三角形的内角和定理--教学设计

合集下载

北师大版八年级数学上册7.5三角形内角和定理(第1课时)教学设计

北师大版八年级数学上册7.5三角形内角和定理(第1课时)教学设计
(二)讲授新知
1.教师引导学生回顾已学的三角形知识,如三角形的定义、分类等。
2.教师以直观的方式,通过动态课件或实物演示,让学生观察并发现三角形内角和等于180°的现象。
3.教师给出三角形内角和定理的表述,并对定理进行讲解,强调“任意三角形内角和都等于180°”。
4.教师通过具体的例子,如等边三角形、等腰三角形等,说明三角形内角和定理的适用范围。
3.教学评价:
(1)关注学生在课堂上的表现,评价他们的参与度、合作能力和解决问题的能力;
(2)通过课后作业和小测验,了解学生对三角形内角和定理的掌握情况;
(3)开展小组评价,让学生相互评价,提高他们的自我认知和团队协作能力。
4.教学反思:
教师在教学过程中要关注学生的反馈,及时调整教学策略,以提高教学效果。同时,教师要注重自身教学能力的提升,不断学习新的教学理念和方法,为学生提供更优质的教育。
1.培养学生的探究精神,鼓励学生主动发现问题、解决问题;
2.增强学生对数学美的感受,体会数学在生活中的应用价值;
3.培养学生严谨的学习态度,养成良好的学习习惯;
4.激发学生的爱国情怀,通过学习我国数学家的贡献,增强民族自豪感。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高,实现全面发展。同时,注重启发式教学,引导学生主动思考、探索,使学生在轻松愉快的氛围中学习数学。
四、教学内容与过程
(一)导入新课
1.教师出示一块三角形的纸板,引导学生观察三角形,并提出问题:“同学们,你们知道三角形的内角和是多少度吗?如何证明三角形的内角和是180°呢?”
2.学生自由发表观点,教师收集不同的解题思路,为后续教学做好铺垫。
3.教师通过多媒体展示生活中含有三角形的实物图片,如房屋屋顶、三角形标志等,让学生感受三角形在生活中的广泛应用,从而引出本节课的学习内容:三角形内角和定理。

三角形内角和优秀教学设计

三角形内角和优秀教学设计

三角形内角和优秀教学设计三角形内角和》优秀教学设计通过操作活动,探究并掌握三角形内角和性质,并能应用三角形内角和性质解决一些简单的实际问题。

研究经历观察、操作、想象、推理、交流,发展空间观念、推理能力和有条理的表达能力。

研究重点:三角形内角和定理。

研究难点:三角形内角和定理的推理过程。

研究过程:1.情境导入:同桌交流两个面积不一样的三角形对话,引出三角形内角和的问题。

2.探索新知:使用量角器量三个内角的大小,并用剪切、拼合的三角形的三个内角的和等于180°,并比较不同三角形的结果。

3.推理论证:采用已知条件和证明方法,证明三角形的三个内角的和等于180°。

4.归纳小结:总结证明三角形内角和定理的方法,并引出辅助线和转化思想的应用。

5.课堂练:通过练,巩固学生对三角形内角和定理的理解和应用能力。

6.例题分析:通过例题,让学生掌握如何应用三角形内角和定理解决实际问题。

7.课堂小结:总结三角形内角和定理的应用方法,强化学生对该定理的理解和掌握程度。

三角形内角和》优秀教学设计本课程通过操作活动,让学生探究并掌握三角形内角和性质,并能应用该性质解决一些简单的实际问题。

研究过程中,学生将经历观察、操作、想象、推理和交流,以发展空间观念、推理能力和有条理的表达能力为目标。

研究重点为三角形内角和定理,研究难点为该定理的推理过程。

研究过程分为以下几个步骤:1.情境导入:通过同桌交流两个面积不一样的三角形对话,引出三角形内角和的问题。

2.探索新知:学生使用量角器量三个内角的大小,并用剪切、拼合的三角形的三个内角的和等于180°,并比较不同三角形的结果。

3.推理论证:学生采用已知条件和证明方法,证明三角形的三个内角的和等于180°。

4.归纳小结:学生总结证明三角形内角和定理的方法,并引出辅助线和转化思想的应用。

5.课堂练:通过练,巩固学生对三角形内角和定理的理解和应用能力。

6.例题分析:学生通过例题,掌握如何应用三角形内角和定理解决实际问题。

三角形的内角和定理教案

三角形的内角和定理教案

三角形的内角(一)(一)教学目标1.知识与技能(1)会证明三角形内角和定理。

(2)简单运用三角形内角和定理。

(3)通过添加辅助线证题,增强观察、猜想和理论证明的能力。

2. 过程与方法(1)通过拼图实践、合作探索、相互交流,培养学生的逻辑推理、敢于猜想、动手实践等能力。

(2)感受探索三角形内角和定理的证明过程。

(3)通过渗透数学的转化思想,培养学生解决数学问题的基本方法。

3. 情感、态度与价值观(1)通过师生的共同探究活动,培养学生的概括、总结能力,激发学生探索问题的兴趣。

(2)通过确认“三角形内角和是180度”体会学习数学的价值是发现和确认数学规律。

(二)教学重点、难点教学重点:理解三角形内角和定理以及简单的应用.教学难点:初步学会辅助线的添加.教学准备教师准备多媒体演示两幅,学生每人准备一个硬纸片三角板。

教学过程(一)创设情境、激发情趣在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。

可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷(二)动手实践、感受探究的快感[师]同学们,我们做这样的实验:将三角形纸片的三个角剪下,随意将它们拼凑在一起,恰好得到一个什么角?[生]平角。

从而大家得出三角形的三个内角和等于180°。

[让学生自己动手探究,体会数学研究的乐趣.][师]现在,我们来看两个电脑的动画演示,验证这个结论是不是正确的。

1.动画演示一[师]先将△ABC中的∠A通过平移和旋转到如上图所示的位置,再将图中的∠B通过平移到上图所示的位置。

拖动点A,改变△ABC的形状,三角形的三个内角和总等于180°2.动画演示二[师]先将三角形纸片(图(1))一角折向其对边,使顶点落在对边上,折线与对边平行(图(2)),然后把另外两角相向对折,使其顶点与已折角的顶点相重合(图(3) (4)。

11.2.1三角形的内角和(教案)

11.2.1三角形的内角和(教案)
b.定理应用中的问题解决:学生在解决具体问题时,可能会对如何运用三角形内角和定理感到困惑,如求解未知角度时需要建立方程或进行角度转换;
c.特殊情况的处理:如等腰三角形、直角三角形等特殊类型的三角形内角和问题,需要学生能够识别并灵活运用定理。
-教学策略:
a.使用直观教具和动画演示,帮助学生形象理解三角形内角和定理的证明过程;
二、核心素养目标
本节课的核心素养目标致力于培养学生的几何直观、逻辑推理和问题解决能力。通过探究三角形的内角和,使学生能够:
1.发展几何直观析能力;
2.强化逻辑推理:学会运用合情推理和演绎推理证明三角形内角和定理,培养严谨的逻辑思维;
3.重点难点解析:在讲授过程中,我会特别强调三角形内角和定理的证明及其在实际问题中的应用。对于难点部分,我会通过实际例题和图示来帮助大家理解如何运用定理求解未知角度。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形内角和相关的实际问题,如如何根据已知两个角求第三个角。
11.2.1三角形的内角和(教案)
一、教学内容
11.2.1三角形的内角和:本节课我们将探索三角形的内角和定理,通过直观演示和逻辑推理,使学生理解并掌握三角形的内角和为180°。内容包括:
1.三角形的定义及其特性;
2.三角形内角和定理的证明;
3.运用三角形内角和定理解决实际问题;
4.掌握三角形内角和定理的应用,如:求三角形未知角度、判断三角形类型等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用剪刀和纸张制作三角形,并测量内角和。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

三角形的内角和教案

三角形的内角和教案

三角形的内角和教案一、教学目标:知识与技能:1. 让学生掌握三角形内角和定理,理解三角形内角和为180度的概念。

2. 能够运用三角形内角和定理解决实际问题。

过程与方法:1. 通过观察、操作、推理等过程,引导学生发现三角形的内角和定理。

2. 培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探索精神。

2. 培养学生合作学习、积极思考的良好学习习惯。

二、教学重点与难点:重点:1. 三角形内角和定理的理解和运用。

难点:1. 三角形内角和定理的推导过程。

三、教学准备:教师准备:1. 三角形模型、量角器等教具。

2. 教学课件或黑板。

学生准备:1. 学习三角形相关知识。

2. 准备三角板或其他三角形教具。

四、教学过程:环节一:导入1. 引导学生回顾三角形的相关知识,如三角形的定义、特性等。

2. 提问:你们知道三角形内角和是多少度吗?环节二:探究三角形内角和1. 让学生拿出三角板或其他三角形教具,观察并测量三角形的内角。

2. 引导学生发现并总结三角形内角和的特点。

环节三:推导三角形内角和定理1. 引导学生通过量角器测量多个三角形的内角,记录数据。

2. 让学生观察数据,发现规律,推导出三角形内角和定理。

环节四:验证三角形内角和定理1. 让学生分组讨论,设计实验验证三角形内角和定理。

2. 各小组汇报实验结果,确认三角形内角和定理的正确性。

环节五:运用内角和定理解决问题1. 出示例题,让学生运用内角和定理解决问题。

2. 学生互相讨论,解答例题,分享解题思路。

五、作业布置:1. 请学生运用内角和定理,解决一些关于三角形的实际问题。

2. 总结本节课的学习内容,思考三角形内角和定理在实际生活中的应用。

六、教学反思:本节课通过引导学生观察、操作、推理等活动,发现了三角形内角和定理,并运用该定理解决了一些实际问题。

在教学过程中,注重培养学生的动手操作能力、逻辑思维能力和解决问题的能力。

三角形的内角和定理教案

三角形的内角和定理教案

三角形的内角和定理教案教学目标:1. 让学生理解三角形的内角和定理。

2. 学会运用三角形的内角和定理解决实际问题。

3. 培养学生的观察能力、操作能力和解决问题的能力。

教学重点:1. 三角形的内角和定理。

2. 运用三角形的内角和定理解决实际问题。

教学难点:1. 三角形的内角和定理的理解和运用。

教学准备:1. 三角形的模型或图片。

2. 量角器。

3. 练习题。

教学过程:一、导入(5分钟)1. 向学生介绍三角形的内角和定理。

2. 引导学生思考为什么三角形的内角和等于180度。

二、新课(15分钟)1. 讲解三角形的内角和定理,并通过模型或图片进行演示。

2. 让学生用量角器测量三角形的角度,验证内角和定理。

3. 引导学生总结三角形的内角和定理的证明过程。

三、练习(10分钟)1. 让学生独立完成练习题,运用三角形的内角和定理计算三角形的角度。

2. 引导学生互相交流解题过程,讨论解题方法。

四、拓展(10分钟)1. 引导学生思考除了三角形,其他多边形的内角和是否也有定理。

2. 讲解多边形的内角和定理,并引导学生进行验证。

五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结三角形的内角和定理。

2. 强调三角形的内角和定理在解决实际问题中的应用。

教学反思:本节课通过导入、新课、练习、拓展和总结环节,让学生掌握了三角形的内角和定理。

在教学过程中,注意引导学生通过观察、操作和思考,加深对内角和定理的理解。

通过练习题的设计,让学生学会运用内角和定理解决实际问题。

在拓展环节,引导学生思考其他多边形的内角和定理,培养学生的发散思维。

总体来说,本节课达到了预期的教学目标。

六、案例分析(10分钟)1. 向学生提供几个实际案例,如建筑设计、道路规划等,让学生运用三角形的内角和定理解决问题。

2. 引导学生分析案例中三角形的角度关系,运用内角和定理进行计算和验证。

七、小组讨论(10分钟)1. 将学生分成小组,让他们讨论如何运用三角形的内角和定理解决实际问题。

教案及反思-三角形的内角和

教案及反思-三角形的内角和

教案及反思-三角形的内角和一、教学目标1.让学生掌握三角形内角和定理,理解三角形的内角和是180°。

2.培养学生运用三角形内角和定理解决实际问题的能力。

3.培养学生的观察、分析和推理能力。

二、教学重难点1.教学重点:三角形内角和定理的理解和应用。

2.教学难点:三角形内角和定理的证明。

三、教学过程1.导入新课师:同学们,我们之前学习了三角形的分类和性质,那么大家知道三角形的内角和是多少度吗?生:不知道。

师:今天我们就来学习三角形的内角和,相信通过本节课的学习,大家一定能找到答案。

2.探索三角形内角和(1)分组讨论师:请同学们分成小组,每组准备一角形纸片,用量角器测量三角形的三个内角,然后将测量结果记录在黑板上。

师:请大家观察黑板上的数据,发现了什么规律?生:三角形的内角和是180°。

师:很好,这就是我们今天要学习的三角形内角和定理。

3.证明三角形内角和定理师:那么大家有没有想过,为什么三角形的内角和是180°呢?下面我们来证明这个定理。

(1)作辅助线①画出三角形ABC;②在BC边上任取一点D,连接AD;③作∠BAC的角平分线,交AD于点E。

(2)观察角的关系师:请大家观察图形,可以发现∠BAC、∠BDE和∠CDE有什么关系?生:∠BAC=∠BDE+∠CDE。

(3)证明三角形内角和定理师:由于∠BDE和∠CDE是∠BAC的角平分线,所以∠BDE=∠CDE。

又因为∠BAC+∠BDE+∠CDE=180°,所以∠BAC+2∠BDE=180°。

将∠BDE=∠CDE代入,得到∠BAC+∠BDE+∠CDE=180°,即三角形ABC的内角和是180°。

4.应用三角形内角和定理(1)已知一个三角形的两个内角分别是30°和60°,求第三个内角的度数。

(2)如果一个三角形的两个内角分别是90°和45°,那么这个三角形是什么三角形?师:通过本节课的学习,我们知道了三角形的内角和是180°,并且学会了运用三角形内角和定理解决实际问题。

三角形内角和数学教案设计

三角形内角和数学教案设计

三角形内角和數學教案設計
标题:三角形内角和數學教案設計
一、教学目标:
1. 知识与技能:
学生应掌握三角形的定义,理解并能计算三角形的内角和。

2. 过程与方法:
通过动手实践,引导学生探索三角形内角和的规律,并学会运用所学知识解决实际问题。

3. 情感态度与价值观:
培养学生的观察力、分析能力和创新精神,增强他们对数学的兴趣和热爱。

二、教学重点与难点:
重点:理解和掌握三角形内角和定理。

难点:如何运用内角和定理解决实际问题。

三、教学过程:
1. 导入新课:
教师可以利用多媒体展示一些形状各异的三角形,让学生观察并思考:这些三角形有什么共同之处?从而引出三角形的定义。

2. 新课讲解:
(1) 三角形的定义:由三条线段首尾相连围成的图形叫做三角形。

(2) 探索三角形内角和:教师可以分发预先准备好的三角形纸片,让学生自己动手剪切、拼接,发现三角形内角和的规律。

然后教师再进行总结,得出三角形内角和为180度的定理。

3. 巩固练习:
设计一些相关的习题,让学生运用所学知识进行解答,如:已知一个三角形的两个角度数,求第三个角的度数。

4. 小结与作业:
教师带领学生回顾本节课的主要内容,强调三角形内角和定理的重要性。

布置相关作业,以巩固学生的学习效果。

四、教学评价:
通过对学生的课堂表现、实践活动以及作业完成情况的观察和评估,了解学生对三角形内角和的理解程度和应用能力。

五、教学反思:
在教学过程中,要注意引导学生自主探究,激发他们的学习兴趣和积极性。

同时,要关注每一位学生的学习进度,及时给予指导和帮助。

教案:《三角形的内角和》

教案:《三角形的内角和》

教案:《三角形的内角和》一、教学目标1.让学生理解三角形的内角和定理,掌握三角形内角和的计算方法。

2.培养学生运用三角形内角和定理解决实际问题的能力。

3.激发学生对几何学的兴趣,培养学生的逻辑思维能力。

二、教学重点与难点1.教学重点:三角形内角和定理的理解与应用。

2.教学难点:三角形内角和定理的证明过程。

三、教学过程(一)导入1.利用多媒体展示三角形图片,引导学生观察三角形的特征。

2.提问:同学们,你们知道三角形有什么特征吗?3.学生回答:三角形有三条边、三个角。

(二)新课讲解1.引导学生回顾已学的角的分类知识,如直角、锐角、钝角等。

2.提问:同学们,你们知道三角形的内角和是多少吗?3.学生回答:不知道。

4.教师讲解三角形内角和定理:三角形内角和等于180度。

5.利用多媒体展示三角形内角和定理的证明过程,让学生直观地感受定理的正确性。

(三)案例分析1.展示案例1:一个等边三角形,求它的内角和。

2.学生独立思考,尝试运用三角形内角和定理解决问题。

3.学生回答:等边三角形的内角和为180度。

4.展示案例2:一个直角三角形,求它的内角和。

5.学生独立思考,尝试运用三角形内角和定理解决问题。

6.学生回答:直角三角形的内角和为180度。

(四)课堂练习1.布置练习题,让学生独立完成。

2.练习题包括:求不同类型三角形的内角和、运用三角形内角和定理解决实际问题等。

3.学生完成后,教师批改并讲解答案。

2.提问:同学们,你们还能想到哪些与三角形内角和有关的问题?3.学生回答:四边形的内角和、多边形的内角和等。

4.教师布置课后作业:研究四边形、五边形等图形的内角和。

四、课后作业1.复习三角形内角和定理,理解其证明过程。

2.完成课后练习题,巩固所学知识。

3.研究四边形、五边形等图形的内角和,尝试运用所学知识解决实际问题。

五、教学反思本节课通过多媒体展示、案例分析、课堂练习等多种教学方法,使学生掌握了三角形内角和定理,并能够运用该定理解决实际问题。

三角形内角和定理教学设计

三角形内角和定理教学设计

三角形内角和定理教学设计一、教材分析:◆地位与作用:三角形内角和定理是初中几何中的一个很重要的定理。

它从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。

教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用;因此本节内容不仅在知识上具有承前启后的地位,而且对今后学习和生活都将起到重要的指导作用。

◆重点:教学重点以三角形内角和定理的证明为载体,学习几何证明思想,以及辅助线的有关知识,体会数形结合思想。

◆难点:辅助线添加的必要性和具体方法:(1)为什么要添加;(2)在哪里添加;(3)如何添加;(4)哪种添加方法最简单。

二、学情分析:(1)学生已经接触过三角形内角和定理,并且进行了猜想与验证及口头说理过程。

这为证明三角形内角和定理提供了认知基础。

(2)从学生的学习动机与需要上看,他们有探究新事物的欲望和好奇心,这为探究三角形内角和定理的证明策略及方法提供了情感保障。

(3)学生在学习三角形内角和定理的证明过程中,其认知顺序可能是建构型的。

平行线是其原有知识储备的主要图式,他们利用原有图式完全可以同化三角形内角和定理。

三、教学目标:◆知识与技能:掌握“三角形内角和定理”的证明以及简单应用。

并初步学会利用添加辅助线的方法进行命题的证明。

◆过程与方法:学生亲历探索撕纸过程对比,体会思维实验和符号化的理性运用,在观察、操作、推理、归纳等探索过程中,发展合情推理能力,逐步养成逻辑推理能力,并形成一定的逻辑思维能力。

◆情感态度与价值观:通过多种证明定理的方法,初步体会思维的多向性,培养学生创新思维能力、创新想象能力,并体会推理的严谨性,初步树立步步有据的推理意识,发展推理论证能力,同时,善于表达自己的想法,并能与同伴交流。

沪科版数学八年级上册《三角形内角和定理的两个推论》教学设计1

沪科版数学八年级上册《三角形内角和定理的两个推论》教学设计1

沪科版数学八年级上册《三角形内角和定理的两个推论》教学设计1一. 教材分析《三角形内角和定理的两个推论》是沪科版数学八年级上册的教学内容。

本节内容是在学生已经掌握了三角形内角和定理的基础上进行学习的,通过推论的证明,让学生更好地理解三角形的性质,为后续学习三角形的其他性质和判定定理打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了三角形内角和定理,并有一定的几何图形基础。

但部分学生对于证明过程的理解可能存在困难,因此,在教学过程中,需要关注这部分学生的学习情况,引导他们理解和掌握推论的证明过程。

三. 教学目标1.让学生理解三角形内角和定理的两个推论,并掌握其证明过程。

2.通过推论的学习,让学生更好地理解三角形的性质。

3.培养学生的逻辑思维能力和证明能力。

四. 教学重难点1.教学重点:三角形内角和定理的两个推论及其证明过程。

2.教学难点:推论的证明过程,特别是对于空间想象能力要求较高的部分。

五. 教学方法1.引导法:通过问题引导,让学生思考和探索推论的证明过程。

2.示范法:教师演示推论的证明过程,学生跟随模仿。

3.讨论法:学生分组讨论,分享各自的解题思路和方法。

六. 教学准备1.教学PPT:制作详细的PPT,展示推论的证明过程。

2.教学素材:准备一些与推论相关的几何图形,以便于学生理解和操作。

3.教学工具:准备直尺、圆规等绘图工具。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形内角和定理,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT呈现三角形内角和定理的两个推论,并简要介绍推论的意义。

3.操练(10分钟)教师引导学生跟随自己一起证明推论,过程中注意解释每一步的逻辑关系,让学生充分理解推论的证明过程。

4.巩固(10分钟)教师提出一些与推论相关的问题,让学生独立解答,以此检验学生对推论的理解和掌握程度。

5.拓展(10分钟)教师引导学生思考推论在实际问题中的应用,让学生尝试运用推论解决一些几何问题。

三角形内角和定理教学设计

三角形内角和定理教学设计

三角形内角和定理教学设计教学目标:1.理解三角形内角和定理的概念和含义;2.运用三角形内角和定理求解三角形内角的度数;3.熟练使用三角形内角和定理解决相关的几何问题。

教学准备:1.教学工具:黑板、白板、彩色粉笔、三角板等;2.教学资源:课本、练习册、作业纸等。

教学过程:第一步:引入知识(10分钟)1.教师在黑板上绘制一个任意的三角形,并标记出三个内角;2.教师引导学生思考,问学生三角形的三个内角之和是多少?是否有规律可循?第二步:讲解概念(15分钟)1.教师简要讲解三角形内角和定理的概念和含义:三角形的三个内角之和等于180度;2.教师用白板和三角板演示验证三角形内角和定理,告诉学生如何利用角度标记和三角板求解角度;3.教师强调三角形内角和定理的重要性和应用场景。

第三步:练习巩固(20分钟)1.教师在黑板上写下几个三角形,让学生用三角板或直尺测量三角形的三个内角,并求出它们之和;2.学生互相核对答案,并进行讨论和纠错;3.学生在作业纸上完成一些三角形内角和定理的练习题,教师对学生的答题情况进行评价和指导。

第四步:知识拓展(15分钟)1.教师讲解三角形的特殊情况下的内角和定理,如等腰三角形、等边三角形等;2.教师引导学生思考和讨论:在什么情况下三角形的内角和可能不等于180度?学生回答后教师给予评价和补充。

第五步:拓展应用(20分钟)1.教师提供一些实际问题,让学生运用三角形内角和定理解决问题;2.学生分组讨论和解答问题,然后向全班展示解决思路和答案;3.教师对学生的解答过程和答案进行评价和点评,加强学生对三角形内角和定理的应用能力。

第六步:课堂总结(5分钟)1.教师对本节课的内容进行总结,并强调三角形内角和定理的重要性和应用价值;2.老师鼓励学生继续练习和应用三角形内角和定理,加强自己的几何推理和问题解决能力。

扩展延伸:1.学生可以通过在周围环境中寻找并绘制出各种三角形,并利用角度标记和三角板测量和计算三角形的内角和;2.学生可以设计一些有趣的几何问题,并利用三角形内角和定理进行求解,进一步锻炼自己的几何思维和解决问题的能力。

八年级数学上册《三角形内角和定理》教案、教学设计

八年级数学上册《三角形内角和定理》教案、教学设计
1.针对不同学生的学习特点,采取分层教学,使每个学生都能在原有基础上得到提高。
2.注重启发引导,激发学生的求知欲和探究精神,帮助他们建立几何直观。
3.创设生活情境,让学生在实际问题中感受三角形内角和定理的价值,提高学习的积极性。
4.加强对学生的个别辅导,关注他们的学习困惑,及时给予指导和鼓励,帮助他们克服学习难题,增强自信心。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握角形内角和定理。
2.学会运用三角形内角和定理解决实际问题。
3.掌握三角形内角和定理的证明方法。
(二)教学设想
1.创设情境,导入新课
通过展示生活中的三角形实例,如自行车三角架、衣架等,引导学生观察、思考三角形内角和的特点,激发学生的学习兴趣。
2.自主探究,发现规律
4.总结、归纳三角形内角和定理的运用方法,提高解决问题的能力。
(三)情感态度与价值观
1.增强对数学美的感受,认识到数学在生活中的重要性。
2.养成主动探究、合作学习的良好习惯,提高自主学习能力。
3.培养严谨、踏实的科学态度,树立正确的价值观。
4.在解决实际问题的过程中,体验数学带来的成就感,增强自信心。
(四)课堂练习,500字
课堂练习环节,教师设计难易程度不同的题目,让学生独立完成。题目包括:计算给定三角形的内角和、解决实际问题等。学生在解题过程中,可以巩固所学知识,提高解题能力。教师巡回指导,针对学生的疑问给予及时解答,帮助他们克服困难。
(五)总结归纳,500字
在总结归纳环节,教师首先引导学生回顾本节课所学内容,对三角形内角和定理进行总结。学生分享自己在课堂上的收获和感悟,教师给予积极评价。接着,教师对本节课的重点知识进行梳理,强调三角形内角和定理在几何学中的重要性。最后,教师布置课后作业,要求学生在课后巩固所学知识,为下一节课的学习打下基础。

北师大版数学八年级上册5《三角形内角和定理》教学设计1

北师大版数学八年级上册5《三角形内角和定理》教学设计1

北师大版数学八年级上册5《三角形内角和定理》教学设计1一. 教材分析《三角形内角和定理》是北师大版数学八年级上册第五章的内容。

本节内容主要让学生掌握三角形的内角和定理,即三角形的三个内角之和等于180度。

这个定理是几何学中的基础内容,对于学生后续学习几何学其他知识有着重要的影响。

教材通过丰富的活动,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在学习本节内容前,已经学习了多边形的概念、分类,对多边形有了一定的了解。

同时,学生已经掌握了角的度量方法,能够准确地度量角的度数。

此外,学生还学习了平行线的性质、同位角、内错角等知识,对于通过观察、操作、推理等方法探索几何问题的解决策略有了一定的掌握。

但是,部分学生在解决几何问题时,仍存在思维定势,不能灵活运用所学知识。

三. 教学目标1.知识与技能目标:让学生掌握三角形的内角和定理,能运用三角形的内角和定理解决简单的几何问题。

2.过程与方法目标:通过观察、操作、推理等方法,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:让学生在探索过程中,体验到数学的乐趣,增强对数学的兴趣,培养学生的团队协作能力和交流表达能力。

四. 教学重难点1.教学重点:三角形的内角和定理。

2.教学难点:如何引导学生通过观察、操作、推理等方法探索并验证三角形的内角和定理。

五. 教学方法1.情境教学法:通过设置情境,让学生在实际问题中感受并探索三角形的内角和定理。

2.引导发现法:引导学生通过观察、操作、推理等方法,自主发现并验证三角形的内角和定理。

3.合作学习法:学生进行小组合作,培养学生的团队协作能力和交流表达能力。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。

2.学具:每个学生准备一套三角板、直尺、圆规等。

七. 教学过程1.导入(5分钟)教师通过多媒体展示一系列与三角形有关的问题,如:什么是三角形?三角形有哪些性质?引发学生对三角形的思考,为新课的学习做好铺垫。

《三角形的内角和》教学设计

《三角形的内角和》教学设计

《三角形的内角和》教学设计《三角形的内角和》教学设计1一、本节课在新一轮课程改革下的设计理念:数学是人与人之间精神层面上进行的交往。

课堂教学中的交往主要是教师与学生、学生与学生之间的交往。

它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。

新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。

应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。

要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。

我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。

教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

二、教材分析与处理:三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

三、学生分析处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。

八年级数学上册7.5三角形的内角和定理第2课时三角形的外角教学设计 (新版北师大版)

八年级数学上册7.5三角形的内角和定理第2课时三角形的外角教学设计 (新版北师大版)

八年级数学上册7.5三角形的内角和定理第2课时三角形的外角教学设计(新版北师大版)一. 教材分析本节课的主要内容是三角形的外角性质。

学生已经学习了三角形的内角和定理,对三角形的内角有了深入的理解。

在此基础上,引入三角形的外角性质,既是对学生已有知识的巩固,也是对知识体系的拓展。

二. 学情分析八年级的学生已经具备了一定的数学基础,对图形有了一定的认识。

但是,对于三角形的外角性质,他们可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解并掌握三角形的外角性质。

三. 教学目标1.知识与技能:使学生掌握三角形的外角性质,能运用外角性质解决一些简单问题。

2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的观察能力、操作能力、猜想能力和验证能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、严谨求实的科学态度。

四. 教学重难点1.重点:三角形的外角性质。

2.难点:三角形的外角性质的证明和应用。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等,引导学生主动探究,合作交流,从而掌握三角形的外角性质。

六. 教学准备1.教师准备:教材、课件、黑板、粉笔、三角板等。

2.学生准备:笔记本、尺子、三角板等。

七. 教学过程1. 导入(5分钟)教师通过回顾上节课的内容,引导学生复习三角形的内角和定理。

然后,提出问题:“同学们,你们知道三角形还有一个重要的性质吗?那就是三角形的外角。

”从而引出本节课的内容。

2. 呈现(10分钟)教师通过课件或黑板,呈现三角形的外角性质,让学生初步感知。

3. 操练(15分钟)教师引导学生通过观察、操作,尝试证明三角形的外角性质。

学生在操作过程中,可以发现三角形的外角等于它不相邻的两个内角之和。

4. 巩固(10分钟)教师通过一些例子,让学生运用外角性质解决实际问题,巩固所学知识。

5. 拓展(10分钟)教师引导学生思考:三角形的外角性质有哪些应用?可以解决哪些问题?从而拓展学生的知识视野。

《三角形内角和》教案

《三角形内角和》教案

《三角形内角和》教案教学目标:1.了解三角形的定义及性质。

2.掌握三角形内角和的计算方法。

3.能够运用所学知识解决相关问题。

教学重点:1.三角形内角和的概念。

2.三角形内角和的计算方法。

教学难点:1.如何理解三角形内角和的概念。

2.如何运用所学知识解决相关问题。

教学准备:1.教师准备:黑板、彩色粉笔、教学PPT。

2.学生准备:课本、作业本、笔等。

教学过程:一、导入(5分钟)教师提问:什么是三角形?举例说明。

学生回答后,教师引导学生讨论三角形的定义及性质,引出三角形内角和的概念。

二、讲解(15分钟)1.三角形内角和:教师通过图示和示例,讲解三角形内角和的定义,即三角形的三个内角之和等于180度。

2.计算方法:教师讲解如何计算三角形内角和,可以通过以下公式进行计算:内角和=第一个角+第二个角+第三个角。

3.案例分析:教师通过几个案例讲解如何应用所学知识计算三角形内角和。

三、练习(25分钟)1.基础练习:学生进行基础的计算练习,如计算各种角度和为180度的三角形。

2.拓展练习:学生进行一些拓展性的练习,如寻找三角形内角和不等于180度的特殊情况。

3.讨论疑难问题:学生对遇到的疑难问题进行讨论,教师进行指导和解答。

四、总结(10分钟)1.教师对本节课内容进行总结,强调三角形内角和的计算方法及相关性质。

2.学生对本节课所学内容进行复习总结,并提出问题。

五、作业布置(5分钟)1.布置相关练习题目,巩固所学知识。

2.提醒学生认真复习课堂内容,做好作业准备下节课。

教学反思:通过本节课的教学,学生对三角形内角和的概念有了更深入的理解,掌握了相关的计算方法,能够运用所学知识解决相关问题。

在教学过程中,学生的参与度和积极性较高,对课堂内容有了较深的印象。

教师需要在后续的教学中继续巩固学生对三角形相关知识的理解和掌握,帮助他们建立数学思维,提高解决问题的能力。

三角形的内角和定理--教学设计

三角形的内角和定理--教学设计

三角形内角和定理教学设计一、内容和内容解析:《三角形内角和定理》是北师大版八年级上册第七章平行线的证明的最后一节内容,是在学生学习了证明的必要性和平行线的性质与判定的基础上进行学习的.《三角形内角和定理》是对前几节证明的自然延续,是平行线性质的后续应用,是对推理证明的巩固与加深.同时,三角形内角和定理是计算角的度数的常用方法之一,是学生今后学习多边形内角和以及圆等知识的基础,探索定理证明过程中体现的数学思想和方法、引入的辅助线的添加方法也为学生后续几何学习奠定了基础,具有承上启下的作用。

二、目标与目标解析:上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

为此,本节课的教学目标是:知识与技能:掌握三角形内角和定理,了解它的几种证法,灵活应用三角形内角和定理解决相关问题,初步学会利用添加辅助线的方法进行证明。

过程与方法:经历三角形内角和定理的探索过程,在观察、推理、归纳等探索过程中发展学生合情推理能力,演绎推理能力,初步养成逻辑推理能力,同时培养学生创新思维能力。

情感态度与价值观:通过从多角度解决问题,培养学生的创新意识,弘扬个性发展,体验解决问题的成就感,体会数学证明的严谨性和推理意义,通过数学活动激发学生的兴趣,感悟思维推理的数学价值。

三、教学重点、难点:重点:动手操作、自主探究三角形内角和定理并会进行简单应用。

难点:探究三角形内角和定理证明思路和方法。

四、教学问题诊断分析:学生学习技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生认识了三角形掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的知识基础。

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形内角和定理教学设计一、内容和内容解析:《三角形内角和定理》是北师大版八年级上册第七章平行线的证明的最后一节内容,是在学生学习了证明的必要性和平行线的性质与判定的基础上进行学习的.《三角形内角和定理》是对前几节证明的自然延续,是平行线性质的后续应用,是对推理证明的巩固与加深.同时,三角形内角和定理是计算角的度数的常用方法之一,是学生今后学习多边形内角和以及圆等知识的基础,探索定理证明过程中体现的数学思想和方法、引入的辅助线的添加方法也为学生后续几何学习奠定了基础,具有承上启下的作用。

二、目标与目标解析:上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

为此,本节课的教学目标是:知识与技能:掌握三角形内角和定理,了解它的几种证法,灵活应用三角形内角和定理解决相关问题,初步学会利用添加辅助线的方法进行证明。

过程与方法:经历三角形内角和定理的探索过程,在观察、推理、归纳等探索过程中发展学生合情推理能力,演绎推理能力,初步养成逻辑推理能力,同时培养学生创新思维能力。

情感态度与价值观:通过从多角度解决问题,培养学生的创新意识,弘扬个性发展,体验解决问题的成就感,体会数学证明的严谨性和推理意义,通过数学活动激发学生的兴趣,感悟思维推理的数学价值。

三、教学重点、难点:重点:动手操作、自主探究三角形内角和定理并会进行简单应用。

难点:探究三角形内角和定理证明思路和方法。

四、教学问题诊断分析:学生学习技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生认识了三角形掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的知识基础。

数学活动经验基础:本节课主要采取的活动形式是学生自主探究与合作交流的学习方式,学生具有较熟悉的数学活动经验.而本节课是学生第一次学习添加辅助线通过演绎推理的方法证明三角形内角和定理,辅助线的做法使学生在几何证明过程中第一次接触,并且辅助线的添法没有统一的规律,要根据需要而定,另外从本节课开始训练学生将命题翻译为几何符号语言,这对学生来说有一定的难度。

鉴于以上问题诊断分析,因此我确定本节课的教学重点为:动手操作、自主探究三角形内角和定理并会进行简单应用。

教学难点:探究三角形内角和定理证明思路和方法。

五、教学支持条件分析:为了有效的实现教学目标,根据问题诊断分析和学习行为分析,为落实学生的主体地位,教师是教学过程中的组织者、合作者、引导者,我确定如下的教学方式,学生自主探究、合作交流学习,教师引导发现教学。

其次本节课我采用多媒体演示教学,促进学生自主学习,增大课堂容量,提高效率,突出重点,突破难点。

六、教学过程设计:为达到本节课教学目标本节课的设计分为四个环节:知识回顾、新课引入——操作验证、探索新知——巩固练习、强化应用——课堂小结、升华提升——作业布置、反馈教学。

第一环节:知识回顾、新课引入:提出问题:在小学大家已经知道并了解三角形内角和为180°这个结论,能否通过操作验证一下?设计意图:本环节主要注重学生已有经验基础,回忆以前所学知识,使学生明确本节课学习方向,促进学生积极思考形成较高的课堂关注,为本节课的学习做准备.第二环节:操作验证、探索新知:【活动1:操作验证】工具:两张一般锐角三角形卡纸,磁铁。

实验:能否通过实验的方法验证结论是合理的吗?(量、折、)你是怎样思考操作的?想一想,还有其它方法吗?(拼)实验:将纸片三角形三角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的验证思路。

想一想,如果只剪下一个角呢? (学生在黑板右上方展示三种图形,并简单说明自己的方法.)。

(1) (2) (3) (以上是通过实验操作验证凭经验得出的规律是不严谨的,接下来我们就用严谨的几何证明的方法证明三角形内角和为180°这个结论,而这个命题如何证明,这就是我们本节课的关键,也就是我们今天要掌握的一个非常重要的定理—板书标题《三角形内角和定理》)。

设计意图:本环节,通过一个活动让学生动手实践,通过实验操作的方法验证结论的合理性,发展学生合情推理的能力,积累数学活动经验,为下一步作辅助线提供方法。

【活动2:证明定理】探究一:(经过三角形顶点作平行线)1:引导学生回忆证明命题的步骤,并板书(1.画图.2.写出已知、求证.)提出问题:如何证明三角形内角和为180°?由180°你联想到什么了?(平 角,和平行线产生的同旁内角互补)那么如何构造平角和同旁内角?由前面 的拼图你发现什么?能否得到启发?2.证明:作BC 的延长线CD ,过点C 作射线CE ∥BA .∵CE ∥BA∴∠B=∠ECD (两直线平行,同位角相等)∠A=∠ACE (两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)3.思考:由第二种和第三种拼图类比第一种证法能否联想到更多种证法?(学生思考展A B C D E AB C示作法与想法)【提出问题】反思三种证法有何共性?体现了怎样的数学思想?(经过三角形的顶点作一边的平行线,实现了角的转化,将三个内角转化为平角或者同旁内角,体现了数学中的转化思想。

)证明三角形内角和定理的本质:设计意图:本环节设计目的是通过问题激发质疑让学生的思维由感性上升到理性, 引导学生从实验操作获取感悟得出作辅助线证明三角形内角和定理,同时体验证法的多样性,同时引领学生在探索过程中体会证明三角形内角和定理的基本数学思想和方法,掌握基本构图,规范证明的步骤以及推理的严密性,培养学生观察能力与演绎推理能力。

探究二:(经过三角形边上任意一点作平行线)1.【想一想】:我们的目标是将三个不同位置的角转化为一点处,也就是拼凑到一点处,试问这一点一定是在三角形顶点处吗?)学生活动:1.独立思考,完成经过三角形边上任意一点做平行线的证明定理。

2.进行班级展讲。

3.反思此法与探究一的异同。

设计意图:通过问题,激发质疑,引领学生进行有条理的思考.在学生展讲的过程中进行适时点拨,在复杂图形中分解基本图形,培养学生的识图能力.充分认识探究二与探究一的异同,增强学生的辨析能力.探究三:(经过三角形内或外任意一点作平行线) 教师活动:组织学生思考、小组交流、操作演示、班级展讲;学生活动:1.先独立思考理,然后组内交流; 2.借助纸片操作,演示三个内角拼成平角的过程;3.对三次探究进行系统反思;A B CD E F G H M N D E F G H M N A B C设计意图:探究三重在让学生体会,不论图形怎样变化,解决问题的基本思想和方法不变,不同的是拼成平角的位置不同而已.让学生在不断辨析中增强识图能力,认识证明该定理的本质所在,提高学生的逻辑推理能力.【拓展提升】:(从运动的角度认识三角形内角和定理),动态演示,当顶点A无限远离BC边,会得出什么结论?当顶点A无限接近BC边时又会出得出什么结论?(简单提出“逼近法”得出内角和定理)设计意图:本环节设计意图,重在让学生体会,探究问题的基本思想和方法不变,不同的是通过转化拼成平角的位置不同而已,让学生在不断的辨析中增强识图能力,认识证明该定理的本质所在,提高学生从多角度分析问题解决问题的能力。

第三环节:巩固练习、强化应用活动内容:【试一试】:1.△ABC中,(1)∠A=55°,∠B=15°,∠C=.(2)∠C=90°,∠A=∠B,则∠B= .2.三角形中三个内角之比为2∶3∶4 ,则三个内角的度数分别是.【猜一猜】:如图有三个三角形的其中两个角被挡住了,其他两个角有什么特点?提出问题:(1)一个三角形中只能有几个直角或钝角?(2)一个三角形中至少有几个锐角?至多有几个锐角?设计意图:巩固三角形内角和定理的应用,在应用定理进行计算、推理的过程中增强对定理的内涵的理解。

第四环节:课堂小结、内化提升本节课:我学会了……知识;我掌握了……思想方法;设计意图:在反思总结过程中进行数学知识的梳理及思想方法的构建,帮助学生查漏补缺,对本节课所学形成较为全面的认识。

第五环节:作业布置、反馈教学教师活动:出示检测题.(1)已知:△ABC 中,∠C=∠B=2∠A 。

(a )求∠B 的度数;(b )若BD 是AC 边上的高,求∠DBC 的度数? (2)如图,求∠A+∠B+∠C+∠D+∠E 的度数。

(3) 已知:如图四边形ABCD 是任意一个四边形.求证:∠A +∠B +∠C +∠D =360°(比比谁的方法多!)学生活动:独立完成,组内批改.设计意图:每节课的达标检测是对学生的一种评价和激励措施.这道检测题的设置,既能够检验学生对证明三角形内角和定理渗透的思想方法的掌握,又能够检测对三角形内角和定理的应用,且难度适中,面向绝大多数同学,能够较好的实现对教学目标的评价,给大部分学生带来成功的体验。

A B C D E FBC A D三角形内角和定理点评稿本节课的教学设计经过实际的教学检验,成功的激发了学生兴趣,吸引了学生注意力,激起了他们的求知欲望;教师教学民主,使学生敢于发表自己的不同想法;在教学中运用教学媒体的效果好。

学生通过小组讨论,发现了多种辅助线的做法,但本质是通过做平行线实现角的转化,潜移默化中渗透了重要的数学思想——转化的思想。

本节课的重点是三角形内角和定理的证明,王康老师引导学生通过作平行线经过点的位置不同将几种做法分为三类启发学生探究,既突出了本节课的重点,又拓展了学生的思维。

教师的“导”立足于学生的“学”,学生通过动手操作和合作交流,主动参与到知识形成的思维过程,将抽象的证明和直观的探索联系起来,成功的实现了从合情推理到演绎推理的转变,体现了学生是主体,教师是主导的教学理念。

总之,通过这节课给我带来了更深的启示:在素质教育不断发展的今天,树立“以学生发展为本”的理念,让学生充分从事数学探究活动,发挥学生学习的自主性、主动性、选择性和创造性,让学生在自主探索中不断地发展!。

相关文档
最新文档