45分钟后分针指向数字9,所以这节课中分针转动的角度为270°.故选D.8.(4分)如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC 的度数是()A.45°B.60°C.25°D.30°【解答】解:连接OB,∵OC⊥AB,P为OC的中点,∴OP=OB,∴∠OBP=30°,∴∠BOP=90°﹣30°=60°,∴∠BAC=∠BOP=30°.故选D.9.(4分)二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:∵图象开口向下,∴a<0,故①正确;∵图象与y轴的交点坐标在x轴的下方,∴c<0,故②不正确;∵抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故③正确;∵图象对称轴在y轴的右侧,∴﹣>0,∴ab<0,故④不正确;∴正确的有两个,故选B.10.(4分)如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).12.(5分)关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.13.(5分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为3cm.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=3cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=3cm,故答案为:3.14.(5分)如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为1≤x≤4.【解答】解:联立,解得,,所以,A(1,0),B(4,3),所以,当y2≥y1时,x的取值范围1≤x≤4.故答案为:1≤x≤4.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:4x2﹣12x+5=0.【解答】解:(2x﹣5)(2x﹣1)=0,2x﹣5=0或2x﹣1=0,所以x1=,x2=.16.(8分)已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.【解答】解:设抛物线解析式为y=a(x+3)(x﹣1),把C(0,﹣3)代入得a•3•(﹣1)=﹣3,解得a=1,所以抛物线解析式为y=(x+3)(x﹣1),即y=x2+2x﹣3.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B (﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O中心对称的图形;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.【解答】解:(1)正确画出图形(3分)(2)正确画出图形(5分)A1(﹣1,1).(6分)18.(8分)已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.【解答】证明:y=x2﹣mx+m﹣2,△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.【解答】解:(1)∵y=﹣x2+2x+2,而对称轴是方程x=﹣,顶点坐标是(﹣,),∴对称轴是x=1,顶点坐标是(1,3).∵a=﹣1<0,开口向下,∴当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小;(2)列表如下:20.(10分)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.六、解答题(本题满分12分)21.(12分)在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.【解答】解:(1)(2)由(1)可知n为偶数时P1=2n,白色与黑色的总数为n2,∴P2=n2﹣2n,根据题意假设存在,则n2﹣2n=5×2n,n2﹣12n=0,解得n=12,n=0(不合题意舍去).存在偶数n=12使得P2=5P1.七、解答题(本题满分12分)22.(12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?【解答】解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600=﹣2(x﹣20)2+200,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.八、解答题(本题满分14分)23.(14分)如图,已知四边形ABCD是正方形,△AEF是等边三角形,E、F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.【解答】解:(1)∵四边形ABCD是正方形,∴AB=AD,AF=AE,∠B=∠D=90°,在Rt△ABF与Rt△ADE,,∴Rt△ABF≌Rt△ADE,∴∠DAE=∠BAF又∠DAE+∠BAF=∠BAD﹣∠EAF=90°﹣60°=30°∴∠DAE=15°;(2)设BF=x,由(1)可知DE=BF=x,则,CF=CE=1﹣xAB2+BF2=AF2,CF2+CE2=EF2,AF=EF,得:12+x2=2(1﹣x)2x1=2+,x2=2,∵0<x<1,∴x1=2+(舍去),x=2,∴S=S四边形ABCD﹣2S△ABF﹣S△EFC=12﹣2×1×(2﹣)﹣(﹣1)2=2△AEF﹣3;(3)依题意,点A可落在AB边上或BC边上.当点A落在AB边上时,设此时点A的对应点为M,则EA=EM,∵∠EAB=75°,∴∠AME=75°,∴m=∠AEM=180°﹣75°﹣75°=30°,当点A落在边BC上时,∵EA=EF,点A旋转后与点F重合,∴m=∠AEF=60°,综上,m=30°或m=60°.。

相关文档
最新文档